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Abstract9

Ontologies and vector space embeddings are among the most popular frameworks for encoding10

conceptual knowledge. Ontologies excel at capturing the logical dependencies between concepts in a11

precise and clearly defined way. Vector space embeddings excel at modelling similarity and analogy.12

Given these complementary strengths, there is a clear need for frameworks that can combine the13

best of both worlds. In this paper, we present an overview of our recent work in this area. We14

first discuss the theory of conceptual spaces, which was proposed in the 1990s by Gärdenfors as15

an intermediate representation layer in between embeddings and symbolic knowledge bases. We16

particularly focus on a number of recent strategies for learning conceptual space representations17

from data. Next, building on the idea of conceptual spaces, we discuss approaches where relational18

knowledge is modelled in terms of geometric constraints. Such approaches aim at a tight integration19

of symbolic and geometric representations, which unfortunately comes with a number of limitations.20

For this reason, we finally also discuss methods in which similarity, and other forms of conceptual21

relatedness, are derived from vector space embeddings and subsequently used to support flexible22

forms of reasoning with ontologies, thus enabling a looser integration between embeddings and23

symbolic knowledge.24
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1 Introduction32

In Artificial Intelligence (AI), the traditional approach for encoding knowledge about concepts33

has been to use logic-based representations, typically in the form of a rule base. Such a rule34

base is often called an ontology in this context.35

▶ Example 1. Consider the following rules:36

expertInAI(X)← authorOf(X, Y ), hasTopic(Y, artificialIntelligence)37

hasTopic(X, artificialIntelligence)← hasTopic(X, knowledgeRepresentation)38

hasTopic(X, artificialIntelligence)← hasTopic(X, machineLearning)39

hasTopic(X, artificialIntelligence)← hasTopic(X, multiAgentSystems)40

hasTopic(X, artificialIntelligence)← hasTopic(X, naturalLanguageProcessing)41
42
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3:2 Integrating Ontologies and Vector Space Embeddings using Conceptual Spaces

Here we have used the notational conventions from logic programming, where the conclusion43

of the rule is shown on the left-hand side and “,” denotes conjunction. The first rule intuitively44

asserts that somebody who has published a paper on an AI topic is an expert in AI. The45

remaining rules encode that knowledge representation, machine learning, multi-agent systems46

and natural language processing are sub-fields of AI. Along with the ontology, we are usually47

given a set of facts, e.g.:48

{authorOf(bob, p), hasTopic(p, knowledgeRepresentation)}49
50

Given this set of facts, together with the aforementioned rules, we can conclude that51

hasTopic(p, artificialIntelligence) holds and thus also that expertInAI(bob) holds.52

Using ontologies for encoding conceptual knowledge has at least two key advantages. First,53

the formal semantics of the underlying logic ensures that knowledge can be encoded in a54

precise and unambiguous way. This, in turn, ensures that different applications can rely on a55

shared understanding of the meaning of the concepts involved. Second, ontologies enable56

us to capture knowledge in a transparent and interpretable way1, which makes it relatively57

straightforward to update knowledge and to support decisions with meaningful explanations.58

But ontologies, and symbolic approaches to knowledge representation more generally, also59

have important drawbacks. A first issue stems from the fact that the knowledge which is60

captured in an ontology is rarely complete. For instance, consider the following set of facts:61

{authorOf(alice, q), hasTopic(q, planning)}62
63

As none of the available rules express that planning is a sub-field of AI, we cannot infer that64

expertInAI(alice) holds. Nonetheless, to a human observer, it seems clear that this would65

be a valid inference, even without a precise understanding of what the predicate expertInAI66

is supposed to capture. Essentially, standard frameworks for modelling ontologies lack a67

mechanism for inductive reasoning [28]. This is not something which can be easily addressed,68

as inductive arguments rely on graded notions such as similarity and typicality [58, 50, 66, 51].69

Another issue is that many concepts are difficult to characterise in a satisfactory way using70

logical rules. For instance, somebody with a single published paper in AI would not normally71

be considered to be an AI expert, except perhaps if the work was particularly influential72

or groundbreaking, but formalising such notions using rules is challenging. Probabilistic73

extensions of standard ontology languages [36, 15] may alleviate some of the aforementioned74

issues, but such frameworks still do not allow us to model similarity, or aspects that are a75

matter of degree (e.g. being an expert in AI).76

The most common alternative to ontologies is to encode conceptual knowledge using77

vector space representations. Most work on vector representations of conceptual knowledge78

has focused on knowledge graphs (KGs), which are sets of triples of the form (e, r, f), where79

e and f are entities and r is a binary relation. Note that both individuals and attribute80

values are typically regarded as entities in this context. As an example, we may consider the81

following knowledge graph:82

K = {(bob, authorOf, p), (p, hasTopic, knowledgeRepresentation),83

(p, hasTopic, artificialIntelligence), (bob, hasProperty, expertInAI)}84
85

1 It should be noted, however, that the extent to which a given ontology is interpretable will depend on
its size and the way it has been encoded. Symbolic rules that have been learned from data can often be
difficult to interpret, for instance.
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Approaches for Knowledge graph embedding (KGE) learn a vector representation e ∈ Rn for86

each entity e and a scoring function ϕr : Rn × Rn → R for each relation type r, such that87

ϕr(e, f) captures the plausibility of the triple (e, r, f), i.e. the plausibility that the relation r88

holds between the entities e and f [14, 75, 70, 69]. The vector e is called the embedding of89

entity e. The purpose of KGE is at least two-fold. First, it is hoped that this embedding90

will uncover some of the underlying semantic dependencies in the KG, and that as a result,91

we will be able to identify plausible triples that are missing from the given KG. Second, by92

encoding the information that is captured in the knowledge graph using vectors, it becomes93

easier to exploit this information in neural network models.94

Figure 1 shows a vector encoding of the paper p and some of the considered subject areas.
For this example, we assume that the dot product between p and a subject area indicates
how relevant that subject area is to p, i.e. we have ϕhasTopic(e, f) = e · f . Let us write vML,
vAI, vNLP and vKR for the vector representations of the different subject areas, and p for
the representation of p. According to this embedding, we have p ·vML ≈ p ·vNLP > p ·vKR,
which captures the knowledge that p is more closely related to machine learning and natural
language processing than to knowledge representation. Moreover, note how the norm of vAI
is larger than the norms of vML, vNLP and vKR. This intuitively captures the knowledge
that the term artificial intelligence is broader in meaning. For instance, we can encode the
knowledge that machine learning is a sub-discipline of AI by ensuring that for every vector
x ∈ R2 it holds that:

vML · x < vAI · x

Note that in this example, we have only focused on one relation (i.e. hasTopic). In general,95

we can model multiple relations by using higher-dimensional vectors, together with scoring96

functions that depend on relation-specific parameters (see Section 2.3 for more details).97

When it comes to modelling conceptual knowledge, an important advantage of KGE is that98

it naturally supports inductive inferences. Moreover, such representations are better suited99

for modelling graded notions such as similarity than symbolic representations. However,100

the extent to which “rule-like” knowledge can be captured is limited. As we saw in the101

aforementioned example, we can model the fact that one concept is subsumed by another,102

but it is not clear how more complex rules can be encoded using vector space embeddings.103

Moreover, KGE models lack the transparency of symbolic representations, which makes it104

harder to generate meaningful explanations or to update representations (e.g. to correct105

mistakes, add new knowledge, or take account of changes in the world).106

It is thus clear that ontologies and vector space embeddings have complementary strengths107

and weaknesses when it comes to modelling conceptual knowledge. Accordingly, various108

authors have proposed strategies for combining these two paradigms. For instance, rules are109

sometimes used to regularise neural networks [24, 74, 43], to generate supplementary training110

data [7], or to determine the structure of a neural network [59, 67]. Other approaches use rules111

to reason about the predictions of neural networks [44, 77], or treat rules as latent variables112

which are inferred by a neural network [56]. Note, however, how in the aforementioned113

research lines, rules and vector representation are treated as fundamentally distinct. Rules are114

either used as a supervision signal for learning neural networks (or vector space embeddings)115

or they are used for reasoning in a way that is largely decoupled from the neural networks116

or vector space embeddings themselves. Another observation is that rules essentially play a117

supportive role, to help overcome the limitations of some neural network model.118

The first question we address in this paper is whether a tighter integration of rules and119

vector representations is possible. The main idea is to view symbolic knowledge as qualitative120

constraints on some underlying geometric model. This idea was developed in the 1990s by121

AIB 2022



3:4 Integrating Ontologies and Vector Space Embeddings using Conceptual Spaces

Figure 1 Illustration of a simple knowledge graph embedding, in which the dot product between
p and a subject area indicates how relevant that subject area is to p.

Gärdenfors in his theory of conceptual spaces [27]. The key characteristic of conceptual spaces122

is that concepts are represented as regions, rather than vectors. A rule A(x)← B(x), C(x)123

can then be viewed as the constraint that the intersection of the regions representing B and124

C should be included in the region representing A. While the theory of conceptual spaces125

offers an elegant solution to the question of how symbolic and vector representation could be126

integrated, it has two limitations that have hampered its adoption within AI:127

In practice, it is often difficult to learn region-based representations of concepts from128

data.129

Conceptual space representations cannot be used for modelling relational knowledge, e.g.130

rules involving binary predicates.131

These two limitations, and strategies for addressing them, are discussed in Sections 3 and 4.132

The second question we discuss is how vector space representations can be used in
a supportive role, to help overcome some of the limitations of symbolic reasoning with
ontologies. Here, the starting point is that some of the aforementioned shortcomings can
be alleviated within a purely symbolic setting, for instance by relying on default reasoning
[42, 20, 32], analogical reasoning [31, 54, 61], or qualitative versions of similarity based
reasoning [65, 63]. The main problem with implementing such strategies in practice comes
from the fact that they often rely on types of background knowledge which is not usually
available in symbolic form (e.g. qualitative similarity relations). However, in some cases, this
background knowledge can be obtained from vector space embeddings. In this case, we still
have a loose integration between vector representations and rules, but rather than trying to
improve neural network learning, as in the works described above, now the focus is on making
symbolic reasoning more flexible and adding some kind of inductive reasoning capability.
For instance, in the setting from Example 1, if we know that the vector representation of
planning is highly similar to the vector representation of knowledgeRepresentation, we can
plausibly infer the following rule:

hasTopic(X, artificialIntelligence)← hasTopic(X, planning)

In Section 5, we discuss a number of strategies that build on this idea, focusing on how such133

plausible inferences can be integrated with standard deductive reasoning.134
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Figure 2 Illustration of a conceptual space of animals.

2 Background135

In this section, we briefly introduce the main concepts that we will build on in the following136

sections. First, Section 2.1 discusses the theory of conceptual spaces. In Section 2.2 we137

then cover two standard formalisms for encoding ontological rules: existential rules and the138

EL-family of description logics. Finally, Section 2.3 provides an introduction into Knowledge139

Graph Embedding.140

2.1 Conceptual Spaces141

Similar to vector-space embeddings, conceptual spaces [27] are geometric representations142

of the entities from a given domain of discourse. However, conceptual spaces differ from143

standard embeddings in two important ways: (i) properties and concepts are represented as144

regions and (ii) the dimensions of a conceptual space correspond to semantically meaningful145

features. These two differences enable conceptual spaces to act as an interface between146

neural representations, on the one hand, and symbolic knowledge, on the other hand. This147

is illustrated in Figure 2, which shows a conceptual space of animals. Specific animals are148

represented as points in this space. Concepts such as mammal and properties such as scary149

are represented as regions. The dimensions capture the ordinal features dangerous and large.150

In this representation, the region modelling mammal is included in the region modelling151

vertebrate, which intuitively captures the rule vertebrate(X)← mammal(X), i.e. all mammals152

are vertebrates. Note how this representation can also capture semantic dependencies that153

are harder to encode using rules, e.g. the fact that large spiders are scary.154

While it is convenient to think about conceptual spaces as vector space embeddings with155

some added structure, conceptual spaces do not necessarily have the structure of a vector156

space. A conceptual space is defined from a set of quality dimensions Q1, ..., Qn. Each of157

these quality dimensions captures a primitive feature. As a standard example, the conceptual158

space of colours is built from three quality dimensions, representing hue, saturation and159

intensity. A distinction is made between integral and separable quality dimensions. Intuitively,160

separable quality dimensions are those that have a meaning on their own. For instance, size161

could be seen as a separable dimension. On the other hand, hue is not separable, as we162

cannot imagine the hue of a colour without also specifying its saturation and intensity. This163

AIB 2022



3:6 Integrating Ontologies and Vector Space Embeddings using Conceptual Spaces

distinction between integral and separable dimensions plays an important role in cognitive164

theories, as it affects how similarity is perceived. For instance, Euclidean distance is normally165

used when integral dimensions need to be combined, whereas Manhattan distance is used166

when separable dimensions need to be combined [49, 27]. Quality dimensions are partitioned167

into so-called domains, where dimensions that belong to the same domain are assumed to be168

integral, while dimensions from different domains are assumed to be separable. For instance,169

a conceptual space of physical objects may be composed of three domains: the colour domain170

(containing the hue, saturation and intensity quality dimensions), the size domain (containing171

only a single quality dimension) and the shape domain (containing several dimensions).172

We can view domains as Cartesian products of quality dimensions. For instance, if
Di is composed of the quality dimensions Q1, ..., Qk then the elements of Di are tuples
(x1, ..., xk) ∈ Q1 × ... × Qk. We can thus intuitively think of domains as vector spaces,
although in general it is not required that domains satisfy the axioms of a vector space. An
individual (e.g. a specific apple) is represented as an element (x1, ..., xk) of a given domain,
whereas we can think of properties (e.g. green) as regions. One of the central assumptions
in the theory of conceptual spaces is that each natural property corresponds to a convex
region in some domain. A concept is characterised in terms of a set of natural properties,
along with information about how these properties are correlated. To define this notion of
convexity, we have to assume that each domain Di is equipped with a ternary betweenness
relation beti ⊆ Di ×Di ×Di. A region R ⊆ Di is then said to be convex iff

∀a, b, c ∈ Di . a ∈ Di ∧ c ∈ Di ∧ beti(a, b, c)⇒ b ∈ Di

In this paper, our focus will be on learning conceptual spaces from data. In this case,173

we will only consider domains that correspond to Euclidean spaces, where the notion of174

convexity can be interpreted in the standard way. Our focus will be on (i) learning region175

based representations of properties and concepts (ii) identifying quality-dimensions and (iii)176

grouping these quality-dimensions into domains.177

2.2 Ontology Languages178

We next look at two of the most popular Horn-like formalisms to encode ontologies, namely179

existential rules [10, 35] and the EL-family of description logics [8]. Informally, an existential180

rule is a datalog-like rule (i.e. a logic programming rule of the kind we used in Example 1)181

with existentially quantified variables in the head, i.e. it extends traditional datalog with182

value invention. As a consequence, existential rules describe not only constraints on the183

currently available knowledge or data, but also intensional knowledge about the domain of184

discourse. Likewise, the EL-family of description logics can be used for modelling intentional185

knowledge. In fact, some expressive members of the EL-family are restrictions of existential186

rules to unary and binary relations.187

Existential Rules188

Syntax Let C, N and V be infinite disjoint sets of constants, (labelled) nulls and variables,189

respectively. A term t is an element in C ∪ N ∪ V; an atom α is an expression of the190

form R(t1, . . . , tn), where R is a relation name (or predicate) with arity n and terms ti. An191

existential rule σ is an expression of the form192

∃X1, . . . , Xj .H1 ∧ . . . ∧Hk ← B1 ∧ . . . ∧Bn, (1)193
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where n ≥ 0, k ≥ 1, B1, . . . Bn and H1, . . . , Hk are atoms with terms in C ∪ V, and194

X1, ..., Xj ∈ V. From here on, we assume w.l.o.g. that k = 1 [21] and we omit the subscript195

in H1. We further allow negative constraints (also simply called constraints), which are196

expressions of the form ⊥ ← B1 ∧ . . . ∧Bn, where the Bis are as above and ⊥ denotes the197

truth constant false. A finite set Σ of existential rules and constraints is called an ontology.198

Let R be a set of relation names. A database D is a finite set of facts over R, i.e. atoms with199

terms in C. A knowledge base (KB) K is a pair (Σ, D) with Σ an ontology and D a database.200

Semantics An interpretation I over R is a (possibly infinite) set of atoms over R with201

terms in C ∪N. An interpretation I is a model of Σ if it satisfies all rules and constraints:202

{B1, . . . , Bn} ⊆ I implies {H} ⊆ I for every existential rule σ in Σ, where existential203

variables can be witnessed by constants or labelled nulls, and {B1, . . . , Bn} ̸⊆ I for all204

constraints defined as above in Σ; it is a model of a database D if D ⊆ I; it is a model of a205

KB K = (Σ, D), written I |= K, if it is a model of Σ and D. We say that a KB K is satisfiable206

if it has a model. We refer to elements in C ∪N simply as objects, call atoms α containing207

only objects as terms ground, and denote with O(I) the set of all objects occurring in I.208

▶ Example 2. Let D = {wife(anna), wife(marie)} be a database and Σ an ontology composed209

by the following existential rules:210

husband(Y )← wife(X) ∧married(X, Y ) (2)211

∃X . husband(X) ∧married(X, Y )← wife(Y ) (3)212

⊥ ← husband(X) ∧ wife(X) (4)213
214

Then, an example of a model of K = (Σ, D) is the set of atoms

D ∪ {husband(o1), husband(o2), married(o1, anna), married(o2, marie)}

where oi are labelled nulls. Note that e.g. {married(anna, marie), husband(marie)} is not215

included in any model of K due to (4).216

EL-family217

We introduce some basic notions about description logics, focusing on EL⊥, one of the most218

commonly used logics from the EL-family. The interested reader can find more details on219

description logics in [9].220

Syntax Consider countably infinite but disjoint sets of concept names NC and role names
NR. These concept and role names are combined to EL⊥ concepts, in accordance with the
following grammar, where A ∈ NC and r ∈ NR:

C, D := ⊤ | ⊥ | A | C ⊓D | ∃r.C

For instance, A ⊓ (∃r.(B ⊓ C)) is an example of a well-formed EL⊥ concept, assuming221

A, B, C ∈ NC and r ∈ NR. The fragment of EL⊥ in which ⊥ is not used is known as EL. An222

EL⊥ TBox (ontology) T is a finite set of concept inclusions (CIs) of the form C ⊑ D, where223

C, D are EL⊥ concepts.224

AIB 2022
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▶ Example 3. The ontology in Example 2 can be expressed using the following EL concept225

inclusions226

∃married.Wife ⊑ Husband (5)227

Wife ⊑ ∃married.Husband (6)228

Husband ⊓Wife ⊑ ⊥ (7)229
230

Semantics The semantics of description logics are usually given in terms of first-order231

interpretations (∆I , ·I). Such interpretations consist of a nonempty domain ∆I and an232

interpretation function ·I , which maps each concept name A to a subset AI ⊆ ∆I and each233

role name r to a binary relation rI ⊆ ∆I ×∆I . The interpretation function ·I is extended234

to complex concepts as follows:235

(⊤)I = ∆I , (⊥I) = ∅ (C ⊓D)I = CI ∩DI ,236

(∃r.C)I = {d ∈ ∆I | ∃d′ ∈ CI , (d, d′) ∈ rI}.237
238

We now introduce two classical reasoning tasks. An interpretation I satisfies a concept239

inclusion C ⊑ D if CI ⊆ DI ; it is a model of a concept C if CI ̸= ∅; it is a model of a TBox240

T if it satisfies all CIs in T . A concept C subsumes a concept D relative to a TBox T if241

every model I of T satisfies C ⊑ D. We denote this by writing T |= C ⊑ D. A concept C is242

satisfiable w.r.t. T if there is a common model of C and T .243

2.3 Knowledge Graph Embedding244

Let a set of entities E and a set of binary relations R be given. A knowledge graph (KG)245

is a subset of E ×R× E . In other words, a knowledge graph is a set of triples of the form246

(e, r, f). These triples encode the fact that the relation r holds between the entities e and247

f . For instance, we may have a triple such as (london, capitalOf, uk), encoding that London248

is the capital of the UK. A knowledge graph is thus essentially a set of relational facts,249

with the limitation that all relations are binary. Note, however, that the set of entities E250

typically includes both individuals (i.e. constants referring to specific objects, e.g. london)251

and attribute values, which allow us to encode unary predicates. For instance, the relational252

fact scary(lion) Could be encoded as the KG triple (lion, hasAttribute, scary).253

The aim of Knowledge Graph Embedding (KGE) is to learn a vector encoding e ∈ Rn

for each e ∈ E and a scoring function ϕr : Rn × Rn → R for each ∈ R. The vector e is
usually referred to as the embedding of e. The scoring function is designed such that ϕr(e, f)
indicates how likely it is that (e, r, f) is a valid triple, i.e. that the relational fact r(e, f) is
true. We may assume, for instance, that for each r ∈ R we also have a threshold λr such that
(e, r, f) is considered to be valid iff ϕr(e, f) ≥ λr. A comprehensive overview of knowledge
graph embedding models is beyond the scope of this paper; please refer to [72, 60] for more
complete introductions. To illustrate the main concepts, we discuss a number of popular
models. TransE [14] was one of the first KGE models. Relations in this model are viewed
as translations. In particular, each relation r ∈ R is represented by a vector r ∈ Rn. The
corresponding scoring function ϕr is given by:

ϕr(e, f) = −d(e + r, f)

with d either Euclidean or Manhattan distance. Another popular choice is to use a bilinear
scoring function. In this case, r is parametrised by a matrix Mr and we have:

ϕr(e, f) = eT Mr f
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Different models differ in which constraints they put on the matrix Mr. For instance, in254

the RESCAL model [47] this matrix is unconstrained, whereas DistMult [76] only allows255

diagonal matrices. In recent years, several authors have focused on designing models that256

make it easier to capture certain relational structures. For instance, embeddings based257

on hyperbolic geometry have been used to make it easier to model hierarchical structures,258

such as is-a and part-of hierarchies [48]. Region-based models, e.g. representing entities as259

boxes or cones, have been used for their ability to model both hierarchies and intersections260

[1, 52, 79]. In [68] a model is proposed in which relations are viewed as rotations, to facilitate261

modelling relational composition, as well as properties such as symmetry. It should be noted,262

however, that while these models can capture certain relational dependencies to some extent,263

in most models there is no explicit link between a given knowledge graph embedding and the264

relational dependencies it captures. Moreover, relatively little is known about which kinds265

of dependencies different models are capable of capturing (or, more generally, which sets of266

dependencies can be jointly captured). Of course, this first requires us to formalise what it267

means for an embedding to capture a relational dependency. We will return to this question268

in Section 4.269

3 Learning Conceptual Space Representations270

If we want to use conceptual spaces as an interface between symbolic ontologies and vectors271

space embeddings, a crucial question is whether it is possible to learn conceptual spaces from272

data. What matters in this context is (i) whether we can learn region-based representations273

of concepts and (ii) whether we can learn vector representations in which dimensions are274

meaningful and organised into domains. These two issues are discussed in Sections 3.1 and275

3.2 respectively.276

3.1 Modelling Concepts as Regions277

Learning Gaussian Representations In learned vector space embeddings, the objects from278

some domain of interest are represented as points or vectors, as in conceptual spaces. Most279

embedding models do not learn region-based representations of concepts. However, if we280

have access to a number of instances c1, ..., cn of a given concept C, we can aim to learn281

a region-based representation of C from embeddings of these instances. The potential of282

this strategy stems from the fact that in many embedding models, these instances can283

be expected to appear clustered together in the vector space. To illustrate this, consider284

Figure 3, which shows the first two principal components of a 300-dimensional embedding of285

BabelNet concepts [46] using NASARI vectors2, which have been learned from Wikipedia286

and are linked to BabelNet [22]. In the figure, the red points correspond to entities that are287

instances of the concept Artist, while the blue points correspond to entities that are instances288

of Painter. For instance, the embeddings of Edouard Manet, Vanessa Bell and Claude Monet289

appear close to the centre of the blue point cloud. As can be seen, painters appear as a290

distinct cluster in this vector space embedding.291

When attempting to learn a region-based concept representation, we are faced with two292

challenges: (i) we typically only have access to positive examples and (ii) the number of293

available instances is often much smaller than the number of dimensions in the vector space.294

This means that we inevitably have to make some simplifying assumptions to make learning295

2 Downloaded from http://lcl.uniroma1.it/nasari/.
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Figure 3 First two principal components of a vector space embedding of BabelNet entities, where
blue points correspond to instances of the concept Artist and red points correspond to instances of
the concept Painter, according to Wikidata.

possible. A natural choice is to represent concepts as Gaussians. This has the advantage296

that concept representations can be learned in a principled way, as the problem of estimating297

Gaussians from observations, either with or without prior knowledge, has been well-studied.298

Representing concepts using probability distributions, rather than hard regions, also fits299

well with the view that concept boundaries tend to be fuzzy and ill-defined more often than300

not. Note that in neural models, concepts are typically represented as vectors, with concept301

membership determined in terms of dot products, e.g. σ(e · c) is often used to estimate the302

probability that the entity e (with embedding e) is an instance of concept C (with embedding303

c), with σ the sigmoid function. This choice effectively means that concepts are represented304

as spherical regions in the vector space. When using Gaussians, we relax this modelling305

choice, allowing concepts to be represented using ellipsoidal regions instead.306

To deal with the (typically) small number of instances that are available for learning307

a concept, [17] only considered Gaussians with diagonal covariance matrices. In this case,308

the problem simplifies to learning a number of univariate Gaussians, i.e. one per dimension.309

Moreover, a Bayesian formulation with a flat prior was used for estimating the Gaussians.310

As a consequence, concepts are actually represented using Student t-distributions. The311

practical implication is that slightly wider ellipsoidal regions are learned than those that312

would be obtained when using maximum likelihood estimates. Some contours of the learned313

distribution for the concept Painter are shown in Figure 3.314

Bayesian learning with prior knowledge As mentioned above, [17] used a Bayesian for-315

mulation for learning Gaussian concept representations. While a flat (i.e. non-informative)316

prior was used in that paper, the same formulation can be used with informative priors,317

which offers a natural strategy for incorporating prior knowledge about the concept C being318

modelled. Such prior knowledge is particularly important when the number of available319

instances of C is very small (or, in an extreme case, when no instances of C are given at all).320

This idea was developed in [18], where two sources of prior knowledge were used: ontologies321

and vector space embeddings of the concept names. In both cases, the prior knowledge322

allows us to relate the target concept C to other concepts. However, in practice we typically323

do not yet have a representation of these other concepts, i.e. we are trying to jointly learn324

a representation of all concepts of interest. This creates circular dependencies, e.g. the325
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representation of concept A provides us with a prior on the representation of concept B, but326

the representation of concept B also provides us with a prior on the representation of A.327

This can be addressed using Gibbs sampling; we refer to [18] for the details.328

Priors on Mean. Suppose we have concept inclusions of the form (C ⊑ D1),...,(C ⊑ Dk), and329

suppose we have a Gaussian representation of the concepts D1, ..., Dk. Then we can induce330

a prior on the mean of the Gaussian representing C based on the idea that the mean of C331

should have a high probability in the Gaussians modelling D1, ..., Dk. This can be achieved332

efficiently by taking advantage of the fact that the product of k Gaussians is proportional333

to another Gaussian. In addition to ontologies, we can also use vector space embeddings of334

the (names of the) concepts C, D1, ..., Dk. Specifically, [18] proposed a strategy based on the335

view that there should be a fixed vector offset between the embedding of a concept C and336

the mean of the Gaussian that represents it.337

Priors on Variance. To obtain a prior on the variance of the Gaussian representing C, we338

take the view that this variance should be similar to that of the concepts that are most339

similar to C. To find such concepts, we could take the siblings of C in an ontology, the340

concepts whose vector space embedding is most similar to the embedding of C, or we could341

use a hybrid strategy where we select the siblings whose embedding is most similar to that342

of C. We again refer to [18] for details.343

Exploiting contrast sets A common strategy for learning conceptual space representations344

is to associate each concept with a single point, which intuitively represents its prototype345

[30]. The region representing a given concept C then consists of all points that are closer346

to the prototype of C than to the prototype of any other concept, i.e. concept regions are347

obtained as the Voronoi tessellation of a set of prototype points. This strategy is appealing,348

because it allows us to learn concept regions with a much wider extension than when learning349

Gaussians, especially in cases where we only have a few instances per concept. The main350

idea is illustrated in Figure 4, where we are interested in learning a region for the concept C.351

When using Gaussians, we would end up with ellipsoidal regions (contours) similar to the352

ones displayed in the figure. As a result, most points of the space are not assigned to any of353

the concepts. In contrast, if we construct prototypes by averaging the embeddings of the354

instances of a concept, and compute the resulting Voronoi tessellation, we essentially carve355

up the space, as also illustrated in the figure. To see why this can be beneficial in practice,356

Figure 5 shows the vector representations of the instances of three concepts: Songbook,357

Brochure and Guidebook. Now consider the left-most test instance of Songbook. If we are358

only given the training instances of this concept, this test instance is unlikely to be covered359

by the resulting representation. In contrast, if we instead attempt to carve up the space into360

regions corresponding to Songbook, Brochure and Guidebook, then this test instance would361

be classified correctly. The problem with implementing the aforementioned idea is that it362

only works if we are given a set of concepts that form a contrast set [33], i.e. a set of mutually363

exclusive natural categories that exhaustively cover some sub-domain. For example, the set of364

all common color names, the set {Fruit, Vegetable} and the set {NLP, IR, ML} can intuitively365

be thought of as contrast sets. We say that two concepts are conceptual neighbours if they366

belong to the same contrast set and compete for coverage (i.e. are adjacent in the resulting367

Voronoi tessellation).368

Existing ontologies do not typically describe contrast sets or conceptual neighbourhood.369

To deal with this, [16] introduced a strategy for learning conceptual neighbourhood from370

data, i.e. for discovering pairs of concepts that are conceptual neighbours. Note that they371

focus on conceptual neighbourhood rather than contrast sets, as the need for contrast sets to372
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Figure 4 Estimating concept regions based on conceptual neighbourhood.

Figure 5 Instances of three BabelNet categories which intuitively can be seen as conceptual
neighbors. The figure shows the first two principal components of the NASARI vectors.

be exhaustive is difficult to guarantee. The method then relies on the simplifying assumption373

that the target concept C, along with its known conceptual neighbours N1, ..., Nk forms374

a contrast set. To represent the concept C, first a Gaussian is learned by pooling the375

instances of C, N1, ..., Nk together. The ellipsoidal contours of this Gaussian are then carved376

up into sub-regions for C, N1, ..., Nk by learning logistic regression classifiers. Specifically,377

the region representing C is obtained by training logistic regression classifiers that separate378

the instances of C and Ni, for each i ∈ {1, ..., k}. To learn conceptual neighbourhood from379

data, the first step of the strategy from [16] consists in generating weakly supervised training380

examples. To this end, they start with two concepts A and B that are siblings in a given381

taxonomy (i.e. concepts that have the same parent) and for which a sufficiently large number382

of instances is given. They then compare the performance of the following two types of383

concept representations:384

1. Learn a Gaussian representation of A and B from their given instances.385

2. Learn a Gaussian representation from the combined instances of A and B, and then split386
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High confidence Medium confidence
Actor – Comedian Cruise ship – Ocean liner

Journal – Newspaper Synagogue – Temple
Club – Company Mountain range – Ridge

Novel – Short story Child – Man
Tutor – Professor Monastery – Palace

Museum – Public aquarium Fairy tale – Short story
Lake – River Guitarist – Harpsichordist

Table 1 Selected examples of siblings A–B which are predicted to be conceptual neighbours with
high and medium confidence.

the resulting region by training a logistic regression classifier that separates A-instances387

from B-instances.388

If the second representations perform (much) better at classifying held-out instances, we389

can assume that A and B are conceptual neighbours. If the second representations perform390

much worse, then we can assume that A and B are not conceptual neighbours. In case391

the performance is similar, then the pair A, B is disregarded when constructing the weakly392

labelled training set. Table 1 shows some examples of pairs of concepts A, B that were393

predicted to be conceptual neighbours using this process. Given the resulting training set,394

we can then train a standard text classifier on sentences that mention both A and B from395

some text corpus. Consider, for instance, the concepts Hamlet and Village, and the following396

sentence 3:397

In British geography, a hamlet is considered smaller than a village and ...398

The sentence suggests that hamlet and village are conceptual neighbors as it makes clear399

that these concepts are closely related but different. Once a classifier is trained, based on400

the weakly supervised training set, we can then apply it to other concepts. To learn the401

representation of a given target concept C (e.g. a concept with only few known instances), we402

can then use the text classifier to identify which of its siblings, in a given taxonomy, are most403

likely to be conceptual neighbours, and determine the representation of C accordingly. Tables404

2 and 3 show some examples of the top conceptual neighbor predicted by the text classifier,405

for different target concepts. In particular, Table 3 shows examples where the resulting406

concept representations (i.e. the representations of the target concepts obtained by exploiting407

the predicted conceptual neighbourhood) were of high quality, as measured in terms of F1408

score for held-out entities. Similarly, Table 2 shows examples where the resulting concept409

representations were of low quality. As can be seen, the predicted conceptual neighbours410

in Table 3 are clearly more meaningful than the predicted neighbours in Table 2. This411

illustrates how the quality of the concept representations is closely linked to our ability to412

find meaningful conceptual neighbours. Overall, the experiments in [16] showed that using413

predicted conceptual neighbourhood, on average, led to much better concept representations414

than when estimating Gaussians from the known instances of the target concept.415

3.2 Learning Quality Dimensions416

The dimensions of learned vector spaces do not normally correspond to semantically meaning-417

ful properties. This is an important difference with conceptual spaces, which severely limits418

3 https://en.wikipedia.org/wiki/Hamlet_(place)
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Concept Top neighbor F1
Bachelor’s degree Undergraduate degree 34
Episodic video game Multiplayer gamer 34
501(c) organization Not-for-profit arts organization 29
Heavy bomber Triplane 41
Ministry United States government 33

Table 2 Top conceptual neighbors selected for categories associated with a low F1 score.

Concept Top neighbor F1
Amphitheater Velodrome 67
Proxy server Application server 61
Ketch Cutter 74
Quintet Brass band 67
Sand dune Drumlin 71

Table 3 Top conceptual neighbors selected for categories associated with a high F1 score.

the interpretability of learned vector space representations. In this section, we review work419

that has focused on mitigating this issue, by identifying interpretable directions in learned420

vector spaces. These interpretable directions can then play the role of quality dimensions.421

This is illustrated in Figure 6, which shows a two-dimensional projection of an embedding of422

movies from [25]. Along with the embedding of the movies themselves, the figure also shows423

two directions that have been identified: one direction which ranks the movies from least424

to most scary, and another direction which ranks the movies from least to most romantic.425

Formally, we say that the direction of some vector v models a property P , such as scary, if426

for entities e1 and e2, with embeddings e1 and e2, we have e1 · v > e2 · v if entity e1 has the427

property P to a greater extent than entity e2.428

Identifying quality dimensions Assume that a set of entities E is given, together with a429

vector space embedding e ∈ Rn for each entity e ∈ E . To find interpretable directions, [25]430

proposed a simple strategy which relies on the assumption that a text description De is431

available for each entity e. Let V be the set of all words (or common multi-word expressions432

such as “New York”) that appear in these descriptions De. For v ∈ V , we say that the word433

v is relevant for the entity e if v appears at least once in the description De. It was proposed434

in [25] to learn a linear classifier in the embedding space, for each v ∈ V , separating the435

entities for which v is relevant from those for which this is not the case. If this classifier is436

able to separate these entities well, the assumption is that the word v must be important,437

i.e. that it describes an aspect that is captured by the embedding space. In this case, the438

normal vector v of the hyperplane that was learned by the classifier is treated as a candidate439

direction. These candidate directions are then clustered, and the each cluster is treated as a440

quality dimension. This clustering step has the advantage that quality dimensions become441

easier to interpret, as we have a set of words to describe them, rather than a single word, and442

it ensures that different quality dimensions are sufficiently different. We refer to [2] for an443

extensive evaluation of the resulting quality dimensions. We illustrate the main findings with444

some examples. First, some of the clusters that are found closely correspond to the intuition445

of quality dimensions. For instance, the following clusters were found in [25], starting from a446

vector space embedding of movies:447

touching, inspirational, warmth, dignity, sadness, heartwarming, ...448
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Figure 6 Interpretable directions within a vector space embedding of movies.

clever, schemes, satire, smart, witty dialogue, ingenious, ...449

bizarre, odd, twisted, peculiar, lunacy, surrealism, obscure, ...450

predictable, forgettable, unoriginal, formulaic, implausible, contrived, ...451

tragic, anguish, sorrow, fatal, misery, bitter, heartbreaking, ...452

romantic, lovers, romance, the chemistry, kisses, true love, ...453

eerie, paranoid, spooky, impending doom, dread, ominous, ...454

scary, shivers, chills, creeps, frightening, the dark, goosebumps, ...455

cheesy, camp, corny, tacky, laughable, a guilty pleasure, ...456

hilarious, humorous, really funny, a very funny movie, amusing, ...457

wonderful, fabulous, a joy, gem, delighted, happy, perfect, great, ...458

Arguably, all these directions correspond to clear and salient semantic attributes of movies.459

On the other hand, many other clusters rather corresponded to movie themes, e.g.:460

horror movies, zombie, much gore, slashers, vampires, scary monsters, ...461

killer, stabbings, a psychopath, serial killer, ...462

supernatural, a witch, ghost stories, mysticism, a demon, the afterlife, ...463

scientist, experiment, the virus, radiation, the mad scientist, ...464

criminal, the mafia, robbers, parole, the thieves, the mastermind, ...465

While these directions express semantically meaningful properties, it would be more466

natural to represent such properties as regions than as quality dimensions. The fact that such467

thematic properties cannot be distinguished from the semantic attributes mentioned above468

is clearly a limitation of the method from [25]. In [2], it was found that the nature of the469

clusters, i.e. whether they intuitively correspond to quality dimensions rather than thematic470

properties, to some extent depends on the scoring function that is used for evaluating the471
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linear classifiers. However, regardless of the scoring function that is used, a mixture of472

different types of properties is found. One possible solution could be to require that clusters473

which correspond to quality dimensions should contain a sufficient proportion of adjectives,474

as clusters consisting mostly of nouns are more likely to be thematic properties. On the other475

hand, it is not clear that having thematic “quality dimensions” is necessarily problematic.476

While it makes the resulting representation different from a conceptual space, it still allows477

us to “disentangle” the vector representation into different aspects (e.g. genre, sentiment,478

emotion). Furthermore, a cluster of terms related to horror movies could still be viewed as a479

quality dimension if we view it as ranking movies based on how “horror-like” they are.480

A number of improvements to the basic method from [25] have been explored. In [3]481

a fine-tuning strategy is introduced, which modifies the initial vector space based on the482

discovered quality dimensions, while [6] suggests to learn quality dimensions in a hierarchical483

fashion, with the top-level dimensions essentially partitioning the vector space into thematic484

domains, and the lower-level dimensions intuitively corresponding to quality dimensions485

within each of these thematic domains. In terms of how the resulting quality dimensions486

could be useful, the main focus has so far been on their ability to support interpretable487

classifiers, with [25] introducing a rule based classifier, which compares entities with training488

examples along a small number of quality dimensions, and [3, 6] using the quality dimensions489

as features for low-depth decision trees.490

Organising quality dimensions into domains The quality dimensions of a conceptual space491

are organised into domains. Accordingly, as we have seen in the previous section, the quality492

dimensions that can be identified in learned vector spaces also intuitively belong to different493

kinds. It would be of interest to group quality dimensions of the same kind together, to494

learn a structure which is akin to conceptual space domains. For instance, in the movies495

domain, we could imagine one group of quality dimensions about the emotion a movie evokes,496

as well as groups about the genre, the cinematographic style, etc. We will refer to these497

groups of learned quality dimensions as facets, rather than domains, to avoid confusion498

(e.g. domain can also refer to the domain-of-discourse, such as movies, or to the domain of499

a description logic interpretation) and to highlight the fact that there are still important500

differences between these facets and conceptual space domains. In addition to grouping501

quality dimensions that are concerned with the same aspect of meaning, we also want to502

learn a corresponding lower-dimensional vector space for each facet. In other words, the503

central aim is to decompose the given vector space into a number of lower-dimensional spaces,504

each of which captures a different aspect of meaning.505

Note that we cannot learn these facets by simply clustering the quality dimensions. For506

instance, thriller and scary may be represented by similar directions in the vector space,507

but they should be assigned to different facets. In contrast, romance and horror would508

be represented by dissimilar directions but nonetheless belong to the same facet. The key509

solution, which was developed in [5] and [4], is to rely on word embeddings to identify words510

that describe properties of the same kind. For instance, the word embeddings of different511

movie genres tend to be similar, because such words tend to appear in similar contexts. In512

the same way, different adjectives describing emotions tend to be represented using similar513

word vectors. This suggests a simple strategy for learning facets: (i) cluster the word vectors514

of the words associated with the quality dimensions that were identified in the given vector515

space; and (ii) represent the facet by the vector space that is spanned by quality dimensions516

that are assigned to it. Unfortunately, this strategy was found to perform poorly in [5]. The517

main reason is that in many areas there is one dominant facet, such as the genre in the case518
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of movies. When applying the aforementioned strategy, what happens is that each of the519

resulting facet-specific vector spaces mostly models the dominant facet. To address this issue,520

[5] proposed an iterative strategy, in which the dominant facet is first identified and then521

explicitly disregarded when determining the second facet, etc. Another practical challenge522

is that the overall method is computationally demanding, especially the fact that a linear523

classifier has to be learned for each word from the vocabulary, to identify the interpretable524

directions (in the overall space and in each of the lower-dimensional facet-specific spaces). To525

address this issue, [4] introduced a model that directly learns facet-specific vector spaces from526

bag-of-words representations of the entities, using a mixture-of-experts model to generalize527

the GloVe [53] word embedding model. Using this approach, facet-specific vector spaces can528

be learned much more efficiently, and moreover the resulting embeddings tend to be of a529

higher quality. The main limitation, however, is that this model assumes that suitable vector530

spaces can be learned from bag-of-words representations (rather than being agnostic to how531

the initial vector space embedding is learned) and that GloVe is a suitable embedding model532

for learning these vector spaces.533

The resulting facet-specific embeddings can be used in a number of different ways. Perhaps534

the most immediate application of such representations is that they facilitate concept learning.535

For instance, suppose we want to represent each concept as a Gaussian. Furthermore, suppose536

that only one of the facet-specific vector spaces is relevant for modelling the considered537

concept. If we learn a Gaussian in each of the factor-specific vector spaces, we should end up538

with Gaussian with a large variance for the irrelevant facets, and a Gaussian with a much539

lower variance in the vector space corresponding to the relevant facet. This advantage of540

facet-specific vector spaces was empirically confirmed in [4]. Moreover, they found that even541

strategies that only rely on the resulting quality dimensions, e.g. learning low-depth decision542

trees, were benefiting from learning facet-specific vector spaces, as the lower-dimensional543

nature of each vector space acts as a regulariser.544

4 Modelling Relations with Conceptual Spaces545

Conceptual spaces act as an interface between vector space embeddings and symbolic546

knowledge. However, because conceptual spaces do not capture relational knowledge, they547

are essentially limited to capturing Horn rules with unary predicates. In this section, we548

explore whether the framework of conceptual spaces can be generalised to encode rules with549

binary and higher arity relations. We focus on the analysis presented in [37] but use a550

construction that is somewhat more intuitive than the one used in the latter paper. The551

main idea is to view a k-ary relation as a convex region in the Cartesian product of k552

conceptual spaces. For simplicity, in this section we will assume that conceptual spaces553

correspond to Euclidean spaces. Each individual a is then represented as a vector a ∈ Rn. A554

tuple (a1, ..., ak) is represented as the concatenation of the vectors representing a1, ..., ak, i.e.555

(a1, ..., ak) is represented as the n · k-dimensional vector a1 ⊕ ...⊕ ak, where we write ⊕ for556

vector concatenation.557

The main idea is illustrated in Figure 7. In this toy example, we assume that individuals558

are represented in a one-dimensional conceptual space. Unary predicates such as herbivore559

then correspond to intervals, while binary predicates such as eats correspond to convex560

regions in R2. In this figure, the tuple (lion, zebra) corresponds to a point in the region561

encoding the eats predicate. This captures the knowledge that lions eat zebras. Moreover,562

we can now also model dependencies between unary and binary predicates. For instance, the563
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Figure 7 Illustration of a relational conceptual space.

representation captures the following rule:564

carnivore(X)← eats(X, Y ), animal(Y )565
566

This can be seen as follows. Consider a point p ∈ R2 in the region representing eats, such567

that its projection on the Y-axis lies in the interval representing animal. For each such a568

point p, it holds that its projection on the X-axis lies in the interval representing carnivore.569

We can think of each point p as the representation of a possible instantiation of the tuple570

(X, Y ). The aforementioned observation about p then corresponds to the view that every571

tuple satisfying the body of the rule also satisfies its head. In a similar way, we can also572

model rules with existential quantifiers, e.g.:573

∃Y.eats(X, Y ) ∧ animal(Y )← carnivore(X)574
575

To see why this rule is satisfied for the configuration depicted in Figure 7, consider a value576

x ∈ R which lies in the interval representing carnivore. Then we can always find a coordinate577

y ∈ R such that the point p = (x, y) lies in the region for eats and such that y lies in the578

interval modelling animal. In Section 4.1 we discuss these intuitions in more detail. We also579

provide a characterisation about the kinds of relational rules that can be modelled using580

convex regions. Subsequently, in Section 4.2 we discuss the relationship with knowledge581

graph embedding models.582

4.1 Geometric Models of Relational Rules583

We consider geometric interpretations η, which map each individual a to a point η(a) ∈ Rn

and each k-ary relation r to a convex region η(r) in Rk·n. These geometric interpretations
can intuitively be seen as defining a relational counterpart to conceptual spaces. We now
discuss what it means for a geometric interpretation η to satisfy different kinds of relational
knowledge. First, a relational fact of the form r(a1, ..., ak) is satisfied if the representation of
the tuple (a1, ..., ak) lies in the region representing r, i.e.:

η(a1)⊕ ...⊕ η(ak) ∈ η(r)
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Now we consider a basic relational entailment of the following form:

r(X1, ..., Xk)← s(X1, ..., Xk)

This rule is satisfied if the region modelling s is included in the region modelling r, i.e. it
corresponds to the following geometric constraint:

η(s) ⊆ η(r)

Conjunctions in the body of a rule can be modelled using intersections. For instance, consider584

the following rule:585

r(X1, ..., Xk)← s(X1, ..., Xk), t(X1, ..., Xk) (8)586
587

The corresponding geometric constraint is as follows:

η(s) ∩ η(t) ⊆ η(r)

This simple geometric characterisation only works because each relation is applied to the588

same tuple (X1, ..., Xk). To see how we can model more general rules, let us consider a rule589

of the following form:590

r(X, Z)← s(X, Y ), t(Y, Z) (9)591
592

The main idea is to view this rule as a special case of (8). In particular, let us consider ternary
relations r∗, s∗ and t∗ defined as follows: r∗(X, Y, Z) ≡ r(X, Z), s∗(X, Y, Z) ≡ s(X, Y ) and
t∗(X, Y, Z) ≡ t(Y, Z). Then clearly (9) is equivalent to:

r∗(X, Y, Z)← s∗(X, Y, Z), t∗(X, Y, Z)

whose geometric characterisation is given by η(s∗) ∩ η(t∗) ⊆ η(r∗). This is illustrated in
Figure 8, where the relationship between the two-dimensional regions η(r), η(s), η(t) and
the three-dimensional regions η(r∗), η(s∗), η(t∗) is shown. To explain how the regions η(r∗),
η(s∗), η(t∗) relate to η(r), η(s), η(t) more formally, we have to introduce some notations.
Let I = {i1, ..., il} ⊆ {1, ..., k} be a set of indices. For a point (x1, ..., xk·n) ∈ Rk·n, we define
its restriction to I as follows

(x1, ..., xk·n) ↓ I =
⊕
i∈I

(xn·i+1, ..., xn·i+n)

For instance if n = 2, k = 4 and I = {1, 4} we have (x1, ..., x8) ↓ I = (x1, x2, x7, x8). In593

particular, note that when (x1, ..., xk·n) is the representation of a tuple (a1, ..., ak), and594

(b1, ..., bl) is obtained from (a1, ..., ak) be only keeping the arguments at the positions in I,595

then η(b1, ..., bl) = η(a1, ..., ak) ↓ I. We define the notion of cylindrical extension as follows.596

Let R be a region in Rl·n with l < k and let I = {i1, ..., il} ⊆ {1, ..., k} Then we define:597

extk
I (R) = {x ∈ Rk·n |x ↓ I ∈ R}598

599

Let us now return to the problem of modelling the rule (9). We have η(r∗) = ext3
{1,3}(η(r)),

η(s∗) = ext3
{1,2}(η(s)) and η(t∗) = ext3

{2,3}(η(t)). We thus find that the rule (9) corresponds
to the following geometric constraint:

ext3
{1,2}

(
η(s)

)
∩ ext3

{2,3}
(
η(t)

)
⊆ ext3

{1,3}
(
η(r)

)
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Figure 8 Illustration of the constraint η(s∗) ∩ η(t∗) ⊆ η(r∗).

While the rule (9) only involves binary relations, clearly we can apply the same strategy to600

rules involving relations of other arities, and to rules with more than two atoms in the body.601

Finally, we discuss how rules with existential quantifiers can be modelled. Let us consider602

the following example:603

∃Y . r(X, Y ) ∧ s(Y, Z)← t(X, Z) (10)604
605

The key challenge is to characterise the region that models the head of this rule. Note
that, as before, r(X, Y ) ∧ s(Y, Z) can be modelled by treating r and s as ternary relations.
Relying again on the cylindrical extension, we find that this conjunction can be modelled as
ext3

{1,2}(η(r))∩ ext3
{2,3}(η(s)). To model the existential quantifier, we can then simply remove

the coordinates pertaining to the variable Y . In other words, the rule (10) corresponds to
the following geometric constraint:

η(t) ⊆
(

ext3
{1,2}

(
η(r)

)
∩ ext3

{2,3}
(
η(s)

))
↓ {1, 3}

In this way, using a combination of cylindrical extensions and projections, any relational rule606

can be translated into a corresponding geometric constraint. It is worth pointing out that a607

similar treatment of rules was already proposed by Zadeh [78] in his theory of approximate608

reasoning. The main difference with the aforementioned approach is that relations in the609

latter case are modelled as fuzzy sets.610

A central question is which kinds of rules can be faithfully4 modelled in terms of the
aforementioned geometric constraints. The answer depends on which kinds of regions we
allow as the geometric interpretation η(r) of a relation r. Without any restrictions, arbitrary

4 Note that we use this notion of faithfulness informally here; we refer to [37] for a formal treatment of
geometric models.
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sets of relational rules can be modelled correctly. However, in practice, it makes sense to
require η(r) to be convex. While the cognitive plausibility of this assumption is unclear, in
practice we can only hope to learn region-based representations in high-dimensional spaces
by making drastic simplifying assumptions, as we also saw in Section 3. For this reason,
most strategies for modelling relational knowledge end up learning convex representations;
this will be discussed in more detail in Section 4.2. With this convexity assumption, however,
clearly some sets of rules cannot be jointly modelled. For instance we cannot model the rule
⊥ ← r1(X, Y ), r2(X, Y ), capturing that relations r1 and r2 are disjoint, together with the
following facts: r1(a, a), r1(b, b), r2(a, b), r2(b, a). Indeed, if η(r1) and η(r2) are convex, from
η(a)⊕ η(a) ∈ η(r1), η(b)⊕ η(b) ∈ η(r1), η(a)⊕ η(b) ∈ η(r2) and η(b)⊕ η(a) ∈ η(r2), we find:

(η(a) + η(b))
2 ⊕ (η(a) + η(b))

2 ∈ η(r1) ∩ η(r2)

and thus r1 and r2 are not disjoint in the geometric interpretation η. However, in [37] it was
shown that many sets of relational rules can still be faithfully captured by geometric models.
In particular, consider a relational rule of the following form:

∃Y1, ..., Yr.H1 ∧ ... ∧Hs ← B1, ..., Bt

where H1, ..., Hs, B1, ..., Bt are atoms. We say that such a rule is quasi-chained, if every atom611

Bi appearing in the body shares at most 1 variable with the atoms B1, ..., Bi−1. It can be612

shown that any set of quasi-chained rules with a finite model can be faithfully captured by a613

geometric model in which every relation is represented as a convex region [37]. Some open614

questions remain, however, including the following:615

Is there a larger fragment of existential rules that can be faithfully modelled using616

geometric interpretations with convex regions?617

Is there a way to relax the convexity assumption, such that arbitrary existential rules618

can be captured, while keeping representations simple enough to be learnable?619

Finally, it should be noted that the restriction to arbitrary convex regions means that620

negation and disjunction cannot easily be modelled. Some authors have proposed geometric621

models that were specifically designed with such logical connectives in mind, including the622

use of axis aligned cones [52]. Recently, the ability of convex regions to model temporally623

attributed description logics has also been studied [19].624

4.2 Link with Knowledge Graph Embedding625

Thus far, we have not discussed how region-based representations of relations may be learned
from data. In the last few years, there has been an increasing interest in region based
representations, as already mentioned in Section 3.1. Most approaches, however, only use
regions for modelling concepts, and deal with relations in an ad hoc way. For instance, the
approach from [79] represents entities using cones, but uses a feed-forward neural network
for modelling relations. Similarly, [52] propose a cone based model for embedding ALC
ontologies, but they refrain from modelling roles in the same way. However, in [1] a knowledge
graph embedding model is proposed in which relations are explicitly modelled as hyperboxes.
More generally, many of the standard knowledge graph embedding models can be interpreted
as region based models. In particular, for a relation r with scoring function fr we can consider
the following region:

η(r) = {e⊕ f | fr(e, f) ≥ λr}

with λr some threshold. Figure 9 illustrates how TransE and DistMult can be viewed as626

region-based models in this way. However, viewed as region based models, TransE and627
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(a) TransE (b) DistMult

Figure 9 Region based view of knowledge graph embedding models.

bilinear models such as DistMult are severely limited in which kinds of existential rules they628

can capture; we refer to [37] for more details.629

5 Plausible Symbolic Reasoning using Vector Space Embeddings630

Leaving aside the difficulties of tightly integrating geometric and symbolic representations,631

it is highly relevant for the development of robust AI systems to understand how symbolic632

approaches to AI can be made more flexible by equipping them with inductive capabilities,633

i.e. making it possible to infer likely concept inclusions (or rules) by using the knowledge of634

the ontology in combination with the additional background knowledge provided by vector635

representations. In other words, one would like symbolic systems to incorporate mechanisms636

to use predictions made by neural approaches, informing about plausible situations witnessed637

in the data, in a principled way. In the rest of this section we will discuss ways in which this638

idea can be implemented.639

One of the most natural solutions is to use vector representations to implement a form640

of similarity based reasoning [23, 13]. For instance, we could have a KB with factual641

knowledge stating that strawberries are instances of the concept berries, Berry(strawberry),642

and ontological knowledge stating that berries are healthy, Berry ⊑ Healthy. Clearly, this643

KB entails that strawberries are healthy. Further, using a standard word embedding [45],644

we can find out that strawberry and raspberry are highly similar. Now, using the KB and645

the additional similarity information, we can infer that it is plausible that raspberries are646

berries and, therefore, healthy. This same idea could be lifted to find the similarity between647

concept names (classes) and find plausible rules. For instance, assume that strawberries648

and raspberries are concept names and that our ontology specifies that strawberries are649

healthy, i.e. Strawberry ⊑ Healthy. Using the similarity between strawberries and raspberries,650

we could then infer that the concept inclusion Raspberry ⊑ Healthy is plausible. However,651

implementing this strategy in a principled way is difficult, because it is unclear how we652

can formally relate degrees of similarity to the plausibility of the inferred rules, i.e. if we653

can infer using standard deduction that C1 ⊑ X, how similar does concept C2 needs to be654

to C1 to accept the plausible inference C2 ⊑ X? For this reason, rather than focusing on655

similarity based reasoning, it has been proposed to focus on interpolative reasoning instead656

[64]. The main difference is that instead of focusing on the similarity between two entities, we657

focus on how one entity relates to a group of entities. For instance, we say that the concept658
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Raspberry is conceptually between the concepts Strawberry, Blackberry and Cherry. Intuitively,659

this means that we accept that any (natural) property that holds for each of the concepts660

Strawberry, Blackberry, Cherry is likely to hold for Raspberry as well. In addition to using661

similarity based strategies, humans also rely on analogies for inferring plausible knowledge.662

Analogical reasoning can be particularly powerful, as it allow us to make predictions about663

concepts that may themselves not be similar to any other concepts. Recent models from the664

field of Natural Language Processing make it possible to discover analogies with a high level665

of accuracy [71]. It is thus of interest to explore whether analogy based reasoning processes666

could be used as another mechanism for exploiting knowledge from neural representations667

for symbolic reasoning. We now discuss in more detail how interpolative and analogical668

reasoning can be formalised in the context of description logics.669

5.1 Interpolative Reasoning670

We start by illustrating how the interpolation pattern works [26, 64]. Assume that we have671

the following knowledge about some concept C:672

Strawberry ⊑ C Orange ⊑ C673
674

Intuitively, even if we know nothing else about C, we could still make the following inductive675

inference:676

Raspberry ⊑ C (11)677
678

This conclusion relies on background knowledge about strawberries, oranges and raspberries,679

in particular the fact that raspberries are expected to have all the natural properties that680

strawberries and oranges have in common (e.g. being high in vitamin C). In such a case, we say681

that raspberries are conceptually between strawberries and oranges. Importantly, knowledge682

about conceptual betweenness can be derived from data-driven representations. For instance,683

[25] found that geometric betweenness closely corresponds to conceptual betweenness in684

vector spaces learned with multi-dimensional scaling.685

The notion of naturalness plays a central role, as it is clear that the conclusion in (11)686

can only be justified by making certain assumptions on the concept C. If C could be an687

arbitrary concept, e.g. a concept representing the union of Orange and Strawberry, there is688

no reason to believe that the inference is valid, but for natural properties the inference seems689

intuitively plausible. This idea that only some properties admit inductive inferences has been690

extensively studied in philosophy [34, 57, 27]. In the context of conceptual spaces, “natural691

properties” are those which are modelled as convex regions, as explained in Section 2.1. To692

determine which concepts, in a given ontology, are likely to be natural, a useful heuristic is693

to consider the concept name: concepts that correspond to standard natural language terms694

are normally assumed to be natural [29].695

The extension EL ▷◁ of EL was designed based on the above intuitions, with the aim of696

enabling reasoning about conceptual betweenness and natural concepts, and thus supporting697

interpolative reasoning. Syntactically, EL is extended with the in-between constructor, which698

allows us to describe the set of objects that are between two concepts: we write C ▷◁ D to699

denote all objects that are between the concepts C and D. We further assume that NC700

contains a distinguished infinite set of natural concept names NNat
C . The syntax of EL ▷◁

701

concepts C, D is thus defined by the following grammar, where A ∈ NC, A′ ∈ NNat
C and702

r ∈ NR:703

C, D := ⊤ | A | C ⊓D | ∃r.C | N N, N ′ := A′ | N ⊓N ′ | N ▷◁ N ′
704
705
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Concepts of the form N, N ′ are called natural concepts.706

▶ Example 4. Using the following EL ▷◁ TBox T , we can now model the situation described707

above:708

Strawberry ⊑ Healthy (12)709

Orange ⊑ Healthy (13)710

Raspberry ⊑ Strawberry ▷◁ Orange (14)711

Healthy ⊑ ∃improves.QualityOfLife (15)712
713

such that Strawberry, Orange, Raspberry, Healthy ∈ NNat
C .714

The semantics of EL ▷◁ needs to adequately characterise natural concepts and concept715

betweenness, and thus support interpolation, i.e.: such that from A ⊑ B1 ▷◁ B2, B1 ⊑ C and716

B2 ⊑ C, we can derive A ⊑ C, provided that C is natural. To this end, Ibáñez-García et717

al. [41] proposed two semantics: a feature-enriched semantics inspired by formal concept718

analysis [73] and a geometric semantics inspired by conceptual spaces. In the former, at the719

semantic level a set of features is associated with each concept. Note that these features are720

semantic constructs, which have no direct counterpart at the syntactic level. A concept is then721

natural if it is completely characterized by these features, while B is between A and C if the722

set of features associated with B contains the intersection of the sets associated with A and C.723

In the second semantics, concepts are interpreted as regions from a vector space. A concept is724

then natural if it is interpreted as a convex region, while B is between A and C if the region725

corresponding to B is geometrically between the regions corresponding to A and C (i.e. in the726

convex hull of their union). We refrain from giving the full technical details, but invite the727

interested reader to look at [41]. Ibáñez-García et al. [41] also investigate the complexity of728

reasoning with interpolation, and show that under both semantics the concept subsumption729

problem becomes computationally more costly than in pure EL: coNP-complete under the730

feature semantics and PSpace-hard under the geometric semantics.731

One of the main drawbacks of the feature semantics is that it is too restrictive and cannot732

support interpolation in an adequate way if the ⊥ construct is present. To address this733

shortcoming, Schockaert et al. [62] recently introduced a new semantics based on an abstract734

ternary betweenness relation bet over elements of the domain, such that that bet(a, b, c) if735

b is between a and c. We then have that A ⊑ B1 ▷◁ B2 is satisfied in an interpretation I if736

every element in AI is between some individual from BI
1 and some element from BI

2 . A737

central result from [62] shows that the feature-enriched semantics from [41] can essentially738

be seen as a special case, where the betweenness relation bet fulfills certain properties. The739

results in [62] are preliminary, leaving open for example, the complexity of reasoning under740

this new semantics.741

The logic EL ▷◁ is built on the idea of conceptual betweenness. This ensures that the742

semantics remains close to cognitive models of category based induction, and information743

about conceptual betweenness can moreover be readily obtained from embeddings. However,744

an important open question is whether it is possible to develop meaningful forms of rule745

interpolation that go beyond this idea of conceptual betweenness. For instance, consider the746
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following rules:747

burglary(L, T )← burglary(L, T − 2), burglary(L, T − 1)748

burglary(L, T )← burglary(L, T − 1), burglary(L1, T − 1), burglary(L2, T − 1), n(L, L1),749

n(L, L2), L1 ̸= L2750

burglary(L, T )← burglary(L, T − 2), burglary(L1, T − 1), burglary(L2, T − 1), n(L, L1),751

n(L, L2), L1 ̸= L2752
753

Intuitively, these rules partially characterise the spatio-temporal diffusion pattern of crime754

hotspots. For instance, the first rule asserts that if there has been a burglary at time points755

T − 1 and T − 2 at a given location (e.g. during the two previous days), then it is likely that756

there will be a burglary at time point T in the same location. The other two rules include757

the predicate n to encode information about neighbouring locations. Given these rules, the758

following rule also seems plausible:759

burglary(L, T )← burglary(L1, T − 2), burglary(L2, T − 2), burglary(L, T − 1), n(L, L1),760

n(L, L2), L1 ̸= L2761
762

However, it is unclear how the underlying principle could be formalised, and how the763

associated background information could be obtained.764

5.2 Analogical Reasoning765

Reasoning by analogy has been extensively studied in cognitive science, philosophy, and766

artificial intelligence [31, 38, 39, 12, 55, 11]. In the context of AI, the formalisation of767

analogical reasoning typically builds on analogical proportions, i.e. statements of the form768

“A is to B what C is to D” [12, 55, 11]. For instance, a notable result in this area has been769

the development of analogical classifiers, which are based on the principle that whenever770

the features of four examples are in an analogical proportion, then their class labels should771

be in an analogical proportion as well [12, 40]. Somewhat surprisingly, analogical reasoning772

was only recently considered for completing ontologies [61]. Schockaert et al. [61] took773

inspiration from analogical classifiers to infer plausible concept inclusions. The resulting774

inference pattern is called rule extrapolation; it is illustrated in the next example.775

▶ Example 5 ([61], Rule Extrapolation). Suppose we have an ontology with the following776

concept inclusions:777

Young ⊓ Cat ⊑ Cute (16)778

Adult ⊓WildCat ⊑ Dangerous (17)779

Young ⊓ Dog ⊑ Cute (18)780
781

Suppose we are furthermore given that “Cat is to WildCat what Dog is to Wolf”. Trivially,782

we also have that “Young is to Adult what Young is to Adult” and “Cute is to Dangerous what783

Cute is to Dangerous”. Using rule extrapolation, we can then infer the following:784

Adult ⊓Wolf ⊑ Dangerous (19)785
786

The knowledge inferred by analogical reasoning could also be used to transfer knowledge787

from one domain to another:788
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▶ Example 6 ([61], Rule translation). Suppose we are given the following knowledge:789

Program ⊑ ∃specifies.Software (20)790
791

and the fact that “Program is to Plan what Software is to Building”. Then we can plausibly792

infer:793

Plan ⊑ ∃specifies.Building (21)794
795

Rule translation is useful as ontologies are often developed using “templates” to encode796

knowledge from different domains (e.g. knowledge about different professions). The strategy797

from Example 6 then allows us to complete the ontology by introducing additional domains.798

As in the case of interpolative reasoning, the main objective of Schockaert et al. [61]799

was to establish the principles for incorporating analogical reasoning and, in particular, to800

develop a model-theoretic semantics. To this end, the description logic ELana
⊥ is introduced,801

which extends EL ▷◁
⊥ with so-called analogy assertions. Formally, ELana

⊥ concepts C, D are802

defined by the following grammar, where A ∈ NC, A′ ∈ NNat
C , r ∈ NR and r′ ∈ NInt

R :803

C, D := ⊤ | ⊥ | A | C ⊓D | ∃r.C | N804

N, N ′ := A′ | N ⊓N ′ | N ▷◁ N ′ | ∃r′.N805
806

Note how ELana
⊥ concepts extend EL▷◁

⊥ concepts by allowing existential restrictions over807

so-called intra-domain roles, i.e. roles from the designated set NInt
R , as natural concepts. An808

ELana
⊥ TBox is a finite set containing two types of assertions: (i) ELana

⊥ concept inclusions,809

and (ii) analogy assertions of the form C1▷D1::C2▷D2, where C1, C2, D1, D2 are natural810

ELana
⊥ concepts.811

The semantics of ELana
⊥ builds on the feature-enriched semantics of EL ▷◁

⊥ . Recall that812

analogies involve transferring knowledge from one application domain to another domain,813

e.g. from software engineering to architecture. Hence, at the semantic level these domains814

will be associated with subsets of features F . In particular, interpretations will specify a815

partition [F1, ...,Fk] of F , defining the different domains of interest. To capture the intuition816

of analogies, some of the partition classes will be viewed as being analogous, in the sense817

that there is some kind of structure-preserving mapping between them. We again refrain818

from giving the full technical details. We point out that Schockaert et al. [61] formally show819

that the analogical patterns exemplified above are supported under the proposed semantics.820

The investigation by Schockaert et al. [61] leaves open several interesting questions such821

as establishing the computational complexity of reasoning in ELana
⊥ . For the practical uptake822

of ELana
⊥ , it would be also important to consider nonmonotonic extensions, as analogical823

assertions might introduce conflicts with the existing ontological knowledge.824

6 Conclusions825

Combining symbolic reasoning with sub-symbolic learning is an important and widely studied826

challenge for AI research. To enable such a combination in a principled way, a key question827

is how we can unify the two rather distinct types of representations that are involved, i.e.828

symbols and vectors. In this paper, we discussed a number of strategies that are inspired829

by the theory of conceptual spaces. First, we looked at the possibility of achieving a tight830

integration between symbolic and vector representations based on the idea that concepts831

can be viewed as regions in vector space embeddings. Moreover, we also explored the idea832

that meaningful “quality dimensions” can be identified in learned embeddings, adding more833
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structure and a degree of interpretability to the vector representations themselves. However,834

we also argued that the use of region based representations has some inherent limitations835

when it comes to modelling relational knowledge. For this reason, we finally discussed a836

number of settings in which vectors and symbols are combined in a looser way. Essentially, the837

underlying idea is to exploit the similarity structure captured by the vector space to identify838

symbolic knowledge that plausibly, but not deductively, follows from a given knowledge base.839
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