
Towards enhancing unsupervised
anomaly detection by improving
complexity, dimensionality and
class-boundary properties

Kasra Babaei

Faculty of Science and Engineering
University of NottinghamMalaysia

This dissertation is submitted for the degree of
Doctor of Philosophy

School of Computer Science October 2021

To my parents
and my wife

who supported me unconditionally.

Publications

K. Babaei, Z. Chen, T. Maul, “Detecting point outliers using prune-based outlier
factor (PLOF),” The 4th International Conference on Computing, Mathematics and
Statistics, 2019

K. Babaei, Z. Chen, T. Maul, “A Study of Fraud Types, Challenges and Detection Ap-
proaches in Telecommunication,” Journal of Information Systems and Telecommuni-
cation (JIST), vol. 4, no. 28, pp. 248 - 261, 2020

K. Babaei, Z. Chen, T. Maul, “AEGR: A simple approach to gradient reversal in au-
toencoders for network anomaly detection,” Soft Computing, pp. 1 - 12, 2021

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This dissertation is my own work and contains nothing which is the out-
come of work done in collaboration with others, except as specified in the text and
Acknowledgements. This dissertation contains fewer than 65,000 words including
appendices, bibliography, footnotes, tables and equations and has fewer than 150
figures.

Kasra Babaei
October 2021

Acknowledgements

I would like to express my sincerest gratitude to my supervisors Dr Zhi Yuan Chen
andDr TomasMaul, for their unconditional guidance and support. This work would
not have been completedwithout their untiring efforts and patience, whichmade this
work possible.

I would like to thank my parents and my wife for their continuous and unques-
tioning love, care and support that enabled me to overcome difficulties through the
years. There are no words to express my gratitude adequately. This work is dedicated
to you.

Abstract

Any observation that follows a pattern other than the expected one, i.e., the normal
behaviour, is considered abnormal behaviour (also known as an anomaly). Abnor-
mal behaviour is witnessed in various areas— for instance, a previously unseen high
temperature during winter in a naturally cold environment.

Prior research shows that anomalies can result in negative impacts such as finan-
cial losses in telecommunications or human fatalities in aviation accidents. Despite
the advances made in the area of anomaly detection, detection methods underper-
formdue to the challenges that affect and hinder the process of anomaly detection. In
this work, three novel anomaly detection approaches are introduced each, of which
aims at addressing one problem that debilitates the performance of anomaly detec-
tion.

One of the problems in anomaly detection is having access to an ample amount
of anomalous examples; therefore, the proposed methods in this work are all unsu-
pervised as this type of learning is needless of having access to a labelled training set.
The first contribution of this research is focused on reducing the execution time of a
density-basedmethodwhilemaintaining the performance at a high level by applying
a novel pruning-based preprocessing step.

In density-based methods, measuring the density plays an important role, and
as the dimensionality increases, the definition of density becomes harder. By using
dimensionality reduction methods, it is possible to transform the high-dimensional
input data into a low-dimensional form while maintaining essential features. In the
second contribution, a novel dimensionality reduction method is introduced that is
needless of having access to an anomaly and noise-free training set.

When using One-Class Classifier methods, the performance varies as the size
of the training set changes. Having access to a training set that includes more nor-
mal examples can improve the performance as the class-boundary becomes less am-
biguous. The final contribution of this work is focused on improving the defini-
tion of class-boundary by proposing a data augmentation approach. The proposed
approach generates augmented examples while simultaneously reduces the dimen-
sionality of the input data.

Table of contents

List of figures xvii

List of tables xix

Nomenclature xxi

1 Introduction 1
1.1 Anomalies . 2
1.2 Types of Anomalies . 2

1.2.1 Point Anomalies . 2
1.2.2 Contextual Anomalies . 3
1.2.3 Collective Anomalies . 3

1.3 Anomalies and Common Definition Issues 3
1.3.1 Noise vs Anomalies . 3
1.3.2 Novelties vs Anomalies . 4

1.4 Motivation . 4
1.5 Problems . 5
1.6 Proposed Solutions . 5

1.6.1 Efficiency and Performance 6
1.6.2 Insensitive to Anomalies 6
1.6.3 Reproduction . 6

1.7 Overview . 6

2 Literature Review 9
2.1 Anomaly Detection Approaches . 9

2.1.1 Supervised Learning . 9
2.1.2 Unsupervised Learning . 10
2.1.3 Semi-Supervised Learning 11
2.1.4 Neural Networks and Recent Development in Anomaly De-

tection . 12

xiv Table of contents

2.2 Challenges . 15
2.2.1 Curse of Dimensionality 15
2.2.2 Imbalanced Data Distribution 16
2.2.3 Availability of Data . 16
2.2.4 Concept Drift . 17
2.2.5 Noisy Data . 17
2.2.6 Misclassification Costs . 17

3 Prune-based Local Outlier Factor 19
3.1 Introduction . 19
3.2 Local Outlier Factor . 20

3.2.1 Problems of LOF . 21
3.3 Proposed Solutions in the Literature 22
3.4 Prune-based LOF . 23

3.4.1 Complexity Analysis . 26
3.5 Analysis of PLOF . 26

3.5.1 Datasets . 26
3.5.2 Evaluation Metric . 26

3.6 Results . 27
3.7 Summary . 31

4 AutoEncoders with Gradient Reversal 33
4.1 Introduction . 33
4.2 AutoEncoders . 34

4.2.1 Problems of AE in Anomaly Detection 35
4.2.2 Proposed Solutions in the Literature 36

4.3 AutoEncoder with Gradient Reversal 38
4.3.1 Complexity Analysis . 40

4.4 Analysis of AEGR . 40
4.4.1 Datasets . 41
4.4.2 Evaluation Metrics . 43

4.5 Results . 43
4.6 Summary . 48

5 Data Augmentation by AutoEncoders 49
5.1 Introduction . 49
5.2 Data Augmentation . 50

5.2.1 Proposed Solutions in the Literature 50
5.3 Data Augmentation by AutoEncoders 51

Table of contents xv

5.3.1 Complexity Analysis . 52
5.4 Analysis of Data Augmentation by AutoEncoders 52

5.4.1 Datasets . 53
5.4.2 Evaluation Metrics . 53

5.5 Result . 53
5.6 Summary . 59

6 General Discussion 61
6.1 Introduction . 61
6.2 Methods . 61
6.3 Limitations and Future Work . 67
6.4 Summary . 70

7 Conclusion 73

References 77

Appendix A Frameworks 87
A.1 Weka . 87
A.2 Scikit-learn . 87
A.3 PyTorch . 87
A.4 Keras . 88
A.5 Sample Code of the Proposed Models 88

List of figures

1.1 An example of a dataset that contains anomalies 2

3.1 Neighbourhood of 𝑝 based on 𝑘-distance 24
3.2 Inaccurate 𝑘-distance . 24
3.3 Showing inliers and anomalies in the following four data sets: (A)

Wine, (B) Lymphography, (C) Glass, and (D) Ionosphere. During
the experiments, no dimensionality reduction method was applied
and merely for better visualisation. The first two principal compo-
nents are shown here. 30

4.1 The structure of a deep undercomplete autoencoder 35
4.2 The structure of a basic autoencoder 35
4.3 Visualisation plot of the latent variables (the first two features) ex-

tracted by a simple AE and also AEGR on InternetAds. The orange
points represent anomalies while the blue points represent the nor-
mal points. The curves at the top and right side of each figure indi-
cate the KDE curves. 47

5.1 Boxplots of computed LOF scores for PenDigits dataset after data
augmentation with different approaches 58

6.1 Overall structure of the PLOF model 62
6.2 Overall structure of the AEGR model 65
6.3 Overall structure of the model that uses an AE for data augmentation 66
6.4 Histogramplot with a kernel density estimation of the first two latent

variables of the PenDigits dataset after applying various data aug-
mentation methods on the training set. The training set contains
only one type of data, i.e., inliers. 68

List of tables

3.1 The details of the 6 datasets used in 27
3.2 The execution time in seconds . 28
3.3 Accuracy of PLOF, LOF, devToMean and FastLOF 28
3.4 Precision of PLOF, LOF, devToMean and FastLOF 28
3.5 AUC of PLOF, LOF, devToMean and FastLOF 29
3.6 Recall of PLOF, LOF, devToMean and FastLOF 29

4.1 The size of the middle layer for each dataset 41
4.2 Details of the 8 datasets used in the experiments 42
4.3 The PR AUC and ROC AUC values for UNSW-NB15 44
4.4 PR AUC and ROC AUC for NSL-KDD and CTU13 44
4.5 PR AUC and ROC AUC for data sets with single-type anomaly . . . 45

5.1 The PR AUC and ROC AUC values for UNSW-NB15 55
5.2 PR AUC and ROC AUC for the NSL-KDD and CTU13 data set . . . 56
5.3 PR AUC and ROC AUC for data sets with single-type anomaly . . . 57

Nomenclature

Acronyms / Abbreviations

AD Anomaly Detection

ADASYN Adaptive Synthetic Sampling

ADMM Alternating Direction of Method of Multipliers

AE Autoencoders

AEGR AutoEncoders with Gradient Reversal

ANN Artificial Neural Networks

AUC Area Under ROC

CAE Clustering-based deep AutoEncoder

cGAN Conditional Generative Adversarial Network

CNN Convolutional Neural Network

DA Data Augmentation

DAE Denoising AutoEncoders

DBN Deep Belief Networks

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

IF Isolation Forest

KDE Kernel Density Estimation

KSAE k-means Shrink AutoEncoder

xxii Nomenclature

LDOF Local Distance-based Outlier Factor

LOF Local Outlier Factor

LRD Local Reachability Distance

LSH Local Sensitive Hashing

MSE Mean Square Error

OCC One-Class Classifier

OCSVM One Class Support Vector Machine

PCA Principal Component Analysis

PLOF Prune-based Local Outlier Factor

PR Precision-Recal

PV Photovoltaic

PVLOF Photovoltaic Local Outlier Factor

R-SAE Robust Stacked AutoEncoders

RandNet Randomised Neural Network for Anomaly Detection

RBM Restricted Boltzmann Machine

RC Robust Covariance

RE Reconstruction Error

RNN Recurrent Neural Networks

ROC Receiver Operating Characteristics

S-SAE Standard Stacked AutoEncoders

SAE Stacked AutoEncoders

SGD Stochastic Gradient Descent

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machines

ZCA Zero Component Analysis

Chapter 1

Introduction

Every year, the speed of generating data increases. This abundant amount of data
contains substantial information that can be challenging to detect and requires spe-
cial techniques and methods. For instance, the data can be an indication of a faulty
part in the engine of a passenger plane or a malignant cell in a patient’s lung. The
key difference between this type of data with the rest is in which the pattern does
not follow what the majority of data conforms to. The small fraction of data that its
pattern deviates from the pattern of the majority of the data is known as anomalies,
and Anomaly Detection (AD) refers to the process in which the aim is to identify
these observations [1–3]. In other words, the whole data can be divided into two
sets. One set contains a large portion of the whole data, known as the majority, and
all the data instances in this set follow a well-known pattern, i.e., the normal pattern.
In the second set, a small fraction of the whole data is placed, and objects within this
set follow any pattern but not the pattern of the majority.

Anomaly detection has gained a tremendous amount of attention from various
areas, such as financial fraud detection, image processing, and sensor networks. For
instance, an unusual international money transaction from a foreign country that is
different fromwhere the transactions used to be carried out is a good sign of fraudu-
lent activities. In Fig. 1.1, data instances of an artificially generated dataset are plotted
in which red points are considered anomalies as they are placed far from themajority
due to their distinct pattern. However, several obstacles hinder the detection pro-
cess, such as the curse of dimensionality, skewed distribution, concept drift, or lack
of labelled data.

2 Introduction

0 5 10 15 20 25 30 35 400
5

10
15
20
25
30
35
40

Normal points Anomalies

Fig. 1.1 An example of a dataset that contains anomalies

1.1 Anomalies

Having a clear understanding of anomalies is important. Anomalies, outliers, nov-
elties, noises, deviation, exceptions, aberrations, surprises, peculiarities, or contam-
inants are correlated terms that in some research work have been used interchange-
ably. An anomaly is a data instance that is inconsistent and deviates from the normal
pattern of the rest of the data it belongs to [4][5]. Anomaly detection or outlier detec-
tion refers to the process of identifying and often removing anomalies from the given
data set, which has been widely used in many applications such as fraud detection in
telecommunication, health-insurance, or credit card, intrusion detection for cyber-
security, fault detection in crisis management systems, and military surveillance for
an enemy or terrorist activities detection [1].

1.2 Types of Anomalies

Understanding the nature of anomalies is essential to find the optimumoutlier detec-
tion method. According to [1], there are three types of anomalies: point anomalies,
contextual anomalies, and collective anomalies.

1.2.1 Point Anomalies

This type is known as the simplest type of anomaly, and most of the research works
in anomaly detection have tried to detect point anomalies in which a data instance is
identified as an anomaly with respect to the rest of the data. In Figure 1.1, each of the

1.3 Anomalies and Common Definition Issues 3

red points is considered as a point anomaly. A real-world example of a point anomaly
is any unusual financial transaction in credit card fraud detection or an abnormal call
in telecommunication fraud detection.

1.2.2 Contextual Anomalies

Contextual anomaly, also known as a conditional anomaly, refers to an individual
data instance that is an anomaly only in a specific context but not otherwise [6].
Contextual outlier detection has been widely utilised in application domains with
time-series data, and spatial data [1]. An example of a contextual anomaly is the
temperature of the environment at two different times. To explain further, a high
temperature during a hot season is considered normal, while witnessing the same
temperature during a cold season is unexpected.

1.2.3 Collective Anomalies

A collective anomaly is very similar to a point anomaly except for the fact that a
collection of related data instances are compared to the rest of the data as opposed
to juxtaposing a single data instance [1]. Collective anomalies have been applied
to different types of data, such as sequence data, graph data, and spatial data. An
example of a collective anomaly can be a series of actions that are considered normal
in case the actions follow the correct sequence. However, if the actions occur in an
unusual order, the whole series can be considered an outlier.

1.3 Anomalies and Common Definition Issues

Despite the fact that there is a consensus over the definition of an anomaly in the
literature, it often becomes confusing because the definition overlaps with the defi-
nition of other concepts such as noise. Also, there are different terms for an anomaly
that are used interchangeably in the literature. This section covers the differences be-
tween anomalies and noise and also goes through various terms for an anomalywhile
mentioning the difference between anomalies and novelties.

1.3.1 Noise vs Anomalies

It is hard to differentiate anomalies from noise as both have one similar crucial char-
acteristic, which is deviating from the pattern that the majority follow. To separate
anomalies from noise, one should look at a few key factors. Firstly, the cause of
noise is different from anomalies. To explain further, noise can be generated by, for

4 Introduction

instance, a dusty lens or a faulty microphone, while an anomaly in the mentioned
examples would be an unprecedented object in the image or a meaningful nuance in
the track. Secondly, while anomalies implicate meaningful and important, noise is
something undesired that the analyst is not interested in and tries to clean the data
from noise, which is known as noise removal, before carrying out any experiment
on the data [1]. Nonetheless, in some contexts, such as the study conducted by Ha
et al. [3], anomaly detection is considered the same as noise removal.

1.3.2 Novelties vs Anomalies

There are various terms such as outlier, deviation, or exception detection that all
refer to the anomaly detection [4]. Although most research works have claimed that
novelty detection is merely another term for anomaly detection, some such as [2]
have defined novelties slightly different from outliers. In novelty detection, the aim
is to discover data instances that are totally unprecedented. While novelty detection
in its definition is very similar to anomaly detection, the key distinction is that the
observed pattern here is later appended to the normal behaviour [1]. For instance,
a new shopping pattern can emerge when buying Christmas presents. It is worth
mentioning that as these concepts are very related, the methods for dealing with
them are very similar and, in many cases, applied in both concepts.

1.4 Motivation

Anomaly detection is being used in various fields. Application domains can be di-
vided into several categories, and there is nouniversally accepted classification. How-
ever, it is possible to categorise them into the followings: financial fraud detection,
computer and network intrusion detection, healthcare detection, industrial damage
detection, image processing, text data, and sensor networks.

The practicality and popularity of anomaly detectionmodels and the importance
of their performance cannot be overstated. Despite the recent advances in this area,
anomaly detection methods still suffer from some well-known problems such as
the curse of dimensionality, and the performance does not meet the expected level.
Therefore, this thesis is motivated by the importance of investigating and under-
standing more about anomaly detection to gain deeper insights about the challenges
that affect the performance and the benefits of developing novel methods that push
the performance limits for achieving better models that can outperform their prede-
cessors.

1.5 Problems 5

1.5 Problems

Traditional approaches are categorised into different groups such as distribution-
based, density-based or distance-based. Even though the computational power of
computers is increasing significantly every year, some of these methods suffer from
high computation cost that even the current generation of computers struggle to
carry out tasks. There have been a few works in which a more efficient variant of the
traditional methods was introduced to reduce the computation cost; however, they
disregard the performance, i.e., fail at keeping the detection rate at an acceptable or
same level.

This thesis also investigates the problem of high dimensionality in datasets and
the effect of the curse of dimensionality on the anomaly detection process. In a high-
dimensional dataset, the data points are more spread out, which affects the density
and convex hull [4]. There are various works in the literature that target this problem
as it is not an anomaly detection problem but rather a known challenge in machine
learning. Classic methods such as PCA have been used in various areas for reducing
dimensionality while keeping valuable information. Deep learning has also shown
outstanding results in recent years when used for dimensionality reduction. How-
ever, when applied in the area of anomaly detection, the training phase can become
a challenge as the network also learns how to extract information about anomalies
instead of excluding them.

Lastly, this research studies the impact of tuning the class boundary in a model
that is trained tomake a binary decision. Theprocess of anomaly detection is a binary
decision in which themajority of data points belong to the normal class, and aminor
fraction of the dataset goes under the other class that includes merely anomalies.
Finding the right boundary between the two classes can be challenging. While a too
tight boundary can cause a high false-positive rate, i.e., many normal instances will
be labelled as anomalies, a slack boundary can produce a higher false-negative rate,
i.e., anomalies will be classified as inliers. When the training set contains inadequate
amount of normal instances, the model struggles to find the right class boundary
that separates inliers from outliers.

1.6 Proposed Solutions

This thesis introduces three novel methods, each of which targets one of the prob-
lems that is mentioned in Section 2.2. This section summarises the three proposed
methods.

6 Introduction

1.6.1 Efficiency and Performance

In Chapter 3, a novel variant of a state-of-the-art density-based approach is pro-
posed that is known for its high computation cost. The main research goal of the
proposed method in Chapter 3 is to introduce a newmodel that is capable of detect-
ing anomalies with less computation while retaining performance. The proposed
solution employs a novel method for calculating the neighbourhood density of each
data point and then applies a pruning procedure based on the computed score. One
key advantage of the proposed approach is that, unlike its predecessor, it does not
sacrifice the detection performance for lower computation cost.

1.6.2 Insensitive to Anomalies

Also, in Chapter 4, the impact of dimensionality reduction is studied to gain more
insights about traditional approaches and the current state-of-the-art methods for
reducing dimensionality. Then, a novel deep learning model is proposed that tries
to reduce dimensionality while automatically excluding anomalies in the training
phase based on its gradient updates in an unsupervised setting. The advantage of
the proposed approach compared to other works found in the literature is that the
training set does not need to be anomaly or noise-free as opposed to other works
that must be trained with a clean training set. After reducing the dimensionality
of the dataset, various widely used anomaly detection methods are used to separate
anomalies from normal datasets.

1.6.3 Reproduction

In Chapter 5, after investigating the importance of defining a better class boundary
and its influence on the performance of a One-Class Classifier, a novel method is
introduced that not only reduces the dimensionality but at the same time reproduces
augmented data out of the training set to be used for training themodel. Simplicity is
one of the advantages of the proposed model. The proposed method investigates the
effect of reproduction, i.e., data augmentation, on defining a better class boundary
to improve the performance of the model in anomaly detection.

1.7 Overview

This thesis is organised as follows. Chapter 2 studies previous works and their find-
ings. In Chapter 3, a novel prune-based approach is introduced to reduce the com-
plexity of a state-of-the-art density-basedmethodwhilemaintaining its performance.

1.7 Overview 7

Chapter 4 presents a variant of a deep learning method that tries to deal with the
curse of dimensionality while making the network insensitive towards anomalies
and noise. Then, Chapter 5 introduces a data augmentation approach that addresses
the challenge of defining the class boundary in One-Class Classifiers. Next, Chapter
6 summarises the findings of this thesis while providing a general discussion, limi-
tations and possible future works. Finally, Chapter 7 summarises the contributions
of this thesis.

Chapter 2

Literature Review

In this chapter, the literature on anomaly detection is reviewed to explain various
approaches and challenges in detecting anomalies.

2.1 Anomaly Detection Approaches

In the literature, there is no consensus on categorising anomaly detection approaches.
Different researches have come up with various categorisations. Anomaly detection
methods can be divided into the following three groups: supervised, unsupervised,
and semi-supervised. The aim of this section is to briefly summarize the difference
between the three groups but not to get into the details because it is deemed as out
of the scope.

2.1.1 Supervised Learning

In supervised learning, a portion of the data set inwhich the observations are labelled
to different classes such as normal and abnormal, is used as a training set. Firstly, the
model is trained using the training set, and then unlabelled data is given to themodel
to perform prediction. There are two main schemes of supervised learning models:
classification and regression. In a classificationmodel, the outcomes are discrete, and
the model tries to map unseen observations into predefined classes. Alternatively,
when the outcomes are continuous, regression models are used.

Classification can be divided into one-class classification andmulti-class classifi-
cation. While in multi-class classification, the purpose of the algorithm is to classify
unseen observations into one of the predefined classes, in one-class classification,
the model is trained merely by one of the classes, which is referred to as the target
class or the positive class [7]. In anomaly detection, the target class is the normal

10 Literature Review

class, and the non-target class is the abnormal class. This approach is functional
when the number of instances from the non-target class is low due to the difficulty
of measuring abnormal behaviour. After training themodel with the instances of the
normal class, every instance that does not belong to the normal class is considered
an anomaly.

One-class classification suffers fromproblems ofmulti-class classification aswell,
for instance, error rates approximation, the curse of dimensionality (explained in
2.2.1), or generalisation, and selecting observations that can precisely define the
boundary between the normal and abnormal classes is often hard especially when
this boundary is vast, and the data is non-convex [7].

Li et al. [8] proposed a one-class classification for intrusion detection using Sup-
port Vector Machines (SVM); however, their approach was unable to detect intru-
sion detection online because it required a training set in prior to the prediction
phase. In most previous work, such as Zhang et al. [9] and Patnaik et al. [10], a
variation of One-Class SVM (OCC) have been applied for anomaly detection.

2.1.2 Unsupervised Learning

In unsupervised learning, having a labelled training set is needless as an unsuper-
vised approach tries to separate observations into clusters of data point with similar
characteristics. In some context, this is considered a better approach when the ma-
jority of the data sets is negative, i.e., normal; however, it can also produce a high
false alarm rate if this assumption is not met [1]. There are several unsupervised
learning methods that, based on their calculation nature, can be categorised in the
following groups [11]:

• Distance-based methods: firstly, the distance between all the observations is
measured, and observations with 𝑑𝑚𝑖𝑛 distance from 𝑝 percentage of observa-
tions in the data sets are considered as anomalies. Distance-basedmethods are
used in detecting point anomalies. One example of a distance-based method
is the 𝑘-nearest neighbours algorithm.

• Clustering-based methods: it is possible to separate the data into different
clusters, i.e., each cluster holding data instances with similar characteristics,
and label those data instances that belong to no cluster as anomalies.

• Density-based methods: the density of each observation is measured using a
density estimationmethod such as Kernel Density Estimation (KDE), and ob-
servations that their local density vary from their neighbours are determined
as outliers. An example of this type of anomaly detection is the Local Outlier

2.1 Anomaly Detection Approaches 11

Factor (LOF) method, which is based on the local density of each observation
[12].

• Depth-basedmethods: based on computing various layers of 𝑘-d convex hulls,
and observations outside of the hulls are determined as outliers [13].

• Distribution-based methods: a statistical approach determines a data point as
an outlier if it substantially deviates from the underlying distribution.

Although distance-based algorithms are simple and fast, their performances de-
bilitate when the data set has various degrees of density [3]. Also, density-based
algorithms underperform when there are low-density patterns inside the data set
[14]. Likewise, depth-based approaches struggle when the data set becomes huge
because they depend on calculating 𝑘-d convex hulls that are composed of a lower
boundary complexity of 𝜙(𝑚𝑘/2) for 𝑚 instances [15]. A prior understanding of
the distribution is needed when using a distribution-based algorithm. For instance,
the optimum number of components is often unknown and needs to be determined
[16].

2.1.3 Semi-Supervised Learning

Semi-supervised learning lies between supervised learning and unsupervised learn-
ing. Semi-supervised learning is used under various circumstances such as paucity
of training data or lack of certainty about all instances labels [17]. This method uses
both labelled data and unlabelled data for the learning process [18], whichmakes the
method very suitable for outlier detection where the number of positive instances in
the data sets is very low [19].

There is also another type of approach, known as rule-based systems, that is
worth mentioning. A Rule-Based technique is a straightforward approach in which
an alarm is triggered when a particular criterion is met. It is not considered a super-
vised approach; however, the fact that it requires labelled data for defining the rules
makes it very similar to a supervised approach. Although these systems are simple,
effective and efficient, they come with some deficiencies, which are [20, 21]:

• Vulnerable to unknown anomalies.

• Rules should be programmed precisely for every possible anomaly.

• Setting new rules requires a field expert and prior knowledge.

• Setting new rules is not immune to human error.

12 Literature Review

• Defining new rules is time-consuming and often complicated.

Rule-based systems have been widely employed in many application domains, such
as fraud detection. However, shortcomings of rule-based systems give adversaries
the opportunity to adapt and change their attacking methods and avoid triggering
the alarm, which makes rule-based fraud detection systems based ineffective against
new attacking patterns.

2.1.4 Neural Networks and Recent Development in Anomaly Detec-
tion

The strength of artificial neural networks, which have been widely employed in other
areas such as image and speech processing, has proven to be useful in anomaly detec-
tion as well. However, no approach comes without shortcomings, and as suggested
by Ahmed et al. [22], the downside of using neural networks is the high computa-
tional requirement. Nevertheless, neural networks are being used in anomaly de-
tection either alone or alongside another approach, such as a statistical model. For
instance, Cao et al. [23] proposed a new variant of AutoEncoders (AE) to reduce
the dimensionality of the datasets and then applied other methods such as One-
Class SVM, kernel density estimation or local outlier factor to separate anomalies
from inliers. They used autoencoders for reducing the dimensionality of the dataset,
which is a feed-forward neural network made of two parts, namely the encoder and
the decoder [24] (autoencoder is explained in details in Chapter 4). Pérez et al.
[25] compared the performance of autoencoders with PCA for feature extraction
and dimensionality reduction for the purpose of detecting anomalies. Their work
was focused on detecting network intrusion and used other models, namely LOF,
One-Class SVM, Isolation Forest (IF), and Robust Covariance (RC), for separating
anomalies. The results of their work showed that the linearmethod, i.e., PCA, did not
improve the performance and, in some scenarios, even worsened it while the models
performed better when the feature extraction was carried out by the autoencoders.

Also, there are various research works in which a neural network was used alone
for detecting anomalies. For instance, Chen et al. [26] used a variant of autoen-
coders, i.e., Convolutional Autoencoders, for network anomaly detection in which
the network was designed to reduce the dimensionality and capture non-linear fea-
tures. In contrast, the reconstruction error of the network was later used for separat-
ing anomalies. To explain further, anomalies in the test data cause a more significant
reconstruction error because the network is not familiar with their pattern; therefore,
the encoder and decoder do a poor job in capturing features and regenerating the in-
put data, respectively. One of the advantages of this type of approach for separating

2.1 Anomaly Detection Approaches 13

anomalies is its simplicity and low computation cost, as the complexity of calculat-
ing the reconstruction error for the test data is only 𝑂(𝑛) where 𝑛 is the number
of data instances. However, finding the suitable threshold is always challenging and
has a substantial effect on the performance of the model. Defining a threshold that
is too low can cause a high false-positive rate as the model flags most of the instances
as anomalies, and a too high threshold can cause the opposite, which is a high false-
negative rate, i.e., themodel labels a high portion of the anomalies as normal. For this
reason, Castellini et al. [27] used two different thresholds for detecting fake Twitter
accounts. The first threshold was created by computing the maximum reconstruc-
tion error of the training set, which was originally proposed by Dau et al. [28]. They
used real Twitter accounts for training a denoising autoencoder network, and the
maximum reconstruction error of the training set was used for anomaly detection
based on the assumption that the probability of the network producing anymore sig-
nificant value than the threshold for a normal data point is much lower than for an
anomaly. The second threshold was calculated by taking the difference between the
produced reconstruction error of two successive values in the reconstruction errors
ranking. Even though they did not thoroughly discuss the reason, they stated that
the latter method for computing the threshold produced better results compared to
the first approach. One possible explanation could be that the second approach does
a better job at avoiding local optima.

Aside from threshold-based anomaly detection approaches that use the recon-
struction error of the autoencoders, there are other works in which the framework
did not apply another model, such as SVM on the extracted features for separating
anomalies. Akcay et al. [29] proposed a conditional generative adversarial network
that consisted of an extra encoder, i.e., changing the architecture of the network to
be an encoder-decoder-encoder pipeline, to extract meaningful latent variables from
images. Then, instead of using another model to separate the anomalies, they used
a threshold-based approach for detecting anomalies. The binary classification was
based on an anomaly score value that was computed for each test example. To com-
pute the score values, they considered using the difference between the latent vari-
ables from the first encoder and the second encoder inwhich the assumptionwas that
an anomaly would output a higher score compared to a normal score due to the in-
trinsic features of anomalies that vary from inliers. In another work, Zhou et al. [30]
proposed a denoising autoencoder based on the concept of robust principal com-
ponent analysis that can be trained without having access to a noise or anomaly free
training set. In their proposed approach, the network split the data into𝑋 = 𝐿𝐷+𝑆
in which 𝐿𝐷 contains the latent variables while 𝑆 captures the anomalies and noise.
The process is carried out by optimizing the objective function, which is solved by

14 Literature Review

combining concepts from backpropagation and Alternating Direction of Method of
Multipliers (ADMM) [31].

Despite the fact that autoencoders can capture non-linear features, which is a
substantial advantage over linearmodels such as PCA, the network tries to transform
the whole input data into one cluster regardless of the nature of the characteristics of
the input data, which might have come from separate clusters. Bui et al. [32] tried
to tackle this problem by proposing a model named k-means Shrink AutoEncoder
(KSAE) that applies k-means clustering algorithm to split the training data into sev-
eral clusters and then trained a variant of autoencoder that was originally introduced
by Cao et al. [23] for eachmodel. For detecting anomalies, they proposed two differ-
ent approaches. The first one took a similar approach to the training phase in which,
after splitting the test set by applying k-means, latent features were obtained by the
corresponding autoencoder. In the second approach, all the trained autoencoders
models were applied. For separating the anomalies, One-Class SVM was applied to
the latent features. One of the drawbacks of their approach was in the method they
used for clustering the data as k-means is a linear approach and cannot take into
account the non-linear features when clustering the input data.

Even though the normal data in many scenarios fall under the same cluster as
they tend to have a high resemblance, there are cases in which the data might belong
to various clusters. For instance, when dealing with network data, each example
can be formed by data coming from different network services. Nguyen1 et al. [33]
proposed a hybrid approach called Clustering-based deep AutoEncoder (CAE), in
which two regularisers were added to the loss function of an autoencoder to push
the normal data points in the training set to the centre of the cluster and after ex-
tracting latent features from the test set, they used Centroid (CEN)method to detect
anomalies. In their approach, the parameter 𝑘 that defines the number of clusters is
chosen empirically, which, arguably, has a substantial effect on the performance of
the model. Finding the optimum 𝑘 value requires either prior knowledge about the
data or should be computed using another approach.

There are other variants of artificial neural networks that have been used for
anomaly detection aside from autoencoders. For instance, Convolutional Neural
Network (CNN), which is a supervised method unlike autoencoders, have shown
promising results in other areas such as image processing, object detection or ac-
tivity detection. In Sabokrou et al. [34], a variant of CNN, i.e., Fully Convolution
Neural Networks (FCN), was proposed for processing crowded scenes and detecting
abnormal regions, i.e., abnormal behaviour, in videos. Their proposed model was
essentially an improvement over what was proposed by Sabokrou et al. [35] who
also used a variant of CNN for anomaly detection for detecting abnormal behaviour

2.2 Challenges 15

from crowd scenes. The difference between the two models was that the model pro-
posed by Sabokrou et al. [34] consisted of two main parts, the trainable part and the
fixed part in which the fixed part is used as a reference for normal behaviour that is
trained by a single class, i.e., the normal class. This fixed part is, in fact, copied from
the Alexnet model [36]. For the trainable part, they employed a sparse autoencoder
to extract latent variables from the normal class. During the testing phase, any frame
deviating from the normal reference model was considered as abnormal behaviour,
i.e., anomalies. One problem with this kind of approach, as mentioned by Oza et al.
[37], is that training such models is generally hard.

It is worth mentioning that CNN is often but not always used when the input
data is of type of image or video. Using CNN alongside autoencoders has been ex-
perimented in various research works. Hasan et al. [38] proposed a framework for
detecting temporal regularity in videos, i.e., anomalies, that was a combination of a
fully-connected autoencoder and a fully-convolutional autoencoder. However, the
training set used during the experiment phase was done by passing handcrafted fea-
tures, and the anomaly detection was done by using the reconstruction error as the
anomaly score.

As mentioned, various versions of deep learning methods have been investi-
gated and studied for the purpose of anomaly detection, and promising results were
achieved. Besides the variants that were mentioned above, many other architectures
such as Restricted BoltzmannMachine (RBM) [39, 40], Recurrent Neural Networks
(RNN) [41] and Deep Belief Networks (DBM) [42, 43] have also been studied.

2.2 Challenges

Anomaly detection is a challenging task due to various reasons. There are several
challenges that hinder the process of detecting anomalies. In this section, these chal-
lenges are briefly explained. The suitable approach for dealing with these challenges
is not discussed as it is deemed out of the scope of the section.

2.2.1 Curse of Dimensionality

As mentioned in Section 1.4, anomaly detection is applied to various domains in
whichmany of them comewith an enormous amount of data. For instance, telecom-
munication companies produce a large amount of data every day [44]. One aspect
of this is the number of features, which is known as the ”curse of dimensionality”.
In a high-dimensional space, data instances become more spread out, leading to de-
creased density, which in turn causes the convex hull to become stretched and dif-

16 Literature Review

ficult to distinguish [4]. High-dimensional datasets are very complicated, require
larger amounts of memory and cause longer computing time that makes the detec-
tion process extremely difficult and time-consuming [17, 45].

The goal of a dimensionality reduction algorithm is to extract features from the
initial data and transform that into a lower dimension while retaining valuable in-
formation and discarding dispensable features. Algorithms such as Principal Com-
ponent Analysis (PCA) [46], Latent Dirichlet Allocation [47] and Latent Semantic
Indexing with Singular Value Decomposition [48] are some of the well-known and
widely-used ones for reducing dimensionality. While algorithms such as PCA are us-
ing a linear approach, there are non-linear algorithms such as autoencoders [49, 50]
that are based on training multilayer neural networks. This study has used a novel
variant of autoencoders for reducing dimensionality. The details of the used neural
network are explained more in details in Section 2.1.4 and Section 4.2.

2.2.2 Imbalanced Data Distribution

A common problem in real-world datasets is that distributions are often imbalanced
(also known as skewed data distributions). In an imbalanced binary dataset, the
instances are not equally distributed amongst classes as one class, known as the ma-
jority class, includesmore instances than the other class, which is called theminority
class [51]. For instance, in a data set that is related to medical diagnosis, there might
be only a few cases that have cancer, with many cases being normal. This is a se-
vere problem for supervised learning algorithms where often there are only a few
abnormal instances for training, which makes training more challenging due to the
resulting skewed distribution [52]. In a typical imbalanced dataset, the ratio between
theminority andmajority classes can be, for instance, 1 to 100, 1 to 1,000, 1 to 10,000
or even more [53].

2.2.3 Availability of Data

The paucity of publicly accessible data to perform research on is one of the issues
that hinders doing research in this area [54, 55]. Companies are in many cases not
keen on providing their data to researchers due to the confidential information that
the data contain. Also, some laws prevent companies from furnishing researchers
with data for experimental purposes. By using data augmentation methods, it is
possible to regenerate similar samples from the original data with a minor variation
to overcome this challenge.

In this research, unsupervised learning is chosen due to the fact that a well-
known problem in the anomaly detection area is not having an ample amount of

2.2 Challenges 17

examples for anomalous cases. Unsupervised methods are needless of having access
to a labelled training set, which makes them suitable for this area.

2.2.4 Concept Drift

Concept drift refers to the condition of an online supervised learning system where
the distribution of the input and output changes, which will affect the prediction
model, and can be defined as [56]:

∃𝑋 ∶ 𝑝𝑡0
(𝑋, 𝑦) ≠ 𝑝𝑡1

(𝑋, 𝑦) (2.1)

where 𝑝𝑡0
is the joint distribution at time 𝑡0, 𝑋 refers to the input features, and 𝑦

refers to the output. In supervised learning, the model is trained with the input fea-
tures𝑋 and the respective output 𝑦. In the prediction phase, a new set of (previously
unseen) input features 𝑋 is given, and the aim is to predict the output 𝑦. Concept
drift can happen when normal behaviours keep evolving or altering, for example,
when the purchasing behaviour of customers changes on special occasions such as
the new year. Hence, the model cannot perform accurate predictions since, under
a more general perspective of drift, the relationship between the input features and
the output has changed. Therefore, concept drift requires either updating the model
incrementally or re-training it with recent batches of data [56, 57]. Adaptive learn-
ing is a solution to the concept drift problem where classical learning is not suitable.
It is an advanced method of incremental learning in a non-stationary environment
where the system has the capability of adapting to the stream of data [58, 56].

2.2.5 Noisy Data

Most real-world datasets are incomplete, noisy, and contain redundant or obsolete
records [17]. Therefore, many researchers tend to apply a preprocessing step be-
fore designing their model to clean the dataset and transform it into a suitable form.
Noisy data can cause severe effects on the anomaly detection process. Noise is known
as meaningless data that can cause variations in observations [59].

2.2.6 Misclassification Costs

Misclassificationhappenswhen anormal instance is incorrectly classified as an anomaly
(also known as a false positive), or when anomaly is classified as a normal instance
(also known as a false negative). In some domains such as fraud detection, the cost
of a false positive misclassification is unequal to the cost of a false negative misclassi-

18 Literature Review

fication [60]. To explain further, the cost of a false negative is more expensive than a
false positive because a false positive can be classified correctly after further investi-
gation, but a false negative means that the fraudster has managed to stay undetected
and can continue committing fraud.

Besides the aforementioned challenges, there are other issues that should be noted.
An essential requirement of a supervised learning approach is labelled data; however,
its availability is often an issue; moreover, labelling can be costly, time-consuming,
and requires an expert [4]. Also, an anomaly can have various meanings in differ-
ent application domains as some have a more generic form while others have a spe-
cific form [1], and often it is tough and expensive in some areas to provide labels
for anomalous cases such as failures in aircraft engines [61]. Moreover, the perfor-
mance of fraud detection systems depends heavily on the sources of data, and data
often originates fromdifferent sources with different formats and standards [62]. For
instance, attributes can be binary, categorical, continuous, or a mixture of these.

Chapter 3

Prune-based Local Outlier Factor

As mentioned in Section 1.6 and with more details in Section 1.6.1, the contribution
of this work is divided into three parts in which the first part is about addressing the
issue of efficiency and performance. In this chapter, one of the widely used density-
based methods for anomaly detection is reviewed along with its intrinsic problems
that weaken its performance. Then the main contribution of this chapter is elabo-
rated, which is to improve the efficiency and performance of the method, followed
by the details and the results of the experiments that were conducted.

3.1 Introduction

As explained in 2.1.2, unsupervised approaches for anomaly detection can be cat-
egorised into various groups such as density-based methods, distribution-based or
cluster-based. Arguably, there is no perfect approach that achieves the global so-
lution. In other words, each approach comes with some deficiencies. Nonetheless,
many published works such as the studies published by Cao et al. [23, 63] have used
density-based approaches for anomaly detection as it performs well unless the data
has some characteristics such as having regions that vary in density [1].

Some density-based algorithms, such as what Stein et al. [64] proposed, aim at
computing the density of the whole data, which yields a global density estimation.
Based on this estimation, and by defining a threshold, a portion of the data set that
has low density is separated and labelled as anomalies. Themain problem with these
algorithms is that often the users are merely interested in finding anomalies with
respect to the local instability [65].

20 Prune-based Local Outlier Factor

3.2 Local Outlier Factor

Awidely used density-based anomaly detectionmethod is LocalOutlier Factor (LOF),
in which the assumption is that anomalies tend to stay outside of dense neighbour-
hoods because of their peculiar characteristics that distance them from inliers [66].
The method generates a score that shows the outlierness of each data point based on
its local density. A low score indicates that the query point is an inlier while a high
score shows that the query point is an anomaly. The algorithm has one parameter,
𝑘, which is the minimum number of neighbours that each data point is expected to
have inside its neighbourhood.

It is possible to divide the anomaly detection process of LOF into three steps. In
the first step, LOF tries to find the minimum distance, called 𝑘-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, to hold at
least 𝑘 neighbours. Next, the algorithm measures the reachability distance defined
as:

𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡𝑘(𝑝, 𝑜) = 𝑚𝑎𝑥{𝑘-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜), 𝑑(𝑝, 𝑜)} (3.1)

which is equal to 𝑘-𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of point 𝑜 if the query point is also inside point 𝑜’s
neighbourhood, otherwise it is equal to the actual distance between the two points.
In the second step, the local reachability distance (LRD), which is the inverse of the
average reachability distance of the data point 𝑝 from its neighbours, is measured.
LRD is defined as:

𝐿𝑅𝐷𝑘(𝑝) = 1/(
∑

𝑜∈𝑁𝑘(𝑝)

𝑟𝑒𝑎𝑐ℎ-𝑑𝑖𝑠𝑡𝑘(𝑝,𝑜)

|𝑁𝑘(𝑝)|
) (3.2)

in which 𝑘 denotes the number neighbours in data point 𝑝’s neighbourhood that is
used to detect anomalies. In the final step, the LRD of the query point is compared
with the LRD of its neighbours using the following equation:

𝐿𝑂𝐹𝑘(𝑝) =
∑

𝑜∈𝑁𝑘(𝑝)

𝑙𝑟𝑑𝑘(𝑜)
𝑙𝑟𝑑𝑘(𝑝)

|𝑁𝑘(𝑝)| (3.3)

If the density of point 𝑝 is very close to its neighbours, then the value of LOF stays
around 1 while for inliers it is less than 1 and for anomalies, it is more significant
than 1. It is worth mentioning that it is prevalent to apply a simple threshold-based
clustering here to separate anomalies.

3.2 Local Outlier Factor 21

3.2.1 Problems of LOF

Most of the published studies have tried to overcome the well-known problems of
LOF, which are its expensive computation and also dealing with data sets that are
constituted of micro clusters with different densities.

Zhang et al. [67], argued that the value that LOF produces to show outlierness
of each object is not smooth, which can result in discontinuities in measuring the
local outlierness. Besides, they argued that the accuracy of LOF is very sensitive
to the selection of its parameters. To overcome these problems, they proposed an
adaptive approach in which they employed aGaussian Kernel function andmanaged
to increase the discrepancy between normal cases and anomalies.

In another approach, LOF was used to detect faults in monitoring photovoltaic
(PV) systems [68]. They claimed that although LOF could perform well on large-
scale PV systems, its performance was unsatisfactory when utilised for detecting
faults in small-scale PV systems, especially when there is irradiance. Therefore, they
presented a new modified LOF, namely PVLOF, based on the conventional LOF. In
their approach, the length of each PV string is considered in calculating a new den-
sity estimation based on LOF’s outlier score. Despite the fact that their modification
suited well in their application, it is not generalisable to other applications.

Another problem of LOF is that it only focuses on the object’s density with ref-
erence to its neighbourhood without considering the sparsity and the degree of dis-
persion between objects. For instance, when a sparse cluster is located near a dense
cluster, that can result in the wrong estimation. This becomes a bigger problem, es-
pecially when dealing with big data sets in which the objects are scattered. Su et al.
[65] tried to take into account the degree of dispersion of each object with respect
to its neighbourhood. In their approach, they considered using the distribution of
the distance between objects in computing the local density. A new neighbourhood
dispersion was introduced, which is a ratio between each object’s distribution and
its 𝑘-nearest neighbourhood average distance.

Jin et al. [69] proposed finding both neighbours and reverse neighbours of each
object for computing the local density. In their approach, called INFLO, the lo-
cal density of each object is estimated based on a symmetric neighbourhood rela-
tionship. They also introduced a micro-clustering step before computing 𝑘-nearest
neighbours, which caused a reduction in the computational cost.

22 Prune-based Local Outlier Factor

3.3 Proposed Solutions in the Literature

Breunig et al. [15] proposed a density-basedmethod known as LOF in which a value
is given to each data instance, which shows the outlierness for that individual. Then,
the top-𝑛pointswith the highest LOFvalue are considered as the anomaly. Often, the
points with LOF value above 1 are regarded as the anomaly [70]. One disadvantage
of LOF is its complexity, i.e., 𝑂(𝑁2) where 𝑁 is the size of the data [71]. Chiu et al.
[72] proposed three improvements: 𝐿𝑂𝐹 ′, 𝐿𝑂𝐹 ″ and 𝐺𝑟𝑖𝑑𝐿𝑂𝐹 to simplify the
computation of the original LOF. In 𝐿𝑂𝐹 ′, merely the ratio of 𝑘−𝑑𝑖𝑠𝑡 of the query
object and its neighbour is used to compute the LOF value. They argued that this
ratio is sufficient, and it is needless to compute the reachability distance and local
reachability density. Furthermore, in 𝐿𝑂𝐹 ″, they employed two 𝑘 instead of just
one to enhance the performance of LOF. Their last enhancement, 𝐺𝑟𝑖𝑑𝐿𝑂𝐹 , is a
pruning-based approach that removes dense areas so that computing LOF for data
instances inside the dense areas is not required anymore. However, the drawback of
𝐺𝑟𝑖𝑑𝐿𝑂𝐹 is that it requires a manual grid setting, which is not always feasible.

In a previous study, Goldstein et al. [70] randomly divided the data set into sev-
eral chunks and then computed the 𝑘-nearest neighbours of each data instance only
based on the instances within the query point’s chunk. Next, using the computed
nearest neighbours, they generated LRD and LOF for all the data instances. How-
ever, this requires a precise neighbour selection, and also the efficiency of their ap-
proach aggravates as not all the anomalies may be detected.

Another pruning approach was proposed by Pamula et al. [73] in which a clus-
tering algorithm was applied in advance, and then dense clusters are pruned based
on this assumption that they contain no anomalies. Next, they employed a Local
Distance-based Outlier Factor (LDOF) to the sparse and small clusters to detect
anomalies. Earlier, Pamula et al. [74] proposed a similar method that after clus-
tering the data set by using 𝑘-means, instances that are close to the centroid of the
cluster, which they belong to, were pruned, and LDOF was used merely on instances
that were away from the centroid, i.e., outside of a predefined radius.

Rizk et al. [75] claimed that their approach could reduce not only the calcula-
tion rate of LOF but also minimises the false-negative rate. Their approach has two
stages. In the first stage, the data instances are clustered using 𝑘-medoids, which
they believe its robustness against anomalies and noise is more than 𝑘-means. Next,
after computing a local cut-off value based on the size of the cluster, instances that
are outside of the radius are considered potential anomalies. In the final stage, LOF
value is computed only for potential anomalies that were obtained from the previous
stage.

3.4 Prune-based LOF 23

Poddar et al. [76] presented a generic method for reducing the execution time
of many density-based and distance-based anomaly detection algorithms. In their
method, a new density estimation called 𝑑𝑒𝑣𝑇 𝑜𝑀𝑒𝑎𝑛 was introduced that, based
on its value, normal data instances were pruned, then the anomaly detectionmethod
was applied only on the rest of the data. However, the computation of 𝑑𝑒𝑣𝑇 𝑜𝑀𝑒𝑎𝑛
is expensive; therefore, they used 𝑘-means to divide the data set into small clusters
and then calculated the value of 𝑑𝑒𝑣𝑇 𝑜𝑀𝑒𝑎𝑛 for each instance within its cluster.

3.4 Prune-based LOF

One common drawback of methods that were proposed in the literature is that they
all need to cluster the data set in advance and then prune a portion of the data in-
stances based on a metric. This kind of approach brings in the complexity of the
clustering method into LOF. In our proposed method, there is no need to cluster the
data set, which means it is simpler than similar works.

To understand the proposed method, first should look at the density equation:

𝜌 = 𝑚
𝑣 (3.4)

where 𝑚 is the mass and 𝑣 refers to the volume. According to Xiong et al. [77], in
order to calculate the density of a data instance, firstly, the number of neighbours
within a radius of 𝑘-distance should be counted. As depicted in Figure 3.1, the point
𝑝 has 21 neighbours, which is interpreted as the mass and 𝑘-distance is interpreted
as the volume. Therefore, the density of point 𝑝 is defined as:

𝐷𝑒𝑛𝑝,𝑛 = |𝑁|
𝑘-𝑑𝑖𝑠𝑡(𝑝, 𝑛) (3.5)

where |𝑁| is the number of neighbours of point 𝑝, i.e., the mass, and 𝑘-distance in
which point 𝑝 has at least 𝑘 neighbours.

As depicted in Figure 3.2, in cases where most of the neighbours of the point 𝑝
make a very dense and small cluster, if the number of neighbours does not reach the
𝑘 value, the radius needs to increase in order to have at least 𝑘 neighbours. In such
cases, 𝑘-distance becomes inaccurate due to extreme values. To address this issue,
we calculate the average 𝑘-distance using the following equation:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =

𝑛
∑
𝑖=0

𝑑𝑖𝑠𝑡(𝑝, 𝑖)

|𝑁| (3.6)

24 Prune-based Local Outlier Factor

𝑝

𝑛
𝑘-dist

Fig. 3.1 Neighbourhood of 𝑝 based on 𝑘-distance

where 𝑑𝑖𝑠𝑡(𝑝, 𝑖) is the distance between 𝑝 and its 𝑖-th neighbour. Having Equation
3.5 and 3.6, can make the following equation:

𝛿 = |𝑀|2
𝑛

∑
𝑖=0

𝑑𝑖𝑠𝑡(𝑝, 𝑖)
(3.7)

where |𝑀| is the cardinality of 𝑝’s neighbours and 𝑑𝑖𝑠𝑡(𝑝, 𝑖) is the distance between
𝑝 and its 𝑖-th neighbour.

Fig. 3.2 Inaccurate 𝑘-distance

3.4 Prune-based LOF 25

The Equation 3.7 is used to compute the density of each data instance. Having a
set of 𝛿 values, themedian is determined and based on the assumption that anomalies
should have a low 𝛿 value (i.e., low density), all the instances that have a 𝛿 valuemore
significant than the median are pruned. To remove the effect of extreme values [65],
the largest and the smallest values of 𝛿 are eliminated. This simple median-based
pruning method removes the problem of finding a reasonable threshold. It is worth
mentioning that pruned instances are still used for computing reachability-distance,
local-reachability-distance, and local outlier factor for not pruned instances. Finally,
the LOF value for points that their 𝛿 value is less than the median is assigned to 0.
The pseudo-code of PLOF is given in Algorithm 1.

Algorithm 1: Prune-based LOF Algorithm
input : 𝐷: a data set with 𝑛 × 𝑚 dimension
output: 𝜆: a 1𝑑 array

1 initialise: 𝑘 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠
2 𝑆 = 𝛿 values
3 for each point 𝑥𝑖 in 𝐷 do
4 𝑁𝑁𝑖 = find the 𝑘-th neighbour 𝑥𝑗 for 𝑥𝑖
5 𝛿𝑖 = compute 𝛿 for 𝑥𝑖 given 𝑁𝑁𝑖
6 append 𝛿𝑖 to 𝑆
7 end
8 eliminate extreme values of 𝛿
9 𝑚𝑒𝑑 = median of 𝑆
10 for each 𝑥𝑖 in 𝐷 do
11 if 𝛿𝑖 > 𝑚𝑒𝑑 then
12 prune 𝑥𝑖
13 end
14 end
15 for each 𝑥𝑖 in 𝐷 do
16 if 𝑥𝑖 not pruned then
17 compute reachability-distance of 𝑥𝑖
18 compute local reachability density of 𝑥𝑖
19 𝜌𝑖 = compute LOF value of 𝑥𝑖
20 append 𝜌𝑖 to 𝜆
21 else
22 append 0 to 𝜆;
23 end
24 end
25 return 𝜆

26 Prune-based Local Outlier Factor

3.4.1 Complexity Analysis

Asmentioned, one of the goals of this contribution is to improve efficiency; therefore,
it is important to explain the complexity of PLOF.The complexity depends on the use
of KD-tree. In the case of using KD-tree, the time complexity of finding the nearest
neighbours is 𝑂(𝑁 ∗ log𝑁), where 𝑁 is the number of instances in the data set.
In the case of using a Brute-Force for getting the nearest neighbour, the complexity
becomes 𝑂(𝑁2).

The complexity of computing 𝛿 value of each data instance is 𝑂(𝑁) while the
complexity of calculating the median of 𝛿 values is 𝑂(1). Furthermore, the com-
plexity of LOF is 𝑂(𝑁2) [65]. By pruning, the size of 𝑁 reduces, i.e., (𝑁 ′ ≪ 𝑁);
therefore, the complexity of computing LOF is substantially reduced.

3.5 Analysis of PLOF

The proposed approach is compared with the original LOF algorithm [15], and also
the following two state-of-the-art similar approaches: FastLOF [70] and devToMean
[76]. The two latter approaches are selected because their primary purpose is to re-
duce the complexity and execution time of LOF. The original LOF requires merely
one parameter, which is the minimum number of neighbours (𝑘). But, it is possible
to define a threshold and pick data instances whose LOF value exceeds the threshold.
During the experiment, this parameter stayed fixed for every approach.

3.5.1 Datasets

The proposed method is carried out on seven real data sets obtained from UCI Ma-
chine Learning Repository [78], which are all publicly available. In the context of
anomaly detection, the data sets that are chosen in this paper are considered as the
benchmark and have been widely used in the literature. The detail of each data set
that is used in our experiment is given in Table 3.1. It is worth mentioning that be-
cause most of these data sets are originally used in classification, some of the data
sets are modified slightly, e.g., merging one or two major classes to form the normal
class.

3.5.2 EvaluationMetric

Various evaluation metrics have been used in the literature; however, the most ef-
fective and widely used metric, especially for evaluating unsupervised methods, is

3.6 Results 27

Table 3.1 The details of the 6 datasets used in

Data set No. of features No. of anomalies No. of data
Wine 13 10 129
Lymphography 18 6 148
Glass 9 9 214
Ionosphere 33 126 351
WBC 30 21 278
Heart 22 15 187
Breast 9 239 683

Receiver Operating Characteristics (ROC) curve, which basically shows the true-
positive rate versus the false-negative rate at different threshold [12]. By calculating
the AreaUnder ROC (AUC) curve, it is possible to show the effectiveness of the algo-
rithm by a single value. The value of AUC can vary between 0 to 1 in which any value
closer to 1 indicates better performance, while 0.5 shows random decision making.
In this paper, we have used AUC, and also other evaluationmetrics such as accuracy,
precision, and recall [79]. The experiment on each data set is carried out five times,
and the averaged outcome is reported.

3.6 Results

In terms of execution time, our approach came second after FastLOF. However, as
it was stated previously, our objective is to decrease the computation cost without
sacrificing the performance. Therefore, before making any conclusion merely based
on the execution time, one should consider other metrics as well.

Accuracy is another prevalent evaluation metric. In terms of accuracy, dev-
ToMean showed a better average accuracy. Despite the fact that our method pro-
duced the second-best accuracy on average, it is worth noting that devToMean per-
formed better by a very small margin, i.e., 0.034. Also, by calculating the standard
deviation of PLOF’s accuracy scores on different data sets, it can be deduced that
PLOF yielded satisfactory results on all seven data sets with a small variation.

While FastLOF showed the worst results based on precision, PLOF dominated
by a good margin, i.e. 0.067, from the second-best model, which was devToMean
(0.339). Also, PLOF was able to produce the best result in terms of recall (0.842),
while LOF came second (0.481).

Table 3.5 shows the area-under-curve for models that were used in these exper-
iments. It is worth noting that in the context of anomaly detection, AUC is one the
most common and reliable evaluation metrics and its value is widely used for eval-

28 Prune-based Local Outlier Factor

Table 3.2 The execution time in seconds

Data set PLOF LOF devToMean FastLOF
Wine 0.156 0.229 0.335 0.067
Lymphography 0.207 0.396 0.215 0.079
Glass 0.415 0.576 0.425 0.113
Ionosphere 1.167 1.297 1.081 0.214
WBC 1.320 1.719 1.243 0.238
Heart 0.340 0.445 0.358 0.125
Breast 4.336 5.163 4.335 0.633
Average 1.134 1.403 1.141 0.209

Table 3.3 Accuracy of PLOF, LOF, devToMean and FastLOF

Data set PLOF LOF devToMean FastLOF
Wine 0.783 0.946 0.922 0.682
Lymphography 0.743 0.743 0.926 0.743
Glass 0.734 0.659 0.921 0.715
Ionosphere 0.877 0.638 0.661 0.678
WBC 0.757 0.646 0.915 0.685
Heart 0.572 0.519 0.578 0.540
Breast 0.851 0.613 0.630 0.848
Average 0.759 0.680 0.793 0.698

Table 3.4 Precision of PLOF, LOF, devToMean and FastLOF

Data set PLOF LOF devToMean FastLOF
Wine 0.263 0.714 0.500 0.030
Lymphography 0.136 0.136 0.143 0.056
Glass 0.125 0.000 0.100 0.036
Ionosphere 0.895 0.495 0.706 0.566
WBC 0.186 0.000 0.000 0.062
Heart 0.536 0.446 0.778 0.481
Breast 0.701 0.463 0.150 0.857
Average 0.406 0.322 0.339 0.298

3.6 Results 29

Table 3.5 AUC of PLOF, LOF, devToMean and FastLOF

Data set PLOF LOF devToMean FastLOF
Wine 0.882 0.882 0.637 0.416
Lymphography 0.866 0.866 0.562 0.547
Glass 0.808 0.344 0.534 0.479
Ionosphere 0.849 0.589 0.537 0.627
WBC 0.871 0.342 0.485 0.520
Heart 0.552 0.498 0.532 0.518
Breast 0.885 0.624 0.487 0.809
Average 0.816 0.592 0.539 0.559

Table 3.6 Recall of PLOF, LOF, devToMean and FastLOF

Data set PLOF LOF devToMean FastLOF
Wine 1.0 1.0 0.300 0.100
Lymphography 1.0 1.0 0.167 0.333
Glass 0.889 0.000 0.111 0.222
Ionosphere 0.746 0.413 0.095 0.444
WBC 0.905 0.000 0.000 0.333
Heart 0.357 0.298 0.083 0.298
Breast 1.0 0.661 0.013 0.678
Average 0.842 0.481 0.109 0.344

30 Prune-based Local Outlier Factor

Fig. 3.3 Showing inliers and anomalies in the following four data sets: (A) Wine, (B)
Lymphography, (C) Glass, and (D) Ionosphere. During the experiments, no dimen-
sionality reduction method was applied and merely for better visualisation. The first
two principal components are shown here.

3.7 Summary 31

uation in similar works such as the study of published by Cao et al. [23, 80]. PLOF
was found to be the best model, i.e., performing better not only on average but also
on every data set. On average, PLOF achieved 0.816 in AUC. In Figure 3.3, for the
purpose of better visualisation, the two first principal components of the datasets
used during the experiments are selected.

3.7 Summary

In this chapter, a pre-processing method was proposed, called PLOF, which aims
at improving the efficiency of LOF by reducing the execution time while maintain-
ing the performance. The proposed method firstly computes a value for each data
instance which shows the outlierness of that point. Next, by employing a simple
median-based threshold clustering, data instances whose density value is higher than
the median are pruned. Finally, LOF is merely applied to the rest of the data that re-
quire further investigation. The results of the experiment show that PLOF can reduce
the execution time while producing better precision, recall and AUC.

In the following two chapters, the two other contributions of this work are pre-
sented. While this chapter focused on improving LOF on the two aforementioned
aspects, in Chapter 4, a novel variant of autoencoders is presented to improve the
performance of anomaly detection methods, including LOF, when the dimensional-
ity of the input data is increased, which causes various problems that are discussed
in the chapter. Then, in Chapter 5, after discussing the importance of having an am-
ple amount of normal data instances and its effect on defining a better class bound-
ary, a new approach is proposed for generating augmented data while decreasing
the dimensionality to improve the performance of LOF and other anomaly detec-
tion methods.

Chapter 4

AutoEncoders with Gradient Reversal

Theprevious chapter presented the first out of the three contributions of this research
work that are pointed out in Section 1.6, which was about improving LOF efficiency
and performance. However, as it will be explained in more details in this chapter,
there are other problems that affect the performance of LOF. So, this chapter explains
the details of the second contribution of this work in which a novel variant of autoen-
coders is presented that is capable of reducing the dimensionality of the input data
without the need for a noise and anomaly free training set. After going through the
importance of reducing the dimensionality of data and its impact on methods such
as LOF, the proposed solution is elaborated, followed by extensive experimentation
to demonstrate its effectiveness.

4.1 Introduction

The data captured from areas such as social networking websites or telecommunica-
tion companies often come in large volumes. Traditional methods, LOF in particu-
lar, are found to be less effective and efficient when performed on datasets that have
a large dimension [81, 82]. Most of the approaches in the literature are incapable of
producing high performancewhen applied to large-scale and high-dimensional data,
and those methods that can, often require ample storage space for the intermediate
obtained data [23, 83]. Consequently, such data should be reduced in dimensionality
before applying other machine learning methods. This is achieved by performing a
pre-processing step known as dimensionality reduction, which tries to remove irrel-
evant data while keeping essential features and converting it into a lower dimension.

Moreover, parameter tuning for classical approaches such as clustering models
in large-scale datasets is a problematic task [84]. Consequently, the dimensionality
of such datasets should be reduced before applying anomaly detectionmethods. This

34 AutoEncoders with Gradient Reversal

is achieved by converting the input data to low-dimensional data, which improves
classification and data storage [24]. Besides high dimensionality, the lack of labelled
datasets is another problem in this context. Many supervised learning algorithms
have been employed to detect anomalies; however, an essential requirement of a su-
pervised learning approach is labelled data. While the availability of labelled datasets
is often a problem, labelling can also be costly, time-consuming, and requires a field
expert [4]. Lastly, in many application domains, such as telecommunication fraud
and computer network intrusion, companies are often very conservative and protec-
tive of their data due to privacy issues and tend to resist providing their data [83].

4.2 AutoEncoders

AutoEncoders, previously known as auto-association, are unsupervised artificial neu-
ral networks that contain two components [24]. The first component, known as the
encoder, tries to transform the high-dimensional input data into a low-dimensional
feature space, known as the bottleneck, while the second component, known as the
decoder, attempts to reconstruct the input data from the bottleneck. The difference
between the reconstructed and input data is called the reconstruction error. The di-
mension of themiddle layer is lower than the input and output evenwhen it hasmore
number of nodes in which a constraint is applied to activate or deactivate some of
those nodes. In each training iteration, the network measures the reconstruction
error, computes the gradient of the error with respect to network parameters (e.g.
weights), and backpropagates these gradients through the network in order to update
the weights to minimise the reconstruction error, i.e., to increase the resemblance
between the generated output and the input. AEs can adopt various structures. In
Figure 4.1, the structure of an AE, known as Stacked Autoencoder (SAE), is shown
in which multiple layers are stacked to form a deep neural network.

As shown in Figure 4.2, the most basic AE with only one hidden layer tries to
transform input 𝑥 into latent vector 𝑧 using an encoder represented by function 𝑢.
Next, the latent vector 𝑢 is reconstructed by a decoder represented as function 𝑣
into output 𝑦 where the dissimilarity between 𝑦 and 𝑥 is called reconstruction error.
Having a training set, 𝐷𝑢 = {𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛}, where 𝑛 is the number of data
points in 𝐷 and 𝑥𝑖 is the 𝑖th data point with 𝑚 features, the encoder is then defined
as:

𝑧 = 𝑢(𝑥) = 𝑠(𝑊𝑥 + 𝑏) (4.1)

4.2 AutoEncoders 35

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘

Fig. 4.1 The structure of a deep undercomplete autoencoder

while the decoder is defined as:

𝑦 = 𝑣(𝑧) = 𝑠′(𝑊 ′𝑧 + 𝑏′) (4.2)

where both 𝑠 and 𝑠′ represent the activation functions that aremost often non-linear,
𝑊 and 𝑊 ′ denote the weight matrices while 𝑏 and 𝑏′ represent the bias vectors.

𝑥 𝑧 𝑦𝑢 𝑣

Fig. 4.2 The structure of a basic autoencoder

It is worthmentioning that, in general, certain restrictions or regularisation tech-
niques should be applied to an AE in order to prevent the network from learning the
identity function. Otherwise, the network will copy the input through the network.
A common solution to overcome this issue is by using a denoising AE. In a Denois-
ing AutoEncoder (DAE), the network tries to reconstruct inputs that are partially
corrupted. Bottlenecks and sparsity constraints applied to the main hidden layer are
additional ways to avoid learning the identity function. In terms of network struc-
ture, autoencoders come in various types such as under-complete, over-complete,
shallow or deep. A comprehensive review was published by Charte et al. [85].

4.2.1 Problems of AE in Anomaly Detection

Unlike other dimensionality reductionmethods such as Principal Component Anal-
ysis (PCA) that use linear combinations, AEs perform a nonlinear dimensionality re-
duction and, according to the literature, demonstrate better performance compared
to PCAs [50]. Sakurada et al. [86] used AE for anomaly detection and compared

36 AutoEncoders with Gradient Reversal

its performance to linear PCA and kernel PCA on both synthetic and real data, and
based on the result, they concluded that AE can extract more subtle anomalies than
PCA. Another disadvantage of statistical algorithms such as PCA or Zero Compo-
nent Analysis (ZCA) is that as the dimensionality increases, more memory is re-
quired to calculate the covariance matrix [87].

As Qi et al. [88] mentioned, the performance of AEs diminishes when the data
exhibits noise and anomalies. To explain further, the network tries to reduce the
reconstruction error by learning how to reconstruct noise and anomalies. During
the training phase, anomalies tend to produce a more significant reconstruction er-
ror as their patterns deviate from the distribution that the majority of data points
follow. The network, thus, disproportionately backpropagates the corresponding er-
ror gradients and performs a substantial weight update to be able to reproduce these
patterns with lower error. However, in the context of anomaly detection, this is not
desired. In fact, in previous works, various approaches have tried to prevent the
network from becoming more accurate in reproducing anomalies. Most of these ap-
proaches, such as DAE require access to noise and anomaly-free set for training the
network, while the proposed model is needless of such a training set.

4.2.2 Proposed Solutions in the Literature

A well-trained autoencoder should generate minor Reconstruction Errors (REs) for
each data point; however, autoencoders fail at replicating anomalies because their
patterns deviate from the pattern that the majority of data instances follow. In other
words, the reconstruction errors of anomalies are significantly above the REs for nor-
mal data. In some studies such as what Aygun et al. [89] conducted, the reconstruc-
tion error was used as a score in a threshold-based classification approach to sepa-
rate normal data from anomalies, i.e., the data instances that have a reconstruction
error above the threshold are identified as anomalies. In contrast, anything below
the threshold is considered normal. In another similar approach, Schreyer et al. [90]
generated an anomaly score based on reconstruction error and individual attribute
probabilities in large-scale accounting data.

Chen et al. [91] proposed an approach in which ensembles of AEs were used
to improve the robustness of the network. In their approach, named Randomised
Neural Network for Anomaly Detection (RandNet), instead of using fully connected
layers, the connections between layers are randomly dropped, and anomalies are
separated from normal data using the reconstruction error. Their approach showed
superior performance compared to four traditional anomaly detection methods, in-
cluding LOF.

4.2 AutoEncoders 37

To enhance the performance of AEs, Sun et al. [83] added new regularisers to
the loss function that encourage the normal data to create a dense cluster at the bot-
tleneck layer while the anomalies tend to stay outside of the cluster. Next, they em-
ployed various OCC methods such as LOF, Kernel Density Estimation (KDE), and
One Class Support Vector Machine (OCSVM) to divide the data into anomalies and
normal data. They also investigated the influence of altering the training set size on
the performance of their models and the result showed consistency across different
training sizes.

As the number of hidden layers increases, the backpropagated gradients to the
lower layers tend to attenuate, which is known as the vanishing gradient problem and
culminating in the weights of lower layers showing the limited change. To overcome
the vanishing gradient issue and discover better features, a pretraining phase was
proposed by Yousefi-Azar et al. [87] in which a stacked Restricted Boltzmann Ma-
chine (RBM) was used to obtain suitable weights for initialising the AE. The model
was applied to the NSL-KDD dataset and achieved high accuracy (83.34%).

The performance of AEs diminishes when datasets contain anomalies and/or
noisewhich is very prevalent in real-world datasets. By usingDenoisingAEs (DAEs),
it is possible to enhance the accuracy of the network. DAE is an extension of AE in
which the network is trained on an anomaly and noise-free set while randomnoise is
added to the input and the AE tries to regenerate the original input, i.e., without the
added noise [92]. Sakurada et al. [86] used a DAE to obtain meaningful features and
decrease data dimensionality. Their result proved that DAE outperforms statistical
methods such as PCA.

DAEs require an anomaly andnoise-free training set; however, such a training set
is not always available. In related work, Zhou et al. [30] proposed an AE, called Ro-
bust Deep Autoencoder (RDA), that can extract satisfactory features without having
access to an anomaly or noise-free training set. Inspired by Robust PCA (RPCA),
they added a penalty-based filter layer to the network that uses either 𝐿1 or 𝐿2,1
norms, and managed to separate anomalies and noise from normal data.

A common criterion used in AEs is Mean Square Error (MSE). As mentioned
before, anomalies and noise tend to cause more significant reconstruction error,
i.e., larger MSE; consequently, the network carries out a substantial weight update.
Therefore, it debilitates the accuracy ofAEs as they tend to learn to regenerate anoma-
lies and noise. A possible remedy to this problem is using a criterion that is insensi-
tive to anomalies and noise. Qi et al. [88] proposed a new approach, called Robust
Stacked AutoEncoder (R-SAE), in which they used the maximum correntropy crite-
rion to prevent substantial weight updates and make the model robust to anomalies
and noise. They tested their model on the MNIST dataset contaminated with non-

38 AutoEncoders with Gradient Reversal

Gaussian noise and achieved 39%-63% lower REs compared to what was obtained
from a Standard Stacked AutoEncoder (S-SAE).

4.3 AutoEncoder with Gradient Reversal

The proposed AEGR (AutoEncoder with Gradient Reversal) approach consists of
two main components. The first component is an AE which transforms the high
dimensional data into compressed data while preserving important latent variables
for the following component. The second component employs a basic LOF approach
on the features obtained from the first component to separate anomalies fromnormal
data points.

As stated by Qi et al. [88], the performance of AEs diminishes when the data
exhibits noise and anomalies. To explain further, the network tries to reduce the
reconstruction error by learning how to reconstruct noise and anomalies. During
the training phase, anomalies tend to produce a greater reconstruction error as their
patterns deviate from the distribution that the majority of data points follow. The
network thus disproportionately backpropagates the corresponding error gradients
and performs a substantial weight update to be able to reproduce these patterns with
lower error. However, in the context of anomaly detection, this is not desired. In
fact, in previous works, various approaches have tried to prevent the network from
becoming more accurate in reproducing anomalies. Most of these approaches, such
as DAE require access to a noise and anomaly-free set for training the network, while
the proposed model is needless of such a training set. Ganin et al. [93] tried to add
a reversal layer to their network for the purpose of domain adaption. The approach
proposed in this work is different in several ways, including the context within which
it is applied and the fact that unlike the approach proposed by Ganin et al. [93], it is
based on the reconstruction error.

In AEGR, the AE component tries to make the network insensitive to anomalies
by manipulating gradients. First, as shown in Algorithm 2, at each epoch, a gradient
score is given to each data point (or each mini-batch in the case of using mini-batch
gradient descent) based on the gradients in the bottleneck. This ismeasured by using
the Frobenius norm, which is defined as:

||𝑋||𝐹 =
√√√
⎷

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

|𝑥𝑖,𝑗|2 (4.3)

where 𝑋 denotes a 𝑚 × 𝑛 matrix and 𝑥𝑖𝑗 represents the element at the 𝑖th row and
𝑗th column. At the bottleneck layer, the Frobenius norm is computed. Having an

4.3 AutoEncoder with Gradient Reversal 39

Algorithm 2: AEGR
input : 𝐷: a dataset with 𝑛 × 𝑚 dimension

𝑒 ← number of epochs
output: 𝐷′: a dataset with 𝑛 × 𝑚′ dimension

1 𝐺𝑆 = gradient score;
2 𝐿𝐺𝑆 = list of gradient scores;
3 for each epoch do
4 for each point/mini-batch in 𝑒𝑝𝑜𝑐ℎ𝑗 do
5 if bottleneck then
6 𝐺𝑆𝑗 ← ||𝑛||𝐹
7 𝐿𝐺𝑆 ← 𝐺𝑆𝑗
8 end
9 end
10 𝑀𝑎𝑥𝐺𝑆 ← Max 𝐺𝑆 in 𝐿𝐺𝑆 ;
11 Perform backpropagation;
12 Bacpropagate inverted 𝑀𝑎𝑥𝐺𝑆;
13 Shuffle the batches;
14 end
15 𝐷′ ← the bottleneck of the last epoch

AE with three layers in which the number of nodes in layer one to three is 49, 12, 49,
respectively, the values of 𝑚 and 𝑛 would be 12 and 49, respectively. The bottleneck
is the layer that latent variables are extracted from to be used in LOF; therefore, the
network should be penalised based on the magnitude of its gradients in this layer
rather than every layer. Then, the norm of layer 𝑙 is measured and stored as:

{𝑙1, 𝑙2, 𝑙3, ..., 𝑙𝑛} (4.4)

where 𝑛 denotes the number of data points (or mini-batches in case of using mini-
batch gradient descent) in the network, the approach has a single parameter, 𝑘, which
is the epoch number when the network starts reversing its gradients.

Assuming that anomalies produce greater REs, at each epoch, the gradient of the
data point that holds the most significant gradient score is picked, and the inverse
of its gradient is used to perform a new weight update, i.e., reverting the substantial
weight update caused by this data point. In order to avoid reverting the gradients of
the same data points at each epoch, batches are shuffled before carrying out the next
epoch. There is no artificial noise added in the training phase to make the network
insensitive to noise. Noise in data can be very similar to anomalies, except the analyst
is not interested in noise [1]. It is assumed that the network avoids learning repro-
ducing noise based on the fact that they also impose a big gradient update on the

40 AutoEncoders with Gradient Reversal

network. Consequently, by applying the same method that is applied to anomalies,
the AE is expected to stay weak in replicating noise. While the input of Algorithm 2
is amatrix of 𝑛×𝑚, where 𝑛 is the number of rows and𝑚 is the number of columns,
it outputs a matrix with 𝑛×𝑚′ dimension in which 𝑚′ < 𝑚 since the network tries
to reduce the dimensionality by reducing the number of features.

In the second phase, of which LOF is used to separate anomalies from normal
data points, three approaches are proposed. The first approachmerely uses the latent
variables that are extracted from the previous stage without any changes, while in the
second approach, a threshold-based clustering method based on the reconstruction
error of the training set is applied to prune data points that have generated an error
above the mean value. The assumption behind this approach is that the training set
becomes more homogeneous, and consequently, LOF can perform more robustly.
However, this approach also reduces the number of training points that can weaken
the performance of one-class classifiers [7]. Therefore, a third approach is proposed
in which the pruned training data is augmented by adding random Gaussian noise.
The assumption is that Data Augmentation (DA) can homogeneously increase the
training set’s size and improve anomaly detection performance. More details about
data augmentation is available in Chapter 5.

4.3.1 Complexity Analysis

In terms of the algorithm’s time complexity, Step 4 to 11 has a complexity of 𝑂(𝑛)
in which 𝑛 is either the number of data points or the number of batches. The time
complexity of Step 13 is 𝑂(1). In this algorithm, the input size is constant, which is
equal to 𝑛, and the space complexity is 𝑂(𝑛).

4.4 Analysis of AEGR

In this section, the performance of the proposed model is presented, evaluated and
compared with 1) the basic stand-alone LOF algorithm; 2) a deep AE in which the
reconstruction error is used for separating anomalies, and 3) a deep AE in which the
latent variables are fed to LOF for detecting anomalies.

The number of layers was set to 5 for all the datasets as suggested in [94] with
the number of nodes in the bottleneck being set to 𝑚 = [1 + √𝑛], where 𝑛 is the
number of features of the input [80]. Table 4.1 shows the number of nodes in the
bottleneck for each dataset.

For datasets with more than 2000 instances, the mini-batch size was set to 64
and 16 otherwise. To avoid overfitting, a simple early stopping heuristic was imple-

4.4 Analysis of AEGR 41

Table 4.1 The size of the middle layer for each dataset

Dataset’s name Number of nodes in
the bottleneck

PenDigits 5
Shuttle 4
Spambase 8
InternetAds 40
Arrhythmia 17
NSLKDD 12
UNSW-NB15 15
CTU13 7

mented to stop the training process when the network was no longer learning after
a certain number of iterations or when the learning improvement was insignificant.

The loss function used in this experiment was 𝑆𝑚𝑜𝑜𝑡ℎ𝑙1𝐿𝑜𝑠𝑠, which is essen-
tially a combination of 𝐿2 and 𝐿1 terms, i.e., it uses 𝐿2 if the absolute element-wise
error is less than one and 𝐿1 term if not. To minimise the loss function, Stochastic
Gradient Descent (SGD) was used. Although the main focus here is not optimisa-
tion, it is worth mentioning that SGD has shown to perform robustly and can avoid
converging to bad local optima if a reasonable learning rate is chosen [95].

All the datasets were normalised into the range of [−1, +1], and the hyperbolic
tangent function was chosen as the activation function. The activation function is
defined as:

𝑓𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 (4.5)

where the output range is (−1, +1). There are various activation functions, and
choosing the right one can be challenging. Not every activation function performs
well inAEs. For instance, ReLU is a well-known activation function in deep learning;
however, it can weaken the performance of AEs [85]. Using an empirical approach,
it was realised that the hyperbolic tangent activation function shows the highest per-
formance.

4.4.1 Datasets

As presented in Table 4.2, eight datasets were used that are publicly available and
widely used in this context. It is worth mentioning that five network datasets that
are very common in the domain of network anomaly detection were used besides
three non-network datasets. Testing the model on various datasets makes it possible
to evaluate performance more thoroughly. It is worth noting that the categorical
features of two datasets, namely NSL-KDD and UNSW-NB15, were preprocessed by
one-hot-encoder. Four datasets, namely Spambase, InternetAds, Arrhythmia and

42 AutoEncoders with Gradient Reversal

Table 4.2 Details of the 8 datasets used in the experiments

datasets name No. of
features

Training
set

Validation
set

Testing
set

PenDigits 16 1247 312 727
Shuttle 9 3267 817 14500
Arrhythmia 259 251 83 86
Spambase 57 2759 919 923
InternetAds 1558 1414 471 474
NSL-KDD(Probe) 122 6319 1580 12132
NSL-KDD(DoS) 122 9060 2266 17169
NSL-KDD(R2L) 122 6183 1546 12598
NSL-KDD(U2R) 122 5428 1358 9778
UNSW-NB15(Fuzzers) 196 5934 1484 74184
UNSW-NB15(Analysis) 196 4640 1160 58000
UNSW-NB15(Backdoor) 196 4619 1155 57746
UNSW-NB15(DoS) 196 5460 1366 68264
UNSW-NB15(Exploits) 196 7151 1788 89393
UNSW-NB15(Generic) 196 7680 1920 96000
UNSW-NB15(Reconnaissance) 196 5319 1330 66491
UNSW-NB15(Shellcode) 196 4570 1143 57133
UNSW-NB15(Worm) 196 4584 1146 56130
CTU13-13(Virut) 40 4315 1438 1440
CTU13-10(Rbot) 38 7331 2443 2445
CTU13-09(Neris) 41 12895 4298 4301
CTU13-08(Murlo) 40 8045 2681 2683

CTU13, have no separate training and test sets; therefore, 60% of each dataset was
used for training while the rest was evenly split for validation and testing. For the
remaining five datasets that come with a separated training and test set, 20% of the
training set was used for validation. Also, as suggested in [23], the training sets of
UNSW-NB15 and NSL-KDD are substantially larger than other datasets; therefore,
only 10% of the training set was used. This work found it necessary to apply the
same size reduction approach to the CTU13 and Shuttle dataset. The details of each
dataset are shown in Table 4.2.

The following datasets were obtained from the UCI Machine Learning Repos-
itory: PenDigits, Shuttle, Spambase, and InternetAds [78]. The CTU13-08 dataset
was released in 2011, which is a botnet dataset and publicly available [96]. The NSL-
KDD dataset is a new version of its predecessor, KDD’99, which is considered a
benchmark in the area of anomaly detection [97]. In NSL-KDD, some of the in-
trinsic issues of its old version, mentioned in [98], are resolved. This dataset has 41

4.5 Results 43

features, of which three are categorical, and after applying a one-hot-encoder, the
number of features increased to 122. A similar preprocessing step was carried out
on theUNSW-NB15 dataset [99] with three categorical features, which increased the
number of features from 42 to 190. While five datasets contain only a single type of
anomaly, three network datasets, namely UNSW-NB15, NSL-KDD and CTU13, in-
clude different types of anomalies (i.e., network attacks). The experiment was carried
out on each type of these attacks.

All the datasets in Table 4.2 come with labels; however, the labels are not used
in training the models. However, the labels are necessary for evaluating the perfor-
mance of the models. Therefore, they are used during the evaluation.

4.4.2 EvaluationMetrics

One of the widely used evaluation metrics in this area is Receiver Operating Char-
acteristics (ROC) AUC [100]; however, Provost et al. [101] claimed that when the
datasets are highly imbalanced, ROCAUC is not a suitable metric, and a better alter-
native would be the area under the Precision-Recall curve (PR) AUC, in particular,
when working with high dimensional data in which the positive class, i.e., anoma-
lies, is more important than the negative class, i.e., normal points. Nonetheless, no
single evaluation metric dominates others; therefore, both ROC AUC and PR AUC
were used for evaluation.

4.5 Results

The performance of AEGR-LOF was compared with three different approaches. Be-
sides employing the traditional LOF, an autoencoder with LOF (AE-LOF) and an
autoencoder with RE (AE-RE) were used. In AE-LOF, the network is not using gra-
dient reversal, and its bottleneck is fed to the next stage for separating normal in-
stances from anomalies. In AE-RE, the reconstruction error of the AE is used for
detecting anomalies. It is worth mentioning that a denoising AE was not used in
the experiment as it needs an anomaly-free training set, and the purpose of this re-
search is to stay needless of a clean training set. Also, it is possible to achieve higher
performance by employing LOF if only a clean training set is used in advance to fit
LOF first and use it as a one-class classifier [23], which has already been done in the
literature; however, in this work, LOF is trained based on the data which is extracted
from the AE.

As mentioned earlier, the evaluation metrics used here are PR AUC and ROC
AUC. The ROC AUC shows the area under the receiver operating characteristic

44
A
utoEncodersw

ith
G
radientReversal

Table 4.3 The PR AUC and ROC AUC values for UNSW-NB15

Detection approach Modification
method

Fuzzers Analysis Backdoor DoS Exploits Generic Reconnaissance Shellcode Worms
PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC

Stand-alone LOF None 0.793 0.562 0.983 0.702 0.984 0.664 0.926 0.778 0.667 0.603 0.583 0.499 0.872 0.590 0.986 0.618 1.000 0.846
AE-RE None 0.722 0.329 0.97 0.593 0.976 0.580 0.853 0.584 0.605 0.443 0.687 0.624 0.873 0.572 0.981 0.589 0.998 0.091

AE-LOF
None 0.786 0.520 0.986 0.720 0.978 0.571 0.862 0.589 0.633 0.506 0.563 0.463 0.869 0.557 0.987 0.627 1.000 0.877
Pruning 0.791 0.568 0.983 0.721 0.985 0.475 0.863 0.569 0.654 0.537 0.574 0.518 0.850 0.475 0.980 0.517 1.000 0.881
Pruning+DA 0.646 0.205 0.940 0.381 0.976 0.527 0.815 0.422 0.569 0.374 0.377 0.012 0.858 0.538 0.996 0.850 1.000 0.750

AEGR-LOF
None 0.785 0.532 0.998 0.948 0.996 0.907 0.858 0.601 0.620 0.499 0.597 0.518 0.858 0.538 0.988 0.632 1.000 0.861
Pruning 0.810 0.574 0.998 0.955 0.974 0.509 0.848 0.543 0.601 0.475 0.674 0.626 0.841 0.467 0.979 0.485 1.000 0.902
Pruning+DA 0.833 0.576 0.986 0.698 0.976 0.527 0.876 0.697 0.742 0.655 0.879 0.758 0.945 0.772 0.991 0.726 0.999 0.342

Table 4.4 PR AUC and ROC AUC for NSL-KDD and CTU13

Detection approach Modification
method

DoS Probe R2L U2R Virut
CTU13-13

Rbot
CTU13-10

Neris
CTU13-09

Murlo
CTU13-08

PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC
Stand-alone LOF None 0.549 0.555 0.830 0.635 0.810 0.687 0.994 0.530 0.644 0.781 0.845 0.465 0.708 0.060 0.940 0.594
AE-RE None 0.547 0.440 0.800 0.056 0.790 0.543 0.994 0.569 0.431 0.463 0.815 0.057 0.864 0.003 0.920 0.001

AE-LOF
None 0.522 0.492 0.821 0.645 0.756 0.525 0.994 0.551 0.439 0.558 0.807 0.254 0.747 0.199 0.933 0.564
Pruning 0.549 0.512 0.895 0.742 0.757 0.409 0.994 0.516 0.371 0.412 0.799 0.241 0.981 0.880 0.988 0.908
Pruning+DA 0.687 0.781 0.683 0.296 0.766 0.548 0.993 0.451 0.518 0.639 0.895 0.523 0.966 0.900 0.800 0.068

AEGR-LOF
None 0.514 0.488 0.844 0.677 0.823 0.679 0.997 0.789 0.552 0.699 0.857 0.514 0.719 0.088 0.928 0.577
Pruning 0.925 0.883 0.947 0.841 0.859 0.685 0.998 0.817 0.472 0.588 0.899 0.547 0.891 0.452 0.979 0.782
Pruning+DA 0.643 0.695 0.797 0.598 0.674 0.287 0.993 0.550 0.797 0.832 0.859 0.597 0.992 0.985 0.917 0.332

4.5
Results

45

Table 4.5 PR AUC and ROC AUC for data sets with single-type anomaly

Detection approach Modification
method

Spambase InternetAds PenDigits Shuttle Arrhythmia
PR ROC PR ROC PR ROC PR ROC PR ROC

Stand-alone LOF None 0.596 0.418 0.857 0.498 0.554 0.529 0.700 0.343 0.638 0.626
AE-RE None 0.606 0.324 0.838 0.188 0.483 0.368 0.792 0.007 0.558 0.289

AE-LOF
None 0.579 0.428 0.853 0.515 0.574 0.590 0.819 0.689 0.681 0.678
Pruning 0.650 0.497 0.909 0.638 0.980 0.970 0.839 0.720 0.703 0.688
Pruning+DA 0.503 0.334 0.859 0.538 0.315 0.078 0.635 0.105 0.605 0.616

AEGR-LOF
None 0.551 0.377 0.854 0.521 0.491 0.499 0.689 0.398 0.698 0.671
Pruning 0.558 0.388 0.928 0.687 0.998 0.998 0.696 0.414 0.728 0.732
Pruning+DA 0.682 0.646 0.854 0.538 0.970 0.958 0.812 0.559 0.512 0.484

46 AutoEncoders with Gradient Reversal

curve, which presents the true-positive rate versus the false-negative rate at vari-
ous thresholds. The range of AUC is [0, 1] where any value closer to 1 shows that
the model is performing better. In PR AUC, the true negatives have no impact on
the metric. Instead, it reports the relationship between precision and recall at vari-
ous thresholds. Similar to ROC AUC, the range is [0, 1] in which values closer to 1
indicate improved performance.

It can be seen in Table 4.3 that the proposed model arguably outperformed other
approaches in every type (i.e., different types of network attack) in terms of both
metrics. Stand alone LOF only showed superior results when applied to detect DoS
attacks while also showed good results alongside other approaches when used to
identify Worms. The UNSWB-NB15 dataset is a high dimensional dataset, and the
results can be used to support the assumption that LOF performs poorly when ap-
plied to this type of dataset. The NSL-KDD and CTU13 are two network datasets
that are prevalent in the literature. As shown in Table 4.4, the proposed model out-
performed other approaches except in one case, i.e., when applied to CTU13-08.

Table 4.5 shows the performance when applied to datasets with a single type of
anomaly. Based on the results, the proposed approach outperformed other mod-
els except when applied to the Shuttle dataset. In particular, AEGR-LOF produced
higher PR AUC and ROC AUC when detecting anomalies from the two single-type
network datasets, i.e., Spambase and InternetAds.

Figure 4.3 illustrates the latent variables produced by the simple AE and the
AEGR model. While Figure 4.3a and Figure 4.3c show the latent variables extracted
from the simple AE’s bottleneck, Figure 4.3b and Figure 4.3d present the latent vari-
ables generated by the proposed model. By looking at Figure 4.3a and Figure 4.3b,
which show the latent variables before pruning, it can be seen that while the sim-
ple AEmanaged to regenerate some anomalies correctly and separate them from the
normal data points, the AEGR model failed at separating anomalies due to the con-
straint applied, i.e., they stayed close to the dense area. However, this failure means
that the AEGR model should have generated high reconstruction errors for anoma-
lies. After applying a simple pruning based on the reconstruction error (Figure 4.3c
and Figure 4.3d), the latent variables created by the AEGR model made a denser
cluster compared to the simple AE, which led to getting a better performance from
LOF as it can define a better class boundary when the training set is very dense and
homogeneous.

Overall, AEGR-LOF with pruning and pruning and data augmentation outper-
formed other approaches except in 5 out of 22 cases. Therefore, it can be concluded
that AEGR-LOF is significantly better than other approaches, which shows the im-
portance of regularisation inAEswhen used in anomaly detection problems. To sup-

4.5 Results 47

(a) AE (b) AEGR

(c) AE (Pruned) (d) AEGR (Pruned)

Fig. 4.3 Visualisation plot of the latent variables (the first two features) extracted by
a simple AE and also AEGR on InternetAds. The orange points represent anomalies
while the blue points represent the normal points. The curves at the top and right
side of each figure indicate the KDE curves.

port this conclusion further, Wilcoxon signed-rank test [102] was carried out to ver-
ify whether the improvement was significant or not. Therefore, the NSL-KDD(DoS)
dataset was randomly selected, and the test was carried out on both LOF and AEGR-
LOF with pruning and data augmentation 20 times, i.e., 𝑁 = 20. By feeding PR
AUCs to the Wilcoxon test, it was confirmed that the results are significantly dif-
ferent. It is worth recalling that carrying out repeated Wilcoxon tests on multiple
algorithms is not recommended as it increases the chance of rejecting a certain pro-
portion of the null hypotheses merely based on random chance [103].

48 AutoEncoders with Gradient Reversal

4.6 Summary

In this chapter, a newmodel is proposed to detect network anomalies, particularly in
large datasets, that traditional algorithms such as LOF are incapable of dealing with.
In the proposed approach, a novel autoencoder called AEGR is utilised to reduce
the dimensionality of large datasets, transforming the data into a lower-dimensional
space while minimising the loss of vital features. Regular AEs fail to produce satis-
factory results when the data is polluted with noise and anomalies because the net-
work learns to replicate them together with normal data instances. Unlike other
approaches that either try to use an insensitive loss function or train the network by
injecting noise, the unsupervised model presented in this work, at each epoch, finds
the data instances that caused the highest weight update and then manipulates the
inverted backpropagated gradients to counter that update. Finally, the original LOF
is applied to the extracted features from the autoencoder’s bottleneck to separate
normal instances from anomalies. Based on the results that were achieved from the
experiments conducted on seven datasets, it was shown that theAEGR-LOFmodel is
capable of achieving better results compared to the traditional LOF and other similar
approaches such as a standard stacked Autoencoder followed by a threshold-based
classifier. The performance of the proposed model was evaluated using two metrics
in which, overall, the AEGR model showed superior results.

In the next chapter, the last contribution out of the three contributions explained
in Section 1.6 of this work is explained. As it was recapped above, AEGR is suitable
for datasets with high dimensionality. The next chapter aims at dealing with the
problem of class boundary and the lack of ample amount of training data. A novel
approach is presented that tries to deal with the high dimensionality problem while
augmenting more positive data points for the purpose of training and improving the
definition of class boundary.

Chapter 5

Data Augmentation by AutoEncoders

As mentioned in Section 1.6, the contribution of this work is divided into three
parts. The previous two chapters covered the first two contributions. In Chap-
ter 3, a new variant of a density-based anomaly detection method known as LOF
was proposed that focused on increasing the efficiency of the algorithm in terms of
computation consumption while maintaining and improving the performance. The
problem of working with high dimensional data in which the definition of density
becomes harder and complicated was dealt with in Chapter 4. A new dimensionality
approach based on a variant of an AE network was proposed that is needless of hav-
ing an anomaly and noise-free training set as it is made insensitive towards noise an
anomaly during the training phase. This chapter covers the final contribution of this
work. After recapping the concept of imbalanced distribution, data augmentation
and its effect on defining class boundary are explained. Then, the proposed solu-
tions in the literature are reviewed, followed by a new proposed approach. Finally,
the novel approach is tested and compared with other methods to demonstrate its
effectiveness.

5.1 Introduction

As mentioned in the previous chapter, deep neural networks have demonstrated
their effectiveness and managed to improve the state-of-the-art in various applica-
tion areas such as image recognition. As explained inChapter 2.2, anomaly detection
suffers from several challenges, for instance, high dimensionality, concept drift and,
in particular, imbalanced data distribution (also known as skewed distribution). To
briefly recap the imbalanced distribution problem, having a dataset with two classes
in which a high portion, e.g., 90%, of the data comes from the first class while the
rest of the data comes from the second class. In this example, the distribution of the

50 Data Augmentation by AutoEncoders

dataset is skewed, and this weakens the performance of the model and can cause a
high misclassification rate [1]. In particular, supervised approaches suffer more be-
cause it is hard to obtain examples of anomalies for training the model. Therefore,
unsupervised models or one class classifier algorithms appear to be more suitable.
In an OCC algorithm, the model is trained with a training set that only includes data
instances from one class (known as the target class), and the model is expected to
separate data instances of the target class from non-target class instances in the test
set [7]. In order to employ an OCC, it is necessary to have access to a training set
that includes merely normal examples. It is worth noting that in some scenarios,
the training set includes a small number of data points from other classes as well.
This training set is used to set the threshold at which non-target and target points
will be divided. In an anomaly detection problem, the goal is to separate anomalies
from normal points; therefore, an anomaly-free training set is required for tuning
the OCC algorithm.

5.2 Data Augmentation

The performance of OCCmethods depends on various factors, including the size of
the training set. These methods can perform better when the training set includes
more data points as it makes it feasible to compute a less ambiguous class boundary
for dividing data points of the target class from the rest [7]. Data augmentation refers
to the process inwhich the training instances are synthetically regenerated to balance
the dataset and ultimately improve the model’s performance [104]. This approach
is widely used in machine learning tasks and very effective in deep learning when
working with small size datasets. However, the benefits of data augmentation have
not been tested in various areas, and it has been mostly used and shown positive
results when applied to images [105].

5.2.1 Proposed Solutions in the Literature

There are several methods to overcome the issue of imbalanced class distributions
that can be categorised into data-level, algorithmic-level, and cost-sensitive meth-
ods [106]. In a data-level method, the goal is to bring balance to the dataset prior
to performing classification by oversampling, undersampling, or a hybrid approach
[107]. Two widely used oversampling methods are Synthetic Minority Oversam-
pling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN) [108]. Oh
et al. [109] proposed a new approach in which a Generative Adversarial Network
(GAN) is used to enhance classification performance in imbalanced datasets. They

5.3 Data Augmentation by AutoEncoders 51

used a variant of GAN that can also detect outliers in the majority class, which pre-
vents creating a biased classification boundary. In a similar approach, Douzas et
al. [106] proposed a Conditional Generative Adversarial Network (cGAN) for over-
sampling theminority class in a binary classification problem. In their approach, the
network is conditioned on external information, i.e., class labels, to approximate the
actual class distribution. In the area of anomaly detection, Lim et al. [110] claimed
to be the first to use data augmentation in an unsupervised approach for detecting
anomalies. They employed a variant of a GAN to obtain latent variables and selec-
tively oversampled instances close to the head and tail of the latent variables by an
approach similar to SMOTE. They argued that their approach addresses the prob-
lem of scarcity of infrequent normal instances, which can reduce the performance of
density-based anomaly detection algorithms.

When the type of input data is not images, DA becomes more challenging, and
by reviewing the literature, one can deduce that apart from using methods such as
SMOTE, most of the proposed approaches use only injecting noise to generate syn-
thetic samples [105].

5.3 Data Augmentation by AutoEncoders

The basics of AutoEncoders are explained in Section 4.2. In this section, the pro-
posed method is elaborated upon. The purpose of this approach is to use an AE to
augment the training set for the purpose of detecting anomalies. This augmented
training set is later used in an OCC method that tries to detect anomalies in the test
set. The performance of the OCC depends on how well its threshold is defined. The
assumption here is that by augmenting the training set, it is possible to compute a
better class boundary for the OCCmethod and ultimately improve the performance.

Having a training set, the AE tries to minimise the reconstruction error by up-
dating its weights through error backpropagation. Traditionally, once the network is
fully trained, latent variables are extracted from the bottleneck of the AE and used to
train the OCC algorithm. However, in the proposed approach, the latent variables
of the last 𝜈 epochs are extracted and concatenated to form an augmented training
set. The value of 𝜈 is a parameter that needs to be tuned. The assumption is that
the network is almost well trained during the last few epochs and that the corre-
sponding latent variables possess an excellent representation of the original input.
The algorithm of the proposed approach is summarised in Algorithm 3, in which
𝑛′ > 𝑛 as the model is augmenting the training set while 𝑚′ < 𝑚 as at the dimen-
sionality is being shrunk. Another advantage of the proposed model is that, unlike

52 Data Augmentation by AutoEncoders

other approaches, it is not necessary to perform any extra computation (in addition
to reducing the dimensionality) for augmenting the training set.

Algorithm 3: Over-sampling by AE
input : 𝐷: a dataset with 𝑛 × 𝑚 dimension
output: 𝐷′: a dataset with 𝑛′ × 𝑚′ dimension

1 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 ← number of epochs;
2 𝜈 ← portion of epochs to use;

3 for each epoch 𝑖 in 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 do
4 Reconstruct the input;
5 Compute the reconstruction error;
6 Backpropagate the loss;
7 Take a gradient step;
8 if 𝑖 ≥ ((1 − 𝜈) × 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠) then
9 𝑧 ← latent variables in the bottleneck;
10 𝐷′ ← append 𝑧;
11 end
12 end
13 return 𝐷′;

5.3.1 Complexity Analysis

The elegance of the proposed approach is that it is not adding a computationally
expensive step to the feature extraction process. The data augmentation starts during
the last 𝜈% epochs (refer to Step 8 to 11 in Algorithm 3), and its complexity is 𝑂(𝑛)
where 𝑛 is the number of epochs where the if statement returns true.

5.4 Analysis of Data Augmentation by AutoEncoders

This section presents the evaluation of the proposed approach for augmenting the
training set in order to improve the performance of anomaly detection with OCC
algorithms. To demonstrate the effectiveness of the proposed approach, three OCC
algorithms, namely Local Outlier Factor (LOF), Kernel Density Estimation (KDE),
and Isolation Forest (ISF), were used in the experiments. The chosen OCC algo-
rithms are widely used in the area of anomaly detection.

All the datasets were normalised using the same approach explained in Section
4.4. In addition, the same activation function and loss function used in Section 4.4
were applied here as well. As for the number of nodes inside the bottleneck, the same
values that are tabulated in Table 4.1 were used here too.

5.5 Result 53

5.4.1 Datasets

The experiments were carried out on eight publicly available datasets [78, 96] which
are widely used in this domain. The datasets used in this chapter are the same ones
used in the previous chapter (refer to Section 3.5.1).

5.4.2 EvaluationMetrics

The performance of the proposed approach is compared to the state-of-the-art. In
particular, the twowidely used oversamplingmethods, namely SMOTEandADASYN,
were used to increase the size of the training set. Also, the training set was over-
sampled by adding random Gaussian noise to the latent variables. In short, the
performance of the proposed model is compared with the following four different
approaches:

1. Latent variables are extracted from theAE,without generating augmented data
and OCC algorithms are applied to detect anomalies

2. Latent variables are augmented by SMOTE, and thenOCCalgorithms are used

3. Similar to the previous approach except ADASYN is used instead of SMOTE
for augmenting the latent variables

4. By adding random Gaussian noise, the latent variables are augmented

The fourth approach, i.e., augmenting data by adding artificial noise, was carried
out to test whether the proposed approach was acting as a simple regularizer similar
to a simple noise injection or whether it had a more distinctive contribution. The
hypothesis was that by simply adding artificial noise, it is impossible to achieve the
same level of meaningful augmented data that the proposed approach can obtain. In
other words, the assumption was that this simple transformation, i.e., adding noise,
does not provide as much meaningful information as using latent representations
from different epochs.

As for evaluation metrics, the same evaluation metrics used in Section 4.4 were
used here, namely Receiver Operating Characteristics AUC and Precision-Recall
curve AUC.

5.5 Result

On each dataset, the experiment was repeated ten times. To eliminate the effect of
extreme values [111], the largest and smallest values were removed, and the average

54 Data Augmentation by AutoEncoders

performance was documented. In Table 5.1, the performance of all four different
models on theUNSW-NB15 dataset is tabulated in terms of PRAUC andROCAUC.
Thevalues that are shown in bold indicate the best performance. In theUNSW-NB15
dataset, as stated in the previous chapter, there are 9 different types of anomalies, and
the experiment was carried out on each one individually. As listed in Table 5.1, the
proposed data augmentationmethod dominated both in terms of PRAUC and ROC
AUC in almost every type of anomaly. By looking at the performance ofmodelswhen
applied to Exploits andReconnaissance, in terms of ROCAUC, it can be seen that the
proposed model came second after the approach in which artificial noise was used
for data augmentation; however, by only 0.044 and 0.003 respectively. It is worth
mentioning that all approaches performed competitively well on theWorms dataset,
while the proposed approach showed the second-best result in terms of PR AUC.

As depicted in Table 5.2, the proposed approach outperformed other approaches
on NSL-KDD and CTU13 datasets. Also, it is noticeable that almost all the ap-
proaches performed equally well on theNSL-KDD (U2R) dataset, especially in terms
of PR AUC. It can be deduced that the extracted latent variables from the AE already
do a good training set for OCC algorithms, and it is relatively easy to compute the
class boundary. Therefore, one can argue that data augmentation on similar scenar-
ios is needless.

Augmenting the training set using theAE completely dominated other approaches
when applied on the datasets with a single-type anomaly, i.e., PenDigits, Spambase,
InternetAds and Arrhythmia; except when applied to Shuttle in which adding artifi-
cial noise with the use of KDE showed a higher ROCAUC value. While LOF outper-
formed Isolation Forest and KDE when working with Arrhythmia, KDE showed su-
perior results when applied to PenDigits and Spambase. Also, it is worthmentioning
that even though the proposedmethod dominated when carried out on InternetAds,
the performance showed a considerable drop when compared to other datasets. For
instance, the PR value was 0.428 achieved by using the proposed method and ISF,
which was the lowest value among the best PRs throughout the experiment. The
assumption is that this is due to the high sparsity of this dataset and the fact that
it has the highest number of features, i.e., 1558, compared to other datasets. Thus,
to capture useful latent variables without losing essential information, it requires a
different AE; however, in order to make sure the performance stays comparable to
other datasets, it is important tomaintain impartiality in everymodel. Therefore, the
same approach for designing the AE architecture that was used for other datasets was
followed on InternetAds.

5.5
Result

55

Table 5.1 The PR AUC and ROC AUC values for UNSW-NB15

Data augmentation
method

OCC
method

Fuzzers Analysis Backdoor DoS Exploits Generic Reconnaissance Shellcode Worms
PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC

None
ISF 0.825 0.478 0.995 0.782 0.996 0.813 0.949 0.689 0.758 0.502 0.939 0.878 0.914 0.531 0.990 0.476 0.999 0.603
KDE 0.821 0.456 0.993 0.800 0.995 0.787 0.956 0.682 0.744 0.412 0.810 0.671 0.921 0.552 0.992 0.519 0.998 0.421
LOF 0.837 0.437 0.996 0.847 0.985 0.475 0.843 0.402 0.693 0.515 0.921 0.552 0.877 0.349 0.985 0.332 0.998 0.328

SMOTE
ISF 0.811 0.390 0.992 0.718 0.995 0.844 0.942 0.664 0.838 0.624 0.929 0.834 0.909 0.467 0.984 0.280 0.999 0.748
KDE 0.794 0.393 0.989 0.685 0.993 0.726 0.945 0.718 0.785 0.527 0.927 0.817 0.928 0.502 0.987 0.349 0.997 0.363
LOF 0.792 0.285 0.962 0.240 0.971 0.311 0.853 0.436 0.710 0.466 0.718 0.622 0.841 0.275 0.982 0.295 0.996 0.104

ADASYN
ISF 0.848 0.489 0.992 0.810 0.995 0.784 0.964 0.748 0.718 0.427 0.921 0.822 0.894 0.525 0.985 0.470 0.999 0.475
KDE 0.848 0.489 0.992 0.810 0.995 0.784 0.964 0.748 0.718 0.427 0.921 0.822 0.894 0.525 0.985 0.470 0.999 0.475
LOF 0.837 0.440 0.969 0.376 0.987 0.585 0.834 0.352 0.734 0.385 0.662 0.523 0.891 0.346 0.986 0.341 0.998 0.527

Noise
ISF 0.828 0.480 0.994 0.792 0.994 0.737 0.965 0.776 0.864 0.693 0.929 0.856 0.938 0.555 0.994 0.620 0.998 0.366
KDE 0.896 0.506 0.992 0.817 0.996 0.833 0.917 0.627 0.798 0.612 0.933 0.874 0.944 0.562 0.989 0.473 0.999 0.632
LOF 0.850 0.483 0.990 0.622 0.987 0.539 0.864 0.383 0.731 0.462 0.842 0.784 0.949 0.721 0.991 0.488 0.999 0.484

Proposed method
ISF 0.892 0.566 0.996 0.851 0.998 0.924 0.970 0.826 0.873 0.681 0.970 0.943 0.948 0.591 0.995 0.680 0.999 0.713
KDE 0.932 0.668 0.995 0.814 0.998 0.905 0.974 0.821 0.868 0.649 0.975 0.959 0.954 0.641 0.988 0.467 0.999 0.605
LOF 0.875 0.540 0.992 0.801 0.995 0.842 0.972 0.830 0.792 0.642 0.861 0.787 0.954 0.718 0.990 0.496 0.995 0.133

56
D
ata

A
ugm

entation
by

A
utoEncoders

Table 5.2 PR AUC and ROC AUC for the NSL-KDD and CTU13 data set

Data augmentation
method

OCC
method

Probe DoS R2L U2R Virut Rbot Neris Murlo
PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC

No oversampling
ISF 0.982 0.927 0.830 0.808 0.839 0.691 0.999 0.828 0.384 0.100 0.783 0.024 0.749 0.100 0.064 0.094
KDE 0.975 0.893 0.828 0.801 0.824 0.667 0.999 0.821 0.364 0.092 0.704 0.046 0.746 0.270 0.041 0.068
LOF 0.683 0.188 0.539 0.535 0.657 0.179 0.981 0.140 0.840 0.809 0.718 0.082 0.882 0.426 0.108 0.671

SMOTE
ISF 0.976 0.900 0.728 0.765 0.950 0.829 0.997 0.715 0.374 0.067 0.776 0.030 0.738 0.155 0.696 0.797
KDE 0.967 0.880 0.795 0.863 0.938 0.785 0.997 0.698 0.370 0.116 0.698 0.018 0.756 0.260 0.061 0.297
LOF 0.627 0.082 0.382 0.132 0.626 0.187 0.980 0.078 0.585 0.651 0.718 0.065 0.834 0.312 0.233 0.865

ADASYN
ISF 0.831 0.574 0.872 0.924 0.906 0.736 0.998 0.762 0.374 0.067 0.729 0.017 0.729 0.117 0.218 0.225
KDE 0.953 0.862 0.856 0.910 0.938 0.775 0.997 0.808 0.364 0.089 0.696 0.004 0.751 0.286 0.117 0.682
LOF 0.625 0.097 0.369 0.070 0.636 0.222 0.977 0.047 0.455 0.312 0.696 0.004 0.750 0.222 0.044 0.166

Noise
ISF 0.940 0.806 0.897 0.858 0.926 0.785 0.991 0.468 0.504 0.261 0.859 0.039 0.824 0.344 0.213 0.776
KDE 0.965 0.885 0.857 0.833 0.948 0.816 0.997 0.737 0.433 0.287 0.701 0.029 0.903 0.509 0.047 0.143
LOF 0.670 0.165 0.434 0.256 0.629 0.178 0.981 0.084 0.898 0.873 0.838 0.612 0.890 0.475 0.547 0.878

Proposed method
ISF 0.986 0.941 0.930 0.917 0.977 0.918 0.999 0.881 0.619 0.535 0.946 0.668 0.834 0.455 0.504 0.904
KDE 0.991 0.972 0.954 0.931 0.969 0.887 0.998 0.862 0.491 0.391 0.834 0.617 0.928 0.600 0.763 0.797
LOF 0.745 0.494 0.570 0.590 0.798 0.593 0.987 0.423 0.906 0.873 0.993 0.961 0.928 0.682 0.526 0.922

5.5
Result

57

Table 5.3 PR AUC and ROC AUC for data sets with single-type anomaly

Data augmentation
method

OCC
method

PenDigits Shuttle Spambase InternetAds Arrhythmia
PR ROC PR ROC PR ROC PR ROC PR ROC

No oversampling
ISF 0.694 0.712 0.714 0.440 0.296 0.327 0.160 0.525 0.440 0.500
KDE 0.878 0.826 0.821 0.712 0.317 0.398 0.182 0.527 0.416 0.446
LOF 0.646 0.777 0.759 0.427 0.293 0.311 0.221 0.604 0.416 0.446

SMOTE
ISF 0.557 0.371 0.784 0.511 0.341 0.461 0.134 0.411 0.438 0.443
KDE 0.602 0.587 0.628 0.130 0.318 0.351 0.171 0.525 0.440 0.50
LOF 0.319 0.103 0.711 0.364 0.314 0.332 0.165 0.489 0.419 0.461

ADASYN
ISF 0.725 0.715 0.727 0.400 0.313 0.376 0.168 0.525 0.373 0.365
KDE 0.454 0.452 0.690 0.356 0.348 0.400 0.148 0.443 0.377 0.392
LOF 0.388 0.215 0.763 0.597 0.331 0.386 0.127 0.374 0.376 0.382

Noise
ISF 0.916 0.867 0.923 0.792 0.491 0.622 0.221 0.660 0.468 0.543
KDE 0.893 0.535 0.877 0.808 0.400 0.547 0.168 0.567 0.460 0.604
LOF 0.491 0.415 0.846 0.718 0.464 0.629 0.141 0.451 0.534 0.554

Proposed method
ISF 0.947 0.918 0.926 0.781 0.683 0.821 0.428 0.738 0.573 0.591
KDE 0.960 0.932 0.872 0.723 0.714 0.832 0.255 0.694 0.583 0.604
LOF 0.930 0.908 0.890 0.744 0.614 0.761 0.368 0.719 0.604 0.616

58 Data Augmentation by AutoEncoders

Fig. 5.1 Boxplots of computed LOF scores for PenDigits dataset after data augmen-
tation with different approaches

In Figure 5.1, a simple statistical analysis is carried out using Boxplots to see the
effect of different data augmentation models on the LOF scores obtained from the
PenDigits dataset. Boxplots provide a good graphical representation, and as depicted
in Figure 5.1, it can be deduced that the other three approaches caused LOF to com-
pute a wider range of LOF scores with some outliers while the proposed approach
computed LOF scores that are within a small range. By looking at Figure 5.1 and
also the performance of data augmentation with the proposed model and using LOF
for detecting anomalies in Table 5.3, it can be reasoned that the proposed model can
augment the training set in a way that leads to finding a better class boundary for
LOF. To verify whether the LOF scores are significantly different or not, a Wilcoxon
signed-rank test [102] was performed between the proposedmethod and the adding
noise approach. By feeding LOF scores to theWilcoxon test, it was observed that the
results are significantly different at 𝑝 < 0.05. As mentioned in Section 4.5, carry-
ing out repetitiveWilcoxon tests on multiple models is not recommended because it
increases the chance of rejecting a certain proportion of the null hypotheses merely
based on random chance [103].

5.6 Summary 59

5.6 Summary

This chapter studies the usefulness of using autoencoders to augment the training set
in the feature-space to improve the performance of OCC algorithms in anomaly de-
tection problems. When the training set is not large enough, OCCs perform poorly
as finding a suitable class boundary becomes difficult. Once the AE is almost well-
trained, it is possible to start deriving latent variables in each epoch and feed this
augmented training set to the OCC algorithm.

By carrying out the proposed method on several well-known datasets in this do-
main, it was demonstrated that the proposed approach is capable of outperforming
other data augmentation methods such as SMOTE and ADASYN. In terms of OCC
methods, three state-of-the-art algorithms were employed to detect anomalies. Ac-
cording to the results, the proposed approach can produce a more robust perfor-
mance compared to other approaches.

Chapter 6

General Discussion

6.1 Introduction

Theaim of this work was to address a number of challenges that hinder the process of
anomaly detection using unsupervised approaches. Anomaly detection suffers from
various challenges, and, arguably, it was not feasible to address all of them; nonethe-
less, this work addressed three significant obstacles. In Chapter 3, the problem of
complexity and accuracy was addressed, while in Chapter 4, high dimensionality
was dealt with. Finally, in Chapter 5, another approach was proposed that targeted
the problem of lack of labelled data for training. By going through the literature, one
can see that there has not been a prior work that demonstrates an approach similar
to what was proposed in this work for the purpose of anomaly detection.

In this chapter, a succinct review of the proposed methods is presented in which
the novelty and limitations of each proposedmethod are discussed. Also, this chapter
mentions what can be done in the future to overcome some of those limitations.

6.2 Methods

One of the unsupervised density-based anomaly detection methods that is widely
used in the literature is LOF. However, it has its own limitations, such as being com-
putationally expensive and its underperformance when applied to datasets with high
dimensionality. For instance, Boniol et al. [112] reported that applying LOF to a
large dataset exceeded the time-out of their experiment, which was eight hours. In
another study, Xu et al. [113] tried using a Local Sensitivity Hashing (LSH) pro-
cess to improve the efficiency of LOF and reduce its memory consumption. They
also used a Gaussian Mixture Model (GMM) to compute LOF only for points that
generated a low probability of belonging to the standard distribution model.

62 General Discussion

There is a trade-off between reducing the complexity of LOF and improving its
performance. Approaches such as what Goldstein et al. [70] proposed, try to address
one of the two mentioned issues while failing to cover the other one. Overcoming
both the complexity of LOF and improving its performance is what PLOF attempted
to demonstrate. In other words, PLOF tried to not only improve the performance of
LOF but also aimed at reducing the computation cost.

As depicted in Figure 6.1, in PLOF, a novel pruning approach is applied to the
dataset prior to using LOF to remove points that are deemed inliers. Then, instead
of computing a LOF score for all the points, the score is calculated only for data
points that are not pruned. This ensures that LOF is not unnecessarily computed
for every data point, which arguably means less computation. The pruning process
should make sure that anomalies are not wrongly pruned, i.e., it should preserve
valuable information while marking points that are in a very dense area, which is an
indication of being an inlier. Therefore, defining a suitable threshold that guarantees
high accuracy is a challenge. In fact, this is very often a challenge in any machine
learning problem. The focus of the research was not to address the issue of finding
the optimum boundary here; thus, a simplemedian-based classification was used for
separating inliers from outliers.

Calculate the
density for 𝑛

Remove extreme values
Compute the median
Prune 𝑛 if it’s delta > median

If 𝑛 is not prunned,
compute LOF

For 𝑛0...𝑛𝑖 For 𝑛0...𝑛𝑖

Fig. 6.1 Overall structure of the PLOF model

Despite the fact that LOF shows high performance compared to other anomaly
detection algorithms, no algorithm is perfect. As mentioned, one of the problems
of LOF is the complexity which was address in Chapter 3. Another problem of LOF
emerges when it is applied to datasets with high dimensionality. Most of the stud-
ies on LOF are centred on linearity issues and applicable to problems in which, for
instance, the sparsity is low [114]. When dealingwith nonlinearity issues, the perfor-
mance of the traditional LOFmethod deteriorates as it cannot capture the underlying
features and studies such as the work published by Yuxin et al. [115] tried to intro-
duce variants of LOF that strengthen it to be able to derive the latent features. To
explain further why LOF underperforms in a high dimensional dataset, the defini-
tion of sparsity warps as the dimensionality increases; also, computing the distance
between points becomesmore challenging as the number of features expands, which
has a substantial effect on LOF [116]. As stated by O’Neil et al. [117], another prob-
lem that is caused by high dimensionality is that as the dimensionality increases,

6.2 Methods 63

the distance between data points tends to go towards equidistance which, arguably,
interferes with density computation.

Asmentioned, detecting anomalies usingmethods such as LOF,which is a density-
based technique, is challenging when working with high dimensional and complex
datasets. To remedy this problem, various studies have investigated using dimension
reduction techniques to transform the high dimensional data into a low dimensional
space and then applying an anomaly detection method [118]. Despite the fact that
this approach has shown promising results in many areas when it comes to anomaly
detection, the dimension reduction approach plays a vital role. It is of great im-
portance to make sure that the density distribution is preserved during the trans-
formation. Therefore, choosing a suitable dimensionality reduction method has a
significant effect on the performance of anomaly detection.

Deep learning has proved to be useful in anomaly detection problems [118].
Deep learning techniques come in various architectures. One of the types of deep
learning architectures is autoencoders, which has been widely utilised for detecting
anomalies. The details of autoencoders are explained in Section 4.2. In the literature,
researchers have proposed variants of autoencoders that try to prevent the network
from learning the identity function while detecting anomalies, such as denoising au-
toencoders or variational autoencoders. For instance, An et al. [119] proposed a
variational autoencoder in which the reconstruction probability was used for sepa-
rating anomalies from inliers. The anomaly decision in their approach was made by
a simple threshold-based classification. It is also possible to use the reconstruction
error for separating anomalies from inliers. This approach was adopted by Zenati
et al. [120] in which they used the reconstruction error of a bi-directional genera-
tive adversarial network. Zenati et al. [120] applied the proposed approach on two
datasets (i.e., KDD99 and Arrhythmia) and compared the results with other meth-
ods, including two classic methods, namely OCSVM and Isolation Forests, in which
the results showed the supremacy of autoencoders. In many approaches, a regu-
lariser is used to prevent the network from learning the identity function [121]. Cao
et al. [23] penalised the loss function of the network by the magnitude of the latent
variable in order to shrink the normal points and make them stay in a dense cluster.
For separating anomalies from inliers, different methods such as LOF, OCSVM and
KDE were applied.

Despite the fact that taking the reconstruction error of the network as an anomaly
score has achieved results with high accuracy, it suffers from a few problems. One
problem that could be referred to as a requirement is having access to a portion of
the dataset that is clean. This portion should have no anomalies or even noise. The
fraction is then used for training the network. Once the network knows how to re-

64 General Discussion

produce normal data points, the test set is passed to the model in which there are
anomalies. The network is incapable of reproducing anomalies as well as inliers be-
cause it is only familiar with what it was trained with, which is normal points. There-
fore, anomalies show a high reconstruction error. Having access to a clean set is not
always possible. Consequently, using models such as denoising autoencoders is not
always possible [30].

To overcome thementioned requirement, some have proposed using a loss func-
tion that is insensitive towards anomalies. In other words, during the training phase,
the network generates a small error for anomalies instead of a large error that would
normally make it learn how to regenerate anomalies. Qi et al. [88] used the same
idea and applied a new loss function based on correntropy, which was less sensitive
to non-Gaussian noise compared to other traditional loss functions such as Mean
Square Error (MSE). Another correntropy-based loss function used in stacked au-
toencoders was proposed by Singh et al. [122] who introduced a new loss function,
denoted as 𝐶𝑙𝑜𝑠𝑠, that is a variant of MSE in which produces 𝐿0 loss for data points
with high errors while approximating the 𝐿2 error for samples with minor errors.

The proposed solution in Chapter 4 tries to reduce the dimensionality of the
dataset while preserving the vital features so that anomalies can be detected from
the low dimensional version of the dataset. The model is needless of being trained
by a clean training set, which is a crucial requirement in other approaches such as de-
noising autoencoders. As depicted in Figure 6.2, the structure of the proposedmodel
is very similar to a standard stacked autoencoder, except AEGR tries to stop the net-
work from learning the characteristics of anomalies by forcing an altered gradient
after each epoch. To explain further, the model selects the data point that caused
the highest gradient update and tries to undo that update by backpropagating the in-
verse of the gradient of that data point. The assumption here is that the selected data
point has the highest gradient update because its characteristics are highly different
from the rest of the data points. This behaviour is very common among anomalies.
So, by reverting the gradient update, the network learns how to regenerate normal
data points, but its efforts in learning how to reproduce anomalies are countered.
Next, once the training is finished, the test set is passed to the network and the latent
variables inside the bottleneck of the network are extracted, which is essentially the
dataset in a low dimensional space. In the last step, another technique needs to be
applied to the obtained latent variables in order to extract anomalies. As explained
in Section 4.4, the proposed method was applied on several benchmark datasets to
evaluate the enhancement compared to other approaches such as using a standard
stacked autoencoder.

6.2 Methods 65

For 𝑒𝑝𝑜𝑐ℎ0...𝑒𝑝𝑜𝑐ℎ𝑖

- Compute and store the gradient score
for point 𝑛 in the bottleneck

- Select the gradient of the point/batch with
the highest gradient score
- Invert the gradient and backpropagate it

- Do backpropagation

- Shuffle

Latent variables of the test setFor each point or mini-batch:

Separate anomalies from
inliers by methods such as:
LOF, OCSVM or
reconstruction error-based

Fig. 6.2 Overall structure of the AEGR model

As emphasised before, the most significant advantage of AEGR is that a clean
training set is not necessary. The proposed approach can filter out the points that are
causing the most significant shift in the learning process to avoid learning anomalies
or noise reproduction. However, it is important to consider how the network distin-
guishes noise from anomalies. During the training phase, both noise and anomalies
are treated similarly as the purpose in AEGR is to make the network insensitive to
them (the difference between noise and anomalies was explained earlier in Section
1.3.1, and it is deemed unnecessary to reiterate it here).

Several research works have used OCCs for separating instances, and some have
proposed models that are tailored for anomaly detection, such as LOF. These meth-
ods are used when the negative class, e.g., anomalies, are absent or hard to define.
However, these methods face various challenges, such as high-dimensionality and
skewed distribution, that affect the performance. One of the challenges that was ad-
dressed in Chapter 5 is the size of the training set. In one-class classification, the
model tries to learn the characteristics of a certain type of data instance and then,
during the testing phase, separates examples of that category from the rest. In an
anomaly detection problem, the model is trained with normal instances and is ex-
pected to separate anomalies in the test set from the inliers. However, some anoma-
lies might have very similar characteristics to an inlier, which can cause the model
to label them among the inliers, i.e., making a false-negative prediction. Defining a
better classification boundary between the inliers and outliers can improve the per-
formance of themodel by accepting asmany inliers as possible and rejecting asmany
anomalies as possible [123]. Due to the fact that during the training phase, themodel
has access to only one type of categories, defining the boundary becomes a challenge.
For instance, the boundary should be snug enough to minimise the false-positive
rate. Also, the feature selection impacts the process of defining the boundary.

66 General Discussion

To overcome the mentioned issue, a new approach was proposed in Chapter 5 in
which, by using data augmentation, the size of the training set is increased to achieve
a denser area filled with inliers for defining a better classification boundary. In other
words, the effect of increasing the size of the training set by using data augmentation
on the performance of OCC models for the purpose of anomaly detection was in-
vestigated. Data augmentation refers to a process in which synthetic data instances
of a class is generated. However, traditional approaches such as statistical methods
are incapable of producing high-quality instances that share the same characteristics
that real data instances have with minor variations [124]. In the proposed approach,
an AE was used to not only generate synthetic data of the normal instances but also
to reduce the dimensionality of the dataset.

As depicted in Figure 6.3, the data augmentation and dimensionality reduction
are carried out during the training phase of the AEmodel. In other approaches such
as AEGR, the latent variables are extracted in the last epoch in which training the
model is going to finish. However, in the proposed approach, it starts earlier. The
approach needs a threshold to be defined that determines when to start collecting
latent variables. For instance, the extraction can start during the last ten epochs
in which the model is very close to being fully trained. During the last 𝑛 epochs,
the latent variables of the network’s bottleneck are expected to be very similar but
different with some variations. In other words, the network is generating synthetic
data points that are from the same class with the same characteristics.

For 𝑒𝑝𝑜𝑐ℎ0...𝑒𝑝𝑜𝑐ℎ𝑖

Perform trainingTraining set D

if 𝑖 > threshold then:
obtain and store the latent
variables from the bottleneck

Use the obtained
latent variables to
train the OCC
model

Obtain latent variables from
the bottleneck

The obtained latent
variables

Apply on and
separate
anomalies

Test set D’

Fig. 6.3 Overall structure of the model that uses an AE for data augmentation

Once the training of the AEmodel is finished, the obtained latent variables from
the bottleneck of the last 𝑛 epochs are used to form a new low dimensional but larger
training set, i.e., the training set has fewer features butmore instances than the initial
set. This new training set is used for the next step which is training the OCCmodel.
In Chapter 5, different OCC models such as ISF and LOF were used to evaluate and

6.3 Limitations and Future Work 67

see if the data augmentation has actually improved the performance. Next, the AE
model is used to extract latent variables from the test set. It is worth mentioning
that during this phase, no data augmentation is carried out as increasing the test size
is unnecessary. Finally, the OCC model is applied to the latent variables that are
extracted from the test set to detect anomalies.

The performance of the proposed approach is reported and discussed in detail
in Section 5.4 and Section 5.5, in which the data augmentation using autoencoders
showed better results overall compared to the other approaches. By looking at Fig-
ure 6.4, it is possible to get more insight into how the proposed approach is over-
coming the problem of not having enough samples for training OCC methods and
generating an accurate classification boundary. The figure shows the density of the
training set of the PenDigits dataset after being augmented by four different meth-
ods, including the one proposed in Chapter 5. A denser area means that the training
set contains more uniform instances, while a sparse set includes data points that are
more different in characteristics. As depicted in Figure 6.4b, using SMOTE for data
augmentation produced a sparser training set compared to the other three, which
shows the method did not fully take into account the intrinsic characteristics of the
data instances when generating synthetic samples. By looking at Figure 6.4a and Fig-
ure 6.4c, it can be concluded using ADASYN and injecting noise for creating syn-
thetic samples performed better than using SMOTE. Between injecting noise and
using ADASYN, it is hard to point out which one performed better by merely look-
ing at the figures. Nevertheless, by looking at Figure 6.4c, Figure 6.4a and Table 5.3,
it can be deduced that injecting noise produced a training set slightly denser than
using ADASYN. However, as shown in Figure 6.4c, using the proposed approach in
which an AE was used for augmenting the data, generated the densest training set
compared to the other three approaches. Therefore, it can be concluded that data
augmentation using the AE managed to generate synthetic instances that are more
uniform in characteristics, and so theOCCmethods performed better at creating the
classification boundary. Having a more accurate classification boundary should re-
sult in better anomaly detection performance and by looking at Table 5.3, the OCC
methods performed better when the training set was augmented by the proposed
approach.

6.3 Limitations and FutureWork

Despite the fact that the three proposed approaches showed promising results and
overall managed to perform better than other state-of-the-art and some widely used

68 General Discussion

(a) DA with ADASYN (b) DA with SMOTE

(c) DA with noise (d) DA with AE

Fig. 6.4 Histogram plot with a kernel density estimation of the first two latent vari-
ables of the PenDigits dataset after applying various data augmentation methods on
the training set. The training set contains only one type of data, i.e., inliers.

6.3 Limitations and Future Work 69

methods, they come with a few limitations that should be pointed out and possibly
be addressed in the future.

As discussed, PLOFmanaged to improve both performance and efficiency. How-
ever, its performance heavily depends on one parameter, which is the threshold. The
threshold decides which data instance should be pruned and which one needs to be
flagged for later when the LOF score gets computed. In Chapter 3, the median of
the 𝛿 values, which was computed by Equation 3.7, was used as the threshold. Ar-
guably, parameter tuning is always a challenge in anymachine learning problem, and
an empirical approach in which different threshold values are experimented with is
one of the solutions. One future work that can improve the performance of PLOF is
studying and experimenting with parameter tuning approaches for generating a bet-
ter threshold. Also, the pruning approach can be used in other anomaly detection
methods that are density-based, which should be investigated in the future.

Using AEGR, it was possible to address the problem of detecting anomalies in
high dimensional data and alsomade the network training phase insensitive to anoma-
lies. One limitation of this approach is that the anomalies should have significant
differences in characteristics compared to the inliers. In other words, in a dataset in
which anomalies are very similar to inliers, the approach cannot perform as well as
when applied on a dataset in which anomalies are spread far away from inliers, i.e.,
have different characteristics. Also, a good improvement that can enhance the per-
formance of AEGR is taking into account the𝐺𝑆 score of more than onemini-batch
or data point in each epoch when carrying out gradient inversion. Moreover, as ex-
plained in Section 4.3, the obtained data from the autoencoder was pruned by using
a threshold-based approach in which the threshold was based on the RE, followed
by a data augmentation based on random Gaussian noise to increase the number of
instances. Choosing a threshold is a challenge that can potentially have an unde-
sirable impact on the final result. Stipulating a low threshold can cause elimination
of, for instance, half of the training set that then can be replaced by synthetic data.
But this would arguably interfere with the distribution of the real data and synthetic
data generated by the data augmentation process. It is important to study the signif-
icance of this effect in the future. Lastly, the gradient update has an arguable effect
on the learning process. Even though this study conducted an ample amount of ex-
periments on numerous datasets and compared the results with other approaches,
the effect of gradient reversal on the main task of the autoencoder, i.e., transforming
high dimensional data into a low dimensional form, was not studied. The latent vari-
able that AEGR produced, led to achieving better results from LOF but the difference
between the latent variables coming fromAEGR and the ones from a normal autoen-
coder was not measured. That is because, as discussed in Chapter 4, autoencoders

70 General Discussion

perform poorly when the training set contains anomalies and noise. Therefore, the
normal autoencoder needs to use use a clean training set while AEGR gets trained by
a polluted training set, i.e., one that includes noise and anomalies. Despite the fact
that passing two different inputs to the autoencoders can arguably make the exper-
iment and consequently the results questionable, it is worth to investigate to what
extent AEGR affects the process of transformation compared to a normal autoen-
coder.

As per data augmentation using autoencoders, one limitation is the need for a
training set that is free of noise and anomalies. The proposed approach in Chapter
5 requires a training set that is clean of noise and anomalies, but it is also affected
by the quality of data instances. To explain further, a training set containing more
homogeneous inliers, i.e., examples that are very similar, can later improve the per-
formance of the OCC algorithms because the augmented training set will be more
uniform and dense.

Since PLOF showed promising results when applied to not high dimensional
datasets, the use of PLOF with the other two proposed approaches should be stud-
ied. For instance, by applying AEGR, it is possible to reduce the dimensionality and
then instead of applying the traditional LOF algorithm, anomalies can be separated
by using PLOF. Also, it is possible to use the augmented training set using the pro-
posed method in Chapter 5 and train PLOF with the augmented training set, which
in theory should produce better results than merely applying the traditional LOF
method.

Finally, none of the datasets used in this research were real-time datasets but
benchmark datasets used by other research works. For instance, as Aldweesh et al.
[125] stated, the NSL-KDD dataset was used by 37% of the published works that
the authors reviewed. Although using a benchmark dataset makes the results com-
parable, this comparison can be questionable as other factors are being neglected.
As Aldweesh et al. [125] mentioned, comparing deep-learning methods is a chal-
lenge because thesemethods can performdifferently when a different pre-processing
method is used, the hardware varies, the ratio between the size of the training set and
the test set differs, or when the network is configured differently. It is deemed to con-
duct a more comprehensive experiment using the benchmark datasets and real-time
datasets with more state-of-the-art methods.

6.4 Summary

This section briefly explained the approaches proposed in this work. While going
through the problems that each approach tried to address, a few recent and related

6.4 Summary 71

research works to each of the three proposed approaches were pointed out and ref-
erenced. Also, the performance of each approach was reviewed, as well as the limi-
tations and future work.

Chapter 7 summarises on contributions of each of the three novelties proposed
in this work to the field of anomaly detection.

Chapter 7

Conclusion

The present thesis looked at the challenges in the process of anomaly detection. The
process of anomaly detection is found crucial in various application domains such
as fraud detection, fault detection and sensor networks. The process of anomaly
detection suffers from various challenges such as skewed distribution, lack of ex-
amples of anomalous cases, concept drift, and high dimensionality. Each of these
challenges can hinder the process and deteriorate the performance of the machine
learning model to a level that can cause catastrophic consequences. This thesis ex-
tended on the previous works from various angles. The contribution of the work
can be split into three parts, each of which addressing one or more challenges of the
anomaly detection process.

After investigating various anomaly detection models and reviewing the previ-
ous works, it was concluded that a density-based model called LOF, which is widely
used in various application domains, can produce high performance. However, the
algorithm’s performance is affected by a few factors, including the dimensionality of
the dataset. Also, LOF requires high computation power for separating anomalies
from normal data points. There are various works in the literature that studied the
mentioned problems. One of the contributions of this work was proposing PLOF. A
variant of LOF that showed better performance with less computation cost. In PLOF,
the dataset is pruned based on a novel density estimator, i.e., points that belong to a
neighbourhood with a density higher than a pre-defined threshold are pruned, be-
fore computing the final anomaly score, i.e., the LOF value. In contrast to other
similar works that reduced the computation but sacrificed the performance, the re-
sults of the experiment showed that PLOF can preserve the performance at a lower
computation cost. The result also showed that PLOF not only reduced the execu-
tion time but, in some cases, even showed better performance compared to other
state-of-the-art models.

74 Conclusion

This thesis made further investigations into the challenges of anomaly detection
by looking into the problem of high dimensionality. Many machine learning algo-
rithms cannot perform to their best or even norm when the dimensionality of the
dataset increases, and LOF is no exception. In fact, according to the literature, LOF
is based on a concept that requires a good definition of the density, which becomes
opaque and hard to define as the dimensionality of the dataset grows. After study-
ing various dimensionality reduction methods such as PCA, it was found out that a
variant of neural networks known as autoencoders can produce better performance
in capturing latent variables while reducing the dimensionality of the dataset. How-
ever, training autoencoders requires an anomaly free training set, which is not always
available. Therefore, this thesis proposed a novel variant of autoencoders that can fil-
ter out anomalous data points during the training phase by taking into account the
gamut of the gradient update caused by each data point during the training phase. In
AEGR, the training set can include noise or anomalies as the training phase is insen-
sitive towards them and the network’s efforts in learning how to regenerate anomalies
are countered by injecting the inverted gradient of the data points or batches that in
each iteration caused the highest gradient update. Once the model is trained, the
latent variables of the training set are obtained from its bottleneck and passed into a
one-class classifier for separating outliers and inliers. The proposedmodel was tested
on several publicly available datasets that are widely used in the domain of anomaly
detection. The results of the experiment proved that the proposed dimensionality
reduction method can lead to performance improvements.

Lastly, this research work proposed a novel method for not only reducing the
dimensionality but also generating augmented data of the training set to be used by
a one-class classifier. One-class classifiers can be used for anomaly detection if they
are trained by normal examples. Then anything outside of the normal boundary is
separated from the test set. The proposed approach was based on the assumption
that improving the class boundary during the training phase can enhance the per-
formance of OCCs as the model gets a better understanding of the characteristics
of the normal data points. This thesis extended the past works by using an autoen-
coder for augmenting the training set while collecting important latent variables and
reducing dimensionality. Expanding the training set means the OCCmodel can de-
fine a better class boundary; however, the augmented data points must show similar
characteristics of the normal instances with minor variations. The autoencoder used
in the proposedmodel begins augmentation when the network is almost trained and
can reproduce the input from its bottleneck with a low RE. According to the results
of the experiment, the proposed model outperformed other well-knownmethods in
the literature. Therefore, it is conceivable that data augmentation using the proposed

75

approach can enhance the class boundary definition and subsequently improving the
performance of the OCC used for detecting anomalies.

References

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,”
ACM Comput. Surv., vol. 41, pp. 15:1—-15:58, jul 2009.

[2] E. R. Faria, I. Gonçalves, A. de Carvalho, and J. Gama, “Novelty detection in
data streams,” Artificial Intelligence Review, vol. 45, no. 2, pp. 235–269, 2016.

[3] J. Ha, S. Seok, and J.-S. Lee, “Robust outlier detection using the instability
factor,” Knowledge-Based Systems, vol. 63, pp. 15–23, 2014.

[4] V. J. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Ar-
tificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.

[5] Z. Niu, S. Shi, J. Sun, and X. He, “A survey of outlier detection methodolo-
gies and their applications,” Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 7002 LNAI, no. PART 1, pp. 380–387, 2011.

[6] X. Song, M. Wu, C. Jermaine, and S. Ranka, “Conditional Anomaly Detec-
tion,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, pp. 631–
645, may 2007.

[7] S. S. Khan andM. G. Madden, “A Survey of Recent Trends in One Class Clas-
sification,” in Artificial Intelligence and Cognitive Science: 20th Irish Confer-
ence, AICS 2009, Dublin, Ireland, August 19-21, 2009, Revised Selected Papers
(L. Coyle and J. Freyne, eds.), pp. 188–197, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010.

[8] K.-L. Li, H.-K. Huang, S.-F. Tian, and W. Xu, “Improving one-class SVM for
anomaly detection,” in International Conference on Machine Learning and Cy-
bernetics, vol. 5, pp. 3077–3081, 2003.

[9] M. Zhang, B. Xu, and D. Wang, “An anomaly detection model for network
intrusions using one-class SVM and scaling strategy,” Lecture Notes of the In-
stitute for Computer Sciences, Social-Informatics and Telecommunications En-
gineering, LNICST, vol. 163, pp. 267–278, 2016.

[10] S. Patnaik, S. Subudhi, and S. Panigrahi, “Quarter-Sphere Support VectorMa-
chine for Fraud Detection inMobile Telecommunication Networks,” Procedia
Computer Science, vol. 48, pp. 353–359, 2015.

[11] V. Hautamäki, I. Kärkkäinen, and P. Fränti, “Outlier detection using k-nearest
neighbour graph,” in Proceedings - International Conference on Pattern Recog-
nition, vol. 3, pp. 430–433, 2004.

78 References

[12] B. Tang and H. He, “A local density-based approach for outlier detection,”
Neurocomputing, vol. 241, pp. 171–180, 2017.

[13] W. Jin, A. K. H. Tung, and J. Han, “Mining top-n local outliers in large
databases,” in Proceedings of the Seventh ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 293–298, 2001.

[14] J. Tang, Z. Chen, A. W.-c. Fu, and D. W. Cheung, “Enhancing Effectiveness
of Outlier Detections for Low Density Patterns,” in Advances in Knowledge
Discovery and Data Mining: 6th Pacific-Asia Conference, PAKDD 2002 Taipei,
Taiwan, May 6–8, 2002 Proceedings (M.-S. Chen, P. S. Yu, and B. Liu, eds.),
pp. 535–548, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.

[15] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
Density-based Local Outliers,” SIGMOD Rec., vol. 29, pp. 93–104, may 2000.

[16] F. Pernkopf and D. Bouchaffra, “Genetic-based EM algorithm for learning
Gaussian mixture models,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 27, no. 8, pp. 1344–1348, 2005.

[17] H. Farvaresh andM.M. Sepehri, “A datamining framework for detecting sub-
scription fraud in telecommunication,” Engineering Applications of Artificial
Intelligence, vol. 24, no. 1, pp. 182–194, 2011.

[18] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Syn-
thesis lectures on artificial intelligence andmachine learning, vol. 3, no. 1, pp. 1–
130, 2009.

[19] A. Daneshpazhouh and A. Sami, “Semi-Supervised Outlier Detection with
Only Positive and Unlabeled Data Based on Fuzzy Clustering,” International
Journal on Artificial Intelligence Tools, vol. 24, no. 03, p. 1550003, 2015.

[20] K.-I. Kim, T. Kim, N.-W. Cho, andM. Kim, “Toll FraudDetection of VoIP Ser-
vice Networks in Ubiquitous Computing Environments,” International Jour-
nal of Distributed Sensor Networks, vol. 2015, 2015.

[21] J. Li, K.-Y. Huang, J. Jin, and J. Shi, “A survey on statistical methods for health
care fraud detection,”Health CareManagement Science, vol. 11, no. 3, pp. 275–
287, 2008.

[22] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly
detection techniques,” Journal of Network and Computer Applications, vol. 60,
pp. 19 – 31, 2016.

[23] V. L. Cao, M. Nicolau, and J. McDermott, “Learning Neural Representations
for Network Anomaly Detection,” IEEE Transactions on Cybernetics, vol. 49,
no. 8, pp. 3074–3087, 2019.

[24] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

References 79

[25] D. Pérez, S. Alonso, A. Morán, M. A. Prada, J. J. Fuertes, and M. Domínguez,
“Comparison of network intrusion detection performance using feature rep-
resentation,” in Engineering Applications of Neural Networks (J. Macintyre,
L. Iliadis, I. Maglogiannis, and C. Jayne, eds.), (Cham), pp. 463–475, Springer
International Publishing, 2019.

[26] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Autoencoder-based network
anomaly detection,” in 2018 Wireless Telecommunications Symposium (WTS),
pp. 1–5, April 2018.

[27] J. Castellini, V. Poggioni, andG. Sorbi, “Fake twitter followers detection by de-
noising autoencoder,” in Proceedings of the International Conference on Web
Intelligence, WI ’17, (New York, NY, USA), p. 195–202, Association for Com-
puting Machinery, 2017.

[28] H. A. Dau, V. Ciesielski, and A. Song, “Anomaly detection using replicator
neural networks trained on examples of one class,” in Asia-Pacific Conference
on Simulated Evolution and Learning, pp. 311–322, Springer, 2014.

[29] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-
supervised anomaly detection via adversarial training,” in Computer Vision
– ACCV 2018 (C. V. Jawahar, H. Li, G. Mori, and K. Schindler, eds.), (Cham),
pp. 622–637, Springer International Publishing, 2019.

[30] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoen-
coders,” in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 665–674, ACM, 2017.

[31] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers. Now Publishers Inc,
2011.

[32] T. C. Bui, V. L. Cao, M. Hoang, and Q. U. Nguyen, “A clustering-based shrink
autoencoder for detecting anomalies in intrusion detection systems,” in 2019
11th International Conference on Knowledge and Systems Engineering (KSE),
pp. 1–5, 2019.

[33] V. Q. Nguyen, V. H. Nguyen, N.-A. Le-Khac, and V. L. Cao, “Clustering-based
deep autoencoders for network anomaly detection,” in Future Data and Secu-
rity Engineering (T. K. Dang, J. Küng, M. Takizawa, and T. M. Chung, eds.),
(Cham), pp. 290–303, Springer International Publishing, 2020.

[34] M. Sabokrou, M. Fayyaz, M. Fathy, Z.Moayed, and R. Klette, “Deep-anomaly:
Fully convolutional neural network for fast anomaly detection in crowded
scenes,”Computer Vision and ImageUnderstanding, vol. 172, pp. 88 – 97, 2018.

[35] M. Sabokrou, M. Fayyaz, M. Fathy, and R. Klette, “Deep-cascade: Cascad-
ing 3d deep neural networks for fast anomaly detection and localization in
crowded scenes,” IEEE Transactions on Image Processing, vol. 26, pp. 1992–
2004, April 2017.

[36] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep fea-
tures for scene recognition using places database,” 2014.

80 References

[37] P. Oza and V. M. Patel, “One-class convolutional neural network,” IEEE Signal
Processing Letters, vol. 26, no. 2, pp. 277–281, 2019.

[38] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis,
“Learning temporal regularity in video sequences,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 733–742, 2016.

[39] Y. Zhang, P. Peng, C. Liu, and H. Zhang, “Anomaly detection for indus-
try product quality inspection based on gaussian restricted boltzmann ma-
chine,” in 2019 IEEE International Conference on Systems, Man and Cybernet-
ics (SMC), pp. 1–6, 2019.

[40] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “Network anomaly
detection with the restricted boltzmann machine,” Neurocomputing, vol. 122,
pp. 13–23, 2013.

[41] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection in cyber phys-
ical systems using recurrent neural networks,” in 2017 IEEE 18th Interna-
tional Symposium on High Assurance Systems Engineering (HASE), pp. 140–
145, IEEE, 2017.

[42] M. Z. Alom, V. Bontupalli, and T. M. Taha, “Intrusion detection using deep
belief networks,” in 2015National Aerospace and Electronics Conference (NAE-
CON), pp. 339–344, IEEE, 2015.

[43] Y. Yang, K. Zheng, C.Wu, X. Niu, and Y. Yang, “Building an effective intrusion
detection system using the modified density peak clustering algorithm and
deep belief networks,” Applied Sciences, vol. 9, no. 2, p. 238, 2019.

[44] C. S. Hilas and J. N. Sahalos, “User profiling for fraud detection in telecommu-
nication networks,” in In: 5th Int. Conf. technology and automation, pp. 382–
387, 2005.

[45] L.-A. Gottlieb, A. Kontorovich, and R. Krauthgamer, “Adaptive metric di-
mensionality reduction,”Theoretical Computer Science, vol. 620, pp. 105–118,
2016.

[46] H. Hotelling, “Analysis of a complex of statistical variables into principal com-
ponents.,” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

[47] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of
machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[48] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man, “Indexing by latent semantic analysis,” Journal of the American society
for information science, vol. 41, no. 6, pp. 391–407, 1990.

[49] D. DeMers and G. W. Cottrell, “Non-linear dimensionality reduction,” in Ad-
vances in neural information processing systems, pp. 580–587, 1993.

[50] Y.Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,”
Neurocomputing, vol. 184, pp. 232–242, 2016.

References 81

[51] Y. Yan, M. Chen, M.-L. Shyu, and S.-C. Chen, “Deep Learning for Imbal-
anced Multimedia Data Classification,” in Proceedings - 2015 IEEE Interna-
tional Symposium on Multimedia, ISM 2015, pp. 483–488, 2015.

[52] S. Al-Stouhi and C. K. Reddy, “Transfer learning for class imbalance prob-
lems with inadequate data,”Knowledge and Information Systems, vol. 48, no. 1,
pp. 201–228, 2016.

[53] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: Special Issue on Learn-
ing from Imbalanced Data Sets,” SIGKDD Explor. Newsl., vol. 6, pp. 1–6, jun
2004.

[54] A. H. Elmi, S. Ibrahim, and R. Sallehuddin, “Detecting SIM Box Fraud Using
Neural Network,” in IT Convergence and Security 2012 (J. K. Kim and K.-Y.
Chung, eds.), pp. 575–582, Dordrecht: Springer Netherlands, 2013.

[55] R. Sallehuddin, S. Ibrahim, A. M. Zain, and A. H. Elmi, “Detecting SIM box
fraud by using support vector machine and artificial neural network,” Jurnal
Teknologi, vol. 74, no. 1, pp. 137–149, 2015.

[56] J. Gama, I. Zliobaite, A. Bifet,M. Pechenizkiy, andA. Bouchachia, “A survey on
concept drift adaptation,” ACM Computing Surveys, vol. 46, pp. 44:1—-44:37,
mar 2014.

[57] A. Tsymbal, “The Problem of Concept Drift: Definitions and Related Work,”
tech. rep., 2004.

[58] J. L. Lobo, J.Del Ser,M.N. Bilbao, I. Laña, and S. Salcedo-Sanz, “Aprobabilistic
samplematchmaking strategy for imbalanced data streamswith concept drift,”
Studies in Computational Intelligence, vol. 678, pp. 237–246, 2017.

[59] M. Behdad, L. Barone,M. Bennamoun, andT. French, “Nature-Inspired Tech-
niques in the Context of Fraud Detection,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, pp. 1273–
1290, nov 2012.

[60] C. Phua, V. C. S. Lee, K. Smith-Miles, and R. W. Gayler, “A Compre-
hensive Survey of Data Mining-based Fraud Detection Research,” CoRR,
vol. abs/1009.6, 2010.

[61] P. Gogoi, D. K. Bhattacharyya, B. Borah, and J. K. Kalita, “A Survey of Out-
lier Detection Methods in Network Anomaly Identification,” The Computer
Journal, 2011.

[62] A. Bănărescu, “Detecting and Preventing FraudwithDataAnalytics,” Procedia
Economics and Finance, vol. 32, pp. 1827–1836, 2015.

[63] T. Kieu, B. Yang, and C. S. Jensen, “Outlier detection for multidimensional
time series using deep neural networks,” in 2018 19th IEEE International Con-
ference on Mobile Data Management (MDM), pp. 125–134, June 2018.

[64] B. van Stein, M. van Leeuwen, and T. Bäck, “Local subspace-based outlier de-
tection using global neighbourhoods,” in 2016 IEEE International Conference
on Big Data (Big Data), pp. 1136–1142, 2016.

82 References

[65] S. Su, L. Xiao, Z. Zhang, F. Gu, L. Ruan, S. Li, Z. He, Z. Huo, B. Yan, H. Wang,
and Others, “N2DLOF: A New Local Density-Based Outlier Detection Ap-
proach for Scattered Data,” in High Performance Computing and Communi-
cations; IEEE 15th International Conference on Smart City; IEEE 3rd Interna-
tional Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2017
IEEE 19th International Conference on, pp. 458–465, IEEE, 2017.

[66] M. M. Breuniq, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” SIGMOD Record (ACM Special Interest Group
on Management of Data), vol. 29, no. 2, pp. 93–104, 2000.

[67] L. Zhang, J. Lin, and R. Karim, “Adaptive kernel density-based anomaly de-
tection for nonlinear systems,” Knowledge-Based Systems, vol. 139, pp. 50–63,
2018.

[68] H. Ding, K. Ding, J. Zhang, Y. Wang, L. Gao, Y. Li, F. Chen, Z. Shao, and
W. Lai, “Local outlier factor-based fault detection and evaluation of photo-
voltaic system,” Solar Energy, vol. 164, pp. 139–148, 2018.

[69] W. Jin, A. K. H. Tung, J. Han, and W. Wang, “Ranking outliers using sym-
metric neighborhood relationship,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 577–593, Springer, 2006.

[70] M. Goldstein, “FastLOF: An Expectation-Maximization based Local Outlier
detection algorithm,” in Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012), pp. 2282–2285, nov 2012.

[71] A. Sinha and P. K. Jana, “Efficient Algorithms for Local Density Based
Anomaly Detection,” in Distributed Computing and Internet Technology
(A. Negi, R. Bhatnagar, and L. Parida, eds.), (Cham), pp. 336–342, Springer
International Publishing, 2018.

[72] A. L. M. Chiu and A. W.-c. Fu, “Enhancements on local outlier detection,”
in Seventh International Database Engineering and Applications Symposium,
2003. Proceedings., pp. 298–307, jul 2003.

[73] R. Pamula, J. K. Deka, and S. Nandi, “Pruning based method for outlier de-
tection,” in Proceedings - 2012 3rd International Conference on Emerging Ap-
plications of Information Technology, EAIT 2012, pp. 210–213, 2012.

[74] R. Pamula, J. K. Deka, and S. Nandi, “An Outlier Detection Method Based on
Clustering,” in 2011 Second International Conference on Emerging Applications
of Information Technology, pp. 253–256, feb 2011.

[75] H. Rizk, S. Elgokhy, and A. Sarhan, “A hybrid outlier detection algorithm
based on partitioning clustering and density measures,” in 2015 Tenth Inter-
national Conference on Computer Engineering Systems (ICCES), pp. 175–181,
dec 2015.

[76] S. Poddar and B. K. Patra, “Reduction in Execution Cost of k-Nearest
Neighbor Based Outlier Detection Method,” in Mathematics and Computing
(D. Ghosh, D. Giri, R. N. Mohapatra, E. Savas, K. Sakurai, and L. P. Singh,
eds.), (Singapore), pp. 53–60, Springer Singapore, 2018.

References 83

[77] Z. Xiong, R. Chen, Y. Zhang, and X. Zhang, “Multi-density dbscan algorithm
based on density levels partitioning,” JOURNALOF INFORMATION&COM-
PUTATIONAL SCIENCE, vol. 9, no. 10, pp. 2739–2749, 2012.

[78] D. Dheeru and E. Karra Taniskidou, “{UCI} Machine Learning Repository,”
2017.

[79] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B.Micenková, E. Schubert,
I. Assent, and M. E. Houle, “On the evaluation of unsupervised outlier detec-
tion: measures, datasets, and an empirical study,”DataMining and Knowledge
Discovery, pp. 1–37, 2015.

[80] V. L. Cao, M. Nicolau, and J. McDermott, “A Hybrid Autoencoder and Den-
sity Estimation Model for Anomaly Detection,” in Parallel Problem Solving
from Nature – PPSN XIV (J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez,
G. Ochoa, and B. Paechter, eds.), (Cham), pp. 717–726, Springer International
Publishing, 2016.

[81] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep learning for big
data,” Information Fusion, vol. 42, pp. 146–157, 2018.

[82] Y. Ma, P. Zhang, Y. Cao, and L. Guo, “Parallel auto-encoder for efficient out-
lier detection,” in Big Data, 2013 IEEE International Conference on, pp. 15–17,
IEEE, 2013.

[83] J. Sun, X. Wang, N. Xiong, and J. Shao, “Learning sparse representation
with variational auto-encoder for anomaly detection,” IEEE Access, vol. 6,
pp. 33353–33361, 2018.

[84] Z. Sun and H. Sun, “Stacked Denoising Autoencoder With Density-Grid
Based Clustering Method for Detecting Outlier of Wind Turbine Compo-
nents,” IEEE Access, vol. 7, pp. 13078–13091, 2019.

[85] D. Charte, F. Charte, S. García, M. J. del Jesus, and F. Herrera, “A practi-
cal tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models,
software and guidelines,” Information Fusion, vol. 44, pp. 78–96, 2018.

[86] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with non-
linear dimensionality reduction,” in Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis, p. 4, ACM, 2014.

[87] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula, “Autoencoder-
based feature learning for cyber security applications,” in 2017 International
Joint Conference on Neural Networks (IJCNN), pp. 3854–3861, IEEE, 2017.

[88] Y. Qi, Y. Wang, X. Zheng, and Z. Wu, “Robust feature learning by stacked au-
toencoder with maximum correntropy criterion,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6716–
6720, IEEE, 2014.

[89] R. C. Aygun and A. G. Yavuz, “Network anomaly detection with stochastically
improved autoencoder based models,” in 2017 IEEE 4th International Confer-
ence on Cyber Security and Cloud Computing (CSCloud), pp. 193–198, IEEE,
2017.

84 References

[90] M. Schreyer, T. Sattarov, D. Borth, A. Dengel, and B. Reimer, “Detection of
anomalies in large scale accounting data using deep autoencoder networks,”
arXiv preprint arXiv:1709.05254, 2017.

[91] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga, “Outlier detection with autoen-
coder ensembles,” in Proceedings of the 2017 SIAM International Conference on
Data Mining, pp. 90–98, SIAM, 2017.

[92] A. Miglani and N. Kumar, “Deep learning models for traffic flow prediction
in autonomous vehicles: A review, solutions, and challenges,” Vehicular Com-
munications, vol. 20, p. 100184, 2019.

[93] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backprop-
agation,” arXiv preprint arXiv:1409.7495, 2014.

[94] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-
dimensional and large-scale anomaly detection using a linear one-class svm
with deep learning,” Pattern Recognition, vol. 58, pp. 121 – 134, 2016.

[95] L. Bottou, “Stochastic Gradient Learning in Neural Networks,” Proceedings of
Neuro-Nımes, vol. 91, no. 8, p. 12, 1991.

[96] S. García, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of
botnet detection methods,” Computers & Security, vol. 45, pp. 100–123, 2014.

[97] S. Garg, K. Kaur, N. Kumar, and J. J. P. C. Rodrigues, “Hybrid Deep-Learning-
Based Anomaly Detection Scheme for Suspicious Flow Detection in SDN:
A Social Multimedia Perspective,” IEEE Transactions on Multimedia, vol. 21,
pp. 566–578, mar 2019.

[98] M. Tavallaee, E. Bagheri,W. Lu, andA. A. Ghorbani, “A detailed analysis of the
KDDCUP99data set,” in 2009 IEEE SymposiumonComputational Intelligence
for Security and Defense Applications, pp. 1–6, IEEE, 2009.

[99] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set),” in 2015 Mili-
tary Communications and Information Systems Conference (MilCIS), pp. 1–6,
nov 2015.

[100] J. Lian, W. Jia, M. Zareapoor, Y. Zheng, R. Luo, D. K. Jain, and N. Kumar,
“Deep-Learning-Based Small Surface Defect Detection via an Exaggerated
Local Variation-Based Generative Adversarial Network,” IEEE Transactions
on Industrial Informatics, vol. 16, pp. 1343–1351, feb 2020.

[101] F. Provost and T. Fawcett, “Analysis and Visualization of Classifier Perfor-
mance: Comparison Under Imprecise Class and Cost Distributions,” in Pro-
ceedings of the Third International Conference on Knowledge Discovery and
Data Mining, KDD’97, pp. 43–48, AAAI Press, 1997.

[102] D. S. Kerby, “The simple difference formula: An approach to teaching non-
parametric correlation,” Comprehensive Psychology, vol. 3, pp. 11—-IT, 2014.

[103] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Jour-
nal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

References 85

[104] M. A. A. Ghaffar, A. McKinstry, T. Maul, and T. T. Vu, “Data Augmenta-
tion Approaches for Satellite Image Super-Resolution,” ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, pp. 47–54,
2019.

[105] F. J. Moreno-Barea, J. M. Jerez, and L. Franco, “Improving classification accu-
racy using data augmentation on small data sets,” Expert Systems with Appli-
cations, vol. 161, p. 113696, 2020.

[106] G. Douzas and F. Bacao, “Effective data generation for imbalanced learning
using conditional generative adversarial networks,” Expert Systems with Ap-
plications, vol. 91, pp. 464–471, 2018.

[107] P. Domingos, “MetaCost: A General Method for Making Classifiers Cost-
sensitive,” in Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’99, (New York, NY, USA),
pp. 155–164, ACM, 1999.

[108] S. He, H., Bai, Y., Garcia, E., & Li, “ADASYN: Adaptive synthetic sampling
approach for imbalanced learning. In IEEE International Joint Conference on
Neural Networks, 2008,” IJCNN2008.(IEEEWorld Congress on Computational
Intelligence) (pp. 1322– 1328), no. 3, pp. 1322– 1328, 2008.

[109] J.-H. Oh, J. Y. Hong, and J.-G. Baek, “Oversampling method using outlier
detectable generative adversarial network,” Expert Systems with Applications,
vol. 133, pp. 1–8, 2019.

[110] S. K. Lim, Y. Loo, N. Tran, N. Cheung, G. Roig, and Y. Elovici, “DOP-
ING: Generative Data Augmentation for Unsupervised Anomaly Detection
with GAN,” in 2018 IEEE International Conference on Data Mining (ICDM),
pp. 1122–1127, nov 2018.

[111] S. Su, L. Xiao, Z. Zhang, F. Gu, L. Ruan, S. Li, Z. He, Z. Huo, B. Yan, H. Wang,
and S. Liu, “N2DLOF: A New Local Density-Based Outlier Detection Ap-
proach for Scattered Data,” in 2017 IEEE 19th International Conference on
High Performance Computing and Communications; IEEE 15th International
Conference on Smart City; IEEE 3rd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), pp. 458–465, IEEE, dec 2017.

[112] P. Boniol, M. Linardi, F. Roncallo, and T. Palpanas, “Automated anomaly de-
tection in large sequences,” in 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pp. 1834–1837, 2020.

[113] L. Xu, Y.-R. Yeh, Y.-J. Lee, and J. Li, “A hierarchical framework using approxi-
mated local outlier factor for efficient anomaly detection,” Procedia Computer
Science, vol. 19, pp. 1174 – 1181, 2013. The 4th International Conference
on Ambient Systems, Networks and Technologies (ANT 2013), the 3rd Inter-
national Conference on Sustainable Energy Information Technology (SEIT-
2013).

[114] X. Deng and L. Wang, “Modified kernel principal component analysis using
double-weighted local outlier factor and its application to nonlinear process
monitoring,” ISA Transactions, vol. 72, pp. 218 – 228, 2018.

86 References

[115] Y. Ma, H. Shi, H. Ma, and M. Wang, “Dynamic process monitoring using
adaptive local outlier factor,” Chemometrics and Intelligent Laboratory Sys-
tems, vol. 127, pp. 89 – 101, 2013.

[116] Y. Karadayi, M. Aydin, and A. Ög˘renci, “A hybrid deep learning framework
for unsupervised anomaly detection in multivariate spatio-temporal data,”
Applied Sciences (Switzerland), vol. 10, no. 15, 2020. cited By 0.

[117] D. O’Neill, A. Lensen, B. Xue, andM. Zhang, “Particle swarm optimisation for
feature selection and weighting in high-dimensional clustering,” in 2018 IEEE
Congress on Evolutionary Computation (CEC), pp. 1–8, 2018.

[118] P. Lv, Y. Yu, Y. Fan, X. Tang, and X. Tong, “Layer-constrained varia-
tional autoencoding kernel density estimation model for anomaly detection,”
Knowledge-Based Systems, vol. 196, p. 105753, 2020.

[119] J. An and S. Cho, “Variational autoencoder based anomaly detection using
reconstruction probability,” Special Lecture on IE, vol. 2, no. 1, pp. 1–18, 2015.

[120] H. Zenati, M. Romain, C. Foo, B. Lecouat, and V. Chandrasekhar, “Adver-
sarially learned anomaly detection,” in 2018 IEEE International Conference on
Data Mining (ICDM), pp. 727–736, Nov 2018.

[121] L. Vu, V. L. Cao, Q. U. Nguyen, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz,
“Learning latent representation for iot anomaly detection,” IEEE Transactions
on Cybernetics, pp. 1–14, 2020.

[122] A. Singh, R. Pokharel, and J. Principe, “The c-loss function for pattern classi-
fication,” Pattern Recognition, vol. 47, no. 1, pp. 441 – 453, 2014.

[123] S. S. Khan and M. G. Madden, “One-class classification: taxonomy of study
and review of techniques,” The Knowledge Engineering Review, vol. 29, no. 3,
p. 345–374, 2014.

[124] M. Al Olaimat, D. Lee, Y. Kim, J. Kim, and J. Kim, “A learning-based data aug-
mentation for network anomaly detection,” in 2020 29th International Confer-
ence on Computer Communications and Networks (ICCCN), pp. 1–10, 2020.

[125] A. Aldweesh, A. Derhab, and A. Z. Emam, “Deep learning approaches for
anomaly-based intrusion detection systems: A survey, taxonomy, and open
issues,” Knowledge-Based Systems, vol. 189, p. 105124, 2020.

[126] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten, “The weka data mining software: an update,” ACM SIGKDD explorations
newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[127] F. Pedregosa, G. Varoquaux, A. Gramfort, V.Michel, B.Thirion, O. Grisel, and
J. Vanderplas, ““scikit-learn: Machine learning in python.” journal of machine
learning research 12 (oct), 2825–2830,” 2011.

[128] N. Ketkar, “Introduction to keras,” in Deep learning with Python, pp. 97–111,
Springer, 2017.

Appendix A

Frameworks

This chapter lists all the frameworks that are used in this thesis.

A.1 Weka

Waikato Environment for Knowledge Analysis (Weka)1 [126] is an open-source data
mining software written in Java by the University of Waikato. It offers various ma-
chine learning algorithms and visualisation tools.

A.2 Scikit-learn

Scikit-learn (also known as sklearn)2 [127], is a free open-source software written
in Python that offers various machine learning methods, analytics and visulalization
tools. It uses different libraries such as NumPy, matplotlit and SciPy.

A.3 PyTorch

PyTorch3 [128] is a free open-source library with a Python interface (also comeswith
another available interface inC++) based onTorch librarywhich ismainly developed
by Facebook Inc.

1https://www.cs.waikato.ac.nz/ml/weka/index.html
2https://scikit-learn.org/
3https://pytorch.org/

88 Frameworks

A.4 Keras

Keras4 [128] is a free open-source library with a Python interface that is based on
TensorFlow. Keras provides various APIs for building deep neural networks such as
autoencoders.

A.5 Sample Code of the ProposedModels

A sample code for each proposed model is freely available on GitHub5.

4https://keras.io
5https://github.com/kasrababaei/anomaly-detection-models

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Anomalies
	1.2 Types of Anomalies
	1.2.1 Point Anomalies
	1.2.2 Contextual Anomalies
	1.2.3 Collective Anomalies

	1.3 Anomalies and Common Definition Issues
	1.3.1 Noise vs Anomalies
	1.3.2 Novelties vs Anomalies

	1.4 Motivation
	1.5 Problems
	1.6 Proposed Solutions
	1.6.1 Efficiency and Performance
	1.6.2 Insensitive to Anomalies
	1.6.3 Reproduction

	1.7 Overview

	2 Literature Review
	2.1 Anomaly Detection Approaches
	2.1.1 Supervised Learning
	2.1.2 Unsupervised Learning
	2.1.3 Semi-Supervised Learning
	2.1.4 Neural Networks and Recent Development in Anomaly Detection

	2.2 Challenges
	2.2.1 Curse of Dimensionality
	2.2.2 Imbalanced Data Distribution
	2.2.3 Availability of Data
	2.2.4 Concept Drift
	2.2.5 Noisy Data
	2.2.6 Misclassification Costs

	3 Prune-based Local Outlier Factor
	3.1 Introduction
	3.2 Local Outlier Factor
	3.2.1 Problems of LOF

	3.3 Proposed Solutions in the Literature
	3.4 Prune-based LOF
	3.4.1 Complexity Analysis

	3.5 Analysis of PLOF
	3.5.1 Datasets
	3.5.2 Evaluation Metric

	3.6 Results
	3.7 Summary

	4 AutoEncoders with Gradient Reversal
	4.1 Introduction
	4.2 AutoEncoders
	4.2.1 Problems of AE in Anomaly Detection
	4.2.2 Proposed Solutions in the Literature

	4.3 AutoEncoder with Gradient Reversal
	4.3.1 Complexity Analysis

	4.4 Analysis of AEGR
	4.4.1 Datasets
	4.4.2 Evaluation Metrics

	4.5 Results
	4.6 Summary

	5 Data Augmentation by AutoEncoders
	5.1 Introduction
	5.2 Data Augmentation
	5.2.1 Proposed Solutions in the Literature

	5.3 Data Augmentation by AutoEncoders
	5.3.1 Complexity Analysis

	5.4 Analysis of Data Augmentation by AutoEncoders
	5.4.1 Datasets
	5.4.2 Evaluation Metrics

	5.5 Result
	5.6 Summary

	6 General Discussion
	6.1 Introduction
	6.2 Methods
	6.3 Limitations and Future Work
	6.4 Summary

	7 Conclusion
	References
	Appendix A Frameworks
	A.1 Weka
	A.2 Scikit-learn
	A.3 PyTorch
	A.4 Keras
	A.5 Sample Code of the Proposed Models

