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Abstract
1. There is increasing availability and use of unstructured and semi- structured citi-

zen science data in biodiversity research and conservation. This expansion of a 
rich source of ‘big data’ has sparked numerous research directions, driving the 
development of analytical approaches that account for the complex observation 
processes in these datasets.

2. We review outstanding challenges in the analysis of citizen science data for 
biodiversity monitoring. For many of these challenges, the potential impact on 
ecological inference is unknown. Further research can document the impact and 
explore ways to address it. In addition to outlining research directions, describ-
ing these challenges may be useful in considering the design of future citizen 
science projects or additions to existing projects.

3. We outline challenges for biodiversity monitoring using citizen science data in 
four partially overlapping categories: challenges that arise as a result of (a) ob-
server behaviour; (b) data structures; (c) statistical models; and (d) communica-
tion. Potential solutions for these challenges are combinations of: (a) collecting 
additional data or metadata; (b) analytically combining different datasets; and (c) 
developing or refining statistical models.

4. While there has been important progress to develop methods that tackle most 
of these challenges, there remain substantial gains in biodiversity monitoring 
and subsequent conservation actions that we believe will be possible by further 
research and development in these areas. The degree of challenge and oppor-
tunity that each of these presents varies substantially across different datasets, 
taxa and ecological questions. In some cases, a route forward to address these 
challenges is clear, while in other cases there is more scope for exploration and 
creativity.

K E Y W O R D S
citizen science, community science, detectability, multi- species models, observation process, 
occupancy models, presence- only, statistical ecology
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1  |  INTRODUC TION

Monitoring biodiversity is a critical step in understanding the status 
and dynamics of the natural world. Citizen science or community 
science (CS) data, collected by volunteers, are often used to meet 
this objective (Dickinson et al., 2012; Pocock et al., 2018; Theobald 
et al., 2015). For decades, volunteer observers have contributed to 
extensive ecological monitoring through designed surveys of plants, 
butterflies, coral reefs, birds and many other taxa (Delany, 2005; Lau 
et al., 2019; Pescott et al., 2015; van Swaay et al., 2019). However, 
the recent rapid growth in CS data is largely due to observers partic-
ipating in less structured projects, without fixed protocols, require-
ments for observer knowledge, or long- term observer commitment 
(Pocock et al., 2017). This vast growth of CS data can potentially 
contribute substantially to biodiversity monitoring and is potentially 
transformational for monitoring biodiversity, particularly in parts of 
the world with little or no formal data collection (SoIB, 2020).

Less structured CS projects attract more observers and have 
more data, but present several analytical challenges in order to de-
rive robust ecological knowledge from the data. For example, bias, 
variation and error are all more prevalent in less structured CS data 
(Dickinson et al., 2010; Isaac et al., 2014; Kelling, Fink, et al., 2015). 
To obtain accurate ecological knowledge from these data, anal-
yses must address the challenges inherent in the data (Altwegg & 
Nichols, 2019; Johnston et al., 2021). Despite important analytical 
developments, there remain a number of outstanding challenges in 
the analysis of CS data. The large and growing volume of data pro-
vides motivation to address these challenges and to further unlock 
the power of CS data to increase our ecological understanding.

We classify the analytical challenges with CS data within four 
categories (Table 1). These categories group challenges that arise as 
a result of(a)observer behaviour; (b) data structures; (c) statistical 
models; and (d) communication. The categories are not indepen-
dent and many of the challenges within this paper have elements of 
more than one category. There is a need to understand the degree 
to which all of these challenges can impact ecological conclusions, 

which varies by taxon, location, time and ecological question. The 
solutions to most of these challenges fall into three groups: (a) col-
lecting additional data or metadata; (b) analytically combining differ-
ent datasets; and (c) developing or refining statistical models. Many 
of the challenges outlined here can be addressed with a combination 
of these solutions and often there is a trade- off between the solu-
tions; for example, additional data or metadata may reduce the need 
for novelty in analytical methods.

Here we summarise our perspectives of the key analytical chal-
lenges that could be addressed with CS data. The list of these chal-
lenges may be useful to inform the design of new CS projects, to 
target the collection of additional data, or to target the development 
of new statistical or analytical methods. We believe that progress 
towards addressing each of these challenges will help to leverage the 
most robust ecological knowledge from CS data that are available 
now and in the future.

2  |  BIODIVERSIT Y C S DATA

Citizen science (increasingly also called ‘community science’) is a 
broad term which includes many different types of data and can be 
challenging to define (Haklay et al., 2021). Here we define citizen 
science as ‘active engagement of the general public in scientific re-
search tasks’ (Vohland et al., 2021). The scope of citizen science data 
in ecology includes a broad suite of data types. This includes data 
from structured protocols, and observers collecting acoustic record-
ings (Newson et al., 2015; Rowley et al., 2019), eDNA samples (Biggs 
et al., 2015), or identifying species in camera trap photographs (Clare 
et al., 2019). Here we focus on a narrower range of CS data; direct 
species observations from unstructured and semi- structured pro-
tocols, where observers choose where, when, how and whether to 
record different species. For brevity, we refer to these data as ‘CS 
data’ throughout this manuscript.

CS data with direct species observations are obtained from a va-
riety of project types. Species observations are generally collected 
in three different ways. First, individual species observations con-
tain information on species presence, and together they produce 
presence- only data. Second, incomplete lists contain information on 
a list of species observed during an observation period. However, 
incomplete lists only include species that an observer chose to re-
cord. Third, complete lists contain information on all species that 
were detected and identified by an observer during an observation 
period. Complete lists enable inference of non- detections, which 
are particularly valuable for statistical analysis. Both types of lists 
can additionally have associated metadata on the observation pro-
cess, creating semi- structured CS data (Boersch- Supan et al., 2019; 
Kelling et al., 2019).

A number of data characteristics can exacerbate the chal-
lenges outlined below. In particular, presence- only data are partic-
ularly difficult to analyse, because the data structure confounds 
the ecological and observation processes (Elith et al., 2011). The 
main hurdle when analysing presence- only data is inferring where 

TA B L E  1  List of challenges for the use of citizen science data 
for monitoring biodiversity. There are four broad categories and 10 
individual challenges

Category Challenge

Observer behaviour Spatial bias

Observer differences

Reporting preferences

False positive errors

Data structures Validation

Detectability

Statistical models Multi- species models

Data integration

Computational 
limitations

Communication Communication
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effort was expended but a species was not reported, and a number 
of different modelling approaches have been proposed to address 
this (Chefaoui & Lobo, 2008; Hill, 2012; Phillips et al., 2009; van 
Strien et al., 2013). However, all these approaches make strong as-
sumptions (Hastie & Fithian, 2013). Presence- only data compound 
the effect of all the challenges listed in this paper. However, this is 
also the most abundant CS data type, so resolving the challenges 
below for presence- only data would vastly increase the potential 
impact. Given the greater complications of these data, we do not 
recommend degrading list data to presence- only data for analysis 
(Johnston et al., 2021). Other data characteristics that can also 
compound the challenges below are insufficient data or insuffi-
cient metadata to account for heterogeneity in the observation 
process.

3  |  OBSERVER BEHAVIOUR

The unstructured and semi- structured CS data described above have 
an inherent dependence on the choices of participants. The choices 
and behaviours of individual and collective observers can introduce 
bias, error and variation, into the resultant datasets. The challenges 
in this section can be addressed by any of the three solution catego-
ries above, with an emphasis on collecting additional data.

3.1  |  Spatial bias

In the CS data that are the focus of this paper, observers select 
where they want to record species, leading to strong spatial bias in 
the data. Observers may select locations for their accessibility, such 
as those close to home or near to roads (Dennis & Thomas, 2000; 
Kadmon et al., 2004; Mair & Reute, 2016; Tiago, Ceia- Hasse, 
et al., 2017) or for ecological reasons, for example selecting loca-
tions with protected areas, high species diversity, or particularly rare 
species (Boakes et al., 2010; Botts et al., 2011; Hijmans et al., 2000; 
Tulloch et al., 2013). Often, the decision about where to record spe-
cies may be a trade- off between these two components (Johnston 
et al., 2020; Kolstoe & Cameron, 2017). Due to the strong influence 
of observer choice, the spatial bias in CS data is greater than in de-
signed surveys and conventional ecological data.

Spatial bias can lead to incorrect inference because the sampled 
population is not representative of the target population (Zhang & 
Zhu, 2018). This is particularly a challenge if the drivers of observer 
site selection are aligned with the ecological process of interest, and 
if there are no variables that describe this preference in the model 
(Chakraborty et al., 2011; Diggle et al., 2010). Spatial bias may also 
present a greater challenge if certain habitats are represented very 
sparsely in a dataset or not at all (Johnston et al., 2020). A further 
complication is that spatial bias itself can also be time- varying (e.g. 
Hochachka et al., 2021), which can confound the measurement of 
temporally varying processes, such as phenology or population 
trends.

There are several ways to mitigate or accommodate spatial bias 
in ecological analyses. When analysing presence- only data, it is im-
portant to explicitly consider the spatial bias in the observation pro-
cess (Beck et al., 2014; Chakraborty et al., 2011; Fithian et al., 2015; 
Phillips et al., 2009). When analysing list data, spatial bias is less 
critical, but can still create erroneous ecological conclusions (Boakes 
et al., 2010; Yang et al., 2013). To reduce spatial bias with list data, 
analysts can conduct spatial subsampling before analysis (Araújo & 
Guisan, 2006; Kramer- Schadt et al., 2013). However, in many situa-
tions, spatial subsampling has had only a negligible impact on ecolog-
ical conclusions (Beck et al., 2014; Geldmann et al., 2016; Kadmon 
et al., 2004) and it can also lead to problems of class imbalance for 
rare species (Steen et al., 2021). Alternatively, the sampling intensity 
can be used as a propensity weight in analyses, which may only have 
a large effect where data density is very low (Johnston et al., 2020). 
Another framework of analyses jointly models the spatial bias in 
survey locations and the ecological response (Conn et al., 2017; 
Diggle et al., 2010; Pati et al., 2011), however, these model- based 
approaches can limit the analysis to simpler statistical models for the 
underlying processes.

Future work could develop statistical models to further separate 
the complex and time- varying spatial sampling bias from the ecolog-
ical process, and to account for its impact on ecological estimates 
and associated uncertainty. A potential direction of solutions is data 
integration of CS data with structured data which may help to ad-
dress the issues of spatial bias (Gelfand & Shirota, 2019; Robinson 
et al., 2020; Steger et al., 2017). Another direction of work is the the-
oretical framework and implementation for incentives for observers 
to visit different sites (Callaghan et al., 2019; Xue et al., 2016). This 
can be treated as an experimental change in bias, which is useful 
for statistical calibration of the bias and for better understanding of 
observer behaviour.

3.2  |  Observer differences

Observers in many CS projects vary hugely in their skills, experience, 
behaviour and equipment, leading to large differences in observers' 
skills for detection and identification of different species (Moyer- 
Horner et al., 2012; Sauer et al., 1994; Sunde & Jesson, 2013). 
Many CS projects have also demonstrated that individual observ-
ers learn to identify more species as they continue to participate 
(Jiguet, 2009; Kelling, Johnston, et al., 2015; Kendall et al., 1996; 
Sharma et al., 2019). There are also changes over time in the aggre-
gated pool of observers; as CS projects expand, they often seek to 
attract new participants who may have less experience than existing 
participants.

As a demonstration of elements of this challenge, we ex-
plored observer differences within a subset of eBird data (Sullivan 
et al., 2014). We selected eBird data from New York state collected 
each May, from 2002 (when the eBird project started) to 2020. We 
selected only complete checklists, reducing the impact of observer 
preferences. For computational efficiency, we randomly selected 
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a subset of 2,000 observers from this dataset. We wanted to un-
derstand how the average number of species recorded per hour has 
changed over this 19- year period. We first modelled the number of 
species recorded on a checklist in a Poisson GLM with three contin-
uous covariates: year, duration and square root of duration (Model 
1). Second, to track whether these changes were also evident within 
individuals, we added an observer random effect to Model 1 (creat-
ing Model 2).

Model 1 estimated that over the whole population of observers, 
later years were associated with on average fewer species recorded 
per hour (Figure 1a). Model 2 estimated that, for individual observ-
ers, later years were associated with on average more species re-
corded per hour (Figure 1a). These opposing patterns arise because 
observers that join as the project expands generally record fewer 
species per hour (Figure 1b).

Previous work shows that accounting for variation in observ-
ers improves ecological inference of species distributions (Erickson 
& Smith, 2021; Johnston et al., 2018). However, temporal changes 
within observers and within the observer pool present a particular 
challenge for inferring ecological changes over time from CS data, 
for example when estimating shifting species distributions, tracking 
species phenology or estimating population trends.

Most potential solutions to this challenge require identification 
of individual observers in the data, which could be through a unique 
code rather than a name. However, in this line of research it is im-
perative to consider that CS projects rely on the trust and voluntary 

contribution of observers, many of whom may not want their indi-
vidual data assessed (Anhalt- Depies et al., 2019; Mahr et al., 2018). 
Additionally, some observers may adjust their ways of observing in 
order to ‘improve’ their data, which could create additional temporal 
bias. It is critical that further work on observer variability works with 
project coordinators and carefully considers the impact on the anal-
yses, the project and the observers themselves.

3.3  |  Reporting preferences

In many CS projects, observers select which species to record, ei-
ther with presence- only data or incomplete lists. Even when using 
complete lists, observers may choose to start a list because they de-
tected an interesting species. When observers report species pref-
erentially, the preference of the observer becomes an additional part 
of the observation process, which can further confound the ecologi-
cal and observation processes. Further understanding of observer 
preferences would enable a huge volume of presence- only or incom-
plete list CS data to be useful for ecological analysis.

Observers in CS projects may more readily record some species, 
due to preference, interest or their ability to detect and identify 
the species. For example, large species are recorded proportion-
ally more often than small species in some CS datasets (Callaghan 
et al., 2021; Steger et al., 2017; Stoudt et al., 2021). Rare species 
may also be more interesting to CS observers, who travel further 

F I G U R E  1  Relationships between eBird observers and average number of species recorded per hour in New York state in May from 2002 
to 2020. (a) Population- level (Model 1) and individual- level (Model 2) expected species per 1 hr complete checklists in each year. Population- 
level estimate is from a GLM and individual level estimate is from a GLM with random intercept for observer. Confidence limits are shown 
only for the fixed- effects components of the model. (b) Observer random effects from the individual model (Model 2) plotted against the 
first year that observers submitted data in New York state in May
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to observe them (Boakes et al., 2010; Kolstoe & Cameron, 2017; 
Tulloch et al., 2013), although the degree of interest in rare species 
varies among observers (August et al., 2020).

As a demonstration of this challenge, we explored rarity and ob-
server preference within a subset of eBird data (Sullivan et al., 2014). 
We selected eBird data from New York state and years 2010– 2020. 
For each species, we calculated the proportions of complete and 
incomplete lists on which it was reported. We calculated the ratio 
of incomplete to complete list proportions as a measure of prefer-
ence and, as expected, found higher preference for rarer species 
(Figure 2). This demonstrates that the inter- specific prevalence of 
species on incomplete lists or in presence- only data is not a reflec-
tion of prevalence on complete lists, with one dimension of this bias 
being regional species rarity.

This challenge is particularly problematic when comparing differ-
ent species, as the relative frequency of each species in the data is a 
function of both the species prevalence and of the reporting prefer-
ence (Steger et al., 2017). However, additional challenges can arise 
if species preferences vary temporally and spatially. For example, if 
interest in species changes over time (Schuetz & Johnston, 2021) 
or if species prevalence changes and reporting preferences change 
in response (Figure 2; Boersch- Supan et al., 2019). Development 
of statistical methods that estimate spatio- temporal variation in 
preferential reporting would be extremely useful for analysis of 
presence- only or incomplete list CS data.

3.4  |  False positive error

False positive errors occur when a species that was not actually 
present is reported. Although ecological analyses now routinely 
account for false negative errors (MacKenzie et al., 2002; Royle & 
Link, 2006), false positive errors present an additional challenge that 
is not typically accommodated. The rate of false positives in data 
may increase as beginner naturalists increasingly contribute to CS 
surveys (Farmer et al., 2012; Fitzpatrick et al., 2009).

False positive errors regularly occur within data of species ob-
servations (Chambert et al., 2015; Cruickshank et al., 2019; Gardiner 
et al., 2012; Kéry & Royle, 2021). Even low rates of false positive er-
rors can lead to considerable bias in the estimation of occupancy rates 
(Altwegg & Nichols, 2019; Miller et al., 2011; Rempel et al., 2019), since 
all sites with at least one positive observation are classified as being 
occupied by the species. The increasing volume of CS data and many 
repeat surveys in single locations can lead to more consequential im-
pacts of false positive records (Kéry & Royle, 2021) and substantially 
biased inference of species distributions (Cruickshank et al., 2019).

Statistical models that account for false positive observation 
error have mostly been developed for occupancy data (Chambert 
et al., 2015; Royle & Link, 2006), and recently environmental DNA data 
(Griffin et al., 2020). Some research has also focussed on modelling the 
probability that a species is mistaken for another, which is particularly 
relevant in multi- species models (Conn et al., 2013, 2014; section 5.1 
multi- species models). However, accounting for false positive errors 
can lead to model identifiability issues, and consequently most mod-
els that account for false positive error rely on additional data without 
false positives. To avoid this requirement of additional data, Griffin 
et al. (2020) employed informative prior distributions within a Bayesian 
framework to overcome this identifiability issue. Clearly, additional 
data are not always available, especially for large- scale projects, and 
hence statistical solutions, such as this, provide a unifying framework 
for routinely accounting for both types of error in CS data. A com-
plementary direction to partially solve this challenge, is for projects 
to validate species observations or enable reporting observations at a 
higher taxonomic level than species (section 4.1 validation).

4  |  DATA STRUC TURES

The opportunistic nature of much of the data collected for CS pro-
jects creates an unstructured and heterogeneous set of observa-
tions. This creates challenges for data validation and estimating 
detectability. As with section 3, the challenges in this section can 
be addressed by any of the three solution categories, however, in 
this category of challenges there is an emphasis on combining data.

4.1  |  Validation

Validation is a critical component of all analytical projects, but some 
elements of validation are particularly relevant when dealing with 

F I G U R E  2  For each species in New York state, we show the 
average species prevalence plotted against the ratio of incomplete 
to complete list proportions. Each dot represents a single species. 
The y- axis can be interpreted as an index of species preference. 
Species that are rarer have higher preference. The line and shaded 
polygon are a fitted GAM with maximum four degrees of freedom 
and associated 95% confidence intervals
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CS data. Here, we define three stages of validation that are relevant 
for CS data; (a) validation of data; (b) validation of statistical models; 
and (c) validation of results.

First, validating that the data are correct can be a particular chal-
lenge in CS data (Austen et al., 2016; Crall et al., 2011). There are 
several elements of a species observation that could be incorrectly 
recorded (e.g. location; Balázs et al., 2021), but here we focus on 
validation of the species or other taxonomic identification (Austen 
et al., 2016). Validation can either happen before or during data 
analysis. For example, validating before analysis, some projects only 
share confirmed data, such as eBird or Project Feederwatch, which 
have automatic filters followed by expert reviews of unusual obser-
vations (Bonter & Cooper, 2012; Kelling, Fink, et al., 2015) or iNat-
uralist that denotes as ‘research grade’ observations those which 
have consensus identification (Di Cecco et al., 2021). One potential 
solution to aid data validation before analysis is collecting additional 
data to validate the identification, for example photos or recordings 
(Terry et al., 2020). However, there are also analytical approaches 
to validating data, for example estimating the error rate of misiden-
tification (section 3.4 false positives; Chambert et al., 2015; Conn 
et al., 2013). A hybrid between these two approaches uses a pre- 
analysis estimate of uncertainty, which is included in subsequent 
statistical models. A pre- analysis estimate of identification uncer-
tainty is available from many automatic species identification tools 
(Newson et al., 2015; van Horn et al., 2018), or different taxonomic 
levels of identification by observers (Johnston et al., 2015). These 
avenues of methodological development for observational data are 
relatively new and there is scope for much future work.

Second, validating the statistical models can present a chal-
lenge. Often, internal model validation is conducted with subsets 
of the same data that are removed before model fitting. However, 
the subset of the CS data used during the validation stage usually 
has the same biases and challenges as the whole dataset (Matutini 
et al., 2021). For example it is difficult to validate the spatial pat-
terns produced from biased data when the validation data are also 
spatially biased in the same way. Carefully selecting subsets of the 
data that evaluate the model performance for the target ecological 
inference with the least bias is an important element of analysing CS 
data (Valavi et al., 2018). Validating models is also possible using sim-
ulations, where the simulated data replicate realistic characteristics 
of both the ecological and observation processes (Zurell et al., 2010). 
In general, the models that analytically separate the ecological and 
observation processes (e.g. occupancy models), may be the most dif-
ficult to validate. Further investigations on the impact of validation 
data selection will be a valuable future avenue of research.

Third, validating the results of the statistical models with external 
data can be particularly valuable. Using independent data can pro-
vide a robust validation of the target ecological inference (Matutini 
et al., 2021), however, this requires good quality structured data 
from the same species, locations and times, which are often lacking 
(Bayraktarov et al., 2019). Common examples of this type of vali-
dation include comparing species distributions (e.g. Tiago, Pereira, 
& Capinha, 2017) or species population trends (e.g. Boersch- Supan 

et al., 2019). There is also a growing opportunity to validate the re-
sults from analyses of very different data structures. For example, 
comparing results from CS data to those from acoustic telemetry 
(Vianna et al., 2014) or tracking data (Heim et al., 2020). Model re-
sults can also be assessed by experts, providing an alternative per-
spective on their quality. Alignment between results from analyses 
of CS data and other datasets has been highly variable across spe-
cies and regions, so care is required when extrapolating inference 
from these studies in limited geographic regions to other parts of the 
world or taxonomic groups.

4.2  |  Detectability

All surveys, including structured surveys, suffer from imperfect 
detectability (Mazerolle et al., 2007; Miller et al., 2011; Wintle 
et al., 2005). However, two separate definitions of detectability 
are commonly used in ecology. The first is species detectability; 
probability of detecting a species given that it occurs in a location. 
This is estimated in statistical models that estimate the probability 
of species occurrence, for example occupancy models (MacKenzie 
et al., 2002). The second definition is individual detectability; 
probability of detecting an individual given that it is present in a 
location and available for detection (Buckland et al., 2015). This is 
used in models that estimate species abundance or density. Species 
density is a more sensitive metric for monitoring biodiversity, 
because density can change when species occupancy does not 
change. To be able to estimate species density, we need estimates of 
individual detectability, however, estimates of species detectability 
are much more common.

Estimates of both species and individual detectability typically 
require a more complex and structured data- collection proto-
col than exists with CS data (Buckland et al., 2015; MacKenzie & 
Royle, 2005). However, in some cases, CS data can be manipulated 
post hoc to approximate the data required to estimate species de-
tectability, for example, by using temporally close observations from 
the same location as repeat visits in an occupancy model. However, 
where these repeat visits are available, they are often conducted 
by different observers (section 3.2 observer differences), which 
adds complexity to the observation process between repeat visits. 
Another approach to constructing repeat visits is space- for- time 
substitution, using spatial replication as a proxy for temporal replica-
tion (Srivathsa et al., 2018), although this approach has assumptions 
that may not hold (Kendall & White, 2009).

Observations of species counts can provide additional informa-
tion to estimate species detectability (Royle & Nichols, 2003) or in-
dividual detectability (Royle, 2004). However, these approaches also 
require strong assumptions that may not be met by CS data (Barker 
et al., 2018; Dennis et al., 2015; Kéry, 2018). An additional chal-
lenge encountered when analysing CS data with these methods is 
that there is typically not a well- defined sampling unit, so estimates 
of detectability and subsequent occupancy or abundance are not 
within a known area.
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Population size is an important metric in ecology and conser-
vation as it can be linked to a species' propensity to maintain its 
population (O'Grady et al., 2004). Development of tools to estimate 
individual detectability from CS data would enable estimates of 
density or abundance. Data integration may provide opportunities 
to estimate detectability with CS data, for example following work 
combining different protocols for single- observation point counts 
(Lele et al., 2012; Solymos et al., 2012). Alternatively, collecting addi-
tional metadata would allow detectability to be formally estimated, 
which would be valuable even if these metadata were collected only 
for a subset of locations and times. Future directions could explore 
creative ways to estimate both individual and species detectability 
from various types of CS data.

5  |  STATISTIC AL MODEL S

The high degree of bias, error and variation in CS data are chal-
lenges for the statistical models used for analysis. Here we do 
not advocate for a particular modelling approach, but list a few 
classes of models or modelling frameworks that hold huge poten-
tial for the analysis of CS data. Overall, the challenges in this sec-
tion will be largely addressed by developing and refining analytical 
approaches.

5.1  |  Multi- species models

Multi- species models estimate the distributions of several species 
in the same model, enabling sharing of information between species 
and inference of species co- occurrence or interactions. These mod-
els have been developed through two key directions; joint species 
distribution models (jSDMs; Ovaskainen, 2020) and multi- species 
occupancy models (MSOMs; Devarajan et al., 2020). Broadly, jSDMs 
do not account for observation error but allow for a flexible explana-
tion of community composition, accounting for species' environmen-
tal preferences, as well as interactions between species, and spatial 
autocorrelation (Warton et al., 2015). On the other hand, MSOMs 
account for observation error by estimating detectability, but gener-
ally assume simpler models for community structure. The two fields 
are slowly merging, with new models being proposed that account 
for both observation error and correlation between species (Tobler 
et al., 2019), but more work is needed in this area to fully leverage CS 
data for monitoring biodiversity on a large scale.

Joint species distribution models (jSDMs) can be fitted to fairly 
large datasets, but without accounting for the observation process, 
results can be unreliable (Guillera- Arroita, 2017; Guillera- Arroita 
et al., 2014). Additionally, there is an ongoing debate about the in-
terpretation of the inferred species correlation matrix and its use 
when predicting species distributions (Poggiato et al., 2021). Finally, 
fairly strong assumptions need to be made on how environmental 
responses and observation processes vary between species in both 
jSDMs and in MSOMs.

The main challenge, especially as the number of species grows, 
is to build statistical models that identify species with shared envi-
ronmental preferences and/or observation processes. For example, 
recent novel approaches group species according to their covariate 
effects (Swallow et al., 2016) or use a deep neural network for fea-
ture extraction (Chen et al., 2016). More flexible and computation-
ally efficient multi- species models of these types are needed. These 
models need to provide reliable inference on community structure, 
to quantify the effect of landscape characteristics on community 
composition, account for observation error, and fit to large CS 
datasets.

5.2  |  Data integration

Data integration provides opportunities to maximise the use of avail-
able data sources with the goal of improving accuracy and precision 
of parameter estimates. With growth in not only the volume of CS 
data but also in the data types collected, statistical models that com-
bine differently structured data are increasingly of interest. Various 
methods for combining information from multiple datasets exist 
(Besbeas et al., 2002; Fletcher Jr. et al., 2019), but here we focus on 
formal integration using joint likelihoods to estimate shared param-
eters. Integrated modelling is well- recognised in ecology (Besbeas 
et al., 2002; Besbeas & Morgan, 2019; Fletcher Jr. et al., 2019; 
Schaub & Abadi, 2011), historically with an emphasis on combining 
demographic data and structured count data (Schaub & Kéry, 2021; 
Zipkin & Saunders, 2018), but with a more recent focus on integrat-
ing big CS datasets (Isaac et al., 2020; Miller, Pacifici, et al., 2019). 
Applications of integrated models with CS data typically seek to 
benefit from combining the depth of smaller, structured datasets 
and the breadth of larger semi-  or unstructured datasets (Robinson 
et al., 2020; Steger et al., 2017).

Several of the integrated modelling approaches with CS data in-
volve combining presence- only data with list data, enabling inference 
of species non- detections. This data combination is quickly growing 
in application in species distributions (Fletcher Jr. et al., 2019; Miller, 
Pacifici, et al., 2019). However, simulation- based studies have shown 
that poor estimates can be obtained when biases in presence- only 
data are unknown and hence not accounted for (Ahmad Suhaimi 
et al., 2021; Simmonds et al., 2020). When estimating population 
trends, data integration of large CS list data and structured data can 
reduce bias (Boersch- Supan & Robinson, 2021; Hertzog et al., 2021; 
Pagel et al., 2014).

Integrated statistical models may have an implicit assumption 
that larger datasets will carry more weight and contribute more to 
the joint likelihood (Kéry & Royle, 2021). However, this can lead to 
inference that is dominated by the larger, potentially biased, data 
source, thus overwhelming the smaller but informative dataset. 
Weighting of likelihoods provides one possibility to address this 
issue (Fletcher Jr. et al., 2019).

There is a need for greater understanding of where integrated 
modelling is most suitable and beneficial for CS data. Integrated 
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modelling with large CS datasets has potential costs, as well as out-
standing questions (Isaac et al., 2020). For example, computational 
challenges for large CS data (section 5.3 computational limitations) 
are amplified for integrated models, thus hindering wide- scale use 
and presenting barriers for model development. Validation of results 
is an additional challenge for integrated models (section 4.1 valida-
tion). However, integrated models are an important direction for 
improved analysis (Kéry & Royle, 2021) and hence more research 
is needed on integrated models for CS data and to consider where 
additional data collection may benefit the analysis.

5.3  |  Computational limitations

CS data present many ‘big data’ problems; storing and modelling 
large datasets, that are also sparse and messy (Dobson et al., 2020; 
Hampton et al., 2013; Kelling, Fink, et al., 2015). With more data 
and increasingly complex models, ecological analyses require 
more computing power and more efficient algorithms. This is par-
ticularly the case within a Bayesian framework, where the choice 
of algorithms can have considerable impact on computation times 
(Betancourt, 2017; Robert et al., 2018).

As CS model complexity and data volumes increase, different 
model- fitting methods may be necessary to enable convergence. For 
example, the Polya- Gamma (PG) data- augmentation scheme for lo-
gistic regression models (Polson et al., 2013) is orders of magnitude 
more efficient than standard Metropolis– Hastings algorithms for 
occupancy models with a logit- link function (Clark & Altwegg, 2019). 
Similarly, several advancements have been made for probit- link oc-
cupancy models accounting for spatial and spatio- temporal autocor-
relation using efficient algorithms (Hepler & Erhardt, 2021; Johnson 
et al., 2013; Mohankumar & Hefley, 2022). Finally, implementing the 
PG scheme within a variational Bayes framework (Diana et al., 2021) 
leads to additional and substantial savings in computation time. 
Algorithms of this type could be more widely employed and imple-
mented to enable fitting complex CS models to large datasets.

In addition to selection of algorithms, variable selection methods 
can also have substantial impacts on computation time in Bayesian 
models. Efficient variable selection allows for identification of im-
portant predictors for all model parameters even in complex mod-
els (Griffin et al., 2020; Wan & Griffin, 2021). Variable selection in 
CS models is key for our understanding of the drivers of ecological 
processes and hence efficient approaches could improve ecological 
inference from CS data (Morin et al., 2020; Swallow et al., 2016).

Integrated Laplace approximations are another statistical tool 
that enables efficient fitting of complex Bayesian models to large 
datasets. For example, the INLA framework can efficiently fit com-
plex spatio- temporal models (Krainski et al., 2018; Rue et al., 2017) 
and inlabru is a recent R package that has been specifically devel-
oped with ecological data in mind and hence for cases where detec-
tion probability is unknown (Bachl et al., 2019). Future work could 
consider more complex models for heterogeneous detectability and 

models for time- varying processes that underlie species presence in 
space, such as phenology.

There will always be a trade- off between model complexity and 
computational feasibility. Therefore, to enable continued fitting 
of complex models to growing CS data, ecological modellers and 
statisticians should aim to develop and implement more efficient 
algorithms, learning from the latest developments in mainstream 
statistics.

6  |  COMMUNIC ATION

Communication is critical in many elements of CS. These include 
communication of results with observers (de Vries et al., 2019), 
communication between analysts and project organisers to refine 
data collection (Kühl et al., 2020), and communication of analytical 
approaches from statisticians to a wider group of ecologists. All of 
these types of communication are essential for solutions to the chal-
lenges that require either additional data collection, or dissemination 
of new statistical methods, and here we focus on the last of these.

For CS data to reach their potential in contributing to biodiver-
sity modelling, robust appropriate statistical methods need to move 
beyond the reach of technical groups. The increasing move towards 
open science is useful for code availability (Beck et al., 2020; Powers 
& Hampton, 2019), but complex models and code alone may not 
be accessible to ecologists. Making methods truly accessible re-
quires developing software, workshops, tutorials and guidebooks 
(Cooch & White, 2017; Miller, Rexstad, et al., 2019; Strimas- Mackey 
et al., 2020), which typically requires funding and incentives spe-
cifically for this dissemination. Longer term, there is also a need to 
provide more quantitative training for ecologists (Cooke et al., 2021; 
Ellison & Dennis, 2010; Koenig, 2011), to align with the more com-
plex and sophisticated analytical approaches increasingly used for 
big data in ecology (Hampton et al., 2013; McCallen et al., 2019; 
Touchon & McCoy, 2016). Citizen science democratises data col-
lection, and accessible communication of novel methods could also 
democratise analysis of these data by enabling CS data to reach their 
broadest potential.

7  |  CONCLUSIONS

Opportunistic and semi- structured CS data will play an increasingly 
important role in the future of biodiversity monitoring, yet there 
are many remaining challenges with CS data. Continued use of this 
‘big data’ resource for ecology and conservation without due care 
and attention to these challenges, can affect ecological conclusions 
and lead to poor conservation decisions (Clarke, 2016; Dobson 
et al., 2020; Harry & Braccini, 2021; La Sorte et al., 2018). Analytical 
innovation and creativity in all of the areas listed above would lead 
to improved ecological inference and the ability to use more of the 
large and diverse pool of CS data.
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We have not attempted to rank the challenges according to their 
importance or level of urgency because these will depend on both 
the questions being asked and the type of data. In some cases, we 
have expressed our views about possible directions for solving the 
problem but often there will be a trade- off in these two elements 
of advance; improved data reduce the requirement for new models, 
whereas new models may be more critical in cases where data can-
not be improved or augmented.

Finally, we have focused on the types of data that are currently 
widely collected by direct observation of the species, but increas-
ingly, data collection uses new technologies, for example eDNA, 
telemetry, camera traps or acoustics. We anticipate that they will 
become increasingly adopted and intertwined with more conven-
tional CS data (Davies et al., 2012; Newson et al., 2015; Swanson 
et al., 2016; Terry et al., 2020). These new technologies will likely 
help to solve some challenges, but increase the magnitude of other 
challenges.

CS data have tremendous potential to monitor and track biodi-
versity on a global scale. Despite the inherent challenges of deal-
ing with such data as outlined in this paper, with good statistical 
models, refinements to project data collection, and accessible an-
alytical tools, CS data can be a powerful tool for sustainable mon-
itoring of biodiversity on a global scale (Bush et al., 2017; Pocock 
et al., 2018).
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