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Abstract
Purpose: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which
may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We
used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole
breast external beam radiation therapy in the prospective multicenter REQUITE cohort study.
Methods and Materials: Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we
trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast
desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were
taken forward to cost-sensitive learning optimisation.
Results: One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation
facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the “hero” model was the
cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114
predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the
validation cohort.
Conclusions: ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute
desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML
prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or
even a change in treatment plan.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Introduction
Radiation therapy is recommended for all patients with
breast cancer who have a local excision and after mastectomy
in high-risk patients.1 Over 70% of patients with breast can-
cer receive radiation therapy, which reduces local recurrence
rates and increases long-term survival.2 As survival from
breast cancer continues to improve,3 quality of life and survi-
vorship have become increasingly important research priori-
ties.4 Risk of radiation toxicity can be estimated from
empirical dosimetric models based on the dose to the target
organ and surrounding tissue.5 However, there is consider-
able variation between individual patient normal tissue reac-
tion to radiation therapy and the extent to which they
develop toxicity.6 Acute toxicity (<90 days from starting
treatment) includes breast erythema and desquamation (skin
loss).7 In aminority of patients, desquamation can cause sub-
stantial patientmorbidity, worsen the cosmetic outcome after
surgery, and affect quality of life.8 It can even result in the
interruption of radiation therapy or a dose reduction, poten-
tially increasing the risk of local recurrence.

Several studies have examined the association between
acute breast radiation toxicity and clinical or treatment risk
factors.9-18 Nevertheless, statistical models have had limited
success to date in predicting individual patient toxicity
risk,19 and there is a paucity of validated prediction models
for acute breast radiation toxicity. It is hypothesized that
earlier prediction models failed to validate because they did
not include sufficient variables to capture the variety of sce-
narios that occur among individual patients and individual
treatment settings. Recent studies have demonstrated the
capability of machine learning (ML) to develop predictive
models for radiation toxicities in different cancers,20,21

including a thermal image-based random forest (RF) classi-
fier for radiation dermatitis (skin erythema) after the first
week of radiation therapy.22 Another recently published
abstract describes how RF, gradient boosted decision tree,
and logistic regression models were trained and validated
on treatment planning and patient data comprising 230
variables including toxicity symptoms from patients at 5
collaborating U.S. centers to predict moist desquamation
and Common Terminology Criteria for Adverse Events
(CTCAE) grade ≥2 radiation dermatitis.23

For cancers with generally good local tumor control
such as breast cancer, it is hypothesized that if a patient’s
individual risk of radiation toxicity could be estimated at
the time of diagnosis, this could inform discussions about
risks and benefits and allow treatment plans to be person-
alized for high-risk patients to minimize toxicity. Clinicians
are particularly interested in models that include readily
available clinical and treatment variables, which would
allow toxicity risk to be estimated before treatment is
planned. It is also important to predict toxicities that are
sufficiently significant to warrant increased supportive
intervention or treatment de-escalation. To that extent, a
logistic regression model for acute breast desquamation
after external beam radiation therapy (EBRT) recently
developed in 3 combined radiation therapy cohorts failed
to validate externally in the multicenter international
REQUITE cohort.24 Therefore, the aim of this study was
to use ML algorithms to develop and optimise a prediction
model for acute breast desquamation after EBRT in the
REQUITE breast cancer cohort.
Methods and Materials
This was a TRIPOD (transparent reporting of a multi-
variable prediction model for individual prognosis or
diagnosis) type 2a study using a single data set with a ran-
dom split sample for development and validation.25 The
full study design is shown in Figure 1.
Study cohort and participants

REQUITE is an international, prospective cohort
study that recruited patients with cancer before radiation
therapy in 26 hospitals from 8 countries between April
2014 and March 2017 with unified standardized data
collection.26 Patient baseline characteristics and method-
ology have been described in detail elsewhere.27 The
present study used data from the breast cancer cohort
(n = 2069). All patients were treated with breast-conserv-
ing surgery followed by whole breast EBRT according to
local protocol. Partial breast irradiation and brachyther-
apy were excluded. Patients were assessed at the start
and end of radiation therapy, and annually thereafter.
Data collected at the start and at the end of radiation
treatment were used to document acute toxicity. All
patients gave written informed consent. The study was
approved by local ethics committees in participating
countries and registered at www.controlled-trials.com
(ISRCTN 98496463).
Endpoint definition

Toxicity in REQUITE was scored by treating physi-
cians using CTCAE v4.0.28 CTCAE v4.0 has separate
scales for radiation dermatitis (erythema) and skin ulcera-
tion (skin loss). The primary endpoint of this study was
acute desquamation (skin loss or moist desquamation)
occurring by the end of radiation therapy, defined as
either CTCAE grade ≥3 radiation dermatitis (moist des-
quamation) or CTCAE grade ≥1 skin ulceration, implying
that skin integrity was broken over the breast or in the
inframammary fold. Patients with high baseline scores

http://www.controlled-trials.com


Fig. 1 Diagram depicting the overall study design showing data preprocessing, splitting, and imputation at the top, and
model development and optimization at the bottom. Abbreviations: ANN = artificial neural network; BVA = boundary
value analysis; C4.5 = C4.5 decision tree; CS = cost sensitive optimisation; DMI = decision-tree-based missing-value impu-
tation; ECP = equivalence class partitioning; ITD = imbalanced training data set; KNN = K-nearest neighbor;
LMT = logistic model tree; LR = logistic regression; NB = naïve Bayes; RF = random forest; ROS = random over-sampling;
RUS = random under-sampling; SMOTE = synthetic minority oversampling technique; SVM = support vector mecha-
nism; VD = validation data set.
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(defined as CTCAE grade >1 radiation dermatitis or
CTCAE grade >0 skin ulceration) were excluded from the
analysis, as this would not be attributable to the effect of
radiation therapy.
Variable selection, imputation, and
preprocessing

The raw REQUITE data set (n = 2069) contained
m = 204 variables (features) relating to patient baseline
characteristics, comorbidities, cotreatments, and radiation
therapy. Variables were initially checked for plausibility
using domain expertise by physicians and radiation
therapy physicists, and m = 136 variables remained.
Boundary value analysis and equivalence class partition-
ing techniques29 were used for correcting or removing
corrupt or inaccurate records from the data set. After vari-
able-dropping (m = 13 with >37% missing values at ran-
dom compared with observed values in the remaining
variables) and case-wise deletion (n = 11 with missing
class endpoint observations),30 the final data set for
modeling had m = 123 variables including the endpoint
variable and n = 2058 patient records.

The final data set was randomly shuffled and split
50:50 into training and test sets with class stratification,
yielding imbalanced training (ITD, n = 1029) and valida-
tion (VD, n = 1029) data sets. Each data set was imputed
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independently with the ML decision-tree-based missing-
value imputation technique31 to enhance best expecta-
tions of missing values. By carrying out the imputation of
the data sets separately, the ITD and VD remained
completely independent and perfectly isolated. Informa-
tion levels were monitored in each data set pre- and post-
imputation with information gain attribute evaluation32

(see Fig. E4). The information gain of a feature is defined
as the expected reduction of entropy (uncertainty within
the data set) when partitioning the data; in other words,
by how much the prediction of the endpoint/class would
improve if the data were split using just that feature. The
more plausible the pattern of information gain among
data sets, the less bias is introduced in modeling. The eval-
uation of information worth is affected by the number of
records and the 50:50 training-test split allowed for a fair
information bias comparison between training and vali-
dation data sets.

The final set of m = 123 features consisted of 106 raw
variables. Sixteen additional features were constructed to
account for the vast number of possible combinations of
chemotherapeutic agents received by some patients before
radiation therapy. The adjuvant chemotherapy regimens
were binarized based on their generic drug names
(not shown). To adjust for different radiation therapy reg-
imens, dose was calculated as the biologically effective
dose (BED). BED is the product of the number of frac-
tions (n), dose per fraction (d), and a factor determined
by the dose and a/b ratio (10 Gy) for desquamation
(acute toxicity):

BED ¼ n d 1 þ d
a=b

� �

The endpoint definition (acute desquamation = Desq)
was used to label the patients to create a binary class vari-
able. All numeric features (m = 63) were normalised with
z score standardization.33
Resampling

Although it is a clinically significant side effect from
breast radiation therapy, only a small proportion of
patients suffer from acute desquamation, an issue known
as “class imbalance.”9,18 Both ITD and VD in this study
were equally imbalanced (Desqþ ¼ 96; Desq� ¼ 933).
To address the issue of class imbalance, 3 resampling tech-
niques were applied to the training data to obtain equal
proportions of records in each class: random under-sam-
pling (RUS) (n = 192, Desqþ ¼ 96; Desq� ¼ 96),34 ran-
dom over-sampling (ROS) (n ¼ 1866; Desqþ ¼ 933;
Desq� ¼ 933),35 and the synthetic minority oversampling
technique (SMOTE) (n ¼ 1866; Desqþ ¼ 933; Desq� ¼
933).36 The effect of resampling techniques on the training
data set was monitored with a multidimensional adaptive
projection analysis into a 3-dimensional point cloud. Adap-
tive projection analysis37 is a multidimensional tool to visu-
alise the classes that can be separated, any outliers or
sources of error in the classification algorithms, and the
existence of clusters in the data (see Fig. E5).
Modeling

Eight different ML algorithms were used to build
binary classification models to predict acute desquama-
tion in patients undergoing breast-conserving surgery and
adjuvant whole breast EBRT. They were trained in the
ITD (imbalanced modeling, Fig. 1) as well as in the 3
resampled data sets (RUS, ROS, SMOTE; data-bias
modeling, Fig. 1) with 10-fold cross-validation to reduce
overfitting,38 and then each was tested in the VD (see
Fig. 1). The ML alogrithms were discretized naïve Bayes
(NB), logistic regression with ridge estimator,39 artificial
neural networks with a multilayer perceptron architec-
ture,40 support vector machine with polynomial kernel
and logistic calibrator, K-nearest neighbour41 with
K = 1,3,5,7,9, decision trees (C4.5),32 logistic model tree
(LMT),42 and RF.43

Model performance was assessed using the area under
the curve (AUC). The models with the highest AUC in
the VD were taken forward for cost-sensitive learning
optimisation. Cost-sensitive classification addresses the
issue of class imbalance by imposing penalties (costs) for
the misclassification of the positive cases (ie, making a
false negative [FN] prediction). In this study, the cost for
a FN prediction was not linked to a monetary value,
instead a 10-step incremental inverse class distribution
cost was used.44 The ITD has a 96:933 ffi 1:10 ratio of
examples in the positive class to examples in the negative
class. This ratio is inverted to penalize FN with a 10-step
incrementation at an initial cost x : 1 of 10:1 increasing to
100:1. The cost is applied in the form of Charles Elkan’s
explicit cost matrix notation45:

Cost Matrix combinations
FP 1ð Þ TN 0ð Þ
TP 0ð Þ FN xð Þ

� �

¼ 1 0

0 10

� �
;

1 0

0 20

� �
;

1 0

0 30

� �
;⋯;

1 0

0 100

� �� �

AUC, sensitivity (true positive rate [TPR]), and speci-
ficity (true negative rate [TNR]) were used to compare
and interpret the final models’ performance including
those developed in the resampled data sets (see bottom
half of Fig. 1). Final model selection was based on perfor-
mance in the VD in terms of AUC and the clinicians’
trade-off maximizing both TPR and TNR. The selected
model was further optimized using the mean decrease
impurity entropy filter to select fewer features and sim-
plify the “hero” model.46 All ML algorithms were imple-
mented in the Waikato environment for knowledge



Table 1 Summary study characteristics of eligible
patients from the REQUITE patient cohort

REQUITE breast cancer cohort

Eligible patients 2059

Location Western Europe, United States

Study design Prospective cohort

Recruitment year
(range)

2014-2016

Treatment year
(range)

2014-2016

Toxicity assessment
scale

CTCAE v4.0

Toxicity assessment
time points

Start-of-RT

End-of-RT

Age (median, range) 58 (23-90)

Whole breast dose
(Gy, median, range)

50 (28.5-56)

Whole breast frac-
tions (median,
range)

25 (5-31)

Hypofractionated
regimen (propor-
tion of patients)

47.9%

IMRT, simple field-
in-field

39.7%

IMRT, complex
modulated

9.8%

RT to axilla 11.9%

RT to supraclavicular
fossa

12.8%

Boost 67.8%

BMI ≥25 54.0%

Smoker (current or
previous)

42.7%

Chemotherapy 31.0%

Diabetes 6.1%

Hypertension 28.0%

Cardiovascular
disease

6.9%

Toxicity (end of
treatment)

Ulceration

Grade 0 1868 (91.2%)

Grade ≥1 181 (8.8%)

Dermatitis

Grade 0 257 (12.5%)

Grade 1 1288 (62.6%)

(continued on next page)

Table 1 (Continued)

REQUITE breast cancer cohort

Grade 2 462 (22.4%)

Grade 3 28 (1.4%)

Acute desquamation

Ulceration ≥G1 or
dermatitis ≥G3

192 (9.3%)

Abbreviations: BMI = body mass index; CTCAE = Common Termi-
nology Criteria for Adverse Events; IMRT = intensity modulated
radiation therapy; RT = radiation therapy.

6 M. Aldraimli et al Advances in Radiation Oncology: XXX 2022
analysis 3.8.3 (with the default models' parameters
settings),47 with the C4.5 decision tree using the J4848

implementation, K-nearest neighbor using the IBK
(instance-bases learning with parameter k) implementa-
tion, and support vector machine using the SMO (sequen-
tial minimal optimization)49 implementation.
Results
Table 1 shows the main patient and treatment demo-
graphics for eligible patients. Median patient age was
58 years (range, 23-80 years). Patients were treated with a
median breast dose of 50 Gy (28.5-56 Gy) in 25 fractions
(range, 5-31) according to local protocol. In terms of
important demographic features, 54.0% of patients had a
body mass index ≥25, 42.7% were previous or current
smokers, 31.0% had also undergone chemotherapy, 6.1%
had diabetes, and 28.0% and 6.9% had hypertension and
cardiovascular disease, respectively. About half of the
patients were treated with intensity modulated radiation
therapy, with a lower proportion in France and none at
Italian or U.S. centers. The majority of patients received a
tumor-bed boost (64%), ranging from less than 20% at
the French, Italian, and Spanish centers to over 80% at
the Belgian centers, given either simultaneously (n = 257)
or sequentially (n = 1138). Patients with invasive breast
cancer in Belgium and the United Kingdom were treated
using the Standardisation of Breast Radiation therapy
Trial B (START-B) hypofractionated regimen (40 Gy in
15 fractions). In terms of regional nodal irradiation, axil-
lary nodes were treated in 11.9% and the supraclavicular
fossa was treated in 12.8% of patients, respectively.
Detailed characteristics of the REQUITE patient cohorts
have previously been described elsewhere.27

Table 2 lists the performance of 12 ML classifiers using
8 different algorithms in terms of each model’s AUC,
TPR (sensitivity), and TNR (specificity). Accuracy was
biased strongly toward the majority negative class
(Desq�Þ as shown by consistently high TNRs and low
TPRs across all models, likely due to class imbalance in



Table 2 Model performance with imputed imbalanced training data set DMI(ITD) and validation data set DMI(VD)

Training in ITD (n = 1029) Validation in VD (n = 1029)

Classifier Specificity (TNR) Sensitivity (TPR) AUC Specificity (TNR) Sensitivity (TPR) AUC Rank

(K = 1) NN 0.908 0.167 0.548 0.923 0.292 0.607 9

(K = 3) NN 0.975 0.094 0.601 0.979 0.125 0.627 8

(K = 5) NN 0.985 0.042 0.624 0.989 0.063 0.651 6

(K = 7) NN 0.996 0.031 0.648 0.998 0.052 0.644 7

(K = 9) NN 0.999 0.031 0.660 0.999 0.042 0.665 5

ANN 0.945 0.198 0.694 0.953 0.177 0.676 4

C4.5 0.985 0.083 0.575 0.979 0.125 0.496 12

LMT 0.996 0.010 0.578 0.995 0.042 0.746 1

LR 0.910 0.188 0.567 0.959 0.135 0.596 10

NB 0.810 0.438 0.697 0.833 0.500 0.737 3

SVM 0.966 0.156 0.561 0.976 0.146 0.561 11

RF 0.998 0.021 0.725 0.999 0.010 0.742 2

Abbreviations: ANN = artificial neural network; AUC = area under the curve; C4.5 = decision tree; DMI = decision-tree based missing value imputa-
tion; ITD = imbalanced training; KNN = K-nearest neighbor; LMT = logistic model tree; LR = logistic regression; NB = naïve Bayes; RF = random
forest; SVM = support vector machine; TNR = true negative rate; TPR = true positive rate; VD = validation.
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the ITD. The 3 best-performing classifiers in terms of
AUC in the VD were LMT, RF, and NB with 0.75, 0.74,
and 0.74, respectively. These were selected for cost-sensi-
tive learning optimisation with incremental penalty rising
in 10 steps from 10 to 100. All 12 ML classifiers listed in
Table 1 were also applied to the 3 resampled training data
sets (RUS, ROS, and SMOTE).

Figure 2 shows radar charts plotting sensitivity (TPR)
and specificity (TNR) in the VD for a total of 66 models
in the resampled training data (Fig. 2A-C) and after
applying cost-sensitive penalties to the 3 best performing
classifiers (Fig. 2D-F). Resampling improved sensitivity
across all classifiers, with RUS (Fig. 2A) achieving the least
variance between specificity and sensitivity on validation.
For the cost-sensitive classifiers, the incremental penalty
skewed the correct classification toward the true positives
and models with higher penalty showed higher sensitivity
(TPR). NB model sensitivity ranged from 0.50 in the
unpenalized model to 0.77 for a penalty of 100. The larg-
est improvement in sensitivity was achieved for the RF
classifier, ranging from 0.01 for the unpenalized model to
0.79 at penalty of 100. LMT sensitivity improved from
0.04 without a penalty to 0.65 with a penalty of 100. Speci-
ficity (TNR) decreased for all 3 cost-sensitive classifiers
because the number of predicted false-positives increased
with each incremental penalty.
Model selection and feature filtering

Figure 3 shows 2 conditions (finishing lines) selected
to maximize accuracy, that is, maximizing both TPR
and TNR (the clinicians’ trade-off), with lower and
upper threshold values of 0.63 and 0.70, respectively,
which were crossed by 5 classifiers: cost-sensitive
RF (CS-RF) with an FN:false positive (FP) 90:1
penalty (TNR = 0.65, TPR = 0.77, AUC = 0.76); RUS-RF
(TNR = 0.65, TPR = 0.74, AUC = 0.74); cost-sensitive
NB with an FN:FP 60:1 penalty (TNR = 0.64,
TPR = 0.70, AUC = 0.72); CS-RF with an FN:FP 80:1
penalty (TNR = 0.70, TPR = 0.65, AUC = 0.75); and
cost-sensitive NB with an FN:FP 20:1 penalty
(TNR = 0.70, TPR = 0.63, AUC = 0.73). As maximizing
sensitivity (TPR) was most important, the best perform-
ing “hero” model was the CS-RF classifier with an FN:FP
penalty of 90:1. This model exceeded others for sensitiv-
ity and AUC performance while maintaining moderate
specificity.

The hero CS-RF (90:1) model had m = 122 features.
Eight features were estimated to have zero importance
including features about presence/absence of systemic
lupus erythematosus and other collagen vascular diseases
and use of pertuzumab, eribulin, and amiodarone therapy.
In a final step, these features were removed and the model
was rebuilt and revalidated in the VD. Table 3 lists the
features included in the final hero CS-RF classifier by
order of importance. In descending order, the top 10 fea-
tures were duration of other lipid-lowering drug use, type
of surgery (wide local excision vs quadrantectomy), use of
radiation therapy bolus, use of chemotherapy, use of
boost, radiation therapy photon dose (MV), use of epiru-
bicin therapy, hypertension, bra band size, and side of
radiation therapy. Performance of the optimized hero
final model in the VD improved slightly in terms of



Fig. 2 Radar charts plotting sensitivity (TPR) and specificity (TNR) in the validation data set for all ML models developed
with the RUS, ROS, and SMOTE resampled training data and after applying cost-sensitive learning to the 3 best-perform-
ing ML models (RF, NB, and LMT). Abbreviations: LMT = logistic model tree; ML = machine learning; NB = naïve Bayes;
RF = random forest; ROS = random over-sampling; RUS = random under-sampling; SMOTE = synthetic minority over-
sampling technique; TNR = true negative rate; TPR = true positive rate.
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Fig. 3 Trade-off threshold lines are shown for sensitivity (TPR) and specificity (TNR) at 0.63 and 0.70, respectively. Five
models cross both threshold lines and their TPR, TNR, and AUC values are shown at the bottom. Two out of 5 models
have a higher TNR than TPR and 3 out of the 5 models have a higher TPR than TNR. The “hero” model (no. 1) was the
cost-sensitive random forest algorithm with a penalty of 90:1. Abbreviations: AUC = area under the curve; TNR = true
negative rate; TPR = true positive rate.
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specificity (TNR = 0.66) and AUC (0.77) while sensitivity
(TPR) remained unchanged.
Discussion

A recently published logistic regression model for
acute breast desquamation after adjuvant external beam
breast radiation therapy developed in 3 combined external
breast radiation therapy cohorts failed to validate in the
multicenter REQUITE cohort.24 The aim of this study
was to use ML algorithms to develop and optimise a pre-
diction model for acute desquamation in the REQUITE
breast cancer cohort . ML techniques have previously
been used to predict acute skin toxicity during breast radi-
ation therapy.22,23 We elected to predict the occurrence of
acute desquamation rather than dermatitis (skin ery-
thema) because it can cause clinically significant patient
morbidity and can worsen the cosmetic outcome after
breast surgery. This accounts for the lower proportion of
cases with skin toxicity reported in our study versus the
study by Saednia et al22 (0.09 vs 0.38), although the pro-
portion of cases was similar to those with moist desqua-
mation in the abstract published by Reddy et al.23
Predicting cases of clinically significant radiation toxic-
ity such as acute desquamation remains challenging for
both parametric statistical and ML models due to the
issue of class imbalance leading to high FN rates, that is,
poor sensitivity. In this study, a combination of resam-
pling techniques and cost-sensitive learning was used to
try and improve predictive performance. RUS and cost-
sensitive optimisation contributed the most to optimal
performance across the different ML algorithms. Of 66
models tested, 5 fulfilled prespecified criteria for maximiz-
ing both TPR and TNR. On the basis of highest TPR, the
hero model was the CS-RF, with an FN:FP misclassifica-
tion penalty of 90:1. Given that our modeling used some-
what fewer features and had a multicenter patient sample
with diverse radiation treatment regimens, it is reassuring
that its AUC of 0.77 in the VD is similar to the range of
AUCs reported in the abstract by Reddy et al.23

Our initial models for acute desquamation included 122
features. Information gain (IG) represents the amount of
information gained about a random variable or signal
from observing another random variable. After the ran-
domized and stratified training/validation data split, only a
few variables in the VD had a different IG to discriminate
between the positive and negative cases compared with the
ITD. Zero IG does not negate the feature’s worth as this



Table 3 Features in the “hero” optimized cost-sensitive RF classifier ranked by importance

Model’s feature MDI Model's feature MDI

other_lipid_lowering_drugs_duration_yrs 0.52 alcohol_current_consumption 0.2

surgery_type 0.41 smoking_time_since_quitting_yrs 0.2

radio_bolus 0.4 radio_imrt 0.19

chemotherapy 0.36 radio_photon_boostdose_Gy 0.19

boost 0.35 other_antihypertensive_drug 0.19

radio_photon_dose_MV 0.34 household_members 0.19

epirubicin_chemo_drug 0.34 radio_breast_fractions_dose_per_fraction_Gy 0.19

blood_pressure 0.33 radio_elec_boost_field_y_cm 0.19

Bra_band_size 0.3 radio_photon_2nd 0.19

radio_treated_breast 0.3 bra_cup_size 0.19

tumour_size_mm 0.29 radio_breast_fractions 0.19

paclitaxel_chemo_drug 0.29 n_stage 0.18

grade_invasive 0.28 hypertension_duration_yrs 0.18

breast_separation 0.28 radio_supraclavicular_fossa 0.18

smoking 0.27 education_profession 0.18

radio_elec_energy_MeV 0.27 radio_axillary_levels 0.18

BED_boost 0.27 hypertension 0.18

docetaxel_chemo_drug 0.27 radio_photon_boost_fractions_per_week 0.17

BED_Total 0.27 smoker 0.17

radio_elec_boost_dose_Gy 0.27 depression 0.17

On_tamoxifen 0.26 menopausal_status 0.17

radio_heart_mean_dose_Gy 0.26 radio_boost_diameter_cm 0.16

t_stage 0.26 5-fluorouracil (5-FU)_chemo_drug 0.16

radio_hot_spots_107 0.25 radio_photon_boost_dose_per_fraction_Gy 0.16

BED_Breast 0.25 antidepressant_duration_yrs 0.16

tobacco_products_per_day 0.25 radio_breast_fractions_per_week 0.15

age_at_radiotherapy_start_yrs 0.25 radio_boost_type 0.15

radio_breast_ct_volume_cm3 0.25 Carboplatin_chemo_drug 0.15

hormone_replacement_therapy 0.24 radio_boost_sequence 0.15

radio_photon_boost_volume_cm3 0.24 radio_photon_boost_fractions 0.15

antidepressant 0.24 household_income 0.15

height_cm 0.24 methotrexate_chemo_drug 0.15

radio_photon_2nd_energy_MV 0.24 other_lipid_lowering_drugs 0.14

radio_ipsilateral_lung_mean_Gy 0.24 radio_photon_energy_MV or kV 0.14

alcohol_previous_consumption 0.24 ace_inhibitor 0.13

radio_photon_2nd_dose_fractions_per_week 0.23 analgesics_duration_yrs 0.13

radio_skin_max_dose_Gy 0.23 radio_photon_2nd_dose_per_fraction_Gy 0.13

histology 0.23 antidiabetic_duration_yrs 0.13

monopause_age_yrs 0.23 depression_duration_yrs 0.13

other_antihypertensive_drug_duration_yrs 0.23 on_statin_duration_yrs 0.12

weight_at_cancer_diagnosis_kg 0.23 antidiabetic 0.12

(continued on next page)
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Table 3 (Continued)

Model’s feature MDI Model's feature MDI

tobacco_product 0.23 diabetes 0.11

cyclophosphamide_chemo_drug 0.22 ace_inhibitor_duration_yrs 0.11

combined_chemo_drugs 0.22 on_statin 0.11

boost_frac 0.22 doxorubicin_chemo_drug 0.11

analgesics 0.22 history_of_heart_disease 0.09

breast_cancer_family_history_1st_degree 0.22 radio_axillary_other 0.09

smoking_duration_yrs 0.21 ethnicity 0.09

radio_photon_boostdose_precise_Gy 0.21 radio_interrupted 0.08

radio_elec_boost_field_x_cm 0.21 pegfilgrastim_chemo_drug 0.07

radio_photon_2nd_fractions 0.21 history_of_heart_disease_duration_yrs 0.06

radio_boost_fractions 0.21 radiotherapy_toxicity_family_history 0.06

alcohol_intake 0.21 diabetes_duration_yrs 0.05

radio_type_imrt 0.21 radio_interrupted_days 0.05

radio_treatment_pos 0.21 trastuzumab_chemo_drug 0.04

radio_breast_dose_Gy 0.2 other_collagen_vascular_disease 0.03

rheumatoid arthritis_duration_yrs 0.2 rheumatoid arthritis 0.02

Abbreviations: BED = biologically effective dose; IMRT = intensity modulated radiation therapy; MDI = mean decrease impurity; MeV = mega elec-
tron volt; MV = mega volt; RF = random forest.
Feature importance is calculated as the decrease in node impurity weighted by the probability of reaching that node. The node probability can be cal-
culated by the number of samples that reach the node, divided by the total number of samples. The higher the value, the more important the feature.
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depends on the ML algorithm used, and any given feature
could climb up the ranking in terms of IG if additional
observations were added to the same data set. Hence, we
included all 122 features in the modeling process. The 10
most important features in the final hero model included
some that might be expected to predict breast radiation
toxicity, such as use of radiation therapy bolus, chemother-
apy, boost, radiation therapy dose, and bra size. Interest-
ingly, the most important feature (use of lipid-lowering
drugs) is not usually included in parametric statistical
models for radiation toxicity, although HMG-CoA reduc-
tase inhibitors (statins) have previously been proposed as
radioprotective agents.50 Yet unlike traditional statistical
probability modeling, feature importance should only be
interpreted within the context of the ML prediction model
but not outside.
Study limitations

Despite the rigorous error detection in the data prepro-
cessing phase, we cannot exclude errors occurring due to
manual recording during data collection. According to
the REQUITE study protocol, patients were assessed at
the start and end of treatment and annually thereafter.
This may have missed cases of acute desquamation as
acute radiation toxicity is known to peak up to 2 weeks
after the end of treatment. Although we incorporated dif-
ferences in radiation therapy techniques by including all
available recorded treatment parameters in the analysis,
this may not fully account for variability in treatment
plans between participating centers or treating physicians.
Similarly, variable transformation or feature engineering
(eg, calculating the BED, binarization of chemotherapy
drugs) could have led to the creation of a new feature that
is less powerful and suppresses important information
inferred by its raw components. In modeling the radiation
therapy dose variable, alternatives such as a categorical
variable divided by type of radiation therapy regimen
could have been used (eg, hypo- vs standard fraction-
ation). Variable aggregation could have led to model over-
fitting due to misleading combined features and may
show false significance or insignificance in the analysis.51

Although the resampling techniques used in this study
have advantages in their simplicity and transportability,
other remedies to address imbalanced data, such as
ensemble learning (which is implemented at the algorith-
mic level), could be used to improve model perfor-
mance.52 Cost-sensitive learning was selected to penalize
false negatives. However, its application depends on the
clinical situation. For example, if a model was designed to
allocate patients to a toxicity-lowering radiation therapy
regimen that might affect tumor control, then FPs may
need to have a higher cost than FNs. This study used the
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impurity-based ranking mean decrease impurity filter to
simplify the final model with a known performance, but it
is important to keep in mind that feature selection based
on impurity reduction is generally biased toward prefer-
ring variables with more categories.53
Conclusion
Application of ML algorithms with resampling and
cost-sensitive learning resulted in valid prediction models
for acute desquamation after whole breast EBRT using
clinical and treatment features. After optimisation, the
best model was able to classify patients with acceptable
performance in the validation cohort (AUC = 0.77).
Before they can be used in clinical practice, further opti-
mization of ML prediction models, including genomic
markers, is required, and the models should be validated
in external cohorts. This approach could help identify
breast cancer patients at increased risk of toxicity to
inform discussions about risks and benefits and allow
treatment plans to be personalized with the aim of mini-
mizing toxicity or offering the patient increased support-
ive management during treatment.
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