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Abstract
Climate change is predicted to cause widespread disruptions to global biodiversity. Most climate models are at the macroscale, 
operating at a ~ 1 km resolution and predicting future temperatures at 1.5–2 m above ground level, making them unable to 
predict microclimates at the scale that many organisms experience temperature. We studied the effects of forest structure and 
vertical position on microclimatic air temperature within forest canopy in a historically degraded tropical forest in Sikundur, 
Northern Sumatra, Indonesia. We collected temperature measurements in fifteen plots over 20 months, alongside vegetation 
structure data from the same fifteen 25 × 25 m plots. We also performed airborne surveys using an unmanned aerial vehicle 
(UAV) to record canopy structure remotely, both over the plot locations and a wider area. We hypothesised that old-growth 
forest structure would moderate microclimatic air temperature. Our data showed that Sikundur is a thermally dynamic envi-
ronment, with simultaneously recorded temperatures at different locations within the canopy varying by up to ~ 15 °C. Our 
models (R2 = 0.90 to 0.95) showed that temperature differences between data loggers at different sites were largely determined 
by variation in recording height and the amount of solar radiation reaching the topmost part of the canopy, although strong 
interactions between these abiotic factors and canopy structure shaped microclimate air temperature variation. The impacts 
of forest degradation have smaller relative influence on models of microclimatic air temperature than abiotic factors, but the 
loss of canopy density increases temperature. This may render areas of degraded tropical forests unsuitable for some forest-
dwelling species with the advent of future climate change.
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Introduction

Habitat modification and climate change are among the 
primary threats to global biodiversity (Nowakowski et al. 
2018). Land surface temperatures in tropical rainforest 

regions have risen by ~ 0.25 °C per decade since the mid-
1970s (Malhi and Wright 2004) and are projected to rise 
by 3–8 °C over the twenty first century (Malhi et al. 2009). 
Forest degradation, measured by partial canopy cover loss, 
affected 185 million ha between 2000 and 2012, with over 
156 million ha of that occurring within tropical forests (van 
Lierop et al. 2015). Habitat modification affects landscape-
scale variations in climate, which leads to the synergis-
tic effects of these two drivers (Todd and Andrews 2008; 
Arroyo-Rodrigues et al. 2016; Tuff et al. 2016). Whilst 
organisms are experiencing both habitat modification and 
climate change simultaneously, these threats are typically 
studied independently (Sirami et al. 2017, Oliver and More-
croft 2014, but see Senior et al. 2017).

Ecologists aiming to understand and predict the influence 
of climate on species often use models based on macrocli-
matic variables, which are generally interpolated from data 
measured by standard meteorological stations at 1.5–2 m 
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above ground (Fick and Hijmans 2017). However, organ-
isms experience climate at a micro-scale, and temperature 
variation is highly scale-dependent (Chen et al. 1999). Due 
to the influence of vegetation structure, microtopography 
and soil, microclimate experienced at the local level may 
only be weakly correlated with macroclimate (Graae et al. 
2012; WallisDeVries et al. 2011; Potter and Hargrove 2013). 
Mobile organisms can move within landscapes which incor-
porate a broad range of microclimates, allowing them to 
maintain their optimum climatic conditions (Oliver and 
Morecroft 2014) across tens or hundreds of metres per day, 
depending on body size and mobility (Jenkins et al. 2007). 
In forested landscapes, canopy structure, rocks and logs pro-
vide a spatial and temporal mosaic of temperatures, which 
terrestrial species may be able to exploit for thermoregu-
lation and to buffer against more extreme temperatures 
(Scheffers et al. 2014a, b). For arboreal species, which make 
up ~ 76% of vertebrate species in tropical forests (Kays and 
Allison 2001), movement is in three dimensions, so forest 
canopy structure and topographical variation can be utilised 
to buffer against solar radiation.

Microhabitats have been shown to buffer temperatures in 
a consistent manner within forest systems and can reduce 
extreme heat exposure by up to 10  °C (Scheffers et  al. 
2014b). In a degraded forest, the availability of microhabi-
tats and the effectiveness of their thermal buffering are influ-
enced by varying levels of vegetation density (Pringle et al. 
2003). The level of degradation, time since degradation and 
plant species establishment will affect forest structure and 
therefore microclimate (Pohlman et al. 2007; Norris et al. 
2012; Harper et al. 2005; Brokaw 1982; Mulkey and Pearcy 
1992; Laurance et al. 2006). In Colombia, thermally buff-
ered microhabitats were shown to increase in abundance 
with forest succession, from young secondary forest to pri-
mary forest (González del Pliego et al. 2016).

Forest degradation creates a dynamic, three-dimensional 
thermal environment which varies across daily and seasonal 
cycles. In a degraded forest, changes in vegetation structure 
due to selective logging may alter the microclimate environ-
ment across relatively small distances, both vertically and 
horizontally, which recently produced microclimate mod-
elling frameworks are unable to account for as they lack 
inputs for complex vegetation (Kearney and Porter 2017). 
Thermal variation is not restricted to horizontal variation 
in vegetation composition but also occurs vertically among 
canopy strata (Scheffers et al. 2017). Therefore, to measure 
within-canopy microclimate accurately across a degraded 
forest landscape, at the small scales that most species experi-
ence, requires new and innovative methods. Despite the long 
history of microclimatology (Potzger 1939), it is only more 
recently that developments in technology and advances in 
computing power have made it possible to take simultane-
ous measurements over large areas (Jones 2013; Wang et al. 

2013). However, measuring small-scale microclimate fluc-
tuations across a large area in structurally complex degraded 
forest habitats still presents significant challenges. Detailed 
three-dimensional vegetation surveys over large areas have 
previously been prohibitively expensive for most research-
ers (Hummel et al. 2011), with light detection and ranging 
(LiDAR) from small aircraft and time-consuming terrestrial 
surveys being the only options to obtain these data accu-
rately (Hill and Hinsley 2015). With the advent of unmanned 
aerial vehicles (UAVs) used in an ecological context (Koh 
and Wich 2012; Anderson and Gaston 2013; Zahawi et al., 
2015) and structure-from-motion photogrammetry software, 
measurements of canopy topography are now accessible and 
cost-effective (Alexander et al., 2017, Lisein et al. 2013, 
Wich et al. 2015, Zellweger et al. 2019). Simultaneously, 
data logging hardware (i.e. measurement systems which 
independently record data points at set times) are now avail-
able at relatively low cost, allowing microclimate data to 
be recorded independently across a network (Hubbart et al. 
2005). Combining these technologies enables the develop-
ment and testing of a three-dimensional microclimate model 
that incorporates vegetation structure across a wide land-
scape (Eckmann et al. 2018; Zellweger et al. 2019).

This study explores the effects of vegetation structure 
on microclimatic air temperature within a degraded tropi-
cal forest to enable landscape-wide prediction within forest 
canopies across hourly time periods. We carried out detailed 
and wide-ranging vegetation surveys (both field- and UAV-
based) combined with in situ air temperature measurements 
at the microhabitat scale. We hypothesise that degraded 
areas of forest, identifiable by low values in variables asso-
ciated with old-growth forest (such as trunk basal area and 
crown area), will show increased temperatures at all canopy 
heights across hourly time periods. Additionally, we expect 
that degraded areas of forest will be identifiable by UAV 
surveys, allowing the construction of a model that allows 
predictions of temperature at the scale of tens of metres. 
This will enable a detailed understanding of how vegetation 
structure, as measured by UAV or ground measurements, 
affects microclimate air temperature profiles.

Materials and methods

Study site

The Sikundur study site (before 1980 known as the Sikundur 
Reserve, est. 1938) covers ca. 3 × 3 km of the Leuser Eco-
system (latitude, 3.95 N; longitude, 98.07 W) in Northern 
Sumatra, Indonesia (Fig. 1). This site has been the focus of 
previous research projects on primates and emergent trees 
(Knop et  al. 2004, Askew and Morrogh-Bernard 2016; 
Alexander et al. 2018 Harrison et al. 2020, Hankinson et al. 
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2021), but none has previously considered microclimate, 
which remains relatively under-studied in tropical environ-
ments. Sikundur is one of the last remaining sections of 
lowland rain forest in Sumatra. The Leuser Ecosystem is 
the only remaining area where Sumatran orangutans (Pongo 
abelii), elephants (Elephas maximus sumatranus), tigers 
(Panthera tigris sumatrae), rhinos (Dicerorhinus sumat-
rensis) and sun bears (Helarctos malayanus) still co-exist 
(Hitchcock and Meyers 2006) and are a significant part of 
the UNESCO listed ‘Tropical Rainforest Heritage of Suma-
tra’. It has also been declared a National Strategic Area due 
to the ecosystem services that it provides.

The Sikundur site was selectively logged from the late 
1960s, which continued and progressively intensified in 
some areas until the 1980s. During the logging operations 
from the late 1960s until 1982, an average of 11 large trees 
per hectare was felled (Knop et al. 2004). Five years after the 
end of the logging operation, Abdulhadi et al. (1987) found 
that 54% of the remaining trees showed some damage caused 
by the logging. Following the establishment of the Gunung 
Leuser National Park in 1980, logging in the Sikundur area 
continued primarily at the park border. The average monthly 
temperature in Sikundur (as recorded by weather station) is 
27.3 °C, ranging from 26.1 °C in November to 29.2 °C in 
April (Nowak, 2015). Average monthly rainfall is 256.4 mm, 
ranging from 12.4 mm in February to 535.4 mm in Novem-
ber (Nowak, 2015). As Sikundur is within 4° of the equator, 
sunrise and sunset occur at 6:25 am and 6:25 pm (± 17 min) 
throughout the year, and there is little thermal seasonality.

Vegetation plots

We surveyed fifteen 25 × 25 m fixed plots in March 2016 
(Fig. 1). Plot centre locations were randomly generated 
using ArcMap (version 10.4) located at least 500 m apart 
(Fig. 1), with plot corners located in the field using a hand-
held GPS unit with a positional accuracy of ~ 5 m (Garmin 
GPSMAP 64 s). Within each plot, for every tree larger than 
10 cm diameter at breast height (DBH, Ganzhorn et al 2011), 
the following variables were recorded: DBH, tree and bole 
(1st major branch) height (measured using a ‘Nikon For-
estry Pro’ laser range finder/hypsometer, see https://​imagi​
ng.​nikon.​com/​lineup/​sport​optics/​laser/​fores​trypro/​https://​
www.​fores​try-​suppl​iers.​com/​Docum​ents/​1345_​msds.​pdf), 
crown width (measured with a tape measure as the distance, 
in metres, at the cardinal compass points from the trunk to 
the edge of the crown), tree crown connectivity with sur-
rounding trees (estimated as a percentage) and the number 
of branches within five size categories (< 2 cm, 2–4 cm, 
4–10 cm, 10–20 cm, > 20 cm in diameter) (Manduell et al. 
2012) (Supplementary Materials, Fig. 1). The following 
plot-level variables were derived: Lorey’s height (mean 
tree height weighted by basal area), mean tree height, tree 
height range, mean bole height, plot (or total) basal area, 
mean DBH, quadratic mean diameter (the square root of the 
arithmetic mean of squared values), number of stems, mean 
and cumulative crown area, mean crown connectivity, mean 
branch counts of each category and a canopy density estima-
tion using a mean of four photographic measurements at the 

Fig. 1   Data logger and vegetation plot locations within Sikundur in Northern Sumatra, Indonesia

https://imaging.nikon.com/lineup/sportoptics/laser/forestrypro/https://www.forestry-suppliers.com/Documents/1345_msds.pdf
https://imaging.nikon.com/lineup/sportoptics/laser/forestrypro/https://www.forestry-suppliers.com/Documents/1345_msds.pdf
https://imaging.nikon.com/lineup/sportoptics/laser/forestrypro/https://www.forestry-suppliers.com/Documents/1345_msds.pdf
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plot corners analysed using CanopyDigi software (Good-
enough and Goodenough 2012).

Microclimate data loggers

To record fluctuations in temperature, microclimate data 
loggers (HOBO UA-002–08 8 K Pendant Temperature/
Light Logger, with an accuracy of ± 0.47 °C) were placed 
below the canopy within vegetative shade at various heights 
within 15 trees, each within the fixed plots (Supplementary 
Materials, Fig. 1). The microclimate data loggers recorded 
temperatures  at 60-min intervals between March 22nd, 
2016, and November 29th, 2017. Sunshades were not used 
with the data loggers as these have been shown to alter air 
temperature measurements (Richardson et al. 1999; Bramer 
et al. 2018), resulting in the recording of shade tempera-
ture as opposed to the microclimate which forest organisms 
would be exposed to (Brock et al. 1995). To counter the 
potential effects of direct solar radiation causing bias on 
air temperature recordings a simple algorithm was used to 
flag likely errors (following Frey et al. 2016). Data logger 
recordings of ≥ 32,000 lx (the level of direct sunlight) (His-
cocks 2011) were flagged using R (R Core Team 2019). The 
full 24-h period in which a flagged data logger recording 
occurred was removed from the data set (i.e. if a reading 
of ≥ 32,000 lx was detected at 3 pm on day 89 of logger 
deployment, recordings from 1 to 12 am of day 89 were 
deleted). This resulted in 3223 data points from 134 logger 
days (i.e. 1.09% of total recordings) being removed before 
analysis.

One to three data loggers were placed in a single tree at 
the approximate centre of each vegetation plot (two data log-
gers if the tree was up to 20 m in height, and three if the tree 
was ≥ 20 m; however, during the course of the study, three 
trees (labelled as B, J and O) only had one logger for some of 
the time due to logger failures). The first logger was placed 
as high as possible using a modified ‘big shot’ catapult and 
rope system, and the other data logger(s) were placed below 
it at approximately 10 m vertical increments. This verti-
cal distance between loggers was initially measured in the 
rope length between loggers, although due to tree branches 
intersecting the rope, when data logger heights were con-
firmed using a ‘Nikon Forestry Pro’ laser range finder/
hypsometer, vertical distances between loggers were found 
to range from 6 to 10 m. Between April and August 2016, 
30 loggers were recording simultaneously in the 15 trees. 
From August 2016 to June 2017, 19 data loggers had to be 
removed due to budgetary restrictions, leaving 11 remaining 
loggers recording in 6 trees (see Supplementary Materials, 
Fig. 9). In June 2017, 18 data loggers were placed in 8 of the 
original 15 trees, with the same vertical distances between 
loggers, although identical heights from the ground were dif-
ficult to replicate. For this reason, all individual data logger 

recordings (n = 52) were treated as separate recordings for 
analysis, as their heights, aspect and shading could not be 
replicated exactly. Overall, the highest microclimate data 
logger was 35.5 m above ground level, with the mean height 
of loggers being 16.6 m. In addition to daytime air tempera-
ture, rainfall was manually measured daily at the research 
station using a rain gauge.

For the purpose of analysis, daytime air temperature 
recordings of each data logger were summarised by hour (8 
am to 6 pm) by month as both the mean and the 95th percen-
tile of recordings (as maximum temperature recordings are 
often outliers and possible artefacts of measurement error) 
(Maclean et al., 2021) for a total of 3853 data points.

Unmanned aerial vehicle surveys

To record aerial imagery of the study site, we used a fixed 
wing UAV. The modified ‘Skywalker’ UAV (see Supple-
mentary Materials, Fig. 2) was controlled manually (i.e. 
radio-controlled) for take-off and landings and switched to 
autopilot to fly along pre-set ‘lawnmower’ routes (see Sup-
plementary Materials, Fig. 3) programmed using Mission 
Planner software (version 1.3.58). A digital camera (SONY 
RX100 mk4) took RGB photographs at GPS locations con-
trolled by the autopilot and a Seagull #MAP 2 switch, ensur-
ing 80% overlap of each photograph, both in the direction of 
UAV travel and between flight paths (i.e. ‘sidelap’). Eleven 
flights over the Sikundur area were flown between June 13th 
and 16th, 2017, at an altitude of ~ 200 m above ground level, 
covering a total area of ~ 26 km2 with a ground sampling dis-
tance of 4.82 cm per pixel. A total of 4811 geotagged images 
taken during these flights were processed in Agisoft Photo-
scan software (version 1.2.0.2152, now Agisoft Metashape) 
to create a digital surface model (DSM) of the forest canopy, 
with a spatial resolution of 23.1 cm2 per cell. The DSM 
was 24,525 × 25,576 cells in size and provided the elevation 
(in metres above sea level) for the topmost surface per cell 
(Cunliffe et al., 2016) (see Supplementary Materials, Fig. 4).

Variables derived from UAV surveys

Potential incoming solar radiation, measured in kWh/m2, 
was estimated across the study area using the UAV-derived 
DSM of the forest canopy and the Potential Incoming Solar 
Radiation tool in System for Automated Geoscientific Anal-
yses (SAGA) software (version 2.3.2; Conrad et al. 2015). 
The resulting layers provide a geospatial–temporal raster 
estimating how much solar radiation is reaching the topmost 
section of each DSM cell based on the position of the sun 
at each hour, which includes shadow effects of surrounding 
canopy structure and terrain (Fig. 2). These hourly estimates 
of potential solar radiation (from 8 am to 6 pm) were calcu-
lated for the 16th of each month (summarised to a single day 
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due to computing power demands) for January to December 
adjusting values as the sun’s zenith changed by month.

To allow direct comparison between data from the 
UAV-derived DSM and from vegetation plots and to 
account for inaccuracies in GPS locations both of 
data logger sites and of UAV imagery used to create 
the DSM, both the DSM and the derived Potential 
Incoming Solar Radiation layers were aggregated to a 
25 × 25 m grid matched to vegetation plot corner loca-
tions as closely as possible before data were extracted 
for use in microclimatic air temperature modelling. 
(The maximum discrepancy between grid corners and 
vegetation plot corners was ~ 5 m.) The DSM was used 
to produce seven variables of univariate statistics of 
elevation, namely, ‘minimum’, ‘maximum’, ‘median’, 
‘mean’, ‘range’ and ‘standard deviation’, of surface 
elevation within the aggregated 25 m spatial resolu-
tion cells (using the ‘Zonal Statistics’ tool in ArcGIS 
version 10.4). Additionally, three more variables were 
derived: (1) ‘upper canopy range of elevations’ (‘max-
imum’ minus ‘mean’ elevations), (2) ‘lower canopy 
range of elevations’ (‘mean’ minus ‘minimum’ eleva-
tions) and (3) ‘relative height’ (difference between 
‘mean’ elevation of the 25 m resolution cell and the 
mean elevation of a 75 m resolution grid surround-
ing the 25 m resolution cell). These values were then 
extracted at the locations of each data logger (using 

ArcGIS version 10.4), such that data loggers within 
the same tree had the same vegetation structure data 
values.

Similarly, the Potential Incoming Solar Radiation was 
aggregated to a 25 × 25 m grid and extracted, with separate 
layers created for each hour of the day (8 am through 6 pm) 
of each month (January to December, for the 16th day of 
each month) creating a total of 132 layers. For analysis, we 
used the mean incoming solar radiation value at a given hour 
across months as variables.

Statistical analyses

Vegetation structure analysis

Vegetation structural differences between plots were exam-
ined using a Kruskal–Wallis test. To examine whether field 
plot and UAV-derived structure variables were correlated, 
each variable was tested against every other using a Pear-
son’s correlation as all data were of a Gaussian distribution.

The mean and the 95th percentile hourly temperature

To determine the relative contribution of incoming solar 
radiation and vegetation structure (derived from both 
plot measurements and UAV surveys) on determining 
the mean and the 95th percentile hourly microclimatic 

Fig. 2   Examples of hourly 
estimates of potential incom-
ing solar radiation on a section 
of the Sikundur site. Note the 
shadowing effects of terrain and 
vegetation
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air temperature recorded by data loggers (n = 52), a 
machine learning approach was used (Frey et al. 2016). 
Boosted regression trees (BRTs) allow the inclusion of 
a large number of spatially overlapping variables and 
potential collinearity between them (Elith et al. 2008). 
Given that the variables from UAVs were derived from 
univariate statistics and vegetation plot measurements 
were often correlated (Dray et al. 2008), this allowed us 
to explore potential correlates to air temperature with-
out restricting predictor variables (Elith et al. 2008). 
We used the R programme version 3.6.1 (R Core Team 
2017) in combination with the ‘dismo’ package version 
0.8–17 (Hijmans et al. 2013) for BRT analyses.

To explore which variables were best at predicting the 
mean and the 95th percentile hourly air temperature, three 
models were run, limiting predictor variables to those 
obtained either from vegetation plots (n = 17), UAV sur-
veys (n = 13) or from both sources (n = 30), with all models 
including the hour of day and data logger height and mean 
monthly rainfall as additional variables. We used 70% of 
recorded microclimatic air temperature recordings to train 
Gaussian BRT models and then used these model param-
eters to predict the recorded temperatures of the remaining 
30% of data. Initial BRT models were run using the same 
parameters (interaction depth = 2, learning rate = 0.05, bag 
fraction = 0.5). These initial models were then simplified, 
keeping variables with a relative influence of ≥ 0.5% on 
each model and removing variables with the lowest con-
tributing predictive power (Elith et al. 2008), until mod-
els with just ten variables were produced for each ‘mean 
hourly air temperature’ model. The BRT output produces 
a final predictive model as well as the relative influence of 
each variable on the model. This allowed the exploration 
of which vegetation variables, and at which values, were 
most influential on mean hourly air temperature.

To assess model accuracy, we used three separate meas-
ures. First, the percentage of deviance explained by each mean 
hourly air temperature model was calculated using the pseudo-
determination coefficient D2 (Mateo and Hanselman 2014), 
using

Secondly, R2 values were produced for each model using 
best model predictions (defined in tenfold cross-validation) 
regressed against the ‘hold-out’ data (i.e. 30% of recorded 
microclimatic air temperature), using simple linear regression. 
Finally, we calculated the root-mean-square error (RMSE) of 
predicted and observed hourly air temperature using

(1)D
2 = 1 − (residualdeviance∕totaldeviance)

(2)RMSE =

�

∑N

i=1

�

Predicted
i
− Actual

i

�

N

Results

Vegetation plots

A total of 380 trees were measured over 15 vegetation 
plots. DBH ranged from 10 to 116 cm, tree height from 5 
to 48 m, bole height from 0.5 to 38 m and crown area from 
1.9 to 236.5m2 (Supplementary Materials, Figs. 6 and 7). 
Variables associated with old-growth forest (high values 
in DBH, tree height, crown area) (Frey et al. 2016) were 
positively correlated (DBH ~ tree height, r = 0.73, p < 0.005, 
DBH ~ crown area, r = 0.75, p < 0.005, tree height ~ crown 
area, r = 0.62, p < 0.005) (Supplementary Materials, Fig. 5). 
Nearly all structural variables were significantly different 
between vegetation plots (see Table 1), with the exception 
of DBH measurements, branch count diameter > 20 cm and 
plot basal area, making it problematic to define areas of for-
est as ‘intact’ or ‘degraded’ (see Supplementary Materials, 
Figs. 6 and 7).

Some sites had signs of historic logging (i.e. tree stumps, 
cut sections of tree), but leaf litter and decomposition made 
the assessment of their abundance within a given area 
unreliable.

Microclimatic air temperature recordings

Temperatures recorded by data loggers ranged from 19.47 
to 46.21 °C after data were cleaned, with the mean tem-
perature across the entire time period across all loggers 
being 26.52 ± 3.51 °C, a mean daytime (from 8 am to 6 pm) 
temperature of 28.54 ± 3.47 °C and a mean night-time tem-
perature of 24.51 ± 1.31 °C (see Supplementary Materials, 
Fig. 8).

We recorded a wide range of temperatures simultane-
ously, with recordings at the same hour of the day vary-
ing by as much as 15.2 °C between data loggers across the 
study site and by as much as 14.8 °C between data loggers 
at different heights in the same tree at the same time. Across 
all data loggers, the hottest part of the day on average was 
2 pm, although temperature peaks at different locations 
ranged from 9 am to 5 pm (see Supplementary Materials, 
Fig. 10a–d).

Relationships between UAV‑derived DSM variables 
and ground plot variables

UAV-derived variables at the site of vegetation plots, either 
extracted directly from the aggregated DSM or modelled 
from it (i.e. potential incoming solar radiation), were mod-
erately correlated with ground field plot variables associ-
ated with old-growth forests (Table 2) (Frey et al. 2016). 
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For example, ‘range of elevations’ and ‘lower canopy range’ 
were significantly correlated with six plot variables: ‘mean 
tree height’ and ‘range of elevations’ (r = 0.59, p = 0.019), 
‘mean bole height’ and ‘range of elevations’ (r = 0.52, 
p = 0.048), ‘mean connectivity’ and ‘range of elevations’ 
(r = 0.53, p = 0.041), ‘quadratic mean diameter’ and ‘lower 
canopy range’ (r = 0.56, p = 0.028), ‘mean branches > 20 cm 
diameter and ‘lower canopy range’ (r = 0.53, p = 0.041) and 
‘mean branches 20–10 cm diameter and ‘lower canopy 
range’ (r = 0.60, p = 0.018) (Table 2).

Additionally, upper canopy range was moderately cor-
related with tree crown connectivity: ‘mean crown connec-
tivity’ ~ ‘upper canopy range’ (r = 0.59, p = 0.02). Incom-
ing solar radiation was related to three variables: ‘Lorey’s 
height’ and ‘mean solar radiation’ (r = − 0.56, p = 0.03), 
‘tree height range’ and ‘mean solar radiation’ (r = − 0.53, 
p = 0.040), ‘canopy density’ and ‘mean solar radiation’ 
(r = 0.72, p = 0.002). The number of stems within vegeta-
tion plots was moderately positively correlated with ‘mean’, 
‘median’ and minimum’ elevation, and several categories 
of branch counts were negatively correlated with ‘relative 
height’ and ‘lower canopy range’ (see Table 2).

Boosted regression tree models: vegetation 
structure effects on the mean and the 95th 
percentile hourly air temperature

The BRT models performed well in predicting the mean and 
the 95th percentile hourly microclimatic air temperature and 
were highly correlated to recorded values (R2 range = 0.899 
to 0.959, p < 0.001). Percentage of divergence also per-
formed well (D2 range = 0.90 to 0.959) and RSME ranging 
from 0.596 to 1.12 across models using vegetation plot vari-
ables, UAV-derived variables and a combined model using 
all variables (Table 3). The predicted values from mean 
hourly microclimatic air temperature models were ~ 5% more 
accurate than the 95th percentile models as measured by R2 
values, 4.86% to 5.34% more accurate as measured by D2 
values, and RMSE values were 0.49 to 0.46 more accurate 
when compared to recorded data. The relative influence of 
individual variables is shown in Table 3.

The fitted functions of most response variables in 
the BRT models are non-linear (Supplementary Materi-
als, Fig. 11a and b). The hour of day response variable, 
for instance, is the most influential across all BRT mod-
els (Table 3) and is largely symmetric, peaking at 2 pm 
(Supplementary Fig. 11a–b). Data logger height, the third 
most influential variable across models, is mostly linear in 
response, with lower values at lower heights, but with nota-
ble ‘dips’ in response values at 11–12 m and 21–26 m, possi-
bly due to the canopy being relatively dense at these heights, 
thus providing extensive shade for the data loggers (Sup-
plementary Fig. 11a–b). Additionally, interactions between 

variables were strong, particularly between canopy density 
and incoming solar radiation (for models that included solar 
radiation and hour for those that did not (Fig. 3, Supplemen-
tary Table 1a–f)).

Discussion

Our study focused on the effects of forest structure on hourly 
air temperature within Sikundur, a degraded tropical forest 
in North Sumatra. Our findings showed that Sikundur has 
a dynamic climatic environment, with differences of up to 
15.2 °C in simultaneous measurements of air temperatures 
within the forest. This is 5 °C more than previously recorded 
in simultaneous data logger measurements within tropical 
environments (Scheffers et al. 2014b).). Temperature peaks 
were highly changeable at different locations across time 
(Supplementary Fig. 11a–d), suggesting that vegetation 
structure and topographic location alter the effectiveness of 
thermal buffering at different times of the day within the 
canopy (Pringle et al. 2003). It is hard to classify areas of 
forest as ‘intact’ or ‘degraded’ from the vegetation variables 
recorded within Sikundur, as the most important indicators 
of old-growth forest, i.e. high values in mean DBH and basal 
area, were not significantly different among vegetation plots, 
unlike previous studies of microclimate within forest areas 
with defined levels of degradation (Frey et al. 2016; Blonder 
et al. 2018). Rather, Sikundur exhibits the heterogeneous 
gradients of degradation which characterise historically 
logged forest (Struebig et al. 2013). This form of degrada-
tion can have a relatively low ecological impact compared 
with other forms of anthropogenic disturbance, such as frag-
mentation and fire (Barlow et al. 2006), although historical 
forest degradation does impact the microclimatic landscape.

The majority of the relative influence of variables within 
BRT models was not directly related to vegetation struc-
ture. The time of day, height of measurement, rainfall and, 
partially, incoming solar radiation (as it is altered by can-
opy structure and terrain) had collectively a high relative 
influence in BRT models (70–86.4%). However, as hour 
and mean monthly rainfall were equal across all plots, the 
majority of the variability between sites was determined by 
measurement height and incoming solar radiation. Each of 
these variables had strong interactive effects with vegeta-
tion variables (Supplementary Table 1a–f). For example, in 
the hourly mean climatic air temperature model contain-
ing all variables, incoming solar radiation was mediated by 
canopy density, with the most intense solar radiation (350 
kWh/m2) within 25 × 25 m vegetation plots with 78% can-
opy cover having the same impact on mean microclimate 
air temperature as 75 kWh/m2 within vegetation plots with 
68% canopy cover (Supplementary Table 1a, Fig. 3). This 
pattern is repeated for the 95th percentile microclimatic air 
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temperature model, with a stronger interaction (Fig. 3, Sup-
plementary Table 1d), as well as the 95th percentile model 
using only vegetation plot variables with canopy density and 
hour of the day (possibly a proxy of the amount of solar 
radiation) (Fig. 3, Supplementary Table 1f). Whilst these 
results (Table 3) may seem to diminish the role of vegeta-
tion structure in shaping within-canopy microclimatic air 
temperature, this is likely how microclimates within tropi-
cal forests are formed, with temporal effects (time of day, 
solar radiation) interacting with weather events (rain), and 
then buffered by vegetation structure (Fig. 3). Additionally, 
topographical position has a strong effect on the amount of 
solar radiation reaching a particular location in the canopy 
(Fig. 2). Shadow effects caused by microtopography (hills, 
depressions, streams/rivers) and surrounding vegetation 
structure (including emergent trees) directly impacted one of 
the primary drivers of microclimatic air temperature: solar 
radiation (Fig. 2, Table 3). Seemingly, a plot’s location on 
the landscape (i.e. if it is on a hill on in a valley) has a larger 
influence on its microclimatic temperature than forest struc-
ture, although the two factors have strong interactive effects 
(Fig. 3).

Plots with high values in variables associated with old-
growth forests, such as mean DBH values and mean crown 
area (Van Pelt and Franklin 2000, Rutishauser et al. 2016; 
Pereira et al. 2002), directly affected hourly air tempera-
tures (Table 3, Supplementary Fig. 10a–b). Although these 
impacts were less apparent than abiotic factors in BRT mod-
els, variables that measured canopy structure that buffered 
incoming solar radiation, namely, high canopy density and 
high branch counts, were still highly influential (Table 3). 
This suggests that whilst forest age is an important factor 

Fig. 3   Predicted temperature as a product of variable interactions 
between canopy density, solar radiation and hour in three boosted 
regression tree models depicted with other variables in models set to 
their mean values

◂ Table 1   Results of Kruskal–Wallis one-way analysis of variance 
test of vegetation variables across the 15 vegetation plots, with vari-
ables that differ between plots marked with * for p < 0.05 or ** for 
p < 0.001

Variable X2 d.f p

Tree height 47.52 14  < 0.001**
Bole height 65.33 14  < 0.001**
Branch count diam. > 20 cm 20.99 14 0.101
Branch count diam. 10–20 cm 26.93 14 0.02*
Branch count diam. 4–10 cm 24.51 14 0.04*
Branch count diam. 2–4 cm 59.4 14  < 0.001**
Branch count diam. < 2 cm 73.43 14  < 0.001**
Connectivity 81.15 14  < 0.001**
Crown area 27.89 14 0.014*
DBH 18.22 14 0.197
Plot basal area 18.38 14 0.19

Table 2   Pearson’s correlation matrix of vegetation plot variables and UAV-derived variables with significantly correlated variables marked with 
* for p < 0.05 or ** for p < 0.001, n = 15

Vegetation plot variables 
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mean canopy 

elevations
0.15 0.19 0.2 0.19 0.4 -0.05 0.04 0.53* -0.2 0.29 -0.04 0.28 -0.11 0.13 0.22 0 0.01

median canopy 

elevation
0.16 0.19 0.21 0.19 0.44 -0.02 0.08 0.57* -0.18 0.34 0 0.26 -0.06 0.18 0.27 0.06 0.05

stand. Dev. Of 
canopy elevations

0.23 0.46 0.05 0.32 -0.09 0.13 0.1 -0.31 0.05 0 -0.24 0.33 0.12 0.07 -0.18 -0.13 0.08

minimum canopy 

elevation
-0.02 0.03 0.09 0.07 0.25 -0.22 -0.16 0.52* -0.28 0.19 -0.08 0.19 -0.31 -0.07 0.12 -0.17 -0.15

maximum canopy 

elevation
0.21 0.31 0.22 0.31 0.32 -0.01 0.07 0.38 -0.18 0.22 -0.13 0.42 -0.14 0.1 0.12 -0.09 -0.05

range of canopy 

elevations
0.49 0.59* 0.31 0.52* 0.22 0.38 0.43 -0.19 0.15 0.1 -0.13 0.53* 0.28 0.35 0.04 0.14 0.18

variance of canopy 

elevations
0.13 0.39 -0.04 0.25 0.16 0.03 0.01 -0.33 0.03 -0.06 -0.23 0.29 0.1 0 -0.21 -0.15 0.09

lower canopy range 

of elevations
0.5 0.49 0.35 0.37 0.48 0.46 0.56* 0.1 0.19 0.34 0.1 0.28 0.53* 0.6* 0.33 0.49 0.44

upper canopy range 

of elevations
0.27 0.46 0.14 0.47 -0.17 0.13 0.1 -0.43 0.04 -0.21 -0.34 0.59* -0.13 -0.07 -0.31 -0.32 -0.19

relative height of 

canopy
-0.09 -0.18 0.01 -0.23 -0.39 -0.35 -0.37 -0.25 0.11 -0.24 -0.11 -0.16 -0.52 -0.67* -0.62* -0.63* -0.48

mean solar radiation -0.56* -0.33 -0.53* -0.45 0.04 -0.16 -0.29 0.42 -0.22 0.15 0.72*
* -0.43 -0.01 -0.05 0.05 -0.06 0.07
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in determining microclimate variables (Frey et al. 2016), 
canopy density, possibly provided by fast-growing vegeta-
tion which fills canopy gaps after forest degradation (Chaz-
don 2003), is a more important factor in determining micro-
climate air temperature in tropical forests. Plots with high 
values in canopy density had reduced the mean and the 95th 
percentile microclimatic air temperature which potentially 
provides thermal refuges for arboreal organisms. The 95th 
percentile temperatures were more affected by canopy den-
sity and other vegetation variables than mean hourly tem-
peratures, suggesting that in higher temperatures, microcli-
matic air temperature within forest canopy is increasingly 
governed by vegetation structure. These results are consist-
ent with the findings of previous studies which were able to 
define areas of forest by differing levels of anthropogenic 
disturbance (Jucker et al. 2018; Blonder et al. 2018), though 
this study shows that historically selectively logged for-
est can show similar air temperature variability as heavily 
logged forest (i.e. highly variant simultaneous recordings of 
air temperature) (Blonder et al. 2018). For organisms that are 
sensitive to high temperatures, this may render the canopies 

of selectively logged forest climatically unsuitable during 
the hottest parts of the day or in a warmer future.

UAV-derived measurements of canopy structure had 
few definitive relationships with field-based measurements. 
This is likely due to the inability of UAV-derived structure-
from-motion photogrammetry to penetrate the multi-layer 
canopy of tropical forest (unlike LiDAR), rendering micro-
topographic variation beneath the canopy, and the structure 
of the understory, hidden from variables derived from UAV 
surveys. However, UAV-derived variables explaining canopy 
elevation range within plots (‘range of canopy elevations’ 
and ‘lower canopy range of elevations’ and ‘upper canopy 
range of elevations’) showed strong relationships to plot-
level measurements. These variables are related to vari-
ous measures of mean tree size within plots, including tree 
height, bole height, quadratic mean diameter, larger branch 
size counts and crown connectivity, all of which are poten-
tially useful measures of forest structure and age in future 
studies.

Traditional measures of forest age (i.e. high values in 
mean DBH, mean crown area, plot basal area, branch counts 
of various sizes) accounted for a significant proportion of 

Table 3   Summary of boosted 
regression tree models 
predicting the mean and 
the 95th percentile hourly 
microclimatic air temperature, 
with relative influence of 
individual vegetation variables 
on each of three models. 
Ordered by mean relative 
influence across models. 
Variables shaded in grey are 
derived from UAV surveys

Relative influence within each model

Variable

veg. plot 

mean air 

temp.

UAV 

mean air 

temp.

All 

variables 

mean air 

temp. 

Veg. plot 95th 

percentile air 

temp. 

UAV 95th 

percentile 

air temp. 

All 

variables 

95th 

percentile 

air temp. 

hour 49.36% 40.50% 40.78% 42.75% 32.80% 36.74%

mean monthly rainfall 22.54% 22.43% 21.97% 15.32% 13.83% 13.56%

data logger height 14.50% 15.14% 14.33% 21.74% 21.42% 19.70%

solar radiation 0% 11.14% 11.08% 0% 14.92% 12.84%

mean branches 0-2cm diam. 3.35% 0% 2.92% 5.38% 0% 2.71%

lower canopy range of elevations 0% 3.74% 1.87% 0% 4.11% 2.97%

minimum canopy elevation 0% 2.33% 0.00% 0% 3.91% 2.65%

canopy density 2.18% 0% 2.14% 3.85% 0% 3.62%

mean crown connectivity 1.78% 0% 0% 3.19% 0% 0%

mean crown area 2.33% 0% 2.21% 0% 0% 0%

relative canopy elevation 0% 1.85% 1.27% 0% 3.34% 2.45%

mean DBH 1.64% 0% 1.43% 2.83% 0% 2.77%

range canopy of elevations 0% 0% 0% 0% 2.04% 0%

cumulative crown area 0% 0% 0% 1.82% 0% 0%

tree height range 0% 0% 0% 1.77% 0% 0%

mean canopy elevation 0% 1.03% 0% 0% 1.96% 0%

mean tree height 0% 0% 0% 1.36% 0% 0%

mean branches 10-20cm diam. 1.28% 0% 0% 0% 0% 0%

upper canopy range of elevations 0% 0.87% 0% 0% 1.67% 0%

mean branches > 20cm diam. 1.05% 0% 0% 0% 0% 0%

stand. dev. of canopy elevations 0% 0.96% 0% 0% 0% 0%

D2 0.953 0.958 0.958 0.892 0.907 0.909

R2 0.952 0.953 0.954 0.899 0.892 0.928

RMSE 0.638 0.638 0.624 1.104 1.106 0.941
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relative influence in the BRT models using only vegetation 
plot variables (13.6, 20%) and have been repeatedly shown 
to influence the microclimatic environment (Frey et al. 2016; 
Chen et al. 1995; Parker et al. 2004). However, microcli-
matic air temperature was marginally better predicted by 
UAV measurements of canopy structure. The ability of 
UAVs to provide wide-ranging, detailed measures of canopy 
surface topography, as well as the estimation of incoming 
solar radiation (which is the primary driver of air tempera-
ture) (Bramer et al. 2018), may be a useful tool in future 
studies. UAV-derived DSMs are effectively a coarse-grained 
abstraction for many variables usually measured in micro-
climate studies (slope, aspect, relative topographic position, 
vegetation, wind exposure) (Dobrowski 2011). Whilst UAV-
derived variables may not account for fine-grained fluctua-
tions in microtopography and other influences on micro-
climate (e.g. presence of streams or pools, soil moisture, 
understory structure), it does allow for rapid assessment of 
these combined effects on microclimatic air temperature at 
a scale relevant to most organisms. This suggests that UAV 
surveys, with the addition of in situ microclimate measure-
ments, are able to predict microclimatic air temperature at 
a given height and time of day within dense forest. Using 
spatial predictions of the BRT model presented here, it is 
possible to project mean hourly air temperature across the 
25.7 km2 cover by UAV surveys (Supplementary Materials, 
Fig. 12).

Conclusions

Coupling detailed plot-level vegetation surveys, UAV can-
opy topography data and microclimate data loggers within 
the tree canopy has shown a relationship between vegeta-
tion structure and microclimatic air temperature at a scale 
relevant to tropical species. As global temperatures increase, 
the importance of canopy density and old-growth forest 
structures in buffering arboreal organisms from extreme 
temperatures may therefore also increase. Forest degrada-
tion limits the buffering capacity of forests. In the face of 
predicted future climate change, where temperatures are 
predicted to rise and precipitation levels to become more 
spatially and temporarily erratic (Tangang et al. 2017), 
degraded tropical forest may become less suitable for many 
organisms that have historically inhabited these areas. The 
use of wide-ranging UAV canopy surveys and data loggers 
to model air temperature over large areas allows researchers 
and forest managers to explore the effects of future climate 
change within canopies over large areas and, in turn, predict 
the effects of these changes on species dependent on these 
habitats.
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