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Abstract

We derive key properties of the actuarially fair contribution rate for defined benefit

(DB) schemes, that equates scheme assets to liabilities for any given scheme member.

The unpleasant actuarial arithmetic of both increased life expectancy and (especially)

negative real yields has resulted in a massive rise in the fair contribution rate over recent

decades. At present there appears to be little prospect of these rises being reversed. We

analyse the implications for the viability of DB schemes, and consider the (potentially

significant) impact of incorporating systematic risk into benefits.

JEL Classification: J32
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1 Introduction

Contribution rates to defined benefit (DB) pension schemes are usually fixed for pro-

longed periods, and invariant across scheme members. In this paper we derive some key

properties of the actuarially fair contribution rate that, for any given scheme member,

equates scheme liabilities to the present value of their contributions. The unpleasant

actuarial arithmetic of the title of this paper is illustrated with reference to the de-

fined benefit scheme for academics in UK universities (the Universities Superannuation

Scheme, USS), over the period 1985− 2020 : we show that, on current rules, fair contri-

bution rates (by both employees and employers) would have risen roughly sixfold over

this time period, to well over 40%. We analyse the implications of our results for the

viability of DB schemes.

The exercise is conceptually relatively straightforward. DB schemes sell pensions that

are simply deferred annuities (typically indexed) along with other future payments that

are risk-free, contingent only on the scheme member’s mortality risk. We therefore draw

on the clear analogies with the literature on annuity pricing in deriving and assessing

our results.1

The key (or indeed, arguably, only) difference in what DB schemes offer, compared

to other annuity providers, is that, in contrast to the lump sum payments made for

conventional annuities, DB scheme members pay for their deferred benefits by a sequence

of payments as a fixed share c of earnings through the working life, with scheme liabilities

accruing over time by a pre-announced formula. The fair contribution rate c∗t , at the

time, t, at which a scheme member enters the scheme, is then simply the ratio of the

present value of scheme liabilities to the present value of earnings over the working

life2). In our central case we work on the assumption that both accrued contributions

and liabilities are zero beta, hence we can simply apply the law of large numbers, taking

into account mortality risk, using risk-free yields to calculate present values, and hence

c∗t .

A key feature of this calculation is that it is entirely independent of the investment

strategy of the fund’s investments, or indeed of whether the scheme is funded at all. But

we do consider, in light of the annuities literature, whether the present value calculations

1We draw in particular on Finkelstein & Poterba (2004); Koijen & Yogo (2015); Poterba and Solomon
(2021); Cannon & Tonks (2016) and Verani and Yu (2021).

2While our central case assumes that the scheme member stays in the scheme into retirement, we
also show that c∗t is close to being unaffected by the risk of the scheme member leaving the scheme
earlier.
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made on this basis are consistent with viable hedging strategies by providers. We also

note the implications for scheme fragility when actual contribution rates differ from fair

rates.

While the exact calculation of c∗t is somewhat convoluted, we derive an approximation

that closely matches the exact calculation, and which provides strong intuition. Assume

a pure pension liability p (payable from the date of retirement, t + R) is calculated on

the basis of average salary through the working life, w by the formula p = R
Y
w, where 1

Y

is the scheme’s accrual rate. (Thus, if, eg, Y = 80 and the scheme member stays in the

scheme for R = 40 years p = w
2
.) The approximation then takes the form

c∗t ≈
Et
Y
× Pt ×Qt (1)

where Et is life expectancy at retirement, in years. We note that the ratio Et
Y
is closely

related to the saving ratio in the original Modigliani (1966) life cycle model: it is the

notional fair contribution rate if real yields and real wage growth were zero and the

scheme member had a 100% probability of surviving into retirement.

In our approximation this notional “Modigliani”contribution rate Et
Y
is scaled by two

terms, Pt and Qt. Pt is the value of a zero coupon bond with maturity that is close to
(but somewhat higher than) half the scheme member’s current life expectancy, R+Et.3

Qt is close to (but somewhat higher than) the scheme member’s probability of surviving

into retirement.

The significant rise in our estimates of c∗t is dominated by the impact of falls in

risk-free yields on Pt. In 1985, an appropriate measure of CPI-adjusted real yields was
around 2.5% implying Pt ≈ 1

3
; whereas by 2020 the same measure of real yields was

around -1.3%. implying Pt ≈ 3
2
. Thus the reduction in yields alone would have implied

a roughly 41
2
fold increase in c∗t , with the remainder of the sixfold increase driven by

increases in Et and (to a lesser extent) Qt.

These calculations are a stark reminder of the unpleasant property that sustained

negative yields imply that financial payoffs in the future are worth more, the further

into the future they lie; and DB schemes make promises that are very long-dated: for a

scheme member joining the USS with 40 years to retirement the duration of the notional

bond in (1) is around 31 years.

The approximation also helps to illustrate the role of the age of the scheme member

3Or equivalently the average maturity of a hypothetical annuity paid at a constant rate over the
scheme member’s entire remaining life.
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on joining. Only in the restricted “Modigliani” case would the fair contribution rate
Et
Y
be invariant to the age of the scheme member, since scheme assets and liabilities

would accrue in exactly equal proportion through the working life. But both Pt and Qt,

and hence c∗t , are dependent on the age of the scheme member on joining the scheme.

Most crucially the duration of the notional bond is clearly decreasing in the age of

the scheme member on joining: thus common contribution rates imply redistributions

between scheme members of different ages. These are accentuated by additional benefits

such as lump sums, spousal pensions and life insurance components, which also increase

c∗t nontrivially.
4

Most DB schemes have similar characteristics, and thus face similar rises in c∗t .While

we show that, in the USS example, actual contribution rates and other scheme para-

meters have adjusted to c∗t (albeit typically with a lag) the approximation in (1) has

the strong implication that any scheme predicated on a constant contribution rate must

be inherently fragile.5 We argue that, to survive, schemes that offer risk-free payoffs

must follow the example of annuity providers, and explicitly incorporate time variation

in contribution rates, ideally along with some dependence on individual characteristics.

Our analysis can also straightforwardly be extended to consider the impact of pension

payments that have some systematic risk. While we show that this could in principle

imply significantly lower fair contribution rates, we note that the logistical implications

of designing such a hybrid scheme are formidable.

The rest of the paper is organised as follows. In Section 2 we derive a general

expression for the fair contribution rate, and investigate two key benchmark restricted

cases that feed into our approximation. We then analyse the impact of shifts in the

general level of interest rates and the (minimal) impact of wage growth during the

working life. In Section 3 we derive our approximation. In Section 4 we use it analyse

the key historical determinants of c∗t in our applied example of the USS. Section 5

considers the robustness of our approach to a range of assumptions. Section 6 discusses

the implications of our analysis for the viability of DB schemes, and illustrates the

impact of incorporating systematic risk into the pension payment. Section 7 concludes

the paper. Appendices provide proofs and details of data construction.

4We show that we can incorporate the impact of additional non-pension benefits into our approxima-
tion by adjusting actual life expectancy in retirement, Et, for the effective impact, in years of pension,
of these additional benefits.

5It thus sheds light on the recent debate on the viability of the USS scheme, in particular, eg, Marsh
(2019), Wong (2021), Miles and Sefton (2021); Wolf (2021).
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2 The Fair Contribution Rate

A scheme member joins a defined benefit (DB) scheme at at time t, at age A. If they

survive, they will retire at age AR (assumed to be a parameter of the scheme6).

2.1 The market environment

2.1.1 Wage income

Let R = AR − A be the scheme member’s time to retirement on joining the scheme.

The scheme member’s real wage income wt+τ , from which contributions to the scheme

will be drawn, is given by

wt+τ = wte
gt(τ ;A)τ , τ ∈ [0, R) (2)

The age- and time-specific growth path gt (τ ;A) is assumed to be deterministic and

known at time t. We discuss below the implications of uncertainty in wage paths, but

note here that in most contexts where DB schemes exist, job security is usually high

and progression through salary scales is fairly predictable.

2.1.2 The yield curve

There is a real market yield curve described by the function yt (τ) for τ ∈ [0,∞], the

continuously compounded risk-free real return to maturity on a zero-coupon bond issued

at time t, and maturing with a risk-free real payoff at time τ (thus with price Pt (τ) =

e−yt(τ)τ ). The yield curve evolves stochastically through time, but at any point t is a

known deterministic function in τ .

2.1.3 Mortality Risk

The scheme member will die at random date t+ ÃD −A. Their probability of surviving
from time t to time t+ τ is given by the time-varying survival function St (τ ;A) ≡
Pt
(
ÃD > A+ τ

)
= e−Λt(τ ;A)τ , where

Λt (τ ;A) =
1

τ

∫ τ

0

λt (u;A) du

6We show below in Section 5.1 that it is easy to account for members being allowed to retire, fully
or partially, before this age.
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given the time-varying, age-specific hazard rate function λt (τ ;A) ≡ λt (A+ τ) .

In most of what follows, for compactness of notation, we take the dependence of the

hazard rate and wage growth profile on A as given, except where relevant to the analysis

- as a result there is a clear symmetry between the functions gt (τ) , Λt (τ) , and yt (τ).

2.2 The Scheme

The scheme member’s instantaneous contribution to the pension scheme at time t+ τ ∈
[0, R) is assumed to be a proportion ct of their wage wt+τ where ct is fixed at time t,but

is assumed invariant over τ . The present value at t of the member’s total payments

into the scheme, At is then simply proportional to the present value Wt of the scheme

member’s lifetime earnings within the scheme

At = ctWt (3)

In valuing both payments into the scheme, and the scheme’s liabilities, we make the

following assumption:

Assumption A1: All contributions to, and contingent payoffs by the scheme have
zero risk prices (are zero beta).

Both payments into the scheme and liabilities relating to an individual scheme mem-

ber are clearly stochastic, due to mortality risk. However if the payoffs are uncorrelated

with market risk factors they will have zero risk prices so the no-arbitrage prices of both

assets and liabilities for an individual scheme member can be calculated using expected

payoffs, discounted using yields on risk-free bonds.

Assumption 1 simplifies, but is not essential to our analysis; we consider the impact

of relaxing it in later sections.7

Given the assumed deterministic path for earnings, and using A1, we then have

Wt = wt

∫ R

0

e(g(τ)−Λ(τ)−y(τ))τdτ . (4)

In return for these contributions, the scheme provides contingent benefits, with im-

plied contingent liabilities. In our central case we consider 3 forms of contingent liability.

7In Section 5.4 we consider the impact of relaxing A1 in this context. In 5.1 we also consider the
(empirically nontrivial) probability that the scheme member may quit the scheme before retirement;
but we show that this has a negligible effect on our results. In Section 6.2 we consider the implications
benefits with systematic risk.

5



2.2.1 The pension liability

Conditional upon the member surviving into retirement, the scheme will pay a pension

pt, at a constant rate from t + R until the scheme member’s death. We assume in our

central case that the pension is calculated on the basis of average salary,8 as

pt =
R

Y
wt (5)

where Y is the notional number of years the member would need to remain in the

scheme to accrue a pension equal to their average salary (although in practice in almost

all schemes Y >> R), and

wt =
wt
R

∫ R

0

eg(τ)τdτ (6)

is the average salary over the working life.

Under Assumption A1 the implied pension liability at t is,

Lpt = pt

∫ ∞
R

e−(yt(τ)+Λt(τ))τdτ ≡ ptC
p
t . (7)

which is simply the present value at time t, of a deferred annuity at rate pt, to be paid

from period t+R, which can be expressed as Cp
t years’worth of annual pension, where

Cp
t is a capitalisation factor.

2.2.2 The lump sum liability

The scheme will also make a lump-sum payout at t+R of Z years’worth of the pension,

Zpt, again, conditional upon the scheme member surviving into retirement, with implied

liability

LZt = ptZe
−(yt(R)+Λt(R))R ≡ ptC

Z
t (8)

and capitalisation factor CZ
t .

2.2.3 The spousal pension liability

If the scheme member has a spouse, who survives after the member’s death, the spouse

will receive a fixed fraction, s of the pension pt that would have accrued had the scheme

member survived until time t + R. We assume this will be payable from time t + R,

8We consider below (see Section 5.2) the impact of defining the pension in terms of final, rather than
average salary.
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or the date of the scheme member’s death (whichever is latest) until the date of the

spouse’s own death.

In our central case we assume that the scheme member does indeed have a spouse,9

with an identical age-related survival probability to the scheme member on joining the

scheme.10

The associated liability is then

Lst = spt

∫ ∞
R

λ (τ) e−Λt(τ)τ

{∫ ∞
τ

e−(yt(u)+Λt(u))udu

}
dτ ≡ ptC

s
t . (9)

where the integrals over τ and u capture the probabilities of the scheme member’s

and spouse’s deaths, respectively at a given time horizon. The present value of this

liability can again be expressed as Cs
t year’s worth of annual pension, where C

s
t is a

third capitalisation factor.

2.2.4 Life insurance components

Defined benefit schemes commonly also offer some element of life insurance. However, to

simplify our analytical framework we neglect the cost of any life insurance components

in the scheme, in which we include both death-in-service payments and any liability

to pay a spousal pension if the scheme member dies before retirement, since this is in

effect an additional form of life insurance. We thus focus our analysis on the cost of

pension provision, and other benefits provided after the retirement date. We do however

illustrate the impact of these additional components in our applied example.

2.3 The Fair Contribution Rate

We define the fair contribution rate c∗t as the contribution rate that equates At (the
present value of the member’s contributions) to Lt, the present value of all contingent
liabilities to a scheme member joining the scheme at time t. Thus, using (3),

c∗t =
Lt
Wt

. (10)

The fair contribution rate is therefore simply equal to the ratio of the present value of

9Clearly this assumption will not hold for all scheme members. In Section 6 we consider the distri-
butional implications of this (and other) elements of the scheme.
10In the data survival probabilities are clearly not identical, so the calculations below can also be

viewed as being calculated under a veil of ignorance on the sex of the scheme member.
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the scheme’s liabilities to the present value of their career earnings within the scheme.11

As such, while, from the definition of At in (3), c∗t is assumed constant, for any given
scheme member, over their working life, its value will usually vary both over time and

across characteristics of scheme members.

Note that this definition is quite general, and does not rely on Assumption 1 - a

property we exploit below, in Section 6.2, when we consider the impact of possible

amendments to DB schemes, in which either liabilities or assets may carry systematic

risk. In the main body of the paper, however, we focus on the zero beta case.

Given

Lt = Lpt + LZt + Lst (11)

and noting that, using (7) to (9), each of the conditional liabilities can be expressed as

a multiple of the annual pension pt, we then have:

Proposition 1 Let Ct be an aggregate capitalisation factor (in years’worth of annual
pension), such that Lt = ptCt. Under A1, the fair contribution rate c∗t can be expressed

as

c∗t =
Ct
Y
Ut (12)

where

Ct = Cp
t + CZ

t + Cs
t ,

Cp
t =

∫ ∞
R

e−(yt(τ)+Λt(τ))τdτ

CZ
t = Ze−(yt(R)+Λt(R))R (13)

Cs
t = s

∫ ∞
R

λ (τ) e−Λt(τ)τ

{∫ ∞
τ

e−(yt(u)+Λt(u))udu

}
dτ .

and

Ut =

∫ R
0
wt+τdτ

Wt

(14)

where Wt, as defined in (4) is the present value of career earnings.

11Note that we follow standard academic practice in ignoring the administrative costs of the scheme
in calculating this fair rate. As such our estimates understate the true fair rate after costs. As a
benchmark for comparison, for example, Koijen and Yogo (2015, Table 2, p451) show that, using risk-
free valuation, average markups on life annuities in the United States since the early 1990s were around
8%, and were systematically positive except for brief period during the financial crisis - a dip which the
authors attribute to regulatory distortions. We revert to the issue of a broader definition of fairness in
Section 5.4.
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Proof. By substitution from (4) to (9).

Proposition 1 factors the fair contribution rate into two ratios.

In the first ratio both Ct and Y are measured in years. Writing total liabilities as Ct
years’worth of annual pension, Ct is the sum of three capitalisation factors (determined

by market yields and mortality rates), for the three contingent liabilities of the fund (the

member’s pension, the lump sum Z and the spousal pension). The higher is Ct
Y
(where

1/Y is the accrual rate for the pension), the higher the fair contribution rate needs to

be.

The second term, Ut is the ratio of the undiscounted sum of career earnings, if the

scheme member survives to t + R, to the present value of career earnings, which, from

(4) takes account of both discounting and mortality risk. Since both numerator and

denominator scale in current wage income, wt, it is evident that the fair contribution

rate is invariant to wt.

Other than this, Proposition 1 only limited intuition. We now proceed to analyse

some key properties of c∗t that both provide more intuition and allow us to derive our

approximation.

2.4 The fair contribution rate with zero yields, and the “Modigliani

Case”

We first consider two heavily restricted benchmark cases in which the elements in Propo-

sition 1 simplify considerably. In addition to providing intuition, these provide key ele-

ments in our approximation. We then consider the impact of relaxing the restrictions.

Proposition 2 (The Zero Yield, Zero Growth, Pure Pension Case) If real yields
and wage growth are zero, yt (τ) = gt (τ) = 0 for all τ , then, for a pure pension liability

(s = Z = 0) the fair contribution rate c∗t is given by

c∗0,t =
Et
Y
×Qt, (15)

where Et is life expectancy at retirement, given by

Et = Et
[
ÃD − AR

∣∣∣ÃD > AR

]
(16)

9



and

Qt = St (R)U0,t ∈ (St (R) , 1) (17)

U0,t =

 R

St (R)R + (1− St (R))Et
[
ÃD − A

∣∣∣ÃD < AR

]
 > 1 (18)

where St (R) = e−Λt(R)R, is the probability of survival until age AR, at time t+R (given

R = AR − A), and U0,t is the value of Ut, as defined in Proposition 1 under the same

assumptions.

Corollary 1 (The Modigliani Case) If, additionally, St (R) = 1 (the scheme member

will survive into retirement with certainty) then c∗t is given by

c∗M,t =
Et
Y
.

Proof. See Appendix A.
We focus first on the intuition provided by Corollary 1, in which the scheme member

will survive the R years until retirement with certainty (St (R) = 1). By inspection of

(17) and (18) this also implies Qt = 1.We denote this the “Modigliani Case”since, as we

show below, the insights are closely related to the simplified life cycle model as analysed

in Modigliani (1966). In this simplest case the two ratios in Proposition 1 simplify

considerably. The capitalisation factor Cp
t for the pension liability in Proposition 1 is

then simply equal to the number of years the pension will be paid, in expectation, hence

equals life expectancy at retirement, Et, defined in (16).

The resulting fair contribution rate in this special case can thus be interpreted as

the ratio of two time periods, both measured in years: the numerator, Et, and the

denominator Y , where the latter is the number of years the scheme member would

notionally need to work to have a pension equal to their average salary. Note that while

Yt is transparently a scheme parameter, the numerator Et is, from (16) also crucially

determined both by mortality rates and by the scheme retirement age AR.

Note that in this restricted special case the fair contribution rate is invariant to the

scheme member’s age, A, on joining the scheme, since R = AR − A drops out of the

formula, and Et is also invariant to A.

We refer to this as the “Modigliani Case”because there is a very close link between

this formula and that for the saving rate in the simplest case of the life cycle model,

10



as analysed in Modigliani (1966) in which both real interest rates and wage growth are

also assumed equal to zero, and the date of death ÃD is assumed known. If we interpret

R = AR−A as the length of the working life, then in Modigliani’s model, the saving rate
ς that allows constant consumption before and after retirement is given setting Y = R,

i.e. letting ς = Et
R

= c∗M,t|Y=R, assuming all of the pension is consumed. Clearly to the

extent that R is typically significantly less than Y , then c∗M,t � ς.12

Once we allow for a non-zero probability of death before retirement (St (R) < 1),

then the main proposition implies that the size of the fair contribution rate is strictly

less than in the Modigliani Case.13 Note that that given that the probability of surviving

to retirement St (R) = St (AR − A) , this is the only way in which the age of the scheme

member enters the formula in this restricted case: younger scheme members have a

(moderately) greater risk of dying before receiving their pension, and hence a lower

value of c∗0,t. But apart from the impact of A on this term, the fair contribution rate

in this restricted case is very close to being independent of age: there is only a modest

cross-subsidy from young to old scheme members.

We have thus far considered only the case of a pure pension liability. But it is easy to

show that Proposition 2 generalises to the the case where the scheme provides additional

benefits:

Corollary 2 (The Zero Yield, Zero Growth Case with Additional Benefits).
If the scheme additionally offers a lump sum (Z > 0) and a post-retirement spousal

pension (s > 0) then the fair contribution rate c∗0,t takes the same form as in Proposition

2, but replacing Et with Êt, “Effective Life Expectancy in Retirement”, defined by

Êt = Et
[
ÃD − AR

∣∣∣ÃD > AR

]
+ Z +

s

2
St (R)

(
EtÃSD − ÃD

∣∣∣ÃSD > ÃD > AR

)
(19)

where ÃSD is the random date of the death of the spouse.

12The comparison with Modigliani’s original analysis, which assumes constant consumption through-
out life, casts an interesting sidelight on the design of DB schemes, where Y is normally set at a value
considerably larger than R (e.g., on current USS rules, Y = 75), so that the maximum pension provided
by the pension scheme is only a fraction of the scheme member’s income while working. While this
may in part reflect lower expenditures required to maintain a given living standard in retirement, it
may also reflect the implicit assumption that scheme members would not optimally choose to hold all
of their wealth in the risk-free form offered by DB schemes. We revert to this issue in Section 6 below.
13Relating back to the terms in Proposition 1, for this case the capitalisation factor Ct = Cpt =

St (R)Et, but Ut =
∫ R
0
wt+τdτ/Wt = U0,t > 1. Hence in this case there are offsetting effects of mortality

risk before retirement - unambiguously lowering Cpt , but increasing the ratio of total lifetime earnings
to wealth. But the proof of the proposition shows that the net effect is to reduce c∗0,t unambiguously
compared to the Modigliani Case.

11



Relating this expression to the capitalisation factors in Proposition 1, given the

restrictions, the capitalisation factor for the lump sum, CZ
t , simply equals the number

of years’ extra pension provided as a lump sum, Z; and the capitalisation factor for

the spouse’s pension Cs
t equals the effective number of additional years the pension will

be paid to the spouse, in expectation.14 The total capitalisation factor Ct then equals

Êt,which can be interpreted as “effective life expectancy at retirement”. We show below

that the quantitative impact of the additional benefits is nontrivial; however, given the

conceptual equivalence in this benchmark case, in the remainder of our analytical results

we focus primarily on the case of a pure pension liability.

2.5 An Illustrative Example: Key elements in Proposition 2

for the UK Universities’Superannuation Scheme (USS)

While the assumptions of zero real yields and zero wage growth in Proposition 2 are

clearly restrictive, the resulting expression for the fair contribution rate turns out to

provide a key element of our approximation, derived below. We therefore take a first

look at our illlustrative example.

Table 1 illustrates using UK mortality rates and scheme parameters from the USS,

the defined benefit scheme for academics in UK universities.15 We illustrate for two

cases, R = 20 (hence for a scheme member joining at age A = 47) and R = 40, implying

A = 27.

14Noting that given our assumption of the veil of ignorance on the gender of the scheme member
there is a 50:50 chance that the spouse will outlive them.
15For details of data and scheme parameters, see Appendix F.
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Table 1.
Key Determinants of the Fair Contribution Rate in Proposition 2.16

(given y (τ) = g (τ) = 0)
Scheme retirement age AR 67

Life expectancy at retirement Et = Et
[
ÃD − AR

∣∣∣ÃD > AR

]
18.25 years

Probability of surviving to retirement St (R)
R = 20 R = 40

89.8% 88.0%

Inverse accrual rate Y 75 years

Pure Pension Case (s = Z = 0)

Fair contribution rate (Modigliani Case) c∗M,t = Et
Y

24.3%

Fair contribution rate c∗0,t = Et
Y
Qt

R = 20 R = 40

22.7% 22.1%

Impact of Additional Benefits (s > 0, Z > 0)

Lump sum as multiple of pension Z 3

Surviving spouses’s life expectancy Et
[
ÃSD − ÃD

∣∣∣ÃSD > ÃD > AR

]
6.1 years

Spousal pension percentage s 50%

“Effective life expectancy at retirement” Êt = Et + s× S(R)
2
× 6.1

R = 20 R = 40

22.62 22.59

Fair contribution rate c∗0,t = Êt
Y
Qt

R = 20 R = 40

28.15% 27.39%

The key features the table brings out are:

• The fair contribution rate Et
Y
in the “Modigliani Case”(with a pure pension liability

and St (R) = 1) is just under one quarter, and invariant to age.17

• The counterpart to this invariance reflects the fact that both the present value of
earnings in the scheme,Wt and scheme liabilities Lt scale with R = AR−A, hence
the impact of age cancels out precisely.

• Once account is taken of mortality risk before retirement, the implied fair con-
tribution rate c∗0,t for a pure pension liability is close-to-invariant to the scheme

16All estimates use mortality statistics from the UK Life Tables, based on data for 2017-2019, and
all calculations are for the zero yield, zero wage growth case of Proposition 2 and corollaries.
17In terms of the original Modigliani framework, it corresponds to the hypothetical saving rate of an

individual who wished to maintain a constant consumption level after retirement, but with a notional
working life R = Y = 75 years. Since in practice R << Y clearly, as noted above, in relation to
Proposition 2, the implied pension level is always significantly lower than the average income during
the working life.
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member’s age, but with a modestly smaller value of c∗0,t for those joining the scheme

earlier in their career (hence with a higher value of R), reflecting a slightly lower

probability of surviving into retirement.

• The additional benefits of a lump sum and the spousal pension increase “Effective
Life Expectancy,”Êt, nontrivially relative to actual life expectancy in retirement,

Et, and thus also increase c∗0,t by more than five percentage points compared to the

case of a pure pension liability.18

• Clearly for any given accrual rate, Y, and scheme retirement age AR, the implied
values of of c∗0,t are increasing in life expectancy. Improvements in life expectancy

have increased c∗0,t by around 7 percentage points over our sample period.
19

• The latest implied values of c∗0,t are somewhat below the actual contribution rate
for new members of 34.7% on the latest USS rules (made up of an employee

contribution of 11% and the employers’ contribution of 23.7%). However this

comparison ignores both the impact of additional life insurance components in the

USS, not allowed for in our analysis, and - crucially - the impact of interest rates.

Clearly the case analysed in Proposition 2 is very restrictive. We thus need to

establish how c∗t is affected by non-zero values of both yields yt (τ) and wage growth

gt (τ).

2.6 The impact of interest rate changes on the fair contribution

rate.

We first investigate this sensitivity of c∗t to the general level of interest rates.

In line with common practitioner usage, define the (modified) durations of Wt (the

present value of career earnings) and and Lt, liabilities as

δWt ≡ −
∂ lnWt

∂rt
, δLt ≡ −

∂ lnLt
∂rt

(20)

18Note that while actual life expectancy in retirement Et is invariant to age, Table 1 shows that
effective life expectancy in retirement Êt decreases with R = AR −A (albeit to a very modest extent)
given the dependence of the value of the spousal pension on St (R) : for a younger scheme member, it
is somewhat less likely that their spouse will survive them.
19In Figure 1 below we plot our calculated value of c∗0,t over time.
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given a parallel shift in the zero coupon yield curve, such that

∂yt (τ)

∂rt
= 1 ∀τ (21)

where rt = yt (0) is the instantaneous spot rate at t. Then,

Proposition 3 The durations at t of the scheme’s wealth (Wt) and liabilities (Lt), as
defined in (20), given (21), satisfy the following inequalities:

δWt < R < δLt , (22)

hence the semi-elasticity δc
∗

t = −∂ ln c∗t
∂rt

, or “notional duration”, of the fair contribution

rate satisfies

δc
∗

t = −∂ ln c∗t
∂rt

= δLt − δWt > 0. (23)

Thus a parallel upward shift in yields unambiguously lowers c∗t .

Proof. See Appendix B.

Since c∗t is the ratio of liabilities to the present value of the scheme members’earnings,

its “notional duration” δc
∗

t = −∂ ln c∗t
∂rt

is simply equal to the difference between the two

durations. We show below that this notional duration is equal to the duration of the

notional bond with price Pt, referred to in the introduction, in the neighbourhood of the
zero yield, zero growth case.

The intuition for the property that c∗t is strictly decreasing in yields is very straight-

forward. Since all payouts from the scheme will occur after t + R, the liabilities of the

scheme will have duration greater than R. On the other hand assets must have duration

strictly less than R, and hence δLt ≥ R > δWt . As a result the notional duration of c
∗
t

must be positive, hence an upward parallel shift in the yield curve must lower c∗t .

Note that while Proposition 3 only establishes the sign of this notional duration, we

show below that we can also quantify it, to a good approximation, in the neighbourhood

of the zero yield, zero growth case.

2.7 The (minimal) impact of wage growth

While Proposition 3 makes it clear that interest rates play a crucial role in determining

c∗t , it is relatively straightforward to show that, in contrast, wage growth through the

working life plays a very limited role.
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Without much loss of generality we analyse the case where the salary growth rate is

constant, g (τ) = g ∀τ , and focus on properties in the neighborhood of g = 0. It is then

straightforward to show the following:

Proposition 4 Letting

δc
∗

g =
∂ ln c∗t
∂g

∣∣∣∣
g(τ)=g=0 ∀τ

(24)

then

δc
∗

g =
R

2
− δW

∣∣
g=0

(25)

which in general is of ambiguous sign. However,

yt (τ) + Λt (τ) ≷ 0 ∀τ ≤ R⇒ δc
∗

g ≷ 0 (26)

Proof. See Appendix C.
The ambiguity of the impact of wage growth can be related fairly straightforwardly

to the Modigliani Case analysed above. We show below, in relation to Proposition 5,

that in this case δW = R
2
and hence δc

∗

g = 0 precisely. Away from this restricted case,

if both yields and hazard rates are positive, it is straightforward to show that δW < R
2
,

hence δc
∗

g > 0. Additionally, since hazard rates are relatively low before retirement, the

sign of δc
∗

g , is approximately equal to the sign of yields before retirement.

We show in Appendix F.5 that, due to the offsetting terms in Proposition 4, the

magnitude of δc
∗

g is always small, thus in our approximation we focus on the case where

g = 0.20

3 Approximating the Fair Contribution Rate

We now exploit the results in Propositions 2, 3 and 4 to derive an approximation for

the fair contribution rate derived in Proposition 1. To simplify the analysis, we focus on

the case of a pure pension liability, and, exploiting the ambiguity in Proposition 4, we

assume wage growth is zero.

20In section 5.1 we show that the case for ignoring the impact of wage growth is further accentuated
if we allow for the possibility of scheme members leaving the scheme before retirement. In contrast,
we also show, in Section 5.2, that if the scheme calculates the pension in terms of the final, rather than
average salary, g has a strongly positive impact on c∗t .
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3.1 The Fair Contribution Rate for a pure pension liability

with a flat yield curve

Key elements of the approximation can be derived from analysing the sensitivity of c∗t
to the general level of yields under the following assumption:

Assumption A2: The yield curve is flat and wage growth is zero: yt (τ) = rt,

gt (τ) = 0,∀τ .
We then have:

Proposition 5 Under Assumption A2, the fair contribution rate c∗t for a pure pension
liability (s = Z = 0) can be approximated by

ln c∗t (rt) = ln c∗0,t − δc
∗

0,trt +O
(
r2
t

)
(27)

where c∗0,,t = Et
Y
Qt, is as defined in Proposition 2 and δ

c∗

0,t ≡ −d ln c∗

drt

∣∣∣
yt(τ)=gt(τ)=0

is the

notional duration of Proposition 3 for the zero yield, zero growth case of. Furthermore,

δc
∗

0,t ≈
R + Et

2
+

1

2

(
σD>R√

3
+
R

3

(
1− St (R)

1 + St (R)

))
(28)

where σ2
D>R is the variance of mortality risk, conditional upon surviving to retirement,

for any survival probability function St (τ) suffi ciently close to piecewise linearity over

(t, R) and (R,R + 2Et) .

Proof. See Appendix D.
The first approximation arises straightforwardly, since, under A2„for a given hazard

rate function λt (τ), and a given value of R ≡ AR− A, c∗t is simply a function c
∗
t (rt)

of the instantaneous interest rate, which admits a semilog-linear approximation in the

neighbourhood of the zero yield, zero growth case.

The second approximation exploits the properties of c∗t in the neighbourhood of the

zero yield, zero growth case of Proposition 2 to derive an approximation for the notional

duration δc
∗

0,t itself, in the neighbourhood of this case.

For intuition on the approximation (28), consider first the case where the age of death

AD is known precisely (hence σ2
D>R = 0, and St (R) = 1), i.e., as in the Modigliani Case

of Corollary 1. In this case only the first term in (28) applies, and the intuition is quite

straightforward. Under the assumptions underlying Proposition 2, the present value of

earnings would simply equal wtR. The duration of wealth δ
W
0,t would then simply be the
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average maturity of all wage payments, i.e. R
2
. The duration of liabilities at t + R in

this case would simply be Et
2
, but a zero coupon bond that would provide the lump sum

required to buy the annuity at time t+R would have duration R at time t, hence δL0,t =

R + E
2
, and hence in turn, from Proposition 3, δc

∗

0,t = δL0,t − δW0 = R+Et
2
.

Given that R ≡ AR− A, and in this case Et = AD − AR, it folllows that R +

Et = AD−A, so the notional duration of c∗t itself would then be equal to the duration of
a zero coupon bond with maturity equal to half the scheme member’s life expectancy at

time t, or, equivalently the average duration of a hypothetical annuity paid at a constant

rate over the scheme member’s entire remaining lifetime (i.e., not just after retirement).

The approximation in (28) shows that, absent any countervailing impact of higher

moments, the notional duration δc
∗

0,t is unambigously increasing in mortality risk, reflect-

ing the impact of mortality risk on the duration of both the assets and liabilities of the

scheme.

The first term in brackets, reflecting the impact on liabilities, has a nontrivial ef-

fect. For intuition here, consider the case where, after retirement, the date of death is

uniformly distributed around Et. In this special case the scheme liability would be the

present value of a pension that will be paid for up to 2Et years, with linearly declining

probability, in contrast to the deterministic case where it will be paid with certainty

for only Et years. In the former case, δ
L
0,t = R + 2

3
Et, and the approximation in the

proposition follows since under the same assumptions σD>R = Et√
3
.21

The second term, reflecting the impact of mortality risk on δW , is quantitatively much

less significant, but reflects the property that mortality risk before retirement somewhat

reduces the duration of the scheme’s assets, and thus somewhat increases the sensitivity

of c∗t to the general level of yields.

In Appendix F.6 we show that the empirical survival probability function is suffi -

ciently close to piecewise linearity that (28) provides a close approximation.

Exploiting the approximation in (28), since R+Et = AR +Et−A, it follow that δc
∗

0

is decreasing in A (but invariant to the scheme retirement age, AR). Since c∗0,t = c∗M,tQt,

and c∗M,t = Et
Y
is invariant to age, this means that age only enters the approximation

via its impact on the notional duration δc
∗

0 and on St (R) , and hence Qt in Proposition

2. For positive yields these terms reinforce, meaning that younger members have an

unambiguously lower fair contibution rate; for negative yields they are offsetting.

21In the proof of the proposition the approximation in (28) is derived as an approximation around
the uniform case.

18



3.2 Generalising the approximation.

While the assumption of a flat yield curve in Proposition 5 is clearly restrictive, the

approach generalises fairly straightforwardly to a general yield curve structure, as follows:

c∗t ≈
Et
Y
Qt exp

(
−δ̂

c∗

0,ty
c∗

t

)
(29)

where δ̂
c∗

0 is given by the approximation in (28), and y
c∗
t is an appropriately weighted

average level of yields, given by

yc
∗

t = yLt +
δW0,t

δ̂
c∗

0

(
yLt − yWt

)
(30)

where yLt and yWt are average yields, weighted by life expectancy, for liabilities and

wealth respectively, defined by

yLt =

∫ ∞
R

µL (τ) yt (τ) dτ ; µL (τ) =
τSt (τ)∫∞
R
τSt (τ)

; (31)

yWt =

∫ R

0

µW (τ) yt (τ) dτ ; µW (τ) =
τSt (τ)∫ R

0
τSt (τ)

(32)

The approximation in (29) can be viewed in two complementary ways. It can be

derived analogously to the approximation in Proposition 5 as a first-order semilog ap-

proximation with respect to points on the observed yield curve at time t. But it can also

be viewed as a direct application of the approximation in Proposition 5 to a hypothetical

flat yield curve with rt = yt (τ) = yc∗t ∀τ . In this hypothetical case we can also write
(29) as in the Introduction, as

c∗t ≈
Et
Y
×Qt × Pt (33)

where Pt = exp
(
−δ̂

c∗

0,ty
c∗
t

)
is the price of a zero coupon bond with maturity δ̂

c∗

0,t in this

hypothetical case.

A key feature of yc
∗
t is that it is a weighted average of the two component yields but

with a negative weight on yWt . Thus if the yield curve slopes upwards (y
L
t > yWt ) then

the weighted yield is higher than the yield on liabilities (and hence typically above the

asymptote of the yield curve).
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4 The illustrative example revisited: the fair contri-

bution rate for the UK Universities’Superannua-

tion Scheme (USS)

4.1 The fair contribution rate for a pure pension liability

Figure 1 plots the fair contribution rate (the sum of employer’s and employee’s con-

tributions) on a log scale, alongside the approximation in (29), for the case of a pure

pension liability, for a scheme member joining the scheme 40 years before retirement,

using the scheme parameters Y = 75, AR = 67, as in the current USS scheme. The

exact calculation uses the formula for c∗t in Proposition 1, while the the approximation

uses (29), in both cases setting Z = s = 0. It shows that the approximation captures

the key features of the exact calculation.

Figure 1: The fair contribution rate for a pure pension liability (R = 40, Y = 75,
AR = 67, Z = s = 0)

Figure 1 also shows the time path of the two special cases of the fair contribution

rate from Proposition 2: the "Modigliani Case", c∗M,t = Et
Y
, and the zero yield, zero

growth case, c∗0,t = Et
Y
Qt. Both have risen by nontrivial amounts, driven by reductions in

mortality risk; and the same determinants have also driven them closer together, given

rises in St (R) , the probability of surviving into retirement.
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But, significant as these rises are, they are dwarfed by the impact of falling real

yields. Over the sample period shown, from 1985 to 2020, c∗t on this basis increased

more than sixfold. The dominant explanation, in terms of our approximation, lies in

the price Pt of the notional bond that scales c∗0,t in (29). In 1985 the weighted average
real yield yc

∗
t was around 2.5% (CPI-adjusted), implying Pt ≈ 1

3
(implying that a fairly

priced DB scheme would have been relatively “cheap”), whereas in the most recent data

(end-2020) yc
∗
t was around -1.3% on the same basis, implying Pt ≈ 3

2
.Thus the reduction

in yields alone would have required a roughly 41
2
fold increase in c∗t , with the remainder

of the required increase driven by increases in life expectancy.

Clearly the impact of yields is increasing in the duration δc
∗

0,t of the notional bond

in (33), The sensitivity to yields is accentuated in more recent data by increasing life

expectancy, albeit only modestly,: for R = 40 (hence A = 27) the duration of the

notional bond increase from 29 years in 1985 to 31 years in 2020.

4.2 The Impact of Age on Fair Contribution Rates

Our analysis shows that only under very special circumstances are fair contribution

rates invariant to R = AR−A, the number of years to retirement, and hence, for a given
scheme retirement age, AR, to age, A. Only in the Modigliani case, with St (R) = 1 does

age drop out of the calculation.

In more general cases, with St (R) < 1, the first term, Qt ∈ (St (R) , 1) in the approx-

imation in (29) turns out to have only limited dependence on age in the data since, for a

scheme member with, for example, 40 years to retirement, mortality rates in the first 20

years are very low. Therefore while St (20) > St (40), the fair contribution rates in the

zero yield case of Proposition 2, c∗0,t = E
Y
Qt plotted in Figure 2 show that the impact of R

on the fair contribution rate is trivially small for yields close to zero. However, Figure 2

also shows that for non-zero yields the dependence on R (and hence inverse dependence

on age) can be very significant. In the early part of the sample shown in the chart,

strongly positive real yields meant that counterfactual fair contribution rates for young

(high R) members joining the scheme would have been significantly lower than for older

(low R) members, thus implying nontrivial redistributions between scheme members.

This situation would only have been reversed in the most recent years, once real yields

became negative.
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Figure 2: Counterfactual fair contribution rates under current USS rules for R = 20 vs
R = 40

4.3 Impact of additional benefits on fair contribution rates

Figures 1 and 2 focussed on the simplest case of a pure pension liability. But DB schemes

do not only provide pensions.

In our central case we also considered the impact of a promise on a lump sum of Z

years’worth of pension, (in the USS case Z = 3) and the impact of a spousal pension at

a rate of s times the accrued pension, payable if the scheme member predeceases their

spouse after retirement (in the USS case s = 0.5). Corollary 2 showed that, in the zero

yield case of Proposition 2 these increase the "effective life expectancy" of the scheme

member, Êt, relative to the true life expectancy in retirement, Et. Table 1 showed that,

using the most recent UK life tables these additional benefits raise Êt by around 4

years and hence, for given scheme parameter Y, increase both c∗M,t and c
∗
0,t by a factor of

around 11
4
. For non-zero yields, this scaling factor does not translate precisely into our

approximation in (29) since the liabilities associated with these additional benefits do

not have the same duration as the pension liability. To the extent that both payments

increase the duration of the notional bond, in the most recent data they increase c∗t
somewhat more than proportionately to the increase in c∗0,t.

22

22The lump sum, for example, clearly has duration precisely equal to R. For relatively young scheme
members this will be higher than the approximated value of δc

∗

0,t for the pure pension liability in (28):

22



We also noted that many DB schemes also offer life insurance components. Clearly

these must also increase c∗t , although, since they are of shorter duration, they somewhat

reduce the sensitivity to yields, and, in contrast to all other factors the impact on c∗t has

been somewhat reduced by improvements in life expectancy.23

Figure 3 shows how the cumulative contribution of each of these additional compo-

nents has evolved over time. In the most recent data they increase c∗t from around 33%

for a pure pension liability, as in Figure 1, to close to 46%.

Figure 3: Decomposition of contribution rate for current USS rules, R = 40

4.4 Impact of Changes to USS Rules

The calculations underlying Figures 1, 2 and 3 were on a strictly counterfactual basis,

on the basis of current scheme rules. In reality, USS scheme rules have changed over

time, with at times significant impacts on implied fair contribution rates. Figure 4

summarises the impact of these changes, and also compares the resulting figures with

the actual contribution rate paid by scheme members at any point in time.24

eg as noted above for R = 40, δc
∗

0,t ≈ 31 years on most recent data. The duration of Lst , the liability for
the spousal pension, will also clearly be longer than that of the member’s pension, since it it will only
be paid after the member’s death.
23Appendix F.3 describes the methodology by which we incorporate life insurance components into
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Figure 4: c∗USS,t under different scheme rules, R = 40, wage growth g = 2%

The calculations in Figure 4 are carried out for a new scheme member joining the

scheme, with R = 40 years to retirement. Note that, in contrast to our main analysis,

the calculations here assume positive wage growth g = 2% at an annual rate through

the working life.25 While we have shown that wage growth has a minimal effect on fair

contribution rates when pensions are based on career average earnings, wage growth has

a very much stronger effect in final salary schemes,26 which is relevant to earlier USS

rules.

The first series (dark blue) shows the counterfactual value c∗USS,t under current scheme

rules (CPI indexation, final salary, and Y = 75). It is almost identical to the same series

in Figure 327. The second series (red) shows the implied contribution rate on USS

scheme rules until 2010, of final salary basis, RPI indexation and Y = 80 . The third

series (green) is the implied value of c∗USS,t under prevailing USS rules at any point in

our calculations.
24The details of how the scheme rules have changed are given in Appendix F.4.
25The assumption of g = 2% implies somewhat more than doubling of salaries in real terms over a 40

year working life - a quite conservative assumption given the combination of semi-automatic progression
through salary scales, and, in most cases, promotions to higher salary scales, in the UK academic system.
26We show this formally below, in Section 5.2.
27In line with Proposition 4, in a career average scheme the impact of positive wage growth raises the

counterfactual c∗t somewhat in the earlier part of the sample, when yields were positive, and lowers it
marginally in more recent years when yields were negative.
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time.28 As discussed in Section 5.2, given even a relatively modest growth rate of salaries

the fair contribution rate with a final salary scheme is markedly higher. As a result, had

the final salary component of the scheme been maintained (along with RPI indexation)

the fair contribution rate would have been around 75% by the end of our sample.

Finally, Figure 3 also shows (light blue) the actual contribution rates for the USS

scheme at any point in time. Strikingly, until the second half of the 1990s, this rate

was well above the fair contribution rate on prevailing rules (shown in green), implying

that scheme members and employers systematically overpaid for the benefits the scheme

provided, and sometimes by a very wide margin.29

However, in all but one year since the late 1990s scheme members have paid less (often

significantly less) than fair contribution rates. The contribution rate was increased to

34.7% in October 2021 (11.0% employee contribution, 23.7% employer contribution). It

is worth noting that the scheme sponsor’s recent proposed rise would increase the rate

to 42.1% (13.6% and 28.5%, respectively), still somewhat below the estimated fair rate

shown in the chart.

Without asserting any clear empirical regularity, it is fairly easy to see in Figure 4

a tendency for both contribution rates and scheme rules to be adjusted in response to

the gap between actual and fair contribution rates in earlier years; but this is (perhaps

unsurprisingly) distinctly more marked when actual rates were below fair rates, rather

than above them. Thus, the cut in contribution rates in the second half of the 1990s

can be viewed as a (modest) adjustment to the fact that scheme members had been

systematically over-contributing in the previous decade and a half. Ironically, it occurred

at a time when fair contribution rates were actually rising steeply, as real yields fell, such

that the cut in contribution rate ended up accentuating the extent to which scheme

members were under-contributing. In due course the gap was closed (if only for a

very short while) by a combination of increased contribution rates and (more crucially)

changes in scheme rules (most notably, as discussed above, the shift from a final to

average salary scheme). But neither of these changes have been suffi cient to offset the

impact of continued rises in fair contribution rates as real yields have continued to fall.

28Between 2011 and 2015 the prevailing rules implied a slightly lower fair rate since during this period,
Y = 80, compared to Y = 75 on current rules.
29It is striking that an implied markup of, occasionally, more than 100% during this period dwarfs

the implied markups highlighted by the literature on “money’s worth” for annuities (Koijen & Yogo,
2015; Cannon & Tonks, 2016, Poterba & Solomon, 2021; Verani and Yu, 2021).
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5 Robustness Checks

In this section we we consider the robustness of our analysis to various modifications to

our framework.

5.1 The impact of early leavers

The first modification, which allows for the possibility of early leavers from the scheme,

strengthens the case for ignoring the impact of g in the approximation.

The calculation underpinning the general formula for c∗t in Proposition 1 is predicated

on the apparently restrictive assumption that the scheme member will stay in the scheme,

with certainty, until retirement at t+R. However, a small amendment to our framework

makes it straightforward to show that the impact of this assumption is minimal.

Consider the case where the scheme member has a constant instantaneous probability

q of quitting the scheme at time t+τ for τ ∈ [0, R]. Upon quitting, the scheme’s pension

liability is fixed at the level accrued at the time they quit, but so are accrued assets. The

pension payout still starts at t + R. Again, for simplicity, assuming constant growth,

g (τ) = g, the expected pension is then given by,

Et [pt] =
1

Y

∫ R

0

e(g−q)τdτ (34)

while the relevant measure of wealth, out of which contributions are accrued, similarly

becomes

Wt = wt

∫ R

0

e(g−q−Λ(τ)−y(τ))τdτ . (35)

But these expressions are identical to our central case, if g is replaced with g − q, and
thus can be analysed using Proposition 4, which showed near-invariance to g. Since the

impact of early leavers is to lower the effective growth rate of earnings of the typical

scheme member, this reinforces the case for ignoring the impact of wage growth in our

approximation.

5.2 A final salary scheme

Historically, DB pension schemes have also calculated pensions on the basis of final

salary, rather than average salary, as in our main analysis. In such schemes, in marked

contrast to our central case, the impact of wage growth cannot be ignored.
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Again, for simplicity, we focus on the case of assuming a constant growth rate g. It

is then straightforward to show

Corollary 3 For a final salary scheme, and constant wage growth g, with pension given
by

pFSt =
R

Y
wte

gR (36)

then

δc
∗FS

g = R− δW
∣∣
g=0

> 0 (37)

Proof. See Appendix E.
The impact of wage growth in this case is both unambiguous in sign (since Proposi-

tion 3 showed that δW < R) and quantitatively significant, since, as discussed previously,

for a range of cases, δW ≈ R
2
⇒ δc

∗FS

g ≈ R
2
. It is therefore clear that in the case of a

final salary scheme the approximation would need to take this impact into account: ie,

the implied value of c∗ would be higher than in (29) by a factor of approximately e
Rg
2 .

Figure 4 showed that in the case of our USS example, had the scheme continued to pay

benefits based on final salaries, fair contribution rates for R = 40, g = 2% would by

2020 have risen above 70%.

5.3 Robustness to Mortality Assumptions

Our approach to mortality risk can be criticised on a number of grounds.

There is a substantial literature on the pricing of annuities which, building on Roth-

schild & Stiglitz (1976) and Finkelstein and Poterba (2004) focusses on a potential

adverse selection problem that those choosing to buy annuities may do so because they

know themselves to have lower mortality risk. In the absence of a separating equilibrium

this may lead to market prices of annuities being higher than if they were priced on the

basis of mortality risk for the entire population. For example Poterba & Solmon (2021)

show that money’s worth calculations for US annuities are significantly impacted by

whether mortality risk is estimated for the population as a whole, or for the self-selecting

sample of annuitants, with implied prices for the latter being signficantly higher.

On the face of it, we might defend our use of population mortality risk from UK Life

Tables by arguing that, since members of DB schemes such as USS are typically auto-

matically enrolled, this may mitigate, or possibly eliminate, any adverse selection bias.

However Poterba and Solomon (2021) also note that other characteristics of annuitants

such as higher educational status or earnings power, may also help to explain their lower
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mortality risk. Since these characteristics are more likely also to apply to members of

the USS scheme (and possibly members of DB schemes more generally) this source of

potential bias cannot be so easily ignored, implying that our calculated fair contribution

rates are likely to be underestimates.

To assess the quantitative significance of this, in Appendix F.1 we follow Cannon

& Tonks (2016) and show the impact of using an alternative set of life tables based on

mortality rates of members of DB schemes administered by life insurers. This results

in an estimate of life expectancy at retirement, Et around 10% longer than using ONS

life tables, and thus, taken in isolation, suggests c∗t may be underestimated by the same

proportion.

An additional factor that we do not address is the role of the stochastic properties

of mortality risk itself. While we assume the survival probability function St (τ) to be

time-varying, implying that life expectancy in retirement Et is also time-varying, at any

time t, the St (τ) is treated as known for any time t + τ . Poterba & Solomon (2021)

note that insurance companies typically build in an allowance for falls in mortality rates

based on historic trends; while Cannon & Tonks (2016) argue that uncertainty about

future mortality may have a significant positive impact on the price of annuities sold by

insurance companies, with a stronger effect, the more conservative issuers are required to

be in their treatment of mortality risk.30 They also show that the impact of uncertainty

about mortality risk is increasing, the lower are market yields. By implication this points

to a further argument that our estimates of recent rises in c∗t are understated.

In summary it appears fairly clear that our treatment of mortality risk is, other

things being equal, likely to lead to our understating fair contribution rates.

5.4 Robustness to discounting assumptions

5.4.1 Liabilities

In contrast to the fairly clear-cut implications of the annuities literature for mortality

risk, there is no clear-cut consensus on the appropriate discount rate to be used in

calculating implied liabilities. Some authors (eg, Cannon & Tonks, 2016; Koijen and

Yogo, 2015) assume, as we do, that the appropriate discount rate for any scheme liability

is the yield on a risk-free government bond of matching duration. But other more recent

contributions to the literature (eg Poterba and Solomon, 2021; Verani and Yu (2021))

30They also argue that this impact is likely to be hard to distinguish from the adverse selection effect
noted above.
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argue that, since insurance companies - at least in the United States - typically back

annuities with investments in relatively low risk corporate bonds, it is more appropriate

to use corporate yield data.31

It is crucial to stress that both these authors take it as given that that fair valuations

must reflect the risk-free nature of the promises made, and thus are in principle consistent

with our approach; their arguments focus instead on the nature of the required arbitrage.

Thus Verani and Yu (2021) argue that, since annuities are risk-free but illiquid, issuers

of annuities need to compensate annuitants for the loss of the “convenience yield”from

holding liquid risk-free assets, and thus must (and, at least in the United States, do)

invest in higher yielding corporate bonds. But they also note that given the market

friction that the duration of liabilities exceeds the duration of corporate bonds, issuers

carry interest rate risk, which means they must hold higher reserves in order to guarantee

payments, and thus in turn must in equilibrium charge prices that are higher than

notional fair prices calculated using a corporate yield curve.32

But this in turn means that, in the context of more complex hedging strategies, the

concept of “fairness”becomes less clear-cut, if some part of the apparent markup over

notional fair present values reflects compensation for the necessary imperfections of the

hedging process.

5.4.2 Assets/Present value of earnings

To the extent that there is covariation between wage growth and market risk factors, we

would normally expect this to be positive. If so the implied value ofWt, as defined in (4)

represents an upper bound to the present value of the scheme member’s earnings within

the scheme, thus, in isolation, implying, from (10), some element of underestimation of

the fair rate.
31Poterba and Solomon compare the impact of using BBB yields vs risk-free Treasury yields; Verani

and Yu use the the HQM yield curve.
32Verani and Yu do however stress that this approach represents a valuation from the perspective of

the shareholder of an insurance company issuing the annuity. But they also note that: “the discount
rate of an annuity shopper is likely very different from the discount rate of the owner of a life insurer.
An annuity shopper seeking a safe longevity insurance contract may perceive an annuity contract to
be relatively “safe” because of the existence, for example, of a state insurance guarantee fund.” This
provides an alternative justification for the use of risk-free yields, in calculating fair contribution rates
from the perspective of scheme members.
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5.5 Offsetting Biases?

We argued in Section 5.3 that our approach to mortality risk, taken in isolation, almost

certainly leads to an underestimate of fair contribution rates; in contrast, there do appear

to be valid arguments that using risk-free yields may in isolation lead to an offsetting

overestimate. Thus it is an open question whether our relatively simple approach to

estimating fair contribution rates results in estimates that are biased upwards or down-

wards. But one simple, if rather crude approach to answering this question exploits the

results of Poterba and Solomon (2021). Their Tables 4 and 7 illustrate the impact of

both biases. They shows that if calculating “money’s worth”for annuities incorporating

both sourcces of potential biase (population mortality and risk-free yields) then money’s

worth is always less than 100%. Hence arguably there are actually three components

in annuity pricing that our analysis neglects: mortality risk, discounting and markups

(100/money’s worth); ie, actual annuities are not, in practice, fairly priced on our de-

finition, but this lack of (actuarial) fairness may reflect compensation for a range of

market imperfections. Hence, coupled with the likely over-estimate of the career value

of earnings, it seems our simplistic approach may not be too far wrong, or if anything

may understate the net impact of these three sources of bias.

6 Can Defined Benefit Pension Schemes be fixed?

6.1 DB schemes with risk-free liabilities

Our approximation shows that, for a given set of scheme parameters, fair contribution

rates are driven by life expectancy in retirement, Et and real yields. Both have shown

significant drift over time. While the upward drift in life expectancy may level off, it is

very unlikely to be reversed.33 The apparent secular decline in real yields over recent

decades is more obviously reversable in principle; but at the time of writing bond markets

show no sign of expecting this.34 Thus there appears to be little prospect of a return

to the heyday of DB schemes, when, as Figure 4 showed, fair contribution rates were

both low, and well below actual contribution rates for prolonged periods - effectively

providing a significant financial cushion for scheme sponsors.

33On the assumption that the drop in measured life expectancy in 2020 and 2021 due to covid will
prove to be temporary.
34A recent literature on long-term asset returns (eg Jorda et al, 2019; Anarkulovaa et al, 2021) also

shows that in a range of developed ocuntries risk-free returns have typically been both close to zero,
and with some evidence of a declining trend.
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With this heyday clearly in the past, can DB schemes that make risk-free promises

be fixed?

At present the only solutions on offer are either to close DB schemes entirely (as has

largely been the case in the private sector) or, as illustrated in our example of the USS,

by some combination of less generous scheme parameters and a rise in contribution rates

towards the fair rates we calculate in this paper. But Figure 4 suggests that empirically

such adjustments appear to come as a delayed response to the underlying determinants

of fair rates, leaving schemes like the USS vulnerable to a nontrivial risk of defaulting

on their obligations (Miles & Sefton, 2021).

Arguably the problems of DB schems are compounded by their typically complex, and

hence distinctly non-transparent nature. We have shown that, while fair contribution

rates for pure pension liabilities have risen significantly in recent years, the impact of

additional benefits has also become ever more significant. While the nature of pension

provision by DB schemes appears, currently at least, to occupy a unique market niche,

this is far less obvious for some other components such as the lump sum and life insurance

elements offered by the USS, which are readily available in alternative and reasonably

well-functioning markets. Additionally, some components of the scheme, such as the

spousal pension (and more generally payments to dependents) effectively imply cross-

subsidies from scheme members who do not beneft from them. If scheme members

were allowed to choose additional benefits, with a clear tradeoff between benefits and

contribution rates, this might enable DB schemes - in their current form, at least -

to focus their efforts on their core task of providing pensions, as well as being more

transparently equitable.

But even such a consolidation to pure pension provision would still leave fair contri-

bution rates at historically high levels, as Figure 1 showed. They are also, self-evidently,

time-varying, and highly persistent, reflecting the same attributes in their determinants.

But it should be stressed that our analysis is predicated on the assumption that a new

scheme member of a given age has a contribution rate that would be fixed throughout

their working life, with a known payoff in terms of pension in retirement. It seems

reasonable to assume that both the predictable nature of contributions and the known

formula for the risk-free pension add to the attractions of DB schemes. But our analysis

also reveals the evolving market determinents of fair contribution rates - hence in our

framework a scheme member of the same age, but joining at a later date, would pay a

different contribution rate throughout their working life.

In practice, while Figure 4 showed that, in our example, USS contribution rates
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were constant for prolonged periods, scheme members have faced periodic adjustments

in contribution rates; we would argue that these were effectively delayed responses to

changes in fair rates. These adjustments have had two effects: first, a clear reduction

in the degree of certainty scheme members can have about what they will get out of

the scheme in future; and, second, an effective cross-subsidy between different cohorts

of scheme members, with those with low fair contribution rates on joining the scheme

cross-subsidising those with high fair rates.

This is a form of intertemporal risk-sharing between cohorts that does not obviously

occur anywhere else: investors who bought bonds at recent high prices when yields

were low did not get compensation from earlier investors who bought them when yields

were high; homeowners taking on mortgages at current low rates are not obliged to

compensate earlier borrowers who paid higher rates. Nor - at least as far as we are

aware - is there any clear theoretical justification for such forms of risk-sharing.

Furthemore, even after stripping out additional benefits, Figure 2 showed that for

a pure pension liability there is also a clear effect of the age of the scheme member on

joining, driven primarily by the sign of real yields. So in addition to the cross-subsidies

between cohorts of any given age on joining, there are also cross-subsidies between

cohorts of different ages, at the same point in time.

In contrast, market annuity prices are largely free from such cross-subsidies - to the

extent that any such cross-subsidies exist they are either driven by legislation or by

unavoidable pooling effects in face of adverse selection. It is not clear why DB pension

schemes should be different in this respect, since, as we stressed at the outset, their

liabilities are simply deferred annuities.

Where DB schemes do offer something quite distinct is in the manner in which scheme

members pay for these deferred annuities, by stable contribution rates out of earnings.

But in this respect the cohort cross-subsidies actually detract from the benefits DB

schemes offer, because they introduce time variation in contribution rates that would

not occur in our framework, along with unavoidable fragilities in scheme viability due

to the mis-match between scheme liabilities and assets (Miles and Sefton, 2021). DB

schemes could of course in principle avoid such instability by increasing the frequency of

changes in contribution rates (indeed Figure 4 showed that such changes have become

distinctly more frequent in recent years); but in so doing so, in the limit, as changes in

contribution rates became more frequent, scheme members would simply be investing in

risk-free assets at prevailing market prices, thus eliminating the key distinctive feature

of DB schemes.
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The discussion above has focussed on the arguments for matching actual contribution

rates to fair contribution rates, for given scheme parameters. But a further advantage

of linking actual contribution rates more directly to fair contribution rates would be

that in principle it would enable schemes to offer members choices over the parameters

themselves. To the extent that these have changed over time, such changes appear to

have been primarily responses to risks to scheme viability, rather than to members’

preferences over the parameters themselves, which may well be both heterogeneous,

and time-varying. Thus, in the face of very significant changes in prices of risk-free

assets, it seems plausible that members (or at the very least, less risk-averse members)

would choose to reduce the share of risk-free assets in their wealth. Supporting evidence

for this can arguably be seen in recent declines in annuity purchases in the UK35 and

elsewhere But current DB schemes, by offering a fixed accrual rate (1/Y in our analysis)

effectively impose an identical risk-free share for all members, on at least that part of

scheme members’wealth that is tied up in the scheme. Since, the fair contribution

rate simply scales in inverse proportion to Y , in principle Y itself could be a parameter

chosen by the scheme member,on joining the scheme.36

Overall, to the extent that DB schemes could evolve to more closely resemble annuity

providers in the way they differentiate between measurable differences in the nature of

the deferred annuities to be provided, by linking contribution rates more closely to

member-specific fair rates, as in our calculations, this would arguably help to preserve

the distinctive characteristic that DB schemes do offer, of stable contribution rates for

individual scheme members, and clearly defined payoffs after retirement.

Such changes would not, however, change the unpleasant actuarial arithmetic that

has driven fair contribution rates up so strikingly over recent decades, which is ultimately

driven by the combination of unprecedentedly high prices of risk-free assets, and risk-free

commitments. Thus it is also worth considering the implications for fair contribution

rates of a generalisation of DB schemes, in which commitments are not entirely risk-free,

an issue to which we now turn.

6.2 Hybrid (“Random Defined Benefit”) Pension Schemes

The central analysis of this paper has taken it as given that the central concept of

a defined benefit is taken literally: that the defined benefits it provides are risk-free,

35See https://www.fca.org.uk/data/retirement-income-market-data-2019-20.
36Note that this scaling arises from the general case of Proposition 1, so does not rely on our approx-

imation.
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other than through mortality risk. While this literal interpretation might be considered

pedantic, even naive (and we have indeed noted a number of caveats in Section 5.4

above) we would argue that the commitments DB schemes such as the USS make are at

least presented as risk-free; and we would further argue that in the recent debate around

the USS in the UK, both the sponsors of the scheme and those protesting at proposed

changes have both taken this feature as given.

However, if we are prepared to consider a broader class of pensions schemes, in which

the pension may carry some element of systemic risk , then our analysis also points to

some fairly straightforward implications.

To see the impact of systematic risk, consider again, our definition of the fair contri-

bution rate (10), restated here:

c∗t =
Lt
Wt

.

It is evident that anything that lowers (or raises) the ratio of Lt to Wt must in turn by

definition imply a lower (or higher) value of c∗t .

We have indeed already discussed, in Section 5, the possibility that to the extent

that earnings (and hence contributions into the scheme) have some element of systemic

risk, then, for a given risk-free pension (or other) commitment (hence a given value of

Lt) then we may be overstating Wt, and hence we may be understating c∗t . Conversely,

our discussion of the literature on marketed annuities can be framed in terms of its

impact on Lt : higher (or unpredictable) mortality risk raises Lt, but some combination
of illiquidity premia and financial market imperfections may raise the implied discount

rate, lowering Lt and hence c∗t .
But all of these possible modifications are all predicated on the pension obligation

being entirely, or close to risk-free, and thus do not, in net terms, change the answer very

much. In contrast, if we introduce the possibility that pension payments have systematic

risk, the impact can in principle be much more significant, and always points in the same

direction - towards lower fair contribution rates.

However, while the implications for fair contribution rates of pensions with systematic

risk are easy to demonstrate in principle, they are very much harder to implement in

practice.

To illustrate, consider the simple case of the flat yield curve, pure pension liability

case of Proposition 5, but assume a simple CAPM world, in which all pension payoffs

have a systematic component with CAPM beta βp, and hence with appropriate discount

rate rt + βdRPm where RPm is the market risk premium, for simplicity also assumed
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constant. We can then straightforwardly generalise the definition of the fair contribution

rate in this case as c∗t (βd) (the analysis in the main paper therefore sets βd = 0). Then,

unpicking the approximation in Proposition 5, and using δc
∗

0,t = δL0,t − δW0,t, we have

ln c∗t (βd) ≈ ln
Et
Y
Qt − δL0,t (rt + βdRPm) + δW0,trt

≈ ln
Et
Y
Qt − δc

∗

0,trt − δL0,tβdRPm
≈ ln c∗t (0)− δL0,tβdRPm (38)

where c∗t (0) is the fair contribution rate with risk-free liabilities, as in the main paper.

It should be fairly evident from this expression that, given the long duration of pension

liabilities, even a modest element of systematic risk in the pension payment, as captured

by βd could in principle significantly reduce the implied fair contribution rate c
∗
t (βd) ,

relative to the estimates we have derived in the main body of the paper. Figure 5

illustrates.37

Figure 5: Approximated fair contribution rate c∗t (βd) for a pension with systematic risk
βd

But simply demonstrating such a strong impact in principle does not tell us how to

37Assuming a notional flat yield curve as discussed in Section 3.2 in which rt = yc
∗

2020 = −1.37%
(R = 40), = −1.24% (R = 20), where yc

∗

t is as defined in (30) and assuming E (Rm) = 4.5%, as in
Miles and Sefton (2021).
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design an implementable DB scheme in which the pension liability has systematic risk.

The calculation above, for example, implicitly requires that the pension would have the

same systematic risk at all points in retirement: it would thus be close to replicating the

outcome from a defined contribution scheme, in which the pension payment throughout

retirement is proportional to a diversified portfolio of stocks with CAPM beta=βd, but

in which the scheme undertook to insure the pensioner against mortality risk. Thus far

such schemes are distinctly thin on the ground, unsurprisingly so since the informational

and hedging requirements would be formidable.38 As a result at present the only viable

market equilibrium appears to be an essentially discrete choice between DB schemes

with risk-free payoffs and defined contribution schemes.

Would simpler, and implementable, hybrid schemes be possible? Consider for exam-

ple a broader definition of defined benefit schemes, in which the benefits would still be

precisely defined in terms of some observable magnitude, but some element of the payoff

would be risky (analogous to the payoffs on derivatives), hence these would be random

defined benefit schemes (thus in principle addressing the concerns of, for example, Wolf

(2021)).

Thus, consider a hybrid/random DB scheme with a pure pension liability, but where

some share α of the pension, again payable at a constant rate from t + R till death, is

determined by observable market payoffs. Specifically consider the payoff on an invest-

ment in an observable stock market index Mt at time t, with random observable payoff

M̃t+R, to be invested in an annuity at t+R, with random price q̃t+R.

Thus let the random pension payable from t+R onwards be given by the t+R-dated

random variable

p̃t+R =
Rwt
Y

(1− α + αṽt+R) (39)

where ṽt+R =
(
M̃t+R/q̃t+R

)
/Et

(
M̃t+R/q̃t+R

)
, hence the expected pension, Etp̃t+R = Rwt

Y

as in the main analysis, and for α = 0 the fair contribution rate is unchanged from the

main paper: again denote this value c∗t (0).

This component of the pension would thus be a random variable at time t+ R, but

constant thereafter, through retirement, but by pre-committing to buy an annuity at the

annuity price q̃t+R this component of the fund’s liabilities would simply have duration

R.

Both M̃t+R and q̃t+R can be expected to have positive systematic risk, indeed for

38Of course, even such a scheme existed, it is far from evident that there would be demand for a
pension that had the same element of systematic risk throughout retirement - given the literature on
optimal life cycle investment patterns (eg Bodie et al, 1992).
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simplicity set βM = 1. Then, assuming βq << 1 the present value of vt+R will be less

than 1.

Thus for positive α we have, again, exploiting our approximation,

c∗t (α) ≈ (1− α) c∗t (0) + α
Rwt
Y

e−(1−βq)RPM×R

≈ c∗t (0)
(

1− α + αe−(1−βq)RPM×R
)

(40)

Thus we again find, as in the previous more general calculation, that the higher is α,

and hence the more systematic risk the scheme member carries, the lower would be the

implied contribution rate. The contrast with the more general case in (38) is that a) the

random component in the pension would be known to the scheme member from t + R

onwards, and thus more likely to be in line with life cycle optimisation; b) the random

component would in principle be hedgeable by the scheme; and hence c) regulation to

ensure viability of the payment would be along similar lines to the regulation of any

derivative security.

7 Concluding Remarks

The key conclusions of this paper are:

1. The unpleasant actuarial arithmetic of both increased life expectancy and (espe-

cially) negative real yields has resulted in a massive rise in implied fair contribu-

tion rates for defined benefit (DB) schemes. At present there appears to be little

prospect of these rises being reversed.

2. DB schemes provide deferred annuities. But in contrast to prices of marketed

annuities, actual contribution rates into DB schemes appear to adjust only with a

lag to fair rates, increasing scheme fragility.

3. DB schemes with common, and slow-moving contribution rates imply significant

redistributions between scheme members.

4. The significant rises in fair contribution rates reflect the risk-free nature of benefits

provided. In principle a pre-defined explicit element of systematic risk in benefits

could significantly lower fair contribution rates; but the logistical obstacles are

formidable.
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Appendix

A Proof of Proposition 2

Proposition 1 shows that c∗t is invariant to wt. Hence let wt+τ = 1 ∀τ ∈ [0, R] and

yt (τ) = 0 ∀τ ≥ 0 as assumed in Proposition 2.

In this proof we consider all elements of scheme liabilities and thus effectively derive

the case in Corollary 2, which we show has the same form as in the main proposi-

tion, replacing actual life expectancy in retirement, Et, with effective life expectancy in

retirement, Êt; the main proposition then follows directly by setting s = Z = 0.

First, given the assumptions,

pt =
1

Y

∫ R

0

dτ =
R

Y
.

Second, consider

Et
[
ÃD − A

∣∣∣ÃD ≤ AR

]
=

∫ R
0
τλt (τ) e−Λt(τ)τdτ∫ R

0
λt (τ) e−Λt(τ)τdτ

.

The denominator is the probability of dying before R, i.e. 1−St (R). For the numerator,

noting that ∂
∂τ

[Λt (τ) τ ] = ∂
∂τ

[∫ τ
0
λt (u) du

]
= λt (τ), integration by parts yields

∫ R

0

τλt (τ) e−Λt(τ)τdτ = −Re−Λt(R)R +

∫ R

0

e−Λt(τ)τdτ .

Given that
∫ R

0
e−Λt(τ)τdτ =Wt,

Et
[
ÃD − A

∣∣∣ÃD ≤ AR

]
=
−RSt (R) +Wt

1− St (R)

⇔Wt = (1− St (R))Et
[
ÃD − A

∣∣∣ÃD ≤ AR

]
+ St (R)R.

Third, consider life expectancy in retirement, Et, as in the main proposition,

Et ≡ Et
[
ÃD − AR

∣∣∣ÃD > AR

]
=

∫∞
R

(τ −R)λt (τ) e−Λt(τ)τdτ∫∞
R
λt (τ) e−Λt(τ)τdτ

.

The denominator is the probability of dying after R, i.e. St (R). For the numerator,
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again by integration by parts,∫ ∞
R

(τ −R)λt (τ) e−Λt(τ)τdτ =

∫ ∞
R

e−Λt(τ)τdτ .

Then with Lpt = pt
∫∞
R
e−Λt(τ)τdτ ,

Et =

1
pt
Lpt

St (R)

⇔ Lpt = ptSt (R)Et.

Next, LZt = Zpte
−Λt(R)R means,

LZt = ZptSt (R) .

Finally, consider

Et
[
ÃSD − ÃD

∣∣∣ÃSD > ÃD > AR

]
=

∫∞
R
λt (τ) e−(Λt(τ)+Λ′t(τ))τ

{∫∞
τ (u−τ)λ′t(u)e−Λ′t(u)udu∫∞

τ λ′t(u)e−Λ′t(u)udu

}
dτ∫∞

R
λt (τ) e−(Λt(τ)+Λ′t(τ))τdτ

,

where (λt (τ) , λ′t (τ)) denote the instantaneous hazard rates for the scheme member and

their spouse, respectively. The denominator is the probability of the spouse surviving the

scheme member after retirement. Noting that
∫∞
τ
λ′t (u) e−Λ′t(u)udu = S ′t (τ) = e−Λ′t(τ)τ

and as we know from above that
∫∞
τ

(u− τ)λ′t (u) e−Λ′t(u)udu =
∫∞
τ
e−Λ′t(u)udu, the nu-

merator is, ∫ ∞
R

λt (τ) e−Λt(τ)τ

{∫ ∞
τ

e−Λ′t(u)udu

}
dτ .

The denominator is, by integration by parts,∫ ∞
R

λt (τ) e−Λt(τ)τe−Λ′t(τ)τdτ = e−(Λt(R)+Λ′t(R))R −
∫ ∞
R

λ′t (τ) e−Λ′t(τ)τe−Λt(τ)τdτ .

Applying symmetry λt (t+ τ) = λ′t (t+ τ), this implies∫ ∞
R

λt (τ) e−Λt(τ)τe−Λ′t(τ)τdτ =
e−(Λt(R)+Λ′t(R))R

2
=
St (R)2

2
.
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Therefore, where Lst = spt
∫∞
R
λt (τ) e−Λt(τ)τ

{∫∞
τ
e−Λt(u)udu

}
dτ ,

Et
[
ÃSD − ÃD

∣∣∣ÃSD > ÃD > AR

]
=

1
spt
Lst

St(R)2

2

⇔ Lst = spt
St (R)2

2
Et
[
ÃSD − ÃD

∣∣∣ÃSD > ÃD > AR

]
.

Hence we have, for wt+τ = 1 ∀τ ∈ [0, R] and yt (τ) = 0 ∀τ ≥ 0,

c∗0,t =
Lpt + LZt + Lst

Wt

=
R

Y

Et + Z + sSt(R)
2
Et
[
ÃSD − ÃD

∣∣∣ÃSD > ÃD > AR

]
R +

(
1−St(R)
St(R)

)
Et
[
ÃD − A

∣∣∣ÃD ≤ AR

] .

which can be written, as in Corollary 2, as

c∗t = c∗0,t =
Êt
Y
Qt (41)

where

Qt = St (R)
R

St (R)R + (1− St (R))Et
[
ÃD − A

∣∣∣ÃD ≤ AR

]
= St (R)U0,t

whereEt and U0,t = Ut, as defined in Proposition 1, under the assumptions of Proposition

2.

Note that U0,t ≥ 1, hence

Qt

{
∈ (St (R) , 1) for St (R) < 1

= 1 for St (R) = 1.

If s = Z = 0 then c∗0,t = Et
Y
Qt, as in the main proposition; if additionally ÃD > AR

with certainty, i.e. St (R) = 1, then Qt = 1 and (41) simplifies to the Modigliani Case.�
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B Proof of Proposition 3

First

δWr =
wt
Wt

(∫ R

0

τe(gt(τ)−yt(τ)−Λt(τ))τdτ

)
(42)

<
wt
Wt

(∫ R

0

Re(gt(τ)−yt(τ)−Λt(τ))τdτ

)
=

R

Wt

(
wt

∫ R

0

e(gt(τ)−yt(τ)−Λt(τ))τdτ

)
= R.

using the definition of Wt in (4).

Second, substituting from (7), (9) and (8),

Lt = pt

(∫ ∞
R

e−(yt(τ)+Λt(τ))τdτ + Ze−(yt(R)+Λt(R))R (43)

+s

∫ ∞
R

e−(yt(τ)+Λt(τ))τ

{∫ τ

R

λt (u) e−Λt(u)udu

}
dτ

)
.

Then, by similar reasoning to the derivation of the inequality for (42),

δLr =
pt
Lt

(∫ ∞
R

τe−(yt(τ)+Λt(τ))τdτ +RZe−(yt(R)+Λt(R))R

+s

∫ ∞
R

τe−(yt(τ)+Λt(τ))τ

{∫ τ

R

λt (u) e−Λt(u)udu

}
dτ

)
>

R

Lt

(
pt

∫ ∞
R

e−(yt(τ)+Λt(τ))τdτ +RZe−(yt(R)+Λt(R))R

+s

∫ ∞
R

Re−(yt(τ)+Λt(τ))τ

{∫ τ

R

λt (u) e−Λt(u)udu

}
dτ

)
= R

given (43). Hence, as given in the proposition,

δWr < R < δLr �
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C Proof of Proposition 4

Writing

c∗t =
Lpt
Wt

=
1
Y

∫ R
0
egt(τ)τdτ

∫∞
R
e−(yt(τ)+Λt(τ))τdτ

Wt

=

∫∞
R
e−(yt(τ)+Λt(τ))τdτ

Y
×
∫ R

0
egt(τ)τdτ

Wt

(44)

the first term in (44) is invariant to g. Thus for g (τ) = g∀τ , and in the neighbourhood

of g = 0

∂ ln c∗t
∂g

≈
∫ R

0
τdτ∫ R

0
1dτ
− δW

∣∣
g=0

=
R

2
− δW

∣∣
g=0

(45)

which is of ambiguous sign in general. However, using (42),

yt (τ) + Λt (τ) > 0,∀τ < R⇒ δW
∣∣
g=0

<
R

2
⇒ δc

∗

g > 0 �

D Proof of Proposition 5

The approximation for c∗t in (27) follows straightforwardly from Assumption A2: with

a flat yield curve and zero wage growth, for a given hazard rate function c∗t is simply a

function of rt, and hence can be approximated in the neighbourhood of c∗0,t.

To derive the approximation for δc
∗

0 in (28) we proceed by analysing the special case

of a piecewise linear distribution of the date of death, with two uniform densities, before

and after retirement

f (τ) =
1− St (R)

R
; τ < R (46)

=
St (R)

2Et
; τ ∈ (R,R + 2Et) (47)

which is specified to match the true values of both St (R) andEt = Et
(
ÃD − AR|ÃD − AR

)
.
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This implies a piecewise linear approximation to the survival function Ŝt (τ) given by

Ŝt (τ) = 1− (1− St (R))

R
τ ; τ < R (48)

= St (R)

(
1− 1

2Et
(τ −R)

)
; τ ∈ (R,R + 2Et) (49)

which in turn implies the duration of liabilities is given by

δ̂
L
0 =

∫ R+2Et
R

τ Ŝt (τ) dτ∫ R+2Et
R

Ŝ (τ) dτ
=

2

3
Et +R (50)

and the duration of career earnings is given by

δ̂
W
0 =

∫ R
0
τ Ŝt (τ) dτ∫ R

0
Ŝ (τ) dτ

=
R

2

(
1− 1

3

1− St (R)

1 + St (R)

)
(51)

We also have, for the same piecewise uniform densities,

σ̂2
D>R = var

(
ÃD − AR|ÃD − AR

)
=

1

3
E2
t (52)

implying that we can write

δc
∗

0 ≡ δ̂
L
0 − δ̂

W
0 ≈

R + Et
2

+
1

2

(
σD>R√

3
+
R

3

1− St (R)

1 + St (R)

)
(53)

as in the proposition, for any survival function suffi ciently close to piecewise linearity.39�

E Proof of Corollary 3

In this case we can write

c∗FSt =

∫∞
R
e−(yt(τ)+Λt(τ))τdτ

Y
× R eg(R)R

Wt

(54)

implying, straightforwardly, given Proposition 3,

∂ ln c∗FSt

∂g
= R− δW

∣∣
g=0

> 0 � (55)

39In Appendix F.6 we show that St (τ) is quite well approximated by Ŝt (τ) , and that this results in
a close match to δc

∗

0 .

45



F Estimating Fair Contribution Rates for the UK

Universities Superannuation Scheme (USS)

F.1 Hazard Rates

The Offi ce of National Statistics releases the national life table (source: https://www.ons.gov.uk/)

in September of each year. The implied hazard rates for 2018− 20 are shown in Figure

6.

Figure 6: UK Hazard Rates, 2018− 20 (source: ONS)

Using these data the average age of death for the UK population can be calculated

as 79.1 years for male, 82.9 years for female and 80.9 years for the whole population.

Using ONS’s historical data the life expectancy at 67 can be shown to have increased

by 4.4 years between 1985 and 2020, as shown in Figure 7. This also shows a drop of

0.2 years in 2018− 2020 from 2017− 2019 due to the COVID pandemic, the first time

the life expectancy has fallen since at least 1985.

As a cross-check, we also examine the impact of using mortality statistics from a

more relevant sample: following Cannon & Tonks (2016) we examine the impact of

using the CMI PCMA00/PCFL00 tables based on mortality rates of members of DB

schemes administered by life insurers in 1999-200240, rather than the closest equivalent

40Published by the Institute and Faculty of Actuaries (https://www.actuaries.org.uk/learn-and-
develop/continuous-mortality-investigation/cmi-mortality-and-morbidity-tables/00-series-tables
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Figure 7: Life Expectancy at 67

figures (for 2000-2002) from the ONS Life Tables. The implied life expectancy for

males in this period rises from 13.29 (ONS) to 15.50 years (CMI) and for females from

16.12 to 17.02 years, implying a gender-neutral average increase in life expectancy in

retirement (Et) from 14.71 to 16.3 years. Taken in isolation this would directly imply

an equivalent proportionate increase in c∗0t, in Proposition 2, for a pure pension liability.

Assuming similar proportionate increases in Et in more recent years, and applying our

approximation locally would imply an increase in c∗t in 2020, again for a pure pension

liability form 33.47% to 37.0%.

F.2 UK Real Yields and Forward Rates

The Bank of England publishes real yields and instantaneous forward rates for RPI

inflation (https://www.bankofengland.co.uk/statistics/yield-curves/) for years 2.5 to 40.

In 2011 the USS changed the inflation index applied to adjust pension payouts from RPI

and CPI; thus it is necessary to adjust this to real rates reflecting CPI inflation. To do

this the RPI-CPI wedge is estimated using a 20 year rolling average. The wedge applied

is between 52bp and 92bp, with 73bp for the most recent data (2020) (Figure 8)

This contrasts with the “long-run average difference between RPI and CPI inflation”

of 80bp applied in Bank of England Quarterly Bulletin (2006), or the statement in their

StaffWorking Paper No.551 (2015) that, “[o]ver longer horizons, the expected RPI/CPI
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Figure 8: RPI - CPI Wedge and 20 year Rolling Average

wedge appears fairly stable at around 66 basis points”. On the other hand, OBR (2015)

quote their “new estimate of the long-run wedge between RPI and CPI inflation of

1.0 percentage points”. Our estimate of 80bp for the most recent data lies within the

appropriate range of these estimates.

F.3 Adjustments to fair contribution rates for life insurance

components

In carrying out the calculations below for the specific example of the USS scheme, we

need to include an additional term that adjusts the value of c∗t derived in Proposition

1 to reflect the life insurance components provided by the scheme: these consist of two

elements.

First, the USS scheme provides a lump-sum death-in-service payment to a named

beneficiary of B times the annual wage at the time of death (In USS’s case, B = 3).

Assuming constant growth of wages, with wt+τ = egτ , this liability is given by,

LLIBt = B

∫ t+R

t

λ (τ) e(g−y(t,τ)−λ(t,τ))(τ−t)dτ . (56)

Second, we deliberately exclude from our theoretical analysis the effective life insur-

ance component of the spousal pension - namely the value of the commitment to pay
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the spousal pension if the scheme member dies before retirement,given by

LLIst = spt

∫ R

0

λ (τ) e−Λt(τ)τ

{∫ R

τ

e−(yt(u)+Λt(u))udu

}
dτ (57)

Then,

c∗USS,t = c∗t +
LLIBt + LLIst

Wt

(58)

where c∗t is as given in Proposition 1, and Wt is as given by (4).

F.4 Historical Scheme Parameters

The historical USS contribution rates for employees and employers, as shown in Figure 4

are sourced fromWikipedia. The period between 1974 and 1997 includes a 2% surcharge

aimed at covering benefits for service prior to the scheme’s inception in 1974. Between

2011 and 2016 the employee contribution rate was 7.5% for existing workers with final

salary scheme and 6.35% for new workers with career average revalued earnings (CARE).

In October 2021 the employee contribution rate was increased to 11.0% and the employer

contribution rate to 23.7% (total 34.7%). The current proposal is to increase these to

13.6% and 28.5% (total 42.1%) in 2022, respectively.

F.5 The impact of different rates of wage growth

We noted in relation to Proposition 4 that, since hazard rates, and hence Λ (τ) are

relatively low before retirement, to a good approximation c∗ increases (decreases) with g

when yields are positive (negative), but that the impact can be expected to be relatively

small, given the offsetting terms in Proposition 4. Figure 9 shows that this is indeed the

case for the exact calculation, for R = 40, implied by Proposition 1, on a counterfactual

basis using current USS rules. It is worth noting that the range of constant growth rates

assumed is quite wide: for example a 4% growth rate throughout a 40 year working life

implies a nearly five-fold increase in salary.

F.6 A Piecewise Linear Approximation for St (τ)

Proposition 5 derives an approximation for δc
∗

0 that is predicated on the actual survival

function St (τ) being close to a piecewise linear approximation, Ŝt (τ) . Figure ‘shows
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Figure 9: Simulated USS fair contribution rates under current rules for different wage
growth rates, R = 40

that, using ONS life tables, the approximation (for R = 40) fits the actual survival

probability from the UK Life Tables quite well, which helps to explain the closeness of

the approximation for c∗t itself.
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Figure 10: Survival Probability function St (τ) given A = 27, and piecewise approxima-
tion
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