
SOFTWARE METAPAPER

ABSTRACT

Open-Source MUltiple Tests 
Corrections and FOrmatted 
Tables Software (MUFOS)

NIKOLAY PETROV 

VASIL ATANASOV

TREVOR THOMPSON 

The p value statistic remains a ubiquitous indicator of the verisimilitude of experimental 
hypotheses. However, testing multiple hypotheses poses a problem as Type I error rate 
is inflated. Despite known solutions, this problem remains largely neglected for two 
reasons: 1) most data analysis tools offer limited multiple tests correction options; 
2) the learning curve of existing tools requires hefty time investment. To address 
these concerns, we present a free, easy-to-use and convenient Software, built around 
established python libraries, that allows users to apply a MUltiple tests correction and 
get the results in a readily-understood, FOrmatted table (MUFOS) – https://github.com/

nikbpetrov/mufos.

CORRESPONDING AUTHOR:

Nikolay Petrov

School of Human Sciences, 
University of Greenwich, UK

nikbpetrov@gmail.com

KEYWORDS:
Multiple tests adjustment; 
bonferroni; p value; open-
source; software; statsmodels

TO CITE THIS ARTICLE:
Petrov N, Atanasov V, 
Thompson T 2022 Open-
Source MUltiple Tests 
Corrections and FOrmatted 
Tables Software (MUFOS). 
Journal of Open Research 
Software, 10: 5. DOI: https://
doi.org/10.5334/jors.350

*Author affiliations can be found in the back matter of this article

https://github.com/nikbpetrov/mufos
https://github.com/nikbpetrov/mufos
mailto:nikbpetrov@gmail.com
https://doi.org/10.5334/jors.350
https://doi.org/10.5334/jors.350
https://orcid.org/0000-0002-1305-0547
https://orcid.org/0000-0001-9880-782X


2Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

1. OVERVIEW
1.1. BACKGROUND
Scientists usually rely on probability in order to establish 
the validity and reliability of their findings. The most 
common framework is Null Hypothesis Significance 
Testing (NHST) in which the probability of an experimental 
hypothesis (that there is a relationship between variables) 
is tested against the probability of a null hypothesis (that 
there is no relationship between variables). 

To verify their experimental hypotheses when working 
under the NHST framework, scientists most commonly 
use the p value statistic, which is the probability of 
obtaining results as extreme as the observed ones, if 
the null hypothesis is true. Although the best approach 
to scientific discovery often starts with a minimal but 
sufficient set of theoretically-justified hypotheses, in 
exploratory research, where little is known about the 
topic, testing multiple hypotheses is often unavoidable. 
However, when multiple hypotheses are put forward, the 
chance of Type I error – or a false positive – increases 
proportionally. For instance, using the accepted threshold 
of alpha = 0.05, the probability of a false positive is only 
1/20. However, if 14 tests are performed, then it is more 
likely than not1 that at least one test will be heralded as 
a potentially important finding, even if there is no effect 
present. Fortunately, this problem is well-known and 
solutions to an inflated Type I error have been developed.

There are two primary ways to prevent Type I errors 
when conducting multiple testing. The first is to control 
the family-wise error rate (FWER), which is probability 
of making at least one Type I error in a set of tests. 
The most popular and easiest way to do this is to use a 
Bonferroni correction, in which a specific alpha threshold 
criterion (typically .05) is adjusted for the number of tests 
performed such that the adjusted alpha = .05 / number 
of tests (e.g. if five tests are conducted, the adjusted 
alpha criterion would be .05/5, or .01). In this way, the 
5% is ‘spread out’ amongst the competing tests.  An 
alternative and equivalent method is to make no changes 
to the adjusted alpha threshold, but instead to adjust the 
obtained p values. For example, if a Bonferroni correction 
is applied, the observed p value is multiplied by the 
number of tests (assumed to be independent) conducted 
and all hypothesis tests with adjusted p value above .05 
are rejected. Other FWER controlling procedures include 
the Šidák [1], the Simes-Hochberg [2] and the Hommel 
[3] corrections as well as the Holm-Bonferroni and the 
Holm-Šidák [4]. The second most commonly used way 
to avert an inflated Type I error rate is to control the 
false discovery rate (FDR), which is the proportion of false 
positive tests to all tests that reject the null. Controlling 
the FDR has the advantage of increasing power and is 
most valuable when conducting a large number of 
tests. FDR-controlling procedures include the Benjamini-
Hochberg [5] and Benjamini-Yekutiely [6] procedures as 
well as an adaptive, two-stage version of both of them [7, 

8]. For in-depth performance comparison and treatise of 
different methods, the interested reader is referred to the 
relevant literature [9–11]. Several excellent sources are 
also available for reviews of more advanced correcting 
procedures [12, 13] and for recommendations when a 
multiple tests correction is warranted [14–19].

Although the problem of multiple testing is well known 
and solutions have already been put forward, it remains 
dangerously neglected in applied research. For instance, 
in a survey of published work in neuroimaging journals 
for the year 2008, Bennet and colleagues [20] found 
that between 15% and 40% of studies failed to include 
adjustments for multiple testing. Austin and colleagues 
[21] have also shown how failure to adjust for testing 
multiple exploratory hypotheses can result in implausible 
practical results. In another survey of 800 pathology 
papers published in 2003, it was found that out of the 37 
studies who had performed multiple comparisons, 56% 
failed to account for inflated Type I error rate [22]. In yet 
another review of articles published in major optometry 
journals between 2003 and 2013, 47 out of 142 (33%) 
failed to correct for multiple comparisons, while out of 
the remaining 95 that applied a correction, merely 9% of 
them provided justification for their choice of procedure 
[14].

The problem – no tool for the job
One reason for the lack of implementation of multiple 
testing corrections is likely to be the lack of a quick, easy 
and convenient way to perform them. Specifically, we 
consider that there are certain conditions that an ideal 
tool should satisfy in order to reduce the friction between 
the desire to apply multiple tests corrections and the 
practical application. These conditions are 1) having a 
friendly user interface that makes applying multiple tests 
adjustments quick, free and easy; 2) implementing a 
wide range of multiple tests corrections to suit different 
research goals; 3) flexibility in accepted formats of the 
input data to suit different preferences; 4) producing 
convenient, easy to use and readily-understood output.

To our awareness, there is currently no tool that 
satisfies all these conditions. On the one hand, any 
programming tools – such as Matlab [23], R [24] or Python 
[25] – involve a steep learning curve, which is likely to 
preclude beginner non-statisticians from using them. 
On the other hand, user-interface driven tools, such as 
SPSS Statistics [26] and Microsoft Excel [27] do not have a 
readily-available, convenient and reliable way to apply a 
multiple test correction to any set of tests. If performing 
a multiple test correction is not arduous enough, then 
comes the added difficulty of   getting the results quickly 
and easily into a readily-understood, formatted output, 
which places significant and unnecessary demands on 
time for scientists – programmers or not [28].

One of the two pieces of software that comes close 
to fulfilling the above conditions is JASP [29], which is 

https://doi.org/10.5334/jors.350


3Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

user-interface driven, free and relatively easy to use 
compared to most other commercial software, and 
outputs the data in formatted tables according to the 
guidelines of the American Psychological Association 
[30]. Critically, however, JASP does not have the option of 
applying multiple tests corrections in any of its statistical 
procedures. The second piece of software that comes 
close is Lesack and Naugler’s Bonferroni Calculator 
software [22]. It is free to use and allows the user to apply 
a Bonferroni, Bonferroni-Holm or Benjamini-Hochberg 
correction to any number of p values. Unfortunately, 
however, on top of having a paucity of correction options, 
the software must be run in the command line as it has 
no user interface, and it is not convenient due to limited 
options for inputs and outputs.

Thus, the aim of this paper is to present a piece of 
software that meets the conditions set above. Specifically, 
the MUltiple tests corrections and FOrmatting tables 
Software (MUFOS) is free, has a simple user interface, 
allows a wide range of multiple tests corrections to any 
set of tests, the input data can take various formats and 
produces an easy to read, formatted output. MUFOS is 
built on top of established statistical libraries, which 
strengthens the reliability of its output.

1.2. IMPLEMENTATION AND ARCHITECTURE
MUFOS is a user-interface driven application (see 
Figure 1), written in the programming language Python, 
version 3.8 [25]. There are ten multiple tests corrections 

users can apply: Bonferroni, Šidák, Holm-Šidák, Holm-
Bonferroni, Simes-Hochberg, Hommel, Bejnamini-
Hochberg, Benjamini-Yekutieli, Benjamini-Hochberg 
(2-stage), Bejamini-Yekutieli (2-stage). These corrections 
can be applied to the p values of one of four tests: 
correlations, multiple regression, independent samples 
t-test, or paired samples t-test; or they can be applied to 
any standalone list of p values.

The software allows users to input data in multiple 
different formats as long as they can be fit into an excel 
(.xlsx) or a comma-separated values (.csv) file. Input 
file types include a variety of formats such as raw data, 
summary statistics (e.g. means and standard deviations) 
and inferential statistics (e.g. p values) as described 
below:

a) raw data, in which each variable is a separate 
column and each row is a new value for the variable 
(i.e. the typical rectangular dataset) – see Figure 2A;

b) correlation table data, in which one column contains 
one variable’s name, a second column contains 
the other variable’s name and third and fourth 
columns which contain the correlation coefficients 
and associated p values, respectively. Each row 
represents an additional correlational test between 
variables – see Figure 2B;

c) independent t-test statistics, in which there is one 
column for each dependent variable name, six 
columns that contain information about the mean, 

Figure 1 Look and feel of the MUFOS user interface for one option.

https://doi.org/10.5334/jors.350


4Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

Figure 2 Examples of input files and the resultant output files after processing with MUFOS. 1A presents a sample raw data input file 
and a formatted multiple regression table; 1B presents a sample input file for correlations from summary statistics and a formatted 
correlation table; 1C presents a sample input file for independent samples t-test from summary statistics and a formatted table; 1D 
presents a sample SPSS Statistics input file for paired samples t-test and the resultant formatted table; 1E presents a sample p values 
input file and the resultant output table.

https://doi.org/10.5334/jors.350


5Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

standard deviation and sample size for each group 
(3 statistics by 2 groups) and an optional column 
whether equality of variance is assumed (if this 
column is missing, equality of variance is assumed). 
Each row represents a new group comparison – see 
Figure 2C;

d) SPSS table, which is an excel (.xlsx) file, produced 
by exporting a specific table from the SPSS Output 
window (for step-by-step instructions on how to 
export an SPSS table, see the MUFOS Help Guide and 
Documentation in the software repository) – see 
Figure 2D;

e) p values table, which must contain a column of p 
values, with other optional columns – see Figure 2E.

The output files are provided as formatted tables, currently 
following the American Psychological Association (APA) 
7th edition guidelines [30], but more styling options are 
to be made available. For all input data options except 
a p values list, an APA-formatted table is available as 
either an excel or word document. When a list of p values 
is provided, the output file is the same as the input file 
with an additional column for the adjusted p values. See 
Figure 2 for example input and output files.

Software development
To develop the software, the main libraries used are 
pandas (version 1.1.0) [31] and numpy (version 1.19.1) 
[32], which are Python’s core libraries for data analysis. 
The multiple test corrections are performed using the 
multitest module from the statsmodels (version 0.11.1) 

library [33]. Relying on established and widely used libraries 
ensures the stability and reliability of any calculations. 
For more information on how each calculation is done, 
see the MUFOS Help Guide and Documentation document 
in the online repository (details below). The user interface 
is built with Python’s native Tkinter library [34]. Additional 
Python’s native libraries used are sys, os, and traceback, 
used for file handling and error logging, threading and 
math, used for custom in-house progress bar algorithm 
implementation, and webbrowser for opening system 
folders and external links. Other external libraries used 
are python-docx (version 0.8.10) for writing .docx files 
[35], openpyxl (version 3.0.4) for writing .xlsx files [36], 
and requests (version 2.24.0) for creating a REST request 
to check if a new version is released [37]. To create an 
executable file from the source code, the pyinstaller (4.0) 
library is used [38].

Architecture
The software’s root file is where the user interface code 
resides. After the user interface setup, upon clicking 
the Submit button, three processes are executed 
(Figure 3). The first one is setting the global variables. 
These variables are extracted out in a separate file that 
contains the data that the user has provided from the 
user interface (e.g. input filename, input type, statistical 
test, correction to apply and others) as well as variables 
shared across files (e.g. table styling options). The second 
process is to validate the user’s input – here a series of 
logical checks verify that the user has not missed filling 
out a required field and that the provided input is as 

Figure 3 Flowchart of MUFOS architecture. On submit, three subsequent processes are executed – setting global variables, validating 
input and then main flow is started. The main flow consists of five subsequent steps – reading the raw data, modifying it, creating an 
output dataframe, applying a multiple tests correction and finally saving the output.

https://doi.org/10.5334/jors.350


6Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

expected. The third core process that is triggered upon 
clicking submit is starting the main software flow. This 
third process is further divided into five Steps. The first 
Step is to read the provided input file. The second Step 
modifies and verifies the input file. In this step further 
error handling and logical checks ensure that the data is 
ready for manipulation. The third Step uses the modified 
input file to create an output dataframe which contains 
all relevant information and statistics that need to be 
used later for creating the formatted table. The fourth 
Step adds an additional column with adjusted p values 
to the output dataframe from the previous step. The 
fifth and final Step saves a formatted table based on the 
output dataframe.

Steps 2, 3, and 5 are decision functions, which perform 
a different action based on the user input. There are 11 
different actions that can be performed at each Step: four 
actions (one for each statistical test) when the user input 
is raw data, four actions (one for each statistical test) 
when the user input is an SPSS table, one action for each 
of correlations from summary statistics, independent 
samples t-test from summary statistics and p values. 
Those 11 actions make up the main functionality of the 
software. Each of the 11 actions are in a separate file, the 
name of which is prefixed with main_funcs, followed by 
the input type (raw, summ, pvalues) and a statistical test 
(correlations, mr, indttest, pairttest). Each separate file 
contains functions that reflect Steps 2 (modifying the raw 
data), 3 (creating an output dataframe), and 5 (saving 
the data). Any functions that are shared across different 
paths or are used as helper functions are extracted into a 
separate file (helper_funcs).

1.3. QUALITY CONTROL
One of the key strengths of MUFOS is that it is built around 
established, up-to-date and thoroughly validated Python 
libraries. And yet, as a further quality control measure, 
two core sets of unit tests have been developed. The first 
one is a set of forty tests that verifies that all statistical 
procedures are implemented and working correctly. 
The expected output of each calculation is calibrated 
against SPSS and R. These tests compare the output 
dataframe from Step 3 within MUFOS against expected 
output files that contain the same calculations. These 
calculations are verified against both R and SPSS for 
statistical tests (correlations, multiple regression, 
independent and paired samples t-tests), while for 
multiple tests corrections and effect size estimates, the 
calculations are verified against R only as SPSS does not 
provide an out-of-the-box way to perform them. The 
second set of 70 unit tests verifies that the resultant 
formatted tables are in the expected format. In these 
tests, the output tables from MUFOS are compared 
against expected tables, which are manually checked 
and verified. For .docx files, the XML of the MUFOS output 
table is compared against the XML of the expected 

table, while for .xlsx files, the properties of each cell of 
the output table are compared against the properties of 
the respective cell from the expected tables. The source 
code for the tests is in the files prefixed with tests_ in 
the main directory of the software’s source code folder, 
while the files used for the tests are located in the unit_
testing folder.

All unit tests are executed as part of an automated 
process that generates the compiled version of the 
software from the source code. Specifically, upon each 
new release, a set of automated actions within the 
software repository is triggered on a virtual machine. 
These actions consist of installing Python and all of 
the code’s dependencies, running the unit tests and 
compiling the source code using pyinstaller. For the 
windows distribution, the resultant archive file from 
the automated process is manually converted to an 
installation file using the Nullsoft Scriptable Install 
System [39] tool. Due to an issue with pyinstaller, the 
automated process fails for the Mac distribution, hence 
the compiling process for each release is done manually 
on a local computer. 

Despite the assiduity with which error handling is 
implemented and the diligence in writing unit tests, 
software failures can still occur. To account for that, an 
error logging procedure is implemented such that if an 
error occurs, the user will see a pop-up with an error 
message. Given the extensive error handling throughout, 
hopefully most of these error messages will make sense 
and allow the user to quickly troubleshoot and rectify 
the problem. However, in the rare cases that the error 
message is unexpected and nonsensical, the user will 
be prompted to save the error details in a log file and 
asked to email it to the developers. Notably, the log 
files will contain the minimum necessary information to 
reproduce the error to protect the privacy of the user’s 
data; the user will also be encouraged to check the log 
file before sending to ensure they are not breaching data 
privacy protocols. 

Such feedback loop from the user to the developers 
via error logging, however, is only useful if there is an 
efficient process to quickly update the software and 
notify all users. To address this, users will be notified 
of a new release as they use the software. Specifically, 
every time a user runs MUFOS, a REST request is triggered 
that checks if there are any new releases in the software 
repository. If so, the user is notified of what the latest 
changes are and is encouraged to download the latest 
release.

2. AVAILABILITY
2.1. OPERATING SYSTEM
MUFOS will run both under Windows (preferably Windows 
7 and above) and MacOS (preferably MacOS 10.9 and 
above) operating system.

https://doi.org/10.5334/jors.350


7Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

2.2. PROGRAMMING LANGUAGE
Python 3.

2.3. ADDITIONAL SYSTEM REQUIREMENTS
Overall up to 500 megabytes of free disk space. 

2.4. DEPENDENCIES
Given the comprehensive packaging done on the 
production side, there are no dependencies for MUFOS 
for the end user.

2.5. SOFTWARE LOCATION
Archive

Name: Zenodo
Persistent identifier: 10.5281/zenodo.4058358

Licence: GNU General Public Licence version 3.0
Publisher: Nikolay Petrov
Version published: 1.0
Date published: 29th September 2020

Code repository
Name: GitHub
Identifier: https://github.com/nikbpetrov/mufos.git

Licence: GNU General Public Licence version 3.0
Date published: 26th September 2020

User-friendly software page
The software can also be found at a more user-
friendly page – www.nikolaybpetrov.com/mufos. Users can 
download the latest installation files from there as well 
as the software’s help guide and sample input/output 
files. 

2.5. LANGUAGE
English

2.6. INSTALLATION
To use the software, simply go to software location (either 
its repository or webpage) and download the installation 
file based on the operating system you have (Windows 
or MacOS).

For Windows users, simply download the installation 
file and follow the instructions on the screen. After a 
short installation is completed, run the MUFOS .exe  
file.

For MacOS users, first, download the installation 
archive. Then use an archive tool to unzip the files. After 
this process is complete, the MUFOS .app file can be 
run. Note that MacOS users might have to change their 
system preferences for MUFOS to allow their computer 
to open software for unidentified developers. More 
information on how to change preferences to open 
apps from unidentified developers can be found online 
(https://www.macworld.co.uk/how-to/mac-software/mac-app-

unidentified-developer-3669596/).

3. USE AND REUSE POTENTIAL 

To showcase the MUFOS potential, let’s examine a 
case study. A researcher has collected data across 
eight continuous variables and wants to run a 
correlational analysis using spearman’s rho coefficient 
with a Benjamini-Hochberg (BH) correction. Suppose 
the researcher is not familiar with any programming 
language and prefers to use user interface-driven 
tools, such as SPSS Statistics and Microsoft Excel, to get 
the job done. This process would involve three steps 
(see Figure 4). The first step is to run the correlational 
analysis in SPSS; by default, this produces a table like 
the one shown in Figure 4A. The second step is to 
apply a BH correction. To do that, the researcher finds 
a template excel spreadsheet, the most popular one 
being [29], and manually copies over the p values from 
the SPSS table to the excel spreadsheet (see Figure 4B). 
The third and final step is to create an APA-styled 
table in Microsoft Word, in which the researcher has 
to manually copy across all relevant information while 
cross-referencing both the original SPSS table and 
the corrected p values (see Figure 4C). This process is 
laborious, non-replicable and error prone.

MUFOS makes this entire process easy, convenient 
and easily replicable. By simply clicking a few buttons 
(Figure 5), the researcher is rewarded with a perfectly 
formatted APA table (Figure 4C) ready to be inserted into 
their manuscript. MUFOS has the added benefits that 
researchers can customize the style of their APA table by 
selecting where they want their values to appear (lower 
triangle, upper triangle or both) and can even include 
confidence intervals, an option otherwise not readily 
available within either SPSS or Excel (see Table 1).

The convenience and time-saving benefits of MUFOS 
are further complemented by a potential for expansion 
of the software and its core features. Specifically, users 
of MUFOS are warmly encouraged to suggest new 
features, such as new statistical tests, new multiple tests 
correction procedures or new styles for formatting a 
table. Researchers can implement this themselves if they 
wish, provided they abide by the licensing agreement. 
Expanding the software is made relatively easy as the 
architecture is built with this possibility in mind.

EXPANDING MUFOS – ADDING A NEW 
STATISTICAL TEST
Let’s say a chi-square test needs to be implemented 
as a new option for statistical test if the user’s input is 
raw data. There are four major changes that need to be 
implemented. The first is to update the user interface 
to include the test as a dropdown option and add any 
other options that user might need (e.g. multiple tests 
correction choice, how to handle non-numeric data). The 
second change is to update the Step 2, Step 3 and Step 5 

https://doi.org/10.5334/jors.350
https://doi.org/10.5281/zenodo.4058358
https://github.com/nikbpetrov/mufos.git
http://www.nikolaybpetrov.com/mufos
https://www.macworld.co.uk/how-to/mac-software/mac-app-unidentified-developer-3669596/
https://www.macworld.co.uk/how-to/mac-software/mac-app-unidentified-developer-3669596/


8Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

decision functions (see 1.2. above) to include chi-square 
test from raw data as a new path. Then the third step is 
to create a new file in the same style as the other main_

funcs files that contains a function that modifies the raw 
data (Step 2), creates an output dataframe (Step 3) and 
saves the output in a formatted table (Step 5). The fourth 

Figure 4 A three-step process to run a correlational analysis using user interface driven tools. 4A shows the default SPSS output for a 
correlations table; 4B shows the copied variable names and p values within a publicly available template spreadsheet for applying a 
Benjamini-Hochberg correction; 4C provides an example APA-formatted table which is produced by manually copying over the results 
from the previous steps.

Figure 5 Options to be selected in MUFOS to recreate the three-step process from Figure 4.

https://doi.org/10.5334/jors.350


9Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

and final step is to write unit tests for both the output 
dataframe (to ensure calculations are correct) and the 
formatted table.

EXPANDING MUFOS – ADDING A NEW 
MULTIPLE TESTS CORRECTION PROCEDURE
If a new multiple tests correction procedure needs to 
be implemented, the process is even simpler. There are 
three major changes that need to be done. The first is 
to update the user interface by mainly adding the new 
procedure as an option to the dropdown. The second is to 
update the Step 4 function (found in the decision_funcs 
file) which appends a column with adjusted p values to 
the output dataframe created in Step 3. Note that the 
new multiple tests correction procedure needs to be able 
to produce adjusted p values, not just correct the given 
alpha threshold. The third change is to write unit tests to 
ensure the new procedure works as expected.

EXPANDING MUFOS – ADDING A NEW 
FORMATTED TABLE OPTION
Adding a new style for formatting table for any path 
requires three major changes. The first is to update 
the user interface so that this option appears where 
necessary. The second is to create a new function within 
the path’s file. For example, if a new style for a multiple 
regression table is needed when the input is raw data, 
then a new styling function needs to be created in the 
main_funcs_raw_mr file. Once this function is created, 
the Step 5 (saving data) decision function needs to be 
updated in order to execute the newly created styling 

function if the user selects that option. The third and final 
change is to write unit tests for the formatted table to 
ensure it comes out in the expected format.

CONTACT AND SUPPORT
Users have access to a MUFOS Help Guide and 
Documentation document located in the code repository. 
Although no official support is available, users are 
encouraged to report problems, ask questions, and 
provide feedback/suggestions either on GitHub or via 
email to the lead author. 

NOTE
1 The probability of at least one false positive in 14 tests is 1 – (1 – 

0.05) [14], or over 50%.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Nikolay Petrov  orcid.org/0000-0002-1305-0547

School of Human Sciences, University of Greenwich, UK

Vasil Atanasov

Software Engineer, Manchester, UK

Dr Trevor Thompson  orcid.org/0000-0001-9880-782X

School of Human Sciences, University of Greenwich, UK

VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7

var2 .33 **

[.25, .41]

var3 .27 ** .20 **

[.19, .35] [.11, .28]

var4 .20 ** .23 ** .10 *

[.12, .29] [.14, .31] [.01, .19]

var5 .33 ** .30 ** .74 ** .70 **

[.25, .41] [.22, .38] [.70, .78] [.66, .75]

var6 –.08 –.00 –.69 ** .59 ** –.09

[–.17, .01] [–.09, .09] [–.73, –.64] [.53, .64] [–.18, –.00]

var7 .02 .03 .02 .07 .07 .02

[–.07, .10] [–.06, .11] [–.07, .11] [–.02, .16] [–.02, .16] [–.07, .10]

var8 .03 .11 * .00 .02 .02 –.01 .76 **

[–.06, .12] [.02, .19] [–.09, .09] [–.07, .10] [–.07, .11] [–.10, .08] [.72, .80]

Table 1 Example APA-formatted correlations table from MUFOS with Benjamini-Hochberg correction applied, values placed in the 
lower triangle and with 95% confidence intervals.

** p < 0.01, * p < 0.05.

https://doi.org/10.5334/jors.350
https://orcid.org/0000-0002-1305-0547
https://orcid.org/0000-0002-1305-0547
https://orcid.org/0000-0001-9880-782X
https://orcid.org/0000-0001-9880-782X


10Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

REFERENCES

1. Šidák Z. Rectangular confidence regions for the means 

of multivariate normal distributions. Journal of the 

American Statistical Association. 1967; 62(318): 626–

633. DOI: https://doi.org/10.1080/01621459.1967.10482

935

2. Hochberg Y. A sharper Bonferroni procedure for multiple 

tests of significance. Biometrika. 1988; 75(4): 800–802. 

DOI: https://doi.org/10.1093/biomet/75.4.800

3. Hommel G. A stagewise rejective multiple test procedure 

based on a modified Bonferroni test. Biometrika. 

1988; 75(2): 383–386. DOI: https://doi.org/10.1093/

biomet/75.2.383

4. Holm S. A simple sequentially rejective multiple test 

procedure. Scandinavian journal of statistics. 1979; 

65–70.

5. Benjamini Y, Hochberg Y. Controlling the False Discovery 

Rate: A Practical and Powerful Approach to Multiple 

Testing. Journal of the Royal Statistical Society. Series B 

(Methodological). 1995; 57(1): 289–300. DOI: https://doi.

org/10.1111/j.2517-6161.1995.tb02031.x

6. Benjamini Y, Yekutieli D. The control of the false discovery 

rate in multiple testing under dependency. The Annals 

of Statistics. 2001; 29(4): 1165–1188. DOI: https://doi.

org/10.1214/aos/1013699998

7. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear 

step-up procedures that control the false discovery 

rate. Biometrika. 2006; 93(3): 491–507. DOI: https://doi.

org/10.1093/biomet/93.3.491

8. Benjamini Y, Hochberg Y. On the adaptive control 

of the false discovery rate in multiple testing with 

independent statistics. Journal of educational and 

Behavioral Statistics. 2000; 25(1): 60–83. DOI: https://doi.

org/10.3102/10769986025001060

9. Bretz F, Hothorn T, Westfall P. Multiple Comparisons 

Using R. Chapman and Hall/CRC; 2016. DOI: https://doi.

org/10.1201/9781420010909

10. Farcomeni A. A review of modern multiple hypothesis 

testing, with particular attention to the false 

discovery proportion. Statistical Methods in Medical 

Research. 2008; 17(4): 347–388. DOI: https://doi.

org/10.1177/0962280206079046

11. Lee S, Lee DK. What is the proper way to apply 

the multiple comparison test? Korean Journal of 

Anesthesiology. 2018; 71(5): 353–360. DOI: https://doi.

org/10.4097/kja.d.18.00242

12. Tamhane AC, Gou J. Advances in p-Value Based Multiple 

Test Procedures. Journal of Biopharmaceutical Statistics. 

2018; 28(1): 10–27. DOI: https://doi.org/10.1080/10543406

.2017.1378666

13. Wang D, Li Y, Wang X, Liu X, Fu B, Lin Y, Larsen L, Offen 

W. Overview of multiple testing methodology and recent 

development in clinical trials. Contemporary Clinical 

Trials. 2015; 45: 13–20. DOI: https://doi.org/10.1016/j.

cct.2015.07.014

14. Armstrong RA. When to use the Bonferroni correction. 

Ophthalmic and Physiological Optics. 2014; 34(5): 502–508. 

DOI: https://doi.org/10.1111/opo.12131

15. Gyorffy B, Gyorffy A, Tulassay Z. The problem of multiple 

testing and its solutions for genom-wide studies. 2005; 

146(12): 559–563.

16. Lakens D. The 20% Statistician: Error Control in Exploratory 

ANOVA’s: The How and the Why; 2016. URL http://daniellakens.

blogspot.com/2016/01/error-control-in-exploratory-anovas-

how.html. [Online; accessed 17-July-2020].

17. Lakens D. The 20% Statistician: Why you don’t need 

to adjust your alpha level for all tests you’ll do in 

your lifetime; 2016. URL http://daniellakens.blogspot.

com/2016/02/why-you-dont-need-to-adjust-you-alpha.

html. [Online; accessed 17-July-2020].

18. Noble WS. How does multiple testing correction work? 

Nature biotechnology. 2009; 27(12): 1135–1137. DOI: 

https://doi.org/10.1038/nbt1209-1135

19. Streiner DL. Best (but oft-forgotten) practices: the 

multiple problems of multiplicity—whether and how to 

correct for many statistical tests. The American Journal of 

Clinical Nutrition. 2015; 102(4): 721–728. DOI: https://doi.

org/10.3945/ajcn.115.113548

20. Bennett CM, Miller, MB, Wolford GL. Neural correlates 

of interspecies perspective taking in the post-mortem 

Atlantic Salmon: An argument for multiple comparisons 

correction. Neuroimage. 2009; 47(Suppl 1): S125. DOI: 

https://doi.org/10.1016/S1053-8119(09)71202-9

21. Austin PC, Mamdani MM, Juurlink DN, Hux JE. Testing 

multiple statistical hypotheses resulted in spurious 

associations: a study of astrological signs and health. 

Journal of clinical epidemiology. 2006; 59(9): 964–969. 

DOI: https://doi.org/10.1016/j.jclinepi.2006.01.012

22. Lesack K, Naugler C. An open-source software program 

for performing Bonferroni and related corrections for 

multiple comparisons. Journal of pathology informatics. 

2011; 2. DOI: https://doi.org/10.4103/2153-3539.91130

23. MATLAB. 9.7.0.1190202 (R2019b). The MathWorks Inc.; 2018.

24. R Core Team. R: A Language and Environment for Statistical 

Computing. R Foundation for Statistical Computing; 2020. 

URL https://www.R-project.org/.

25. Van Rossum G, Drake FL. Python 3 Reference Manual. 

CreateSpace; 2009.

26. IBM Corp. IBM SPSS Statistics for Windows; 2017. URL 

https://hadoop.apache.org.

27. Microsoft Corporation. Microsoft Excel; 2018. URL https://

office.microsoft.com/excel.

28. Baker M. Scientific computing: Code alert. Nature. 2017; 

541(7638): 563–565. DOI: https://doi.org/10.1038/nj7638-

563a

29. JASP Team. JASP (Version 0.13.1)[Computer software]; 

2020. URL https://jasp-stats.org/.

30. American Psychological Association. Publication manual 

of the American Psychological Association. American 

Psychological Association; 2020. DOI: https://doi.

org/10.1037/0000165-000

https://doi.org/10.5334/jors.350
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1080/01621459.1967.10482935
https://doi.org/10.1093/biomet/75.4.800
https://doi.org/10.1093/biomet/75.2.383
https://doi.org/10.1093/biomet/75.2.383
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1093/biomet/93.3.491
https://doi.org/10.1093/biomet/93.3.491
https://doi.org/10.3102/10769986025001060
https://doi.org/10.3102/10769986025001060
https://doi.org/10.1201/9781420010909
https://doi.org/10.1201/9781420010909
https://doi.org/10.1177/0962280206079046
https://doi.org/10.1177/0962280206079046
https://doi.org/10.4097/kja.d.18.00242
https://doi.org/10.4097/kja.d.18.00242
https://doi.org/10.1080/10543406.2017.1378666
https://doi.org/10.1080/10543406.2017.1378666
https://doi.org/10.1016/j.cct.2015.07.014
https://doi.org/10.1016/j.cct.2015.07.014
https://doi.org/10.1111/opo.12131
http://daniellakens.blogspot.com/2016/01/error-control-in-exploratory-anovas-how.html
http://daniellakens.blogspot.com/2016/01/error-control-in-exploratory-anovas-how.html
http://daniellakens.blogspot.com/2016/01/error-control-in-exploratory-anovas-how.html
http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html
http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html
http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html
https://doi.org/10.1038/nbt1209-1135
https://doi.org/10.3945/ajcn.115.113548
https://doi.org/10.3945/ajcn.115.113548
https://doi.org/10.1016/S1053-8119(09)71202-9
https://doi.org/10.1016/j.jclinepi.2006.01.012
https://doi.org/10.4103/2153-3539.91130
https://www.R-project.org/
https://hadoop.apache.org
https://office.microsoft.com/excel
https://office.microsoft.com/excel
https://doi.org/10.1038/nj7638-563a
https://doi.org/10.1038/nj7638-563a
https://jasp-stats.org/
https://doi.org/10.1037/0000165-000
https://doi.org/10.1037/0000165-000


11Petrov et al. Journal of Open Research DOI: 10.5334/jors.350

TO CITE THIS ARTICLE:
Petrov N, Atanasov V, Thompson T 2022 Open-Source MUltiple Tests Corrections and FOrmatted Tables Software (MUFOS). Journal of 
Open Research Software, 10: 5. DOI: https://doi.org/10.5334/jors.350

Submitted: 29 September 2020     Accepted: 03 March 2022     Published: 17 March 2022

COPYRIGHT:
© 2022 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

31. McKinney W, others. Data structures for statistical 

computing in python. In: Proceedings of the 9th Python 

in Science Conference. Austin, TX; 2010. DOI: https://doi.

org/10.25080/Majora-92bf1922-00a

32. Oliphant TE. A guide to NumPy. Trelgol Publishing USA; 

2006.

33. Seabold S, Perktold J. Statsmodels: Econometric and 

statistical modeling with python. In: 9th Python in Science 

Conference; 2010. DOI: https://doi.org/10.25080/Majora-

92bf1922-011

34. Van Rossum G. The Python Library Reference, release 3.8.2. 

Python Software Foundation; 2020.

35. n.d. Python-docx. URL https://python-docx.readthedocs.io/

en/latest/#. [Online; accessed 13-August-2020].

36. Gazoni E, Clark. openpyxl – A Python library to read/write 

Excel 2010 xlsx/xlsm files, version 3.0.4; 2020. URL https://

openpyxl.readthedocs.io/en/stable/index.html. [Online; 

accessed 13-August-2020].

37. Reitz K. requests: Python HTTP for Humans; 2020. URL 

http://python-requests.org/.

38. Cortesi D. PyInstaller Manual, Release 4.0; 2020. URL 

https://pyinstaller.readthedocs.io/en/stable/.

39. NSIS Team. Nullsoft Scriptable Install System (NSIS), 

version 3.06.1; 2020. URL http://nsis.sourceforge.net/.

https://doi.org/10.5334/jors.350
https://doi.org/10.5334/jors.350
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://python-docx.readthedocs.io/en/latest/#
https://python-docx.readthedocs.io/en/latest/#
https://openpyxl.readthedocs.io/en/stable/index.html
https://openpyxl.readthedocs.io/en/stable/index.html
http://python-requests.org/
https://pyinstaller.readthedocs.io/en/stable/
http://nsis.sourceforge.net/

