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Abstract 

Myxoid liposarcoma (MLPS) is a rare soft tissue sarcoma of the mesenchymal cells 

characterised by the expression of the FUS-DDIT3 oncoprotein that impairs the adipocyte 

differentiation. Among the available therapeutic choices for the treatment of MLPS, 

trabectedin has shown significant anti-tumour activity. Although prolonged treatment is 

well-tolerated, recurrence of the resistant tumour invariably occurs even in initially 

responder patients. With the aim to characterise yet unknown molecular mechanisms of 

trabectedin mode of action and of resistance in MLPS, we integrated genomic, 

transcriptomic and protein-DNA binding data from patient-derived MLPS xenograft 

model, ML017, and its trabectedin-resistant derivate, ML017/ET. 

DNA-Seq analysis showed that acquired-resistance to trabectedin may be due to the loss 

of genetic material in the 4p15.2, 4p16.3 and 17q21.3 cytobands and to the consequent 

inhibition of the genes mapping on these regions. Integration of longitudinal RNA-Seq 

and ChIP-Seq data revealed a two-phases mechanism of action of trabectedin. An early 

phase, characterised by the cytotoxic action of trabectedin and probably independent 

from FUS-DDIT3 activity; a second late phase, led by the DNA-binding activity of the 

chimera. Indeed, trabectedin displaces FUS-DDIT3 from most of its targets and modulates 

the transcription of the related genes involved in processes that sustain adipocyte 

differentiation. To note, no such differences were observed in ML017/ET resistant model.  

These results shed light on the complex mechanism of action of trabectedin in MLPS. 

They provide insights into the process leading to drug resistance and can be the basis for 

the development of novel combinatorial strategies for the treatment of MLPS. 
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1 INTRODUCTION 

Sequencing technologies have revolutionised biological research. They scaled up the 

genomic assay and paved the way to the development of a novel field that is known as 

computational biology or bioinformatics (Markowetz, 2017), (Bourne, 2021). Oncology 

research received a significant contribution from this innovation. Indeed, computational 

approaches have broadened our understanding of cancer biology, from tumour 

characterisation to tumour evolution and heterogeneity. The transformation did not 

address only basic and pre-clinical research, but it remodelled the approach to the clinic. 

Sequencing technologies promise to improve clinical intervention by better patient 

stratification leading to personalised medicine. 

This PhD work contributes to this field. The overall data presented in this project are an 

example of how computational approaches elucidate tumour biology and provide 

hypotheses for pharmacological strategies. Indeed, in this work the different levels of 

cancer complexity are exploited and integrated using computational approaches for DNA- 

and RNA-Sequencing to characterise myxoid liposarcoma (MLPS) and shed light on the 

mechanisms of sensitivity to and resistance against trabectedin. 

MLPS is a mesenchymal tumour that comes from the adipocytic tissue. MLPS cells are 

blocked in a permanent undifferentiated state caused by the FUS-DDIT3 oncoprotein that 

originates from the translocation t(12;16)(q13;p11)(Yu et al., 2019). MLPS is sensitive to 

chemotherapy and radiotherapy in contrast to other soft-tissue sarcomas, however few 

therapeutic options are available (Mocellin, 2021). In case of refractory tumours, the 

pharmacological option is represented by trabectedin. This is a marine-derived 

compound, today produced by chemical synthesis, that has a complex mechanism acting 

on both cancer cells and the surrounding microenvironment (D’Incalci and Galmarini, 

2010).  

The work of the PhD candidate will deal with the use of bioinformatics and computational 

tools to dissect the complex mechanism of action of trabectedin in MLPS and unveil the 

molecular processes that lead to acquired-resistance.   
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2 BACKGROUND 

2.1 MYXOID LIPOSARCOMA 

Myxoid liposarcoma (MLPS) is a rare tumour that originates from mesenchymal cells. It 

accounts for 20-30% of liposarcomas and 5% of soft tissue sarcomas (Mocellin, 2021). 

The unique molecular feature that specifically characterises MLPS is the chromosomal 

translocation t(12;16)(q13;p11) that leads to the expression of the chimeric oncoprotein 

FUS-DDIT3 present in 95% of all cases (Figure 2.1), while the remaining 5% is 

characterised by the alternative translocation t(12;22)(q13;q12) that generates EWSR1-

DDIT3 (Mocellin, 2021), (Yu et al., 2019). 

2.1.1 EPIDEMIOLOGY AND PATHOLOGY 

MLPS usually presents in the deep soft tissues of the extremities, such as the thighs. It 

affects mainly young adults in the range of 30-50 years, while it is rare in childhood. No 

differences have been observed between males and females (Mocellin, 2021), (Lansu et 

al., 2020). 

Clinically MLPS presents as a large painless mass. At histological level, it is composed of 

oval non-lipogenic cells and various lipoblasts in a myxoid stroma. The capillary 

vasculature is typically branching, thus the name of “chicken wire”. MLPS usually lacks 

nuclear pleomorphism and giant tumour cells, the level of mitotic activity is low and 

necrosis is absent. However, these features characterise the low-grade MLPS; indeed, a 

subgroup of MLPS shows a high density of round cells with a high nucleus-to-cytoplasm 

ratio and lack of myxoid stroma. These high-grade tumours are called myxoid round cell 

liposarcomas and are associated with a worse prognosis (Grosso et al., 2009). The overall 

recognised prognostic factor for MLPS is the percentage of round cells, indeed when 

more than 5% it is an index of bad prognosis (Mocellin, 2021). More recently, the GEIS-

20 (Spanish Group for Research in Sarcoma) has identified p53 and FAS as markers of bad 

prognosis in primary MLPS tumours (Assi et al., 2019).  
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Despite the different histological presentation and related prognosis, myxoid round cells 

and low cellularity tissues represent an histological continuum occurring as a gradual 

transition from one another. This is further confirmed by the fact that both subtypes carry 

the same chromosomal translocation (Mocellin, 2021), (Lansu et al., 2020). 

2.1.2 FUS-DDIT3 

The detection of the typical FUS-DDIT3 oncoprotein represents the best diagnostic 

approach for MLPS, especially in the case of morphological similarities with non-

adipocytic sarcomas with round cell pattern (Compton and Al-Rohil, 2021) and is usually 

identified through immunohistochemistry (Scapa et al., 2021). 

As depicted in Figure 2.1, FUS-DDIT3 derives from a chromosomal translocation that leads 

to the fusion of FUS and DDIT3, two genes that have distinct functional roles in the cell. 

In particular, the FUS gene (i.e., fused in sarcoma), also known with the acronym TLS (i.e., 

translocated in sarcomas) belongs to the FET family of RNA-binding protein and has a role 

in chromatin remodelling and gene expression regulation. The DDIT3 gene (i.e., DNA 

damage inducible transcript 3), also known as CHOP (i.e., C/EBP homologous protein), 

belongs to the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors 

(Crozat et al., 1993). It is a cell-stress marker and it is involved in adipogenesis and 

erythropoiesis programs. The FUS-DDIT3 oncoprotein exists in twelve known different 

isoforms with breakpoints always occurring in intronic regions (Antonescu et al., 2000). 

Figure 2.1 Schematic representation of exons involved in FUS-DDIT3 chimera. DDIT3 
is here termed as CHOP. Adapted from Willeke et al. 1998. 
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All of them involve exons from 2 to 4 of DDIT3, an intriguing molecular feature since exon 

2 of the DDIT3 gene is an untranslated region (UTR) in its wild-type form. Otherwise, the 

exons of the FUS gene involved in the chimera determine the type of FUS-DDIT3 isoforms 

(Figure 2.1). The most common isoform is the type II, in which the FUS gene provides the 

chimera with the exons from 1 to 5. In type I isoform the FUS gene contributes with exons 

from 1 to 7, while in the type III isoform the FUS gene contributes with exons from 1 to 8 

(Willeke et al., 1998). Studies performed so far have demonstrated the absence of clinical 

significance and no correlation with outcome associated with FUS-DDIT3 variants, 

therefore the identification of the exact isoform is no longer part of the clinical practice 

(Mocellin, 2021). 

2.1.3 FUS-DDIT3 MOLECULAR MECHANISM 

The molecular mechanism of the oncogenic protein FUS-DDIT3 in MLPS has been 

described in detail by Pérez-Mancera et al. (Pérez-Mancera et al., 2008). According to the 

current accepted model, the FUS-DDIT3 chimera inhibits the positive loop between the 

PPARg and C/EBPa transcription factors thus blocking the process that transforms a 

mesenchymal cell into a fully differentiated adipocyte (Figure 2.2). Although this study 

showed evidence of the block of the differentiation process in MLPS, FUS-DDIT3 is a DNA-

binding oncoprotein and its targets at the genome-wide level have not been identified 

yet, thus it is likely to be involved in other not already known functions. 

Figure 2.2 FUS-DDIT3 blocks adipocyte differentiation by the inhibition of PPARg 
and C/EBPa. Modified  and adapted from Pérez-Mancera et al., 2008. 
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2.1.4 OTHER MOLECULAR FEATURES ASSOCIATED WITH MLPS 

Although FUS-DDIT3 remains the only molecular marker that uniquely characterises the 

genome of MLPS, high-throughput approaches have revealed previously unknown 

genomic alterations. For example, studies have reported high frequency of mutations in 

the PTEN and PIK3CA genes (Mocellin, 2021), (Keung and Somaiah, 2019) as well as 

overexpression of RET, IGF1R and IGF2 have been reported (Assi et al., 2019). 

Gains have been reported in chromosomes 1, 5, 8 and in the q arm of 13 (Ohguri et al., 

2006), amplifications of 11q22 where the YAP1 gene maps and 14q22.2 (Kanojia et al., 

2015) and losses in chromosomes 6 and 16q have also been reported (Koczkowska et al., 

2017). The amplification of the promoter region of TERT, a feature that is associated with 

tumour aggressiveness in other cancers, has been reported in Hofvander et al.  

(Hofvander et al., 2018). Overall, different studies agree on the monoclonal nature of 

MLPS and reported a slow clonal evolutionary pattern associated with a low mutational 

burden (Antonescu et al., 2000), (Hofvander et al., 2018). 

2.1.5 THERAPEUTIC APPROACHES 

In comparison to other types of sarcoma, MLPS is particularly responsive to radiotherapy 

that is usually applied as adjuvant therapy after surgery and has been established as a 

standard intervention, however new therapeutics are needed (Noguchi et al., 2020). 

Surgery is usually recommended in low-grade MLPS when the disease is mainly localised. 

For more advanced tumours surgery is used alone if tumour is less than 5 cm otherwise 

surgery is followed by adjuvant chemotherapy (Mocellin, 2021).  

Patients with advanced tumours or metastatic diseases are treated with anthracyclines, 

like doxorubicin, that are still the gold-standard in MLPS therapy. Second-line treatment 

consists in the administration of gemcitabine plus docetaxel and high-dose of ifosfamide. 

In other cases, in second-line therapy the marine agent trabectedin is usually 

administered, especially in case of first-line anthracyclines failure (Figure 2.3). 

Trabectedin treatment of MLPS is further discussed in Section 2.3 of this chapter.  
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Recently, eribulin has been introduced as a second-line therapy for patients with 

metastatic liposarcoma and has been proven to be effective in a case that did not respond 

to trabectedin in second-line (Tamiya et al., 2020). 

Intervention on the tumour microenvironment (TME) has not been attempted in MLPS, 

however past studies have shown the high and specific expression of the cancer-testis 

antigen NY-ESO-1 (Hemminger et al., 2013) that has been proven to be also a specific 

marker for myxoid round cell liposarcoma (Hemminger and Iwenofu, 2013). This evidence 

has led to a phase I study testing the safety, tolerability and immunogenicity of a vaccine 

called CMB305 that acts against NY-ESO-1 antigen (Somaiah et al., 2020).   

  

Figure 2.3 First line treatment suggested for advanced unresectable 
metastatic MLPS and the three available second-line options. 
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2.2 PATIENT-DERIVED XENOGRAFT 

An important gap in the clinical implementation of novel therapeutics is the high 

discrepancy between drug efficacy assessed in the preclinical phase and the real outcome 

in phases I/II of clinical trials (Bhimani et al., 2020). Moreover, recent advances in 

personalised medicine require accurate predictive strategies for pharmacological testing, 

a point that randomised control trials have failed to some extent especially due to their 

selective nature (Saturni et al., 2014). Thus, a significant role in pre-clinical but also basic 

research is held by patient-derived xenografts (PDXs). PDXs are tumour fragments that 

are explanted from a patient after surgical resection and implanted in immunodeficient 

mice (Yoshida, 2020), (Xu et al., 2019). They represent a model of the disease and have 

been especially used in the cancer research field.  

 

 

 

Figure 2.4 Establishment of PDX model from primary human tumours and its 
applications in basic and pre-clinical research. Modified from Lai et al. 2017. 
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The advantages of using PDXs models are: 

1. they preserve with high accuracy the genomic profile between the explant and 

the parental tumour they derived from (Yoshida, 2020); 

2. the original tumour architecture is fairly persevered (Yoshida, 2020); 

3. susceptibility to pharmacological agents is closely correlated to the clinical data 

the tumours derived from (Lai et al., 2017), (Yoshida, 2020). 

Although with some limitations as stated further in this paragraph, these characteristics 

make PDXs a valid and precious means in both basic and preclinical cancer research as 

summarised in Figure 2.4. In fact, the preservation of the genomic profile of the original 

tumour allows the characterisation of cancer biology that turns out to be particularly 

useful in the case of rare cancer diseases for which the availability of tumour tissue from 

patients is scarce as in the case of MLPS. Moreover, the study of cancer heterogeneity 

and tumour evolution has been particularly encouraged by PDXs development. Then, 

tumours implanted in mice have a metastatic potential that mimic that behaviour of the 

tumours they come from, thus PDXs are extensively used in basic research for the study 

of metastasis onset and spread.  

Notably, the great revolution by PDXs was brought in preclinical cancer research.  As 

stated previously, a high percentage e.g. 66% of the therapeutic compounds do not 

survive clinical trials because of the poor predictive power of preclinical testing (Xu et al., 

2019). Otherwise, PDXs have proven to be strong predictive experimental models also for 

therapeutic response, even more than cell line-derived xenograft or genetically 

engineered mouse models (Xu et al., 2019). In particular, they have found extensive 

application in personalised precision medicine (Yoshida, 2020), (Lai et al., 2017).  In fact, 

they can be used for the detection of novel cancer biomarkers and guide selective 

treatment. For this reason, they are used in the so-called co-clinical trials, where PDXs 

are developed in concomitance to the progress of the trial. In this way, PDXs can help in 

patient selection strategies for drug therapy and also predict drug response or 

development of drug-resistance (Yoshida, 2020), (Xu et al., 2019). 

However, PDXs models have some limitations that can be summarised as follows: 
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1. The human stroma is gradually substituted by that of the mouse, thus the study 

of the TME is essentially hindered. 

2. In nude mice the absence of the immune system represents a substantial 

limitation to the study of tumours in a real biological context. 

3. Usually, aggressive tumours exhibit strong formation rates in mice and easy 

growing, while early stage or less aggressive tumours grow less. This is a 

problematic issue when considering patients in clinical trials with initial tumours, 

indeed they are the ones that might benefit from improved treatment outcomes 

in comparison to advanced-stages patients for whom PDXs development is easier. 

4. The cost and maintenance of the animal enclosure are fairly high. 

2.2.1 PDXS MODELS OF MLPS 

The rarity of MLPs has pushed the need for novel cancer models. To this aim, a panel of 

PDXs models of MLPs has been developed from the long-lasting collaboration between 

Istituto Nazionale dei Tumori of Milano IRCCS and Istituto di Ricerche Farmacologiche 

Mario Negri IRCCS, and they will be the subject of this work of thesis. To our knowledge 

there is only one additional PDX established by a group from the Chinese University of 

Shanghai (Qi et al., 2017). The timeline with the milestones of MLPS PDX models 

development is reported in Figure 2.5 and discussed further. 

 

Figure 2.5 Timeline of the studies reporting the establishment and investigation of PDX models of 
MLPS. Studies from the same research group are in the same colour. 

The establishment of these models goes back to 2010 when Frapolli et al. published their 

first characterisation (Frapolli et al., 2010). The fragments of 17 sarcomas were 

transplanted in female athymic nude mice. Among them three were classified as usual 

myxoid liposarcoma and nine as round-cell myxoid liposarcoma, among which those used 

in this PhD work, namely ML006, ML015 and ML017. These last were selected because 
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they grew successfully throughout different passages. Specifically, these models retained 

the constitutive chromosomal translocation of FUS-DDIT3 being of the same isoform of 

the human tumour (see also Section 2.1.2 of this Chapter): ML017 carried the type I 

chimera, with a breakpoint at exon 7 of FUS; ML015 was a type II chimera, with a 

breakpoint at exon 5 of FUS; ML006 was a type III, with a breakpoint at exon 8 of FUS 

(Figure 2.1). Initially, FUS-DDIT3 isoform classification was included in the clinical practice, 

however the lack of correlation to clinical intervention and clinical outcome led to the 

abandonment of this molecular classification (Mocellin, 2021). Nevertheless, in the work 

of Frapolli et al., these models were characterised at both morphologic and molecular 

level (Frapolli et al., 2010). Specialised pathologists studied the morphology of the tissues 

cut from PDX through different passages and compared to their matched original 

tumours. They assessed the high level of overlapping histological features between PDX 

and tumour specimens. Moreover, in the same study authors used these models as a 

useful tool to investigate the effects of trabectedin treatment. Interestingly, they showed 

that the response to the drug was histologically comparable to histological assessment 

on patients’ tissue after treatment, thus further confirming the value of these models to 

test and exploit pharmacological compounds. 

The mechanism of action of trabectedin was further tested in the same models with a 

specific focus towards the interaction with FUS-DDIT3 chimera (Di Giandomenico et al., 

2014). Results from this work suggested a direct role of trabectedin in modifying FUS-

DDIT3 interaction with the DNA. In fact, authors showed that trabectedin is able to 

displace FUS-DDIT3 from the promoters of two target genes, namely PTX3 and FN1, and 

that this mechanism happens with a different kinetics depending on the type of FUS-

DDIT3 isoform.  

In 2017, a novel model of MLPS was established by another research group from the 

Fudan University of Shanghai (Qi et al., 2017). This model was established from a patient 

affected with myxoid round cell liposarcoma carrying the canonical FUS-DDIT3 chimera 

and characterised by a mutation in the PI3KCA gene. The model was used to investigate 

the effect of the drug PF-04691502, a PI3K inhibitor. 
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As discussed previously, in the case of very rare diseases for which research studies are 

limited due to the lack of statistically required number of samples as in the case of MLPS, 

the availability of PDX models becomes an extremely helpful means for drug testing. In 

fact, the same models previously described were studied to investigate the combinatorial 

effects of trabectedin and pioglitazone, a drug used for the treatment of diabetes 

(Frapolli et al., 2019). Authors showed that the efficacy of trabectedin in inducing 

adipocyte differentiation was strongly increased by the co-administration of pioglitazone. 

Moreover, the combination was effective in overcoming refractory response also in a 

model that developed resistance to trabectedin. These important evidences were of 

strong support for the approval of a pilot phase II study testing the combination versus 

trabectedin treatment alone (NCT04794127, see Background, Section 2.3.4). 

Recent developments of these models regard the establishment of a new one called 

ML017/ET (Bello et al., 2019). This model originated from the previously characterised 

ML017 (Frapolli et al., 2010) and was established through continuous passages from 

mouse to mouse in an outstanding process that lasted over two years. Over this period 

of time, mice were treated with trabectedin till the achievement of resistance to the drug 

was acquired. This model represents a precious resource to study the mechanisms that 

lead to acquired-resistance, a big issue that is registered in the clinic. 

 

Figure 2.6 PDX models of MLPS developed by Frapolli et al. 2010 and  Bello et al. 2019 as discussed 
in this paragraph. Models are indicated with their identification label. The type of FUS-DDIT3 
chimera is reported in each corresponding box. 
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A summary of all PDX models developed at Istituto di Ricerche Farmacologiche Mario 

Negri IRCCS is provided in Figure 2.6.  

Overall, the lack of numerous cohorts for statistical testing due to the rarity of MLPS 

makes the presented models a precious resource for translational research. As discussed 

previously, these PDXs have allowed not only a deep tumour characterisation, but also 

the study of drug effect and mechanism, to test novel combinatorial approaches and to 

understand the molecular mechanisms leading to drug-resistance (Figure 2.7). 

  

Figure 2.7 Advantages of MLPS PDX. 
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2.3 TRABECTEDIN 

2.3.1 CHEMICAL STRUCTURE AND PROPERTIES 

The marine environment has become a rich source of biological active molecules that 

have found wide use in the clinical treatment of human diseases. These molecules are 

preferentially found in complex habitats, such as coral reefs, where they have developed 

specific chemical properties that confer a unique bioactivity (Barreca et al., 2020). Among 

them, the alkaloid trabectedin, originally known as ET-743, has been widely studied and 

introduced in clinical practice. It was initially isolated from the Caribbean tunicate 

Ecteinascida turbinate, however the low yield of extraction, e.g. 1 g of trabectedin 

isolated from 1 ton of sea squirt, has prompted the synthetic development of this drug 

(Barreca et al., 2020). 

The chemical formula of trabectedin is C39H43N3O11S	 and its chemical structure is 

shown in Figure 2.8. It is composed of three fused tetrahydroisoquinoline rings (A, B and 

C). A and B rings form a mono-bridged pentacyclic skeleton that is linked to ring C (Barreca 

et al., 2020), (D’Incalci and Galmarini, 2010). In contrast to traditional DNA major groove 

alkylating agents that bind to N7 or O6 of guanine, trabectedin binds to the exocyclic N2 

amino group of guanines in the DNA minor groove through rings A and B. This DNA adduct 

is further stabilised by hydrogen bonds and Van der Waals interactions between rings A 

and B and the neighbouring nucleotides. This structural configuration favours triplets like 

-TGG, -CGG, -AGC and -GGC with the N2 of middle guanine becoming the sites of 

alkylation. The binding of the drug in the minor groove induces the formation of DNA 

adducts and bends the DNA toward the major groove conferring a unique behaviour to 

this compound. The ring C apparently does not participate in DNA binding, however it 

protrudes out of the DNA, being able to interact with DNA binding proteins (D’Incalci and 

Galmarini, 2010).   



 
28 

 

 

2.3.2 TRABECTEDIN MECHANISM OF ACTION IN TUMOURS 

From its development trabectedin has attracted the attention of researchers due to its 

complex and pleiotropic mechanism of action. Molecular studies have helped in the 

understanding of trabectedin activity that can be summarised as depicted in Figure 2.9 

and described in the following: 

1. transcriptional regulator; 

2. interaction with DNA repair pathways; 

3. influence on the tumour microenvironment; 

4. antiangiogenic action. 

Figure 2.8 Trabectedin chemical structure. Adapted from Barreca et al., 2020. 

Figure 2.9 Schematic representation of trabectedin mechanism of action. 
Modified from Assi et al., 2019 
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It has been demonstrated that the changes induced in the bending of the DNA by 

trabectedin confer to the drug a role of transcriptional regulator. In fact, modifications in 

the DNA conformation are an obstacle to DNA binding proteins and can facilitate the 

binding of other proteins. In particular, at the cell level trabectedin seems to affect only 

the transcription of activated genes. For example, it effectively blocks HSP-70 and MDR1 

(Minuzzo et al., 2000) and it also induces the degradation of RNA polymerase II in cells 

with a proficient transcription-coupled nucleotide excision repair (TC-NER) (D’Incalci and 

Galmarini, 2010). Moreover, the regulation of gene transcription has come up to be cell-

specific, indeed trabectedin can either up-regulate or down-regulate the same genes in 

different cell types, thus suggesting its peculiar role as transcriptional regulator (D’Incalci 

and Galmarini, 2010). 

The introduction of trabectedin in the clinical practice has been prompted especially by 

the response obtained in cells with specific DNA repair deficiencies. Specifically, when 

defects occur in the homologous recombination (HR) pathway which is involved in the 

repair of DNA double strand breaks (DSBs) the cells are 100 times more sensitive to 

trabectedin treatment (D’Incalci and Galmarini, 2010). This evidence was then confirmed 

in the clinic where BRCA1/2 deficient patients have shown good response to the 

treatment and led to the European Medicine Agency approval of trabectedin for relapse 

platinum-sensitive ovarian cancers in 2009 (OVA-301 study, (Monk et al., 2010)). A similar 

high sensitivity was also found in cells with defective Fanconi anaemia genes, like FANCA, 

FANCC, FANCF, FANCD or FANCD1 (D’Incalci and Galmarini, 2010). 

On the other hand, the response to the drug is completely different in cells lacking a 

proficient TC-NER. This pathway is involved in the recognition and repair of DNA damages 

especially caused by UV rays. Molecular studies have shown that TC-NER deficient cells 

are not responsive to trabectedin treatment and that this mechanism can be due to a 

mutant form of XPG gene (Takebayashi et al., 2001). 

Then, one of the peculiarities of this drug consists in the completion of its action not only 

on cancer cells but also on the surrounding compartment known as TME. In particular, 
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trabectedin inhibits the transcriptional activity of cytokines and chemokines like CCL2, 

CXCL2 and IL6. This activity against monocytes and macrophages is mainly related to the 

rapid activation of caspase 8 by membrane signalling TRAIL receptors, which are more 

expressed in these cell types than in neutrophils and lymphocytes (D’Incalci et al., 2014), 

(Germano et al., 2013).  

Finally, studies have shown that trabectedin is able to inhibit important extracellular 

matrix factors like VEGF and PTX3 exerting an important anti-angiogenic action on the 

tumour-surrounding capillary network that is further enhanced by the up-regulation of 

matrix metalloproteinases like TIMP-1 and TIMP-2 inhibitors and also of 

thrombospondin-1 (D’Incalci and Galmarini, 2010), (Assi et al., 2019).  

In conclusion, trabectedin shows a complex mechanism involving different targets and 

pathways, far to be fully understood. Further molecular studies are necessary to clarify 

these aspects. Modern sequencing technologies have broadened the possibilities to 

exploit drug action, thus they can be useful and up-to-date approaches to study 

trabectedin mechanism of action. 

2.3.3 DEVELOPMENT OF RESISTANCE TO TRABECTEDIN TREATMENT 

The mechanism of resistance against trabectedin treatment has been described in cancer 

cell line models. In particular, the loss of heterozygosity of 13q33 (the cytoband to which 

XPG belongs to) explains drug resistance of colorectal carcinoma ER5 cell, while 

transcriptional alterations of genes related to the cytoskeleton architecture where linked 

to resistance in chondrosarcoma cell line CS1 (Marchini et al., 2005).  

In the clinical practice, patients can sustain prolonged treatment since trabectedin is well 

tolerated and does not cause cumulative toxicity. However, it is a clinical experience that 

long lasting chemotherapy usually leads to the development of drug resistance. The 

molecular reasons at the basis of the acquired resistance against trabectedin in MLPS 

have not been elucidated yet, however a recent work has proposed a possible link with a 

deficient TC-NER (Bello et al., 2019). 
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Recently, the presence of M1 infiltrating macrophages has been associated with poorer 

responses to trabectedin, as well as genes like CLU4A and ERCC1, involved in DNA repair 

processes, are highly predictive of trabectedin response (Assi et al., 2019). 

2.3.4 TRABECTEDIN TREATMENT IN MYXOID LIPOSARCOMA 

The standard first-line therapy for MLPS consists in the administration of DNA-

intercalating agents such as anthracyclines. However, the side effects especially 

cardiomyopathies and the common onset of drug-resistance have accelerated the 

individuation of novel therapeutic agents. Initially, trabectedin was approved by the 

European Medicine Agency (EMA) in 2007 for the treatment of advanced soft-tissue 

sarcoma, among which MLPS, after the failure of first-line therapy with anthracyclines 

and ifosfamide (Barreca et al., 2020), (Frapolli et al., 2010), but it was only in 2015 that 

the Food and Drug Administration (FDA) gave its approval for the treatment of advanced 

pre-treated metastatic liposarcoma and also leyomiosarcoma (Bello et al., 2019), (Assi et 

al., 2019). 

Due to its rarity, MLPS has been included in clinical trials with other subtypes of sarcoma, 

thus the real effects of trabectedin on MLPS have been probably shadowed (Assi et al., 

2019). The first solid data on trabectedin responsiveness in MLPS has been reported in 

2007 by Grosso et al. where only MLPS patients were selected and showed an overall 

survival rate of 51% (Grosso et al., 2007). From that on, the number of studies on 

trabectedin in MLPS has increased. Trabectedin has shown efficacy mainly in pre-treated 

metastatic patients, while studies testing its administration as a first-line treatment did 

not show an advantage in comparison to other drugs (Assi et al., 2019). However, a study 

where first-line chemotherapy with trabectedin was compared with the standard therapy 

with doxorubicin,  showed that the growth curves diverged after long time e.g. more than 

20 months in favour of trabectedin suggesting a long-latency response to trabectedin 

treatment (Blay et al., 2014). Interestingly, this evidence was confirmed also in other 

studies and this led the EMA to the approval for continuous administration till progression 

(Assi et al., 2019).  
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The high tolerability to trabectedin treatment with few side effects, e.g. liver toxicity, has 

also led to the clinical practice of interrupting the treatment with rechallenge upon 

progression (Sanfilippo et al., 2015). This particularly safe pharmacological profile has 

paved the way for the development of combinatorial treatment that can enhance the 

response. A study by Forni et al. has shown that when trabectedin was administered as 

neoadjuvant chemotherapy the tumour cells develop into mature lipoblast, confirming 

molecular evidence of differentiation (Forni et al., 2009). A recent study by Frapolli et al. 

has demonstrated the ability of trabectedin to promote adipocyte differentiation in PDX 

models of MLPS (Frapolli et al., 2019). Interestingly, this effect was enhanced when 

trabectedin was administered in combination with pioglitazone, a PPARγ agonist used for 

the treatment of diabetes, and it was also able to overcome trabectedin resistance. This 

has recently led to the approval of a pilot phase II study (NCT04794127) called TRABEPIO 

that has the primary end point to assess the percentage of responders when trabectedin 

is administered in combination with pioglitazone in comparison to trabectedin alone 

(Mario Negri Institute for Pharmacological Research, 2021). 
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3 AIMS OF THE STUDY 

In this work, we made a step further towards MLPS characterisation and the study of the 

molecular mechanisms that deal with trabectedin treatment. 

The main aims of this PhD work are: 

1. to characterise PDX models of MLPS and evaluate the extent to which they 

reproduce the clinical features of MLPS tumours; 

2. to study the mechanism of action of the drug trabectedin at the molecular level; 

3. to investigate the mechanisms that lead to the acquisition of resistance against 

trabectedin treatment in MLPS. 

To pursue the three main goals of this work different bioinformatics and computational 

approaches applied to high-throughput sequencing technologies will be used. In details, 

starting from a cohort of four PDX models of MLPS (see Background Section 2.2), the work 

will follow four steps as reported in the following.  

1. DNA-sequencing allows to detect genomic variations like single nucleotide 

variants (SNVs), small insertions or deletions, and also larger genomic instabilities 

like gene-fusions or somatic copy number alterations (SCNAs). In this PhD work, 

DNA-Seq will be analysed: i. to detect SNVs and SCNAs that constitutively 

characterise MLPS PDX; ii. to study whether the sensitivity to trabectedin depends 

on specific genomic variants: iii. to identify features associated with resistance to 

the drug. 

2. Drugs do not only act at the DNA level, but they can have a role in the modulation 

of the transcription of target genes leading to activation or inhibition of specific 

pathways. RNA-Sequencing (RNA-Seq) methods allow the study of different 

aspects of RNA biology, like gene or transcript expression, translation and also 

RNA structure (Stark et al., 2019). In this work RNA-Seq will be used for differential 

expression analysis: i. to identify transcriptional features that discriminate 

between responsive and resistant tumours; ii. to study the transcriptional 

mechanisms that lead response to the drug over time. Broader applications of 
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RNA-Seq have unveiled novel aspects of biology, for example the regulation of 

non-coding RNAs and the identification of unknown transcripts (Stark et al., 

2019). In this work, we will use this approach to explore yet unknown 

transcriptional features related to the mechanism of responsiveness to 

trabectedin. 

3. Among sequencing approaches, chromatin immunoprecipitation followed by 

sequencing (ChIP-Seq) allows the detection of transcription factor binding sites 

genome-wide. The study of histone modifications, such as enhancers or the 

analysis of the chromatin state are possible with ChIP-Seq. This represents an 

important approach to analyse biological functions associated with epigenetic 

signatures and to study their response to treatment (Nakato and Sakata, 2021). 

FUS-DDIT3 is the only molecular feature that distinguishes MLPS from other 

tumours. Its role in MLPS has been extensively described, however a study on its 

target sites at the whole-genome level has not been done yet. To our knowledge, 

none has already studied how drug treatment can affect FUS-DDIT3 mechanism 

of binding to the DNA. In this PhD work, ChIP-Seq will be used to tackle these 

points. 

4. All these approaches contribute singularly to reveal a specific aspect of tumour 

biology. However, the single depicted pictures cannot be considered 

independently. Altogether, they contribute to rendering a comprehensive 

description of the biological problem. Thus, in this work all these different aspects 

will be integrated by computational approaches in order to provide as far as 

possible a whole picture of MLPS and their response to trabectedin.  
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4 MATERIALS AND METHODS 

Sections from 4.1 to 4.6 were provided for the sake of completeness, although they do 

not represent a direct work of the PhD candidate. 

4.1 ANIMALS 

Female athymic nude mice (six to eight weeks old) were obtained from Envigo (RMS, 

Udine, Italy) and were housed in individually ventilated cages. Sterilised food and water 

ad libitum were provided under specific pathogen-free conditions in the Animal Care 

Facility of Istituto di Ricerche Farmacologiche Mario Negri IRCCS which meets 

international standards. Health monitoring, animal welfare supervision, experimental 

protocols and review of procedures were done by a certified veterinarian. Experiments 

meet the Italian Governing Law (D.lgs 26/2014; Authorisation no.19/2008-A issued March 

6, 2008, by Ministry of Health). The Institutional Regulations and Policies of Istituto di 

Ricerche Farmacologiche Mario Negri IRCCS were provided for internal authorisation for 

people conducting animal experiments (Quality Management System Certificate—UNI 

EN ISO 9001:2008—Reg.  No.  6121); the NIH Guide for the Care and Use of Laboratory 

Animals (2011 edition) and EU directives and guidelines (EEC Council Directive 

2010/63/UE) and in line with the guidelines for the welfare and use of animals in cancer 

research (Workman et al., 2010). 

4.2 DRUGS 

Trabectedin (YondelisR©, ET743) was kindly supplied by PharmaMar, S.A. (Colmenar 

Viejo, Spain) dissolved in water and further diluted in saline immediately before use.  

Doxorubicin (SANDOZ clinical formulation) was diluted with water immediately before 

use. 

4.3 TUMOUR MODELS 

The ML017, ML015 and ML006 patient-derived xenograft are models of round-cell 

myxoid liposarcoma with type I, type II and type III FUS-DDIT3 chimera, respectively. They 



 
38 

were maintained through serial transplantation in mice as reported in Frapolli et al. 

(Frapolli et al., 2010). Tumours from donor mice were cut into small fragments and then 

engrafted subcutaneously in athymic nude mice under isoflurane anaesthesia. 

Histological assessment of tumours in mice was made after each passage to assess the 

clinical relevance. The ML017/ET model was derived from ML017 model and shows 

acquired resistance to trabectedin. The development and maintenance of this model is 

as reported in Bello et al. (Bello et al., 2019). When tumour burden reached about 300 to 

400 mg, mice bearing xenografts were randomized to receive trabectedin 0.15 mg/kg 

intravenously, every 7 days for three times (q7dX3) or doxorubicin 8 mg/kg intravenously 

every 7 days for two times (q7dx2). 

4.4 EXTRACTION AND SEQUENCING OF DNA AND RNA 

gDNA and total RNA were extracted from tumours with the QIAamp DNA Mini kit and 

(QIAGEN) and the miRNeasy Mini kit (QIAGEN) respectively, following protocols’ 

instructions and using an automatic nucleic acid purification system (Qiacube, QIAGEN). 

Before library preparation, gDNA and RNA concentration were evaluated using Qubit® 

dsDNA High Sensitivity Assay Kit and Qubit™ RNA High Sensitivity Assay Kit (Invitrogen, 

Carlsbad, California, USA) respectively,  while the quality was established using 4200 

Tapestation (Agilent Technologies). 

200 ng of DNA were sheared on Bioruptor (Diagenode, Seraing (Ougrée), Belgium) then 

purified with AMPure XP beads (Beckman Coulter, Brea, California, USA). Following the 

Sure Select XT protocol (Agilent Technologies), libraries were generated using the Bravo 

automatic liquid handling station (Agilent Technologies). OneSeq Constitutional Research 

Panel (Agilent Technologies) was used as capture probes: a detailed description of the 

panel is provided in Section 4.8.3.1.1. After the last AMPure XP beads purification, 

samples were examined for quality and quantity and the sequencing run was done on the 

NextSeq500 sequencer (Illumina San Diego, California, USA). 
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Following the TruSeq Stranded Total RNA protocol, 500 ng of RNA (RIN value between 6 

and 9) was processed for sequencing. Libraries with optimal quality and quantity were 

run on the NextSeq500 sequencer (Illumina San Diego, California, USA). 

4.5 CHIP AND CHIP-SEQ 

Chromatin immunoprecipitation (ChIP) experiments were performed on PDX tumour 

biopsies previously fixed in 1% formaldehyde and quenched with 125 mM glycine. 

Tumour specimens were resuspended in a lysis buffer supplemented with protease 

inhibitors and homogenized using an ultra-turrax (VWR). After centrifugation, chromatin 

was sheared on Bioruptor (Diagenode) and added to 10 µg of antibody, previously 

incubated all day at 4°C in a rotation wheel with dynabeads (Thermo-fisher). 1% of lysate 

was collected, stored at -20°C and then used as an input sample. After overnight 

incubation in a rotation wheel at 4°C, immunoprecipitated samples (IPs) were washed 

with a RIPA wash buffer, dynabeads were removed in a magnetic stand and samples were 

incubated at 65°C overnight in order to remove crosslinks. Recovered material was 

purified using QIAquick PCR purification kit (Qiagen) and DNA was quantified using Qubit 

assay and analysed by qPCR. Antibodies used in ChIP experiments are listed in Table 4.1. 

ChIP-Seq experiments were performed adapting the TruSeq ChIP protocol (Illumina): 50 

ng of IPs and input were used for library preparation. Since no size selection was 

performed, samples were analysed by Tapestation in order to verify the peak size. 

Antibody Code Company 

Rabbit Polyclonal DDIT3 15204-1-AP Proteintech 
Rabbit  Histone H3K4Me3 V13-39159 Active Motif 

Normal Rabbit IGg 2729S Cell Signaling 
Table 4.1 Antibodies used in ChIP experiments. 

 

4.6 FACS 
 

Fluorescence-activated cell sorting (FACS) analysis was done on ML017 and ML017/ET 

models only. Tumour tissues were mechanically disaggregated by MediMachine (BD 

Biosciences, Franklin Lakes, New Jersey, USA). Cell suspension was filtered using a 100 
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μm CellTrics disposable filter (Sysmex Europe, GmbH, Bornbarch, Norderstedt, Germania) 

and fixed with ethanol (70%). After 4h, 2 × 106 cells were incubated over night at 4 °C 

with 1 ml of Propidium Iodide 25 μg/ml (Calbiochem, Merck Burlington, Massachusetts, 

USA) and 12.5 μl of RNAse 1 mg/ml (Calbiochem, Merck Burlington, Massachusetts, USA) 

in phosphate buffered saline (PBS). A Beckton Dikinson FACSCalibur flow cytometer (BD 

Biosciences, Franklin Lakes, New Jersey, USA) equipped with blue (488 nm) and red (630 

nm) lasers was used to analyse the DNA. To construct each histogram, 10.000–20.000 

cells were used. Instrument was calibrated with peripheral blood mononuclear cells 

(PBMNC). It was also used as internal diploid standard. Aneuploidy was estimated by the 

DNA index value, calculated as the ratio between the modal channel of the G0/G1 peak 

of the sample under study and the modal channel of the G0/G1 peak of the reference 

standard. For a diploid cell population the DNA index is set to 1.00. 

4.7 TREATMENT SCHEDULE 

As previously stated (see Background, Section 2.1) MLPS is a rare soft tissue sarcoma with 

a low incidence in the population, therefore it is very difficult to recruit biological material 

to perform translational studies. To overcome this issue, PDX models of MLPS have been 

developed in the Department of Oncology of the Istituto di Ricerche Farmacologiche 

Mario Negri IRCCS, namely ML017, ML017/ET, ML015 and ML006 as described in 

Background, Section 2.2.1. 

Figure 4.1 depicts the experimental design that was applied to the study. The treatment 

schedule was established based on the previous work done on these preclinical models 

at the Department of Oncology of the Mario Negri Institute (Frapolli et al., 2010), (Di 

Giandomenico et al., 2014). In detail: untreated control samples were used as baseline, a 

time-course approach for trabectedin treatment was used consisting of 24 and 72 hours 

after the first dose of drug to study the early response to treatment and one point at 15 

days after the third dose to study the late effects. The interval between doses was of one 

week (see also Materials and methods, Section 4.3). A time point at 24 hours after one 

dose with the standard first-line drug doxorubicin was used as a comparison.  
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The experimental design did not include untreated control samples taken in 

correspondence of each time of treatment since:  

- mice randomization was done after 30 days from the inoculation:  at this time 

point and after either 24h or 72h after treatment the tumour maintains its 

characteristics being in a linear point of the growth curves as shown in the 

previous work from Frapolli et al. and Di Giandomenico et al.  ((Frapolli et al., 

2010), (Di Giandomenico et al., 2014)); 

- at the last time point, e.g. 15 days after the third dose, the issue deals again with 

the tumour growth: mice can either not survive till this time point or have a 

tumour that reaches a weight of 2g or more before this point,  being incompatible 

with mice survival and requiring mice scarification in accordance to the rules of 

the welfare and use of animals in cancer research (Workman et al., 2010). 

Otherwise, mice treated with trabectedin can reach this time-point thanks to the 

treatment that sustains their survival. 

 From now on, each time point condition will be addressed as follows: 

- basal condition as CTRL; 

- trabectedin treatment at 24 hours after the first dose as ET-24; 

- trabectedin treatment at 72 hours after the first dose as ET-72; 

- trabectedin treatment at 15 days after the third dose as ET-15; 

- doxorubicin treatment at 24 hours after the first dose as DOXO. 

Figure 4.1. Treatment schedule used for PDX models. ET, trabectedin. DOXO, doxorubicin. 
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As summarised in Figure 4.2, in the case of ML017 and ML017/ET models, four replicates 

per each condition were available and in just two cases out of four replicates were 

technical since they came from two different tumours of the same mouse (left and right 

tumours). Thus, a total of 40 samples was analysed for ML017 and ML017/ET, twenty 

each. Instead, for ML006 and ML015 models replicates were not available, thus only one 

sample for each condition was analysed. 

  

Figure 4.2 Schematic representation of the number of replicates for each PDX model 
used in this work. 
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4.8 BIOINFORMATICS DATA ANALYSIS 

The implementation of the present work has been done by the complex integration 

analysis of different types of sequencing data starting from either DNA or RNA (DNA-Seq, 

RNA-Seq) or chromatin immunoprecipitation (ChIP-Seq). The work of the PhD candidate 

did not consist only in data analysis oriented to the achievement of the biological aims of 

the study, but also to test tools, to choose the ones that best applied to the aim, and then 

organise a specific pipeline of analysis. The methods described here are the final 

realisation of an accurate and deep research. The world of bioinformatics tools for data 

analysis is wide and in rapid evolution with a daily birth of novel methods and software. 

Being aware of the broad range of possibilities available for the development of specific 

pipelines, the ones presented here are not the only possible choices, however they come 

from tools already accepted by the scientific community, adapted and customised to the 

aims of this work as expressly stated and detailed in the following sections. 

4.8.1 FIRST STEPS IN DATA ANALYSIS 

The first steps in bioinformatics data analysis were applied to all the technologies used in 

this work and shown in Figure 4.3.  

First, processed sequencing libraries were loaded in the NextSeq500 Illumina sequencer 

with a high output flow cell (output of 60 Giga bases, 400 million reads). Although some 

changes could have been done due to technical reasons, overall experiments and loading 

were made as reported in Table 4.2 and described as follows. 

• DNA-Seq was done following these parameters: 28 Mb for the genome size, 300 

(2x150) cycles for read length, paired-end, single index, 70% of on-target bases, 

20% of duplicates and 150x of coverage. Based on these parameters, 16 samples 

were loaded in each flow cell as calculated by the Illumina Calculator (“Sequencing 

Support – Coverage Calculator,” n.d.); 

• RNA-Seq was run in paired-end mode, 300 (2x150) cycles for read length, single 

index, calculating around 60 million reads per sample, thus 7 samples per flow cell 

were loaded; 
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• ChIP-Seq was run in single-end mode, single index, 75 bp of fragment length. 10 

samples per flow cell were run, expecting 40 million reads for both transcription 

factors and histone modification H3K4me3, while for the input samples 4 samples 

were loaded per flow cell expecting 100 million reads each. 

 

Raw data were stored in a high performance computing (HPC) cluster based at the Istituto 

di Ricerche Farmacologiche Mario Negri IRCCS. Raw sequencing reads were 

demultiplexed with Illumina bcl2fastq Conversion Software v1.8 (“bcl2fastq Conversion 

Software,” n.d.). In the last step, quality assessment of sequencing data was performed 

with FastQC (“Babraham Bioinformatics - FastQC A Quality Control tool for High 

Throughput Sequence Data,” n.d.) as further explained. 

 

Figure 4.3 First steps in bioinformatics data analysis. 
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Fragment length 

(bp) 
Paired-end 

Samples per 

flow cell 

Expected 

output (reads) 

DNA-Seq 150 Yes 16 25 M 
RNA-Seq 150 Yes 7 57 M 

ChIP-Seq (TF) 75 No 10 40 M 
ChIP-Seq (input) 75 No 4 100 M 

Table 4.2 Sequencing loading specifications for the sequencing technologies used. bp, base pair; 
TF, transcription factor; M, million. 

4.8.2 QUALITY CONTROL 

Quality control is a compulsory step in sequencing data analysis. It allows to check the 

quality of each sequenced base and that of the overall sample cohort. The aim of this 

process is to identify samples that do not reach quality standards and to exclude them 

from further analysis. Data quality assessment is important since post-processing of low 

quality samples could lead to false positive results and misleading biological findings. 

Overall, the quality of a sequenced base is expressed through the Q-score that is defined 

as in Equation 4.1. Q-score information is stored in fastq files (raw data) and is expressed 

through ASCII symbols. 

! − #$%&' = 	−10 log/0 1 

Equation 4.1 Q-score definition. P is the probability of a wrong base call. 

In this work quality control of sequenced samples was done before alignment through 

FastQC (“Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput 

Sequence Data,” n.d.) that allows to retrieve quality parameters based on the Q-scores, 

while post-alignment quality control was done with samtools (Li et al., 2009) and bcbio-

nextgen (“Contents — bcbio-nextgen 1.2.4 documentation,” n.d.). 

In general, the sequenced fragments are expected: 

• To have the putative sequence length, e.g. in this work 150 bp for DNA-Seq and 

75 bp for ChIP-Seq; 
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• To have a low percentage of sequence error rate defined from CIGAR strings as in 

Equation 4.2 where CIGAR stands for Concise Idiosyncratic Gapped Alignment 

Report that is a compressed representation of alignments in SAM formats; 

• To achieve the desired coverage; 

• To have a percentage of mapped reads proximal to 100%. 

'&&%&	&23' = 	45#423$ℎ'7	82#'# 4211'7	82#'#9  

Equation 4.2 Error rate definition based on CIGAR strings. 

4.8.2.1 Quality control of DNA sequencing data 

ML006 samples are reported in Table 4.3 with the associated quality parameters  on pre- 

and post-aligned data. For each condition, such as CTRL, ET-24, ET-72, ET-15 and DOXO 

(see Materials and methods Section 4.7), one sample was sequenced. A commercial 

reference genome was provided by Agilent Technologies and used as matched control 

for somatic variant detection as further explained. All samples matched quality standards 

with a mean sequence depth of 105.05x and more than 90x each, a percentage of 

duplicate less than 6%, a percentage of error rate less than 1%, and 99.8% of reads 

mapped of which a mean of 2.68 million were mapped on the mouse genome as further 

described and excluded from the final aligned samples. 

Similarly, ML015 samples matched quality standards as reported in Table 4.4. Again, only 

one sample was sequenced for each condition, while a healthy sample from the original 

patient the PDX derived from was used as control for variant calling purposes as further 

explained. All samples matched quality standards with a percentage of duplicated 

sequences less than 6%, mean sequence depth of 108.66x excluding the healthy sample 

that was sequenced at lower coverage; the percentage of error rate was less than 1%, 

and 98.75% of reads were correctly mapped of which a mean of 2.03 million were 

mapped on the mouse genome as further described and excluded from the final aligned 

samples. 
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In relation to the analysis of ML017 and ML017/ET models, four replicates per condition 

were used as reported in Table 4.5 and Table 4.6 (see also Materials and methods, Section 

4.7). Samples were referred either as -A or -B since they belonged to two different 

batches of mice (two different period of time) and numbers like 1- and 2- indicated the 

replicate number. The same nomenclature was maintained with the other sequencing 

approaches as reported in the next sections. One healthy sample from the patient ML017 

derived from was used as control for variant calling. The two cohorts met sequencing 

quality standard: a mean of 4.9% and 6.28% of duplicate sequences respectively, less than 

2.10% of error rate and more than 99% of mapped reads, of which 3.32 and 2.16 million 

mapped to the mouse genome in ML017 and ML017/ET, respectively. 

Overall, all samples met quality standards both before and after alignment, thus they 

were all considered for downstream analysis. 



 FastQC bcbio-nextgen samtools 

 % 

Dups 
% GC Length bp % Failed % Dup Depth 

M 

disamb. 

mm10 

reads 

% Error 

rate 

M Non-

Primary 

M Reads 

Mapped 

% 

Mapped 

M Total 

seqs 

ML006_CTRL 3.3 46 148 8 5.3 105.31 2.65 0.58 0.2 52.1 99.8 52.2 
ML006_DOXO 3.0 45 148 8 4.8 98.19 2.68 0.59 0.2 49.4 99.8 49.5 
ML006_ET-24 3.4 45 149 25 5.1 93.32 2.74 0.59 0.2 47.2 99.8 47.3 
ML006_ET-72 3.4 45 148 25 5.6 94.53 2.46 0.62 0.2 50.3 99.8 50.4 
ML006_ET-15 3.7 45 149 17 5.7 97.5 2.88 0.60 0.1 49.9 99.8 50 

REF 3.4 48 148 17 5.2 141.45 - 0.61 0.3 59.9 99.8 60 
Table 4.3 Quality control of DNA-sequenced samples from ML006 and the commercial reference (REF). FastQC parameters (derived from down-sampling on 

chromosome 1): %Dups, percentage of duplicate reads;  %GC, percentage of average content of CG bases; Length, average sequence length (bp); %Failed, 

percentage of modules failed in FastQC report. Bcbio-nextgen parameters (on the post-aligned whole bam files): %Dup, % duplicated reads; Depth, average 

target read coverage; M disamb. mm10 reads, this metric shows the number of removed reads because ambiguously mapped on mm10. Samtools parameters: 

% Error rate, percentage of error rate using CIGAR; M Non-primary, Non-primary alignments (millions); M Reads Mapped, reads in the bam file (millions); % 

Mapped, percentage of mapped reads in the bam file; M Total seqs, total sequences in the bam file (millions). CTRL, control; ET, trabectedin; 24 and 72 refer to 

24 and 72 hours after the first dose of drug; 15 refers to 15 days after the third dose of drug; DOXO, doxorubicin; REF, commercial reference genome. 
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 FastQC bcbio-nextgen samtools 

 
% 

Dups 
% GC Length bp % Failed % Dup Depth 

M 

disamb. 

mm10 

reads 

% Error 

rate 

M Non-

Primary 

M Reads 

Mapped 

% 

Mapped 

M Total 

seqs 

ML015_CTRL 3.5 46 148 17 5.9 98.65 0.98 0.60 0.2 50.1 99.8 50.2 
ML015_DOXO 2.9 46 148 17 4.5 118.1 1.25 0.58 0.2 58.9 99.8 59 
ML015_ET-24 3.3 46 148 17 5.0 108.8 0.83 0.61 0.2 55.8 99.8 55.9 
ML015_ET-72 3.7 46 148 8 4.5 123.18 1.57 0.60 0.2 59.5 99.8 59.6 
ML015_ET-15 3.6 46 149 17 5.3 94.57 5.52 0.61 0.2 48.7 99.8 48.8 

healthy 5.3 51 144 25 5.3 66 - 1.09 0 32 97.7 32.8 
Table 4.4 Quality control of DNA-sequenced samples from ML015 and matched healthy sample. FastQC parameters (derived from down-sampling on 

chromosome 1): %Dups, percentage of duplicate reads;  %GC, percentage of average content of CG bases; Length, average sequence length (bp); %Failed, 

percentage of modules failed in FastQC report. Bcbio-nextgen parameters (on the post-aligned whole bam files): %Dup, % duplicated reads; Depth, average 

target read coverage; M disamb. mm10 reads, this metric shows the number of removed reads because ambiguously mapped on mm10. Samtools parameters: 

% Error rate, percentage of error rate using CIGAR; M Non-primary, Non-primary alignments (millions); M Reads Mapped, reads in the bam file (millions); % 

Mapped, percentage of mapped reads in the bam file; M Total seqs, total sequences in the bam file (millions). CTRL, control; ET, trabectedin; 24 and 72 refer to 

24 and 72 hours after the first dose of drug; 15 refers to 15 days after the third dose of drug; DOXO, doxorubicin. 
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 FastQC bcbio-nextgen samtools 

 % Dups % GC Length bp % Failed % Dup Depth M disamb. mm10 reads % Error rate M Non-Primary M Reads Mapped % Mapped M Total seqs 

ML017-1-CTRL-A 3.0 46 151 9 4.7 98 2.6 0.60 0.2 57.5 99.8 57.6 
ML017-1-CTRL-B 3.1 47 151 9 4.3 90 1.4 1.05 0.2 50.9 99.7 51.1 
ML017-2-CTRL-A 3.3 47 151 9 4.3 99 2.0 1.05 0.2 55.7 99.7 55.9 
ML017-2-CTRL-B 3.6 49 151 0 4.6 116 2.6 1.05 0.2 59.5 99.7 59.7 

ML017-1-DOXO-A 2.8 47 150 0 3.8 83 1.4 0.63 0.2 48.1 99.8 48.2 
ML017-1-DOXO-B 3.1 47 151 18 3.8 82 1.2 0.93 0.2 48.7 99.7 48.8 
ML017-2-DOXO-A 3.0 46 151 9 4.7 83 1.3 1.15 0.1 48.9 99.7 49.1 
ML017-2-DOXO-B 3.6 47 151 9 4.5 114 2.2 0.96 0.2 64.3 99.7 64.5 
ML017-1-ET-24-A 2.9 46 151 0 4.3 99 2.5 0.58 0.2 57.8 99.8 57.9 
ML017-1-ET-24-B 3.1 46 151 18 4.7 129 2.3 0.91 0.2 76.7 99.7 76.9 
ML017-2-ET-24-A 3.5 49 151 9 5.5 110 2.3 1.04 0.3 56.9 99.7 57.1 
ML017-2-ET-24-B 3.0 47 151 9 4.2 107 3.8 1.01 0.2 61.5 99.7 61.7 
ML017-1-ET-72-A 3.2 46 151 9 5.0 113 4.3 0.55 0.2 64.9 99.8 65.1 
ML017-1-ET-72-B 3.0 47 151 18 4.2 117 3.4 0.94 0.2 68.6 99.7 68.8 
ML017-2-ET-72-A 2.9 46 151 9 4.3 91 2.9 1.02 0.1 51.6 99.7 51.7 
ML017-2-ET-72-B 2.9 47 151 9 4.4 100 3.1 0.99 0.2 56.4 99.7 56.6 
ML017-1-ET-15-A 3.5 46 151 9 6.6 65 12.6 0.57 0.1 39.7 99.8 39.7 
ML017-1-ET-15-B 3.4 47 151 9 3.9 81 5.1 0.97 0.1 46.1 99.7 46.3 
ML017-2-ET-15-A 2.6 46 151 9 4.6 122 4.1 1.03 0.2 72.4 99.7 72.6 
ML017-2-ET-15-B 2.8 46 151 9 5.0 91 5.4 1.02 0.1 54 99.7 54.2 

healthy 4.3 46 134 9 11.5 43 - 1.33 3.1 36.4 99.5 36.6 
Table 4.5 Quality control of DNA-sequenced samples from ML017 and matched healthy sample. FastQC parameters (derived from down-sampling on 

chromosome 1): %Dups, percentage of duplicate reads;  %GC, percentage of average content of CG bases; Length, average sequence length (bp); %Failed, 

percentage of modules failed in FastQC report. Bcbio-nextgen parameters (on the post-aligned whole bam files): %Dup, % duplicated reads; Depth, average 

target read coverage; M disamb. mm10 reads, this metric shows the number of removed reads because ambiguously mapped on mm10. Samtools parameters: 

% Error rate, percentage of error rate using CIGAR; M Non-primary, Non-primary alignments (millions); M Reads Mapped, reads in the bam file (millions); % 

Mapped, percentage of mapped reads in the bam file; M Total seqs, total sequences in the bam file (millions). CTRL, control; ET, trabectedin; 24 and 72 refer to 

24 and 72 hours after the first dose of drug; 15 refers to 15 days after the third dose of drug; DOXO, doxorubicin. 
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 FastQC bcbio-nextgen samtools 

 % Dups % GC Length bp % Failed % Dup Depth M disamb. mm10 reads % Error rate M Non-Primary M Reads Mapped % Mapped M Total seqs 

ML017/ET-1-CTRL-A 3.6 45 149 9 6.7 87 1.9 0.87 0.1 55.3 99.7 55.4 
ML017/ET-1-CTRL-B 2.4 45 151 9 5.9 45 1.4 1.97 0.1 31.3 99.5 31.4 
ML017/ET-2-CTRL-A 3.0 45 151 0 5.7 73 1.4 1.78 0.2 48.4 99.6 48.6 
ML017/ET-2-CTRL-B 3.3 44 151 0 5.7 68 11.4 1.58 0.2 45.4 99.7 45.6 

ML017/ET-1-DOXO-A 3.2 45 148 18 6.4 120 3.7 0.80 0.2 70.4 99.7 70.6 
ML017/ET-1-DOXO-B 2.7 46 151 9 5.7 114 1.7 1.67 0.3 70.7 99.6 71 
ML017/ET-2-DOXO-A 3.2 46 150 9 6.0 105 2.1 1.64 0.4 66.7 99.7 67 
ML017/ET-2-DOXO-B 3.8 45 151 0 5.0 90 1.1 1.68 0.2 56.4 99.7 56.5 
ML017/ET-1-ET-24-A 4.5 46 147 9 11.6 99 1.8 0.76 0.2 62.5 99.7 62.6 
ML017/ET-1-ET-24-B 2.3 44 151 9 5.5 53 0.9 1.94 0.1 36.1 99.5 36.2 
ML017/ET-2-ET-24-A 3.2 45 151 9 5.8 76 1.5 1.78 0.2 49.1 99.6 49.3 
ML017/ET-2-ET-24-B 2.5 45 151 9 6.0 99 1.9 1.69 0.2 64.8 99.6 65 
ML017/ET-1-ET-72-A 3.2 46 148 18 6.0 113 2.9 0.79 0.2 68.4 99.7 68.6 
ML017/ET-1-ET-72-B 2.6 44 151 9 6.1 54 1.1 2.01 0.1 37.2 99.5 37.4 
ML017/ET-2-ET-72-A 3.5 45 151 0 6.5 90 1.6 1.76 0.2 60.3 99.6 60.5 
ML017/ET-2-ET-72-B 3.0 46 150 9 5.5 115 1.9 1.69 0.4 68.7 99.7 68.9 
ML017/ET-1-ET-15-A 3.1 46 148 9 7.0 120 1.2 0.83 0.2 72.7 99.7 73 
ML017/ET-1-ET-15-B 2.6 45 151 0 5.2 46 0.7 1.84 0.1 29.4 99.5 29.5 
ML017/ET-2-ET-15-A 3.4 46 151 9 7.4 76 0.7 1.67 0.2 46.9 99.6 47.1 
ML017/ET-2-ET-15-B 3.1 46 151 9 6.0 93 2.3 1.60 0.3 57.7 99.7 57.8 

Table 4.6 Quality control of DNA-sequenced samples from ML017/ET. FastQC parameters (derived from down-sampling on chromosome 1): %Dups, percentage 

of duplicate reads;  %GC, percentage of average content of CG bases; Length, average sequence length (bp); %Failed, percentage of modules failed in FastQC 

report. Bcbio-nextgen parameters (on the post-aligned whole bam files): %Dup, % duplicated reads; Depth, average target read coverage; M disamb. mm10 

reads, this metric shows the number of removed reads because ambiguously mapped on mm10. Samtools parameters: % Error rate, percentage of error rate 

using CIGAR; M Non-primary, Non-primary alignments (millions); M Reads Mapped, reads in the bam file (millions); % Mapped, percentage of mapped reads in 

the bam file; M Total seqs, total sequences in the bam file (millions). CTRL, control; ET, trabectedin; 24 and 72 refer to 24 and 72 hours after the first dose of 

drug; 15 refers to 15 days after the third dose of drug; DOXO, doxorubicin. 
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4.8.2.2 Quality control of RNA sequencing data 

RNA-Seq was performed on ML017 and ML017/ET only, due to reasons reported in 

Results Section 5.2.1. Four biological samples were sequenced for each condition 

as described previously and reported in Table 4.7 and Table 4.8. 

The mean percentage of duplicated reads was 67.8% in ML017 and 60% in 

ML017/ET. The percentage of identified ribosomal RNA (rRNA) that could have 

contaminated human RNA was less 0.25% in all samples. The percentage of error 

rate was less than 0.7% and the mean percentage of reads properly paired were 

77.38% and 80.35% in ML017 and ML017/ET, respectively. Overall, each sample 

obtained more than 100 reads. The mean percentage of mapped reads was 82.40% 

in ML017 and 84.93% in ML017/ET. Samples ML017/ET-2-CTRL-B, ML017/ET-2-ET-

72-B and ML017/ET-2-ET-15-B were marked as warnings due to exceeding insert 

size such as 3192, 2346, 1700 respectively and an unusual percentage of duplicates 

(less than 50%) and further downstream analysis confirmed them as outliers as 

reported in the PCA in Materials and methods, Section 4.8.3.2.1. Thus, they were 

excluded from the final cohort. 

 

 

  



 FastQC bcbio-nextgen samtools 

 % Dups % GC Length % Failed % Dup Mean IS % rRNA % Error rate M Non-Primary M Reads 
Mapped % Mapped % Proper 

Pairs 
% MapQ 0 

Reads 
M Total 

seqs 
ML017-1-CTRL-A 9.4 47 140 18 73.8 984 0 0.64 17.3 137.1 82.7 77.4 0.8 165.8 
ML017-1-CTRL-B 9 46 141 9 78.2 848 0 0.6 12.4 147.9 84.6 78.9 0.6 174.8 
ML017-2-CTRL-A 7.4 51 140 9 59.2 1548 0 0.63 44.2 134.5 82.1 75.4 1.5 163.8 
ML017-2-CTRL-B 8.1 45 145 18 78.7 934 0 0.49 11.9 144 87.3 82.9 0.5 165.1 

ML017-1-DOXO-24-A 8.4 48 140 9 77.8 833 0 0.49 26.9 189.9 85.1 81.1 0.7 223.2 
ML017-1-DOXO-24-B 7.4 45 143 18 79.4 738 0 0.46 10.9 120.4 84.7 81 0.5 142.1 
ML017-2-DOXO-24-A 15.1 52 144 18 54.2 1390 0 0.55 18.8 94.6 83.6 77.1 1.2 113.1 
ML017-2-DOXO-24-B 9.1 44 139 9 78.2 667 0 0.52 11.2 102.8 82.1 75.5 0.6 125.2 

ML017-1-ET-24-A 8.7 46 137 9 79.9 736 0 0.57 25.6 213.4 84.5 79.8 0.8 252.6 
ML017-1-ET-24-B 8.9 50 132 0 67.6 1153 0 0.59 57.8 180 83.6 78.9 1.6 215.2 
ML017-2-ET-24-A 9.4 50 139 9 67.4 1194 0 0.61 39.9 180 83.1 77.6 1.2 216.7 
ML017-2-ET-24-B 8.4 50 139 9 62 1396 0 0.62 41.7 150.1 83.8 78.7 1.4 179.2 
ML017-1-ET-72-A 9.1 48 138 9 74.1 882 0 0.58 24.1 154.7 78.3 73.3 0.9 197.5 
ML017-1-ET-72-B 9.1 47 140 9 75 829 0 0.62 16.1 157.2 76.8 72.1 0.8 204.7 
ML017-2-ET-72-A 26.7 55 138 0 33.3 2845 0 0.66 107.5 176.3 83.6 77.6 3.1 211 
ML017-2-ET-72-B 11.1 46 140 18 75.2 880 0 0.47 13.5 125 83 78.8 0.6 150.7 
ML017-1-ET-15-A 9.3 48 138 9 74.5 936 0 0.62 17.9 137.5 81.7 77.1 0.9 168.4 
ML017-1-ET-15-B 8.6 48 140 9 71.7 989 0 0.66 20 150.3 77.1 72 1.1 195 
ML017-2-ET-15-A 10.8 43 138 18 47.4 745 0 0.39 9.8 109.3 82.1 78.7 0.4 133 
ML017-2-ET-15-B 11.6 46 135 9 48.4 849 0 0.54 13.7 96.8 78.3 73.7 0.8 123.7 

Table 4.7 Quality control of RNA-sequenced samples from ML017. FastQC parameters (derived from down-sampling on chromosome 1): %Dups, percentage of 
duplicate reads;  %GC, percentage of average content of CG bases; Length, average sequence length (bp); %Failed, percentage of modules failed in FastQC report. 
Bcbio-nextgen parameters (on the post-aligned whole bam files): %Dup, % duplicated reads; Mean IS, Mean insert size; %rRNA, percentage of aligned reads to 
ribosomal RNA. Samtools parameters: % Error rate, percentage of error rate using CIGAR; M Non-primary, Non-primary alignments (millions); M Reads Mapped, 
reads in the bam file (millions); % Mapped, percentage of mapped reads in the bam file; % Proper Pairs, percentage of properly paired reads; % MapQ 0 Reads, 
percentage reads that are ambiguously placed (MapQ=0); M Total seqs, total sequences in the bam file (millions). CTRL, control; ET, trabectedin; 24 and 72 refer 
to 24 and 72 hours after the first dose of drug; 15 refers to 15 days after the third dose of drug; DOXO, doxorubicin. 
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 FastQC bcbio-nextgen samtools 

 % 
Dups % GC Length % Failed % Dup Mean IS % rRNA % Error 

rate 
M Non-
Primary 

M Reads 
Mapped % Mapped % Proper 

Pairs 
% MapQ 0 

Reads 
M Total 

seqs 
ML017/ET-1-CTRL-A 9.4 48 138 9 69.4 1065 0 0.53 30.8 155.2 85.9 81.6 0.9 180.6 
ML017/ET-1-CTRL-B 10 48 136 9 67.5 1078 0 0.54 32.8 150.4 84 79.7 1 179.2 
ML017/ET-2-CTRL-A 13.9 48 137 18 73.5 915 0 0.62 19.5 132.4 82.3 75.9 0.9 160.9 
ML017/ET-2-CTRL-B 21.2 57 132 27 20.9 3192 0.1 0.71 119.9 126.3 76.7 70.7 4.8 164.7 

ML017/ET-1-DOXO-24-A 11.4 50 137 9 60.3 1381 0 0.44 39.2 135.5 83.3 79 1 162.8 
ML017/ET-1-DOXO-24-B 9.6 50 135 9 60.8 1290 0 0.44 40.4 135 86.4 82.6 0.9 156.3 
ML017/ET-2-DOXO-24-A 13.3 49 130 18 68.9 998 0.1 0.47 43.8 177.2 86.7 82.7 1 204.4 
ML017/ET-2-DOXO-24-B 13.5 53 128 18 52.3 1618 0.1 0.51 77.6 167.7 84.6 80.2 1.6 198.3 

ML017/ET-1-ET-24-A 10.7 49 143 9 68.8 1316 0 0.59 19.5 84.2 86.8 82.1 1.1 97 
ML017/ET-1-ET-24-B 10.6 49 134 9 68.2 1157 0 0.53 46.8 188.1 85.9 81.2 1.1 218.9 
ML017/ET-2-ET-24-A 17.5 51 133 18 62.6 1432 0.1 0.59 53.4 155.1 85.6 80.4 1.5 181.2 
ML017/ET-2-ET-24-B 13.1 51 126 18 60.7 1273 0.2 0.58 74.6 181.3 86.4 82.1 1.6 209.9 
ML017/ET-1-ET-72-A 11.1 51 136 9 62.4 1453 0 0.44 45.4 158.3 85.8 80.9 1 184.5 
ML017/ET-1-ET-72-B 8.7 50 138 9 63.9 1263 0 0.43 45.4 163.8 89.6 86.4 0.9 182.8 
ML017/ET-2-ET-72-A 12.7 50 135 18 69.2 1119 0 0.61 35.4 152.2 84.6 79.6 1.2 179.9 
ML017/ET-2-ET-72-B 21.2 54 118 18 39.6 2346 0.2 0.53 118.9 166.5 85.8 80.6 2.7 194.1 
ML017/ET-1-ET-15-A 10.7 49 133 9 69.6 1078 0 0.41 35.6 144.3 86.7 82.7 0.8 166.4 
ML017/ET-1-ET-15-B 13.2 50 137 9 66.1 1220 0 0.45 20.3 90.5 86.9 82.3 0.8 104.1 
ML017/ET-2-ET-15-A 24.2 53 125 9 50.8 1676 0.2 0.47 69.9 145.8 86.2 81.4 1.6 169.1 
ML017/ET-2-ET-15-B 15.5 54 127 18 44.8 1700 0.1 0.51 68.7 150 78.4 74.8 1.6 191.4 

Table 4.8 Quality control of RNA-sequenced samples from ML017/ET. FastQC parameters (derived from down-sampling on chromosome 1): %Dups, percentage 
of duplicate reads;  %GC, percentage of average content of CG bases; Length, average sequence length (bp); %Failed, percentage of modules failed in FastQC 
report. Bcbio-nextgen parameters (on the post-aligned whole bam files): %Dup, % duplicated reads; Mean IS, Mean insert size; %rRNA, percentage of aligned 
reads to ribosomal RNA. Samtools parameters: % Error rate, percentage of error rate using CIGAR; M Non-primary, Non-primary alignments (millions); M Reads 
Mapped, reads in the bam file (millions); % Mapped, percentage of mapped reads in the bam file; % Proper Pairs, percentage of properly paired reads; % MapQ 
0 Reads, percentage reads that are ambiguously placed (MapQ=0); M Total seqs, total sequences in the bam file (millions). CTRL, control; ET, trabectedin; 24 and 
72 refer to 24 and 72 hours after the first dose of drug; 15 refers to 15 days after the third dose of drug; DOXO, doxorubicin.



4.8.2.3 Quality control of ChIP sequencing data 

ChIP-Seq was performed for the ML017 model only due to technical issues related 

to the recruitment of biological samples and DNA processing. Immunoprecipitation 

involved: 

• the DDIT3 transcription factor at basal conditions or immunoprecipitated 

after treatment with trabectedin at the same time points as reported 

previously, e.g. 24 and 72 hours after the first dose and 15 days after the 

third dose. For each condition, at least three biological replicates were 

derived. 

• the tri-methylation at the 4th lysine residue of the histone H3 protein 

(H3K4me3) that is recognised as a marker of activated gene expression. Due 

to technical reasons, such as unavailability of samples or poor quality in DNA 

immunoprecipitation, only basal condition and treatment with trabectedin 

at 24 hours were available. However, biological replicates were available 

only for trabectedin-treated samples. 

• Input, such as fragmented and cross-linked DNA under the same conditions 

as the immunoprecipitated matched-samples (Landt et al., 2012), that was 

used as control for peak calling. In order to ensure an homogeneous 

coverage and accurate peak calling, input samples were sequenced 

expecting at least 100 reads (see  Materials and methods Section 4.8.1). 

All samples had the required sample fragment (75 bp). The fraction of reads 

occurring in enriched regions (reads in peaks, RiP) were assessed expecting more 

than 1% for transcription factor immunoprecipitation (Landt et al., 2012) and more 

than 10% for histones. For each sample, the ENCODE quality parameters were 

assessed, such as: 

• PCR bottleneck coefficient 1 (PBC1) and PCR bottleneck coefficient 2 (PBC2) 

that are a measure of the library complexity defined as in Equation 4.3 and 

Equation 4.4; 

• The non-redundant fraction (NRF) that is the number of distinct uniquely 

mapping reads over the total number of reads; 
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• Both PBC and NRF correspond to complexity levels defined as in Table 4.9 

in accordance to the ENCODE definitions (“Terms and Definitions – 

ENCODE,” n.d.). 

!"#1 = 	'1 '()  

Equation 4.3 PCR bottleneck coefficient 1. N1, number of genomic locations to which there 
is one exact unique mapping; Nd, the number of genomic locations to which there is at least 
one unique mapping. 

!"#2 = 	'1 '2)  

Equation 4.4 PCR bottleneck coefficient 2. N1, number of genomic locations to which there 
is one exact unique mapping; Nd, the number of genomic locations to where two reads map 
uniquely. 

 

PBC1 PBC2 Bottlenecking level NRF Complexity 

< 0.5 < 1 Severe < 0.5 Concerning 

0.5 ≤ PBC1 < 0.8 1 ≤ PBC2 < 3 Moderate 0.5 ≤ NRF < 0.8 Acceptable 

0.8 ≤ PBC1 < 0.9 3 ≤ PBC2 < 10 Mild 0.8 ≤ NRF < 0.9 Compliant 

≥ 0.9 ≥ 10 None > 0.9 Ideal 

Table 4.9 Bottlenecking level and complexity associated with PCR bottlenecking coefficients 
(PBC) and Non Redundant Fraction (NRF) as reported by ENCODE terms and definitions. 

 



 FastQC bcbio-nextgen (ENCODE) samtools 

 % Dups % GC Length bp % Failed RiP PBC1 PBC2 
Bottlenecking 

level 
NRF 

ENCODE 
Complexity 

% Error 
rate 

M Reads 
Mapped 

% 
Mapped 

% MapQ 0 
Reads 

M Total 
seqs 

ML017_DDIT3_I 5 41 75 9 2.99 0.6 2.41 severe 0.59 concerning 1.14 43.3 68.8 2.1 62.8 
ML017_DDIT3_II 4.8 41 75 9 41.7 0.67 3.04 severe 0.64 concerning 0.65 78.1 93.7 0.9 83.4 
ML017_DDIT3_III 9.1 43 75 18 5.21 0.59 2.33 severe 0.6 concerning 0.57 31.4 76.9 1.5 40.9 

ML017_DDIT3_ET24_I 27.4 44 75 18 3.11 0.23 1.7 severe 0.23 concerning 0.61 34.8 78.7 1.9 44.3 
ML017_DDIT3_ET24_II 2 41 75 9 0.67 0.81 5.2 moderate 0.78 acceptable 0.86 91.6 86.1 2.3 106.3 
ML017_DDIT3_ET24_III 3.6 41 75 9 26.69 0.76 4.19 moderate 0.73 acceptable 0.73 75.3 91.1 1.3 82.7 
ML017_DDIT3_ET72_I 8.7 40 75 9 1.74 0.81 5.16 moderate 0.8 acceptable 0.62 34 85.1 2 39.9 
ML017_DDIT3_ET72_II 14.9 42 75 18 12.39 0.71 3.36 moderate 0.71 acceptable 0.51 32.4 78.6 1.2 41.2 
ML017_DDIT3_ET72_III 15 43 75 9 19.73 0.77 4.33 moderate 0.76 acceptable 0.49 34.1 81.1 1 42 
ML017_DDIT3_ET15_I 7.2 41 75 9 0.53 0.51 1.88 severe 0.54 concerning 0.71 50.7 68.1 1.8 74.4 
ML017_DDIT3_ET15_II 14.9 41 75 9 0.09 0.42 1.56 severe 0.46 concerning 0.69 25.8 65 1.7 39.6 
ML017_DDIT3_ET15_III 7.8 40 75 9 0.2 0.66 2.8 severe 0.67 concerning 0.81 28.4 37.5 1.2 75.9 

Table 4.10 Quality control of samples (ChIP-Seq) from ML017 related to immunoprecipitation with DDIT3. FastQC parameters (derived from down-sampling on 
chromosome 1): %Dups, percentage of duplicate reads;  %GC, percentage of average content of CG bases; Length, average sequence length (bp); %Failed, 
percentage of modules failed in FastQC report. Bcbio-nextgen and ENCODE parameters (on the post-aligned whole bam files): RiP, percentage of reads in peaks; 
PBC1, PCR Bottlenecking coefficient 1; PBC2, PCR Bottlenecking coefficient 2; Bottlenecking level, ENCODE bottlenecking-level; NRF, non-redundant fraction; 
ENCODE complexity. Samtools parameters: % Error rate, percentage of error rate using CIGAR; M Reads Mapped, reads in the bam file (millions); % Mapped, 
percentage of mapped reads in the bam file; % MapQ 0 Reads, percentage reads that are ambiguously placed (MapQ=0); M Total seqs, total sequences in the 
bam file (millions). 
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 FastQC bcbio-nextgen (ENCODE) samtools 

 % Dups % GC Length bp % Failed RiP PBC1 PBC2 
Bottlenecking 

level 
NRF 

ENCODE 
Complexity 

% Error 
rate 

M Reads 
Mapped 

% 
Mapped 

% MapQ 0 
Reads 

M Total 
seqs 

ML017_H3K4me3_I 8.5 51 75 18 47.56 0.42 1.71 severe 0.43 concerning 1.15 44.4 81.4 1.6 54.6 
ML017_H3K4me3_II 15.5 47 75 18 20.71 0.31 1.39 severe 0.35 concerning 0.61 41.1 66.3 1.6 62 

ML017_H3K4me3_ET24_I 6.2 47 75 18 26.81 0.54 2.14 severe 0.54 concerning 1.11 46 72.1 1.7 63.7 
ML017_H3K4me3_ET24_II 7.2 66 75 18 55.79 0.66 2.83 severe 0.44 concerning 0.87 27.5 83.8 2.1 32.9 
ML017_H3K4me3_ET24_III 6.1 53 75 9 54.51 0.65 3.2 severe 0.6 concerning 0.92 57.5 84.7 1.3 67.9 
ML017_H3K4me3_ET24_IV 6.7 48 75 18 21.46 0.7 3.38 moderate 0.69 concerning 0.72 30.8 53.4 1.2 57.6 
ML017_H3K4me3_ET24_V 5.8 48 75 18 28.3 0.74 4.17 moderate 0.7 acceptable 0.72 56.3 72.2 1.5 78 

ML017_input 2.5 41 75 9 / 0.94 16.52 none 0.91 ideal 0.75 115.9 79 2 146.7 
ML017_input_ET24 2.1 41 75 9 / 0.93 13.89 none 0.9 acceptable 0.73 127.1 83.8 2 151.7 
ML017_input_ET72 16.3 40 75 9 / 0.9 10.28 moderate 0.87 acceptable 0.62 88.3 72.2 1.5 122.4 
ML017_input_ET15 24.9 41 75 9 / 0.86 7.33 moderate 0.85 acceptable 0.6 80.1 69.8 1.3 114.8 

Table 4.11 Quality control of samples (ChIP-Seq) from ML017 related to immunoprecipitation for histone mark H3K4me3 and input samples. FastQC parameters 
(derived from down-sampling on chromosome 1): %Dups, percentage of duplicate reads;  %GC, percentage of average content of CG bases; Length, average 
sequence length (bp); %Failed, percentage of modules failed in FastQC report. Bcbio-nextgen and ENCODE parameters (on the post-aligned whole bam files): RiP, 
percentage of reads in peaks; PBC1, PCR Bottlenecking coefficient 1; PBC2, PCR Bottlenecking coefficient 2; Bottlenecking level, ENCODE bottlenecking-level; NRF, 
non-redundant fraction; ENCODE complexity. Samtools parameters: % Error rate, percentage of error rate using CIGAR; M Reads Mapped, reads in the bam file 
(millions); % Mapped, percentage of mapped reads in the bam file; % MapQ 0 Reads, percentage reads that are ambiguously placed (MapQ=0); M Total seqs, 
total sequences in the bam file (millions)



4.8.3 PIPELINES OF ANALYSIS 

The first processing of data analysis of this work was done with bcbio-nextgen 

(“Contents — bcbio-nextgen 1.2.4 documentation,” n.d.) a publicly available 

python toolkit that provides self-customised pipelines for high-throughput data 

analysis. bcbio-nextgen was installed and run on the HPC cluster in the Department 

of Oncology using the slurm workload manager (“Slurm Workload Manager - 

Documentation,” n.d.). The bcbio-nextgen version used for DNA and RNA 

sequencing was version 1.1.1, while version 1.2.3 was used for ChIP-Seq analysis. 

This is due to the updates made to pipelines starting from the first year of this PhD 

work till the last.  

According to bcbio-nextgen documentation, pipelines were configured through a 

comma separated value (.csv) file, a yaml file and then run with a batch file. 

The .csv is composed by a the samples to be analysed and metadata associated with 

them. An example is reported in Table 4.12. 

sample name description batch condition 

Sample1 ML017_CTRL_I ML017 CTRL 
Sample2 ML017_ET-24_I ML017 ET-24 
Sample3 ML017ET_CTRL_I ML017-ET CTRL 
Sample4 ML017ET_ET-24_I ML017-ET ET-24 

Table 4.12 Example of a .csv file for bcbio-nextgen analysis. 

A yaml file is a configuration file which stores the required software for the analysis. 

The “details” section requires the indication of the type of analysis, e.g. RNA-Seq, 

and the genome build, e.g. hg19. The sub-section “algorithm” is assigned to the 

software to be used. Finally, the “upload” section requires the path and the name 

of the folder to save data. The configuration files of the analysis used in this PhD 

thesis are available at2 with the name *-config.yaml. 

A batch file is required to run the analysis of the HPC cluster. The directory in which 

the analysis will be run is indicated together with the configuration file. The number 

                                                        
2 Figshare: https://doi.org/10.6084/m9.figshare.17181104.v1,  
Zenodo: https://doi.org/10.5281/zenodo.5807695   
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of cores is set and bcbio_nextgen.py is called as reported in the batch file available 

at2 as analysis.batch. 

bcbio_nextgen creates three folders: 

1. Config: where configuration files are stored. 

2. Work: where the analysis is performed and temporary files are stored. This 

folder is usually removed when analysis is completed.  

3. Final: where all processed files have been saved. 

4.8.3.1 Pipeline for DNA-Seq analysis 

4.8.3.1.1 OneSeq hybrid solution 

 

Figure 4.4 OneSeq panel design as reported by Agilent Technologies 

DNA-Sequencing (DNA-Seq) has been one the first fully exploited high-throughput 

sequencing approach. It can be divided into three macro-categories: whole genome 

sequencing (WGS) that allows the study of the entire genome; whole exome 

sequencing (WES) that is focused on protein-coding genes only; and targeted-

resequencing that consists in a selection of a panel of coding genes, usually in the 

range of hundred. DNA-Seq allows the identification of genomic events like single 

nucleotide variants (SNVs), small insertions or deletions, gene-fusions and somatic 

copy number alterations (SCNAs). In this PhD work, a hybrid DNA-Seq solution was 
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used, called OneSeq (Figure 4.4). The OneSeq panel was developed by Agilent 

Technologies and allows to simultaneously detect both SNVs and SCNAs in a single 

experiment. Through this approach it is possible to sequence many samples at 

lower costs than for WGS or WES, still obtaining broad and informative results on 

their genomic sequence. It is composed of 5971 genes associated with diseases and 

regions that are spotted all over the genome that are addressed as “genomic 

backbone”. 
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4.8.3.1.2 DNA-Seq data analysis 

 

bcbio-nextgen pipeline was customised in order to follow the workflow reported in 

Figure 4.5.  

 

Figure 4.5 Workflow for DNA-Seq analysis. 
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The DNA extracted from PDX may be contaminated by a genome derived from the 

mouse. Thus, In order to avoid possible contamination from mouse genome, the 

disambiguate software (Ahdesmäki et al., 2016) was used. Raw reads were aligned 

on both human hg19 and mm10 mouse genomes: reads certainly mapped on this 

last were excluded from further analysis, while those unambiguously mapped on 

hg19 were retained (Figure 4.6). Raw reads (fastq) were aligned with the BWA-

MEM aligner version 0.7.17 (Li and Durbin, 2009). 

Single nucleotide variant (SNV), insertions and deletions calling was done with two 

variant callers, such as Mutect2 (Cibulskis et al., 2013) and VarDict (Lai et al., 2016), 

independently. Variant callers are algorithms developed with the aim to identify 

SNVs or indels. It has been reported a low concordance in variant calling from 

different callers. This is mainly associated with the algorithm itself and not to bias 

(O’Rawe et al., 2013). Indeed, the use of different variant callers is recommended. 

In this work, variants called by both Mutect2 and VarDict were retained. For variant 

calling detection a bed file composed by regions from the Agilent Focused Exome 

was used. For each variant a threshold of 10X of coverage was set.  Variants were 

annotated with the Variant Effect Predictor (VEP) (McLaren et al., 2016) and variant 

Figure 4.6 The disambiguation process as reported in  (Ahdesmäki et al., 2016). 
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impact prediction we done with PolyPhen (Ramensky et al., 2002), SIFT (Ng and 

Henikoff, 2003) and CADD (Rentzsch et al., 2019). vcf (Variant Call Format) files 

were stored in a GEMINI database (Paila et al., 2013) that was then converted into 

a MAF (Mutation Annotation Format). 

In parallel, in order to identify structural variants like breakends leading to gene 

fusions, Manta software (X. Chen et al., 2016) was used, while CNVkit (Talevich et 

al., 2016) version 0.9.4 was used for SCNAs identification. For both Manta and 

CNVkit we used a bed file of regions derived from merging regions from the Agilent 

Focused Exome and the regions from the Agilent Backbone.  

GISTIC2.0 is a software used for the identification of arm-level or focal SCNAs 

(Mermel et al., 2011). It is usually applied to large cohorts in order to identify the 

most frequent SCNAs. In this work it was used to define frequent altered regions in 

the whole cohort of ML017 and ML017/ET samples. In order to define specific 

altered regions and avoid bias, significant SCNAs were retained only when called in 

all four replicates for each condition. 

Downstream analysis and graphical representation of SNVs, insertions and 

deletions was done with Maftools (Mayakonda et al., 2018) using the followings 

functions: 

• plotmafsummary to plot the number of variants per sample; 

• oncoplot to show frequently mutated genes; 

• tcgaCompare to compare PDX models to cohorts from The Cancer Genome 

Atlas (TCGA); 

• coOncoplot and forestPlot for identification and representation of 

differentially mutated genes (DMGs). Both functions help in the 

visualisation of the results that come from the mafCompare function of the 

same package. This performs a Fisher test between two selected cohorts 

and identifies DMGs with their associated p-value. 

Chromosomal breakends and gene fusions were visualised and represented with 

Integrative Genomics Viewer (IGV) (Robinson et al., 2017). 
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Identification of GISTIC2.0 significant regions in all replicates per each condition 

was done through the IPython notebook (Perez and Granger, 2007) with a 

combination of the pandas (Jeff Reback et al., 2020) and the numpy (Harris et al., 

2020) packages. Images were created using matplotlib (Hunter, 2007) and seaborn 

(Michael Waskom et al., 2020) packages, while final styling was done with inkscape 

(“Home | Inkscape,” n.d.). 

4.8.3.2 Pipeline for RNA-Seq data analysis 

4.8.3.2.1 Gene expression counts 

Figure 4.7 shows the workflow used for RNA-Seq data processing. Again, to avoid 

mouse genome contamination a customised alignment was performed. In this case, 

this first step was done outside the bcbio-nextgen pipeline, using the In silico 

Combined human-mouse Reference Genome (ICRG) (Callari et al., 2018) workflow. 

The reason to use ICRG instead of disambiguate (Ahdesmäki et al., 2016) as it has 

been done for DNA-Seq (see Materials and methods, Section 4.8.3.1.2) is due to 

Figure 4.7 Schematic workflow of the gene expression pipeline of analysis. 
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the novelty of ICRG that was demonstrated to perform better than disambiguate 

for RNA-Seq data (Callari et al., 2018). According to ICRG, human hg19 and mouse 

mm10 genomes were merged as described in (“cclab-brca/ICRG,” n.d.) and a new 

index for Hisat2 (Kim et al., 2019) aligner was created. Raw reads were mapped to 

the new genome with Hisat2 and mouse-aligned sequences were discarded.  

Human aligned reads were used for computation of pseudo-counts with the 

wicked-fast inference algorithm of Salmon (Patro et al., 2017) version 0.13.1 

starting from pre-computed alignments. Salmon was chosen for because it exceeds 

the accuracy of other methods for the quantification of transcript abundance and 

also it is even faster.  Moreover, It  supports  the analysis of reads from strand-

specific  protocols  and performs well with paired-end reads (Patro et al., 2017). 

The choice comes also from the “Advance RNA-Seq and ChIP-Seq data analysis” 

course attended by the PhD candidate at the EMBL, Hinxton, UK in 2017 where 

Salmon pseudo-counts algorithm was presented and assessed through practical 

examples as the most performing in comparison to the others. Counts were 

imported and read with tximport (Soneson et al., 2015) and data analysed with 

DESeq2 (Love et al., 2014).  

Samples ML017/ET-2-CTRL-B, ML017/ET-2-ET-72-B and ML017/ET-2-ET-15-B that 

were previously marked as warnings (see Materials and methods, Section 4.8.2.2) 

were confirmed as outliers as reported in Figure 4.8 where they are indicated with 

a red star. 
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Figure 4.8 PCA of the whole samples. ML017 are depicted as triangles, ML017/ET as 
circles. Colours indicate conditions as in the legend. PC, principal component. 

ML017 and ML017/ET samples were normalised together. There are other 

packages that allows the processing of RNA-Seq data and differential expression 

analysis, such as edgeR (Y. Chen et al., 2016) and limma-voom (Law et al., 2014). 

The choice of using DESeq2 in this work was mainly due to a highly curated and 

updated documentation associated with this package. Moreover, the bioinformatic 

community around DESeq2 is very active, thus a wide range of case studies is 

covered so that it is useful to find examples that can contribute to apply the 

package properly. Then, DESeq2 is also used in the background of the package 

DiffBind (Stark and Brown, 2011) that was applied to ChIP-Seq analysis as further 

explained (see Materials and methods, Section 4.8.3.3), thus the choice was to 

maintain a coherence in the methods used. 
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Differential expression analysis was done contrasting each treatment condition to 

control samples in ML017 and ML017/ET models, independently or contrasting the 

basal conditions of ML017/ET versus ML017. The test used for differential 

expression analysis was the Wald test (Love et al., 2014). The whole process 

consists in three subsequent steps that are made by the DESeq2 functions listed as 

follows: 

1. dds <- estimateSizeFactors(dds): estimation of the size factors that controls 

for differences in the depth of sequencing; 

2. dds <- estimateDispersions(dds): estimation of the dispersion value for each 

gene; 

3. dds <- nbinomWaldTest(dds): fitting to the model;  

where the dds is the object created at the very beginning of the analysis which 

contains the matrix with gene-sample counts. 

A list of differentially expressed genes (DEGs) was identified with an associated p-

value. Correction for multiple testing was applied using the False Discovery Rate 

(FDR) (“Controlling the False Discovery Rate,” n.d.). DEGs were retained with a p-

adjust of 0.05.  

Pathway analysis was done using the clusterProfiler (Yu et al., 2012) package 

performing the Gene Set Enrichment Analysis (GSEA, (Subramanian et al., 2005)) 

with the Reactome database (Jassal et al., 2020). Only selected DEGs with a p-adjust 

of 0.05 were used for the GSEA and they were sorted according to their log2 Fold 

Change, from the most up-regulated to the most down-regulated. An enrichment 

score is associated with each pathway representing the degree at which a gene-set 

is over-represented in the pathway. Enrichment scores are transformed into 

normalised enrichment score (NES) in order to make results comparable. The NES 

takes into account the differences in gene set size and in correlations between gene 

sets and the expression datasets. Finally, p-values associated with each pathway 

were corrected for multiple testing using the FDR correction (“Controlling the False 

Discovery Rate,” n.d.). 
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Data visualisation was done either with embedded functions of DESeq2 or with the 

matplotlib (Hunter, 2007) and the seaborn (Michael Waskom et al., 2020) packages 

in the IPython notebook (Perez and Granger, 2007), while final styling was done 

with inkscape (“Home | Inkscape,” n.d.). 

4.8.3.2.2 Transcripts reconstruction 

For transcript-level analysis and identification of novel isoforms, an adapted version 

of the Tuxedo protocol presented in Pertea et al. (Pertea et al., 2016) was used 

(Figure 4.9). Specifically, raw sequencing reads were aligned with the Hisat2 aligner 

(Kim et al., 2019), then StringTie (Pertea et al., 2015) was used for transcripts 

assembly and quantification with hg19 annotation file. Finally, gffcompare (Pertea 

et al., 2016) allowed to determine the number of transcripts matching the 

annotation. Next, the merge function of StringTie was used to merge transcripts 

from all samples in a consistent set. 

Then, starting from aligned files and previously identified merged transcripts,  

transcripts quantification was done through the -e -B mode of StringTie. The table 

of transcripts counts was created with prepDE.py (“prepDE,” n.d.) a Python script 

provided by the StringTie documentation. 

The transcripts count matrix was loaded and analysed with the DESeq2 package 

(Love et al., 2014). Differential expression analysis was done contrasting each 

treatment condition with controls in each model, independently. Differentially 

expressed transcripts (DETs) were filtered with a p-adjust less than 0.05. Transcripts 

were annotated accordingly to the StringTie annotation file. Then, DETs were 

divided into already known and unknown transcripts. These last were categorised 

according to StringTie annotation into probably new isoforms of known transcripts 

and novel transcripts. Finally, new isoforms of known transcripts were analysed 

with the Coding-Potential Assessment Tool (CPAT) (Wang et al., 2013) to predict 

their coding potential. 
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Figure 4.9 workflow used for transcripts reconstruction and analysis. 
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4.8.3.3 Pipeline for ChIP-Seq data analysis 
 

 

A schematic workflow of ChIP-Seq analysis is reported in Figure 4.10. In detail, raw 

data sequences were aligned with Bowtie2 version 2.3.5.1 (Langmead and Salzberg, 

2012). Both DDIT3 transcription factor and H3K4me3 histone mark were 

considered as narrow peak binding factors. Peak calling, that is the identification of 

transcription factor or histone mark binding sites on the DNA, needs to be 

associated with an appropriate control sample. The ENCODE guidelines suggest one 

from the input or the mock sample. The first is DNA isolated from the same origin 

of the matched transcription factor and fragmented under the same conditions; 

the latter is derived from a control antibody that reacts with non-nuclear antigen 

IgG (Landt et al., 2012). In this work we used one input sample for each condition. 

Peaks were called with MACS2 (Zhang et al., 2008) with a q-value of 0.05.  

Figure 4.10 Workflow for ChIP-Seq data analysis. 
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The identification of the most represented binding sequence, e.g. motif, was done 

with PscanChIP (Zambelli et al., 2013) querying the Jaspar database (Fornes et al., 

2020).  

DiffBind (Ross-Innes et al., 2012), (Stark and Brown, 2011) was used to compute 

consensus peaks at basal conditions and to identify differentially bound peaks 

(DBPs), that are peaks with significant changes between conditions. DiffBind 

defines a “change” based on the differential binding affinity that is measured with 

the read density. Then, differential analysis is done with either DESeq2 (Love et al., 

2014) or edgeR (McCarthy et al., 2012). In this work DBPs were called with DESeq2 

in line with the methods used for RNA-Seq analysis (see Materials and methods, 

Section 4.8.3.2).  

The binding of a transcription factor on the DNA can have functional effects on the 

gene expression levels of neighbouring genes (Jiang and Mortazavi, 2018). The 

modulation of the gene expression depends also on the location of the binding on 

the genome. In order to associate peaks to regions of interest, we used the 

ChIPSeeker package (Yu et al., 2015). We defined promoter regions as 5 kb 

upstream and 1 kb downstream the transcription start site (TSS), while distal 

regions were those beyond the TSS till 1000 kb (Figure 4.11).  

 

Figure 4.11 Annotation rules for the binding sites used with ChIPSeeker (Yu et al., 2015). 
TSS, transcription start site. 

Pathway analysis was done using clusterProfiler package (Yu et al., 2012) with both 

the Reactome (Jassal et al., 2020) and the Wikipathways (Martens et al., 2021) 

databases. To this aim, we used the enrichPathway and the enrichWP functions of 

clusterProfiler for the Reactome and the Wikipathways databases, respectively. 
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Both functions perform an enrichment analysis of a set of genes. The enrichment 

is evaluated by the hypergeometric test defined as in Equation 4.5. 

! = 1 −	&'() *'+,(-,) *
'+-*

.,/

)01
 

Equation 4.5. Hypergeometric test equation. N, total number of genes in the background; 
M, number of genes of the background that are annotated to a pathway of interest; n, size 
of the list of genes of interest; k, the number of genes within that list annotated to the 
pathway of interest. 

In the Equation 4.5, N represents the total number of genes in the background that 

by default is all the genes that have annotation; M is the number of genes of the 

background that are annotated to a pathway, n is the size of the list of genes of 

interest and k is the number of genes within that list which are annotated to that 

pathway. For each pathway a p-value is assigned and corrected for multiple testing 

with the FDR correction (“Controlling the False Discovery Rate,” n.d.) setting a 

threshold of 0.05. In the figures reported in the Result, Section 5.4, the “gene ratio” 

is defined as the ratio between k and n. 
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5 RESULTS 

5.1 STUDY WORKFLOW 

To achieve the aims of this PhD thesis (see Aims of the study, Chapter 3), the 

following in vivo models were used (see Background Section 2.2.1): 

1. ML017, a FUS-DDIT3 chimera type I bearing model, responsive to 

trabectedin; 

2. ML017/ET which was developed from ML017 and made resistant against 

trabectedin treatment; 

3. ML015, a FUS-DDIT3 chimera type 2 bearing model; 

4. ML006, a FUS-DDIT3 chimera type 3 bearing model. 

For each model genomic and transcriptomic signatures were generated and further 

integrated in order to: 

1. characterise PDX models and evaluate the extent to which they can 

reproduce MLPS characteristics; 

2. study the mechanism of action of trabectedin in MLPS; 

3. elucidate the mechanisms leading to acquired drug-resistance in MLPS. 

Figure 5.1 depicts the experimental design that was applied to the study (see also 

Materials and methods, Section 4.7). ML017, ML015 and ML006 modelled the first 

responsiveness to trabectedin treatment that is achieved in the clinic, while 

ML017/ET model mimics the clinical issue of acquired resistance against 

trabectedin treatment. 

To answer all these points in a comprehensive and exhaustive manner, we guided 

our analysis through different levels, such as: 

1. the genomics level to find somatic variants like single nucleotide variations 

and copy number alterations that could be attributed either to drug 

response or drug resistance; 
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2. the transcriptomics level, to follow the transcriptional changes induced by 

drug treatment; 

3. the epigenomics level to define FUS-DDIT3/DNA binding and how they 

change under drug exposure; 

4. the integration of the previously cited levels to describe the 

pharmacogenomics of trabectedin. 
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Figure 5.1 Samples, experimental design and schematic workflow of this work. ET, 
trabectedin; DOXO, doxorubicin. 
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5.2 THE GENOMIC LANDSCAPE OF MLPS AND THE RESPONSE TO TRABECTEDIN 

TREATMENT 

As a first step in achieving the aims of the PhD program, libraries were generated 

from genomic DNA purified from PDX models at the baseline and at different times 

of drug exposure to: 

1. characterise the genomic landscape of each tumour model and evaluate the 

extent to which they mirror the genome of MLPS tumours and the different 

clinical sensitivity of type ML017, ML015 and ML006 (see Background 

Section 2.2.1) to trabectedin treatment; 

2. determine the genomic impairments that drive the acquisition of resistance 

against trabectedin in the ML017/ET model; 

3. study the effects of trabectedin exposure on the genomics architecture in 

both responsive and resistant models, in comparison to the standard 

treatment with doxorubicin. 

To pursue these goals, we generated a somatic genomic database by next 

generation sequencing (NGS) experiments for somatic variant calling, such as single 

nucleotide variants (SNVs), small insertions and small deletions, as well as somatic 

copy number alterations (SCNAs). 

For both analyses, ML017, ML017/ET and ML015 models were matched to their 

normal counterpart obtained from the same patient the PDX derived from; 

differently, since the normal tissue was not available for ML006 model, the analysis 

was performed against a commercial reference genome (see Materials and 

methods, Section 4.8.3.1). 

The whole cohort of sequencing experiments passed the quality assessment, 

therefore we did not exclude any sample. 

5.2.1 IDENTIFICATION OF FUS-DDIT3 IN PDX MODELS 

First, we queried the database to assess the presence of FUS-DDIT3 gene fusion in 

each model (see Background Section 2.1.2). We identified the characteristic FUS-
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DDIT3 gene fusion in ML017, ML017/ET and ML006 models, however it was not 

detected in ML015, thus this model could not be considered as a reliable model of 

MLPS and we excluded it from further analysis. 

In agreement with pathological analysis the type I isoform of FUS-DDIT3 chimera 

was correctly called in ML017 and ML017/ET models, while the type III chimera was 

called in ML006 model (see Background, Section 2.2.1). In all models, breakpoints 

corresponded to intronic regions as reported in Table 5.1 and in Figure 5.2 for 

ML017 and ML017/ET models. 

 Chrom Breakend Ref Alt Translocation Variant 

ML017 
and 

ML017/ET 

chr12 57914179 G G]chr16:31198193] 
FUS-DDIT3 

gene fusion 
and 

frameshift 
variant chr16 31198192 C C]chr12:57914180] 

chr12 57914182 G [chr16:31198193[G 
DDIT3-FUS 

gene fusion 
and 

frameshift 
variant chr16 31198192 C [chr12:57914183[C 

ML006 

chr12 57912006 C C]CHR16:31199785] 
FUS-DDIT3 

gene fusion 
and 

frameshift 
variant 

chr16 31199783 T T]CHR12:57912008] 

chr12 57912024 T [CHR16:31199532[T 
DDIT3-FUS 

gene fusion 
and 

frameshift 
variant chr16 31199530 T [CHR12:57912026[T 

Table 5.1 FUS-DDIT3 and DDIT3-FUS gene fusions annotations. Chrom, chromosome; Ref, 
reference base; Alt, alternate bases. 

As reported in Table 5.1, in addition to the canonical chimera FUS-DDIT3, we 

identified another gene fusion made up of the exons not involved in the canonical 

fusion gene that we named DDIT3-FUS. The presence of FUS-DDIT3 counterpart 

was already reported by (Antonescu et al., 2001) and (Braig et al., 2019) and never 

investigated further since it does not lead to a protein product. 

Figure 5.2 Type I chimera FUS-DDIT3 in ML017 and ML017/ET models represented with the 
Integrative Genome Viewer (IGV). Gray bars correspond to the site of the break point. 
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5.2.2 XENOGRAFT MODELS ARE REPRESENTATIVE OF THE TUMOUR BIOLOGY OF MLPS 

The first aim of this project is to evaluate the extent to which the genomic 

landscape of selected xenograft models, i.e. ML017, ML017/ET and ML006, 

represent the clinical picture. This is a fundamental step to generate data on the 

sensitivity to and resistance against trabectedin that could be further translated 

into the clinic. Data retrieved from the literature and reported in Background 

Section 2.1.4 on the genomic landscape of MLPS can be briefly summarised in Table 

5.2 and detailed as follows: 

• presence of inactivating mutations in PTEN and PIK3CA genes; 

• in line with the sarcoma cohort (SARC) of The Cancer Genome Atlas (TCGA) 

MLPS tumour genome is expected to have a low mutational burden with 

less than two variants per sample (Figure 5.3); 

• amplifications in cytobands 13q, 8p23.3, 8q23.1 and deletions in the 

chromosome arm 16q are hallmarks of MLPS. 

 

Molecular feature ML017 ML017/ET ML006 Ref 

PTEN ✓ ✓ ✓ 
(Assi et al., 2019), (Keung and 

Somaiah, 2019) 

PIK3CA ✓ ✓ ✓ 
(Assi et al., 2019), (Keung and 

Somaiah, 2019) 
low mutational burden ✓ ✓ X (Abeshouse et al., 2017) 

amp 3q, 8p23.3, 8q23.1 ✓ ✓ X (Ohguri et al., 2006) 

del 16q ✓ ✓ ✓ (Koczkowska et al., 2017) 

Table 5.2 MLPS specific features as reported in literature. 
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The synopsis reported in Table 5.2 and in Figure 5.3 describes for each model the 

extent to which their genomic architecture mirrors the above mentioned genomic 

benchmarks. In particular, while ML017 and ML017/ET genomic features perfectly 

match the genomic MLPS characteristics, the ML006 model presented a very high 

mutational burden, even greater than the highest mutated tumour like Skin 

Cutaneous Melanoma (SKCM) in TCGA. A possible explanation is that for ML006 

replicated samples were not available (see Materials and methods, Section 4.8.2.1) 

and the lack of the matched healthy tissue could have affected the evaluation of 

both SNVs and SCNAs. These two technical problems overestimated variant calling, 

introducing false positive results. 

Given these premises we concluded that ML006 could not be considered as a 

reliable MLPS model and thus it was excluded from downstream analysis. 

For this reason, from this point on our analysis focused on the two models ML017 

and ML017/ET that fairly reproduced MPLS features and showed either sensitivity 

to or resistance against trabectedin, respectively. 

A summary of the workflow followed till this point is reported in Figure 5.4. 

Figure 5.3 Number of variants per sample expressed in logarithmic scale of the whole cohort 
of TCGA and ML017, ML017/ET, ML006 models indicated by the blue arrows. The red arrow 
indicates the sarcoma (SARC) cohort. 
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5.2.3 GENOMICS OF ML017 AND ML017/ET MODELS 

Once assessed the fair reproducibility of the PDX models with the disease, the next 

step was to provide a more detailed map of the genomic architecture of ML017 

and ML017/ET models and to study the effects of trabectedin exposure. In 

particular, the aims of this part of the project were: 

1. to identify the modifications induced by trabectedin treatment at the 

genomic level; 

2. to identify genomic features that determine the acquisition of resistance 

against trabectedin. 

Figure 5.4 Workflow of the analysis of PDX models: from the starting cohort 
to the final one. 



 
83 

First, we examined the ploidy of the genome of both ML017 and ML017 models 

through fluorescence-activated cell sorting (FACS) (Figure 5.5). The genomic profile 

of ML017 and ML017/ET was compared to that of peripheral mononucleated blood 

cells (PBMC) that is used as a gold standard for diploidy. Both MLPS models showed 

a diploid genome. 

 

5.2.4 TRABECTEDIN SELECTS SPECIFIC SCNAS REGIONS THAT COULD BE ASSOCIATED 

WITH DRUG RESISTANCE 

Using a 400 bp bin density resolution across the genome, we found that at basal 

level the genome of both ML017 and ML017/ET models was widespread 

permeated by gains (mean length of 600 kbp, Table 5.3) and losses (mean length 

of 2 Mbp, Table 5.4) of genomic material. Next, to evaluate whether trabectedin 

exposure is able to increase the genomic instability, we compared the genomic 

landscape of ML017 and ML017/ET at different time points of exposure to 

trabectedin with the genomic landscape observed at baseline. Violin plots reported 

in Figure 5.6 show: a difference in the total amount of SCNAs, with a median of 741 

and of 1574 in the sensitive and resistant model, respectively (t-test, p<0.01), 

Figure 5.5 FACS analysis of ploidy in ML017 and ML017/ET control samples. The 
chromosomes set of both ML017 and ML07/ET was compared to peripheral mononucleated 
blood cells (PBMC). 
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although it should be noticed the high variability across the samples and under each 

condition. Both treatment with trabectedin and doxorubicin induced an increase in 

the number of SCNAs to a level that remained fairly the same under all conditions 

also in the resistant model. 

Chrom Cytoband 
N 

Genes 
Wide Peak Limits 

Peak Length 
(kbp) 

Original 
q-values 

chr1 

1p31.3 2 61589474-61914436 324.96 <0.01 
1p34.3 2 37240800-37663887 423.09 <0.01 
1q21.2 6 147077908-147435089 357.18 <0.01 
1q25.3 1 181456957-181763014 306.06 <0.01 

1q42.13 1 228475861-228494372 18.51 <0.01 
1q42.2 3 231753619-232219082 465.46 <0.01 

chr2 

2p16.3 1 50107915-51255743 1147.83 <0.01 
2q14.2 1 121580216-121775182 194.97 <0.01 
2q31.1 14 176893120-177118668 225.55 <0.01 
2q31.2 1 179566802-179667063 100.26 <0.01 
2q31.2 3 179394648-179489597 94.95 <0.01 
2q33.1 1 200036891-200303102 266.21 <0.01 
2q36.1 1 223088347-223153835 65.49 <0.01 

chr3 

3p13 1 69808566-70044282 235.72 <0.01 
3p22.2 3 38591819-38889347 297.53 <0.01 
3p25.3 6 10370541-11096137 725.6 <0.01 

3p26.3 
2 1-334035 334.03 <0.01 
3 2124598-3151723 1027.13 <0.01 

3q28 2 189286941-189584279 297.34 <0.01 

chr6 
6p21.1 1 45398115-45505708 107.59 <0.01 
6q16.3 1 101846861-102514980 668.12 <0.01 

chr7 
7p14.1 1 41892035-42269029 376.99 <0.01 
7q22.1 3 103134587-103958967 824.38 <0.01 

Figure 5.6 Violin plots of the total number of CNAs in each condition: in light blue ML017, 
in violet ML017/ET as reported in the legend. ** p-value less than 0.001 in the statistical 
test. 
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7q31.32 3 121960402-122519345 558.94 <0.01 
7q35 7 145773624-147993317 2219.69 <0.01 

7q36.3 1 159029132-159138663 109.53 <0.01 

chr8 

8p22 109 4016068-16172561 12156.49 <0.01 
8p23.3 8 315079-1658670 1343.59 <0.01 
8q13.3 1 72106345-72265754 159.41 <0.01 
8q23.1 1 106560444-106815714 255.27 <0.01 
8q23.3 1 116434272-116699126 264.85 <0.01 

chr10 

10p12.31 3 21104009-21482733 378.72 <0.01 
10q11.23 4 49917805-50266498 348.69 <0.01 
10q23.1 1 83567798-84768079 1200.28 <0.01 
10q23.1 2 87709155-88124016 414.86 <0.01 

10q24.32 6 103104366-103447020 342.65 <0.01 

chr11 
11p15.2 1 15998696-16210201 211.51 <0.01 
11p15.5 36 1020554-2199566 1179.01 <0.01 

chr12 
12p13.33 4 2304508-2828831 524.32 <0.01 
12q24.21 2 114607340-114874224 266.88 <0.01 

chr13 
13q21.32 4 66856843-67804352 947.51 <0.01 
13q22.3 4 78474639-78598534 123.9 <0.01 
13q31.3 5 92052308-95072405 3020.1 <0.01 

chr15 
15q14 2 33862775-34167146 304.37 <0.01 

15q21.1 7 48044868-48963771 918.9 <0.01 
chr16 16p13.3 1 6028377-7800253 1771.88 <0.01 

chr18 
18p11.21 2 13781861-14009091 227.23 <0.01 
18q21.2 2 52921697-53254735 333.04 <0.01 
18q22.3 2 70451002-70911696 460.69 <0.01 

chr20 
20p13 4 1-194377 194.38 <0.01 

20q13.32 4 57382883-57457840 74.96 <0.01 
Table 5.3 Significant gains as identified by GISTIC2. Chrom, chromosome; N Genes, number 
of genes in the cytoband. Original q-values refer to q-values as reported by GISTIC2. 

Chrom Cytoband 
N 

Genes 
Wide Peak Limits 

Peak Length 
(kbp) 

Original 
q-values 

chr1 
1p13.2 34 112539459-115315028 2775569 <0.01 
1q21.1 2 144290423-144360167 69744 <0.01 
1q21.2 2 148224797-148362580 137783 <0.01 

chr2 

2p13.3 17 69472725-70701833 1229108 <0.01 
2p21 5 47366522-47749906 383384 <0.01 

2p22.3 6 31799651-32585413 785762 <0.01 
2q35 16 219029999-219510284 480285 0.01 

chr3 
3p21.31 29 47050542-48601711 1551169 <0.01 
3q26.1 1 164054699-164909416 854717 <0.01 

chr4 
4p15.2 23 21944934-28822631 6877697 <0.01 
4p16.3 65 1-3514129 3514128 <0.01 

chr5 
5q13.2 16 68834623-70680201 1845578 <0.01 
5q23.2 6 125585649-126205190 619541 <0.01 

chr6 
6p21.33 191 29715511-33412760 3697249 <0.01 
6q23.2 3 134368652-135239520 870868 <0.01 

chr7 
7p22.1 31 5108588-6728836 1620248 <0.01 

7q11.23 14 74547063-75167292 620229 <0.01 
7q32.1 4 128021110-128318003 296893 <0.01 
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chr9 
9p21.3 20 21304680-26841974 5537294 <0.01 
9q13 50 38615166-71152989 32537823 <0.01 

9q33.3 10 127525655-128201403 675748 <0.01 

chr10 

10q11.22 
25 46159105-48361732 2202627 <0.01 
4 48854748-49365043 510295 <0.01 

10q11.23 10 50962310-51828194 865884 <0.01 
10q21.3 22 69453154-71168965 1715811 <0.01 
10q22.1 44 73552721-76804678 3251957 <0.01 

chr11 
11p15.5 48 1-846991 846,99 <0.01 
11q24.1 5 122843940-123259019 415079 <0.01 

chr12 12p13.31 9 6232487-6602293 369806 <0.01 
chr13 13q22.1 3 73329284-74268469 939185 <0.01 

chr14 

14q11.2 8 23572621-23815799 243178 <0.01 
14q13.2 14 34417868-36008844 1590976 <0.01 
14q21.1 2 39355533-39623557 268024 <0.01 
14q21.3 17 48262302-50789048 2526746 <0.01 
14q24.3 26 73026992-74714617 1687625 <0.01 

chr15 
15q21.2 10 50506753-51248273 741,52 <0.01 
15q25.2 9 82741209-83164924 423715 <0.01 

chr16 
16q23.1 24 74228326-76320597 2092271 <0.01 
16q24.3 4 89290812-89628699 337887 <0.01 

chr17 
17p11.2 18 15718462-16696018 977556 0.07 

17q21.31 61 41375044-43522663 2147619 <0.01 
Table 5.4 Significant losses as identified by GISTIC2. Chrom, chromosome; N Genes, number 
of genes in the cytoband. Original q-values refer to q-values as reported by GISTIC2. 
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In order to overcome technical biases and the high variability, and to identify high 

confidence SCNAs, we used very stringent conditions: we selected only SCNAs 

called as significant by the GISTIC2 algorithm that were present in all replicates per 

each condition and discarded all the remaining. Using this approach we probably 

lost information, however this allowed us to select high confidence events. Overall 

we identified 51 regions in gain and 42 regions in loss that we grouped into groups. 

As shown in Figure 5.7 we defined five groups for gains. Group I includes those that 

are present under all conditions in both models, thus being representative of the 

PDX models. Group II and V show gains that are scattered across treatment and 

models. Group III is composed by genomic regions emerged upon trabectedin or 

doxorubicin treatment. These regions still characterise ML017/ET in each 

Figure 5.7 Representation of the regions of gain in ML017 (grey bar) and ML017/ET (black 
bar) models. The number of genes in the cytoband are expressed in logarithmic scale and 
shown in the right side. 
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condition: they could have been selected through the prolonged (over two-years) 

treatment with trabectedin, thus they could be associated with the mechanism of 

acquired resistance. Finally, Group IV is composed of cytobands that are affected 

in ML017/ET only with a group of them consisting of 8p23.3, 8p22, 1p31.3, 3p25.3 

that are specific of trabectedin treatment. 

Then, we defined seven groups for the losses (Figure 5.8). Groups I, II, III and IV 

could be associated with the understanding of the mechanisms of drug response, 

while the remaining groups V, VI and VII, seem not to be related to any specific 

condition. Group I represents a specific feature of PDX models since it comprises 

regions that are common to all conditions in both. Group II shows the cytoband 

9q13 that is affected in all conditions in only ML017 apart from ET-15, thus it 

probably represents a region selected through prolonged treatment. Interestingly, 

Figure 5.8 Representation of the regions of loss in ML017 (grey bar) and ML017/ET (black 
bar) models. The number of genes in the cytoband are expressed in logarithmic scale and 
shown in the right side. 
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Group III is composed of regions that are specific to ML017/ET  model only, such as 

4p15.2, 4p16.3 and 17q21.31 that comprise 149 genes. The exclusivity of these 

regions in ML017/ET might be associated with acquired resistance against 

trabectedin. Finally, Group IV is composed of two cytobands, such as 1q21.1 and 

1q21.2, which are lost after treatment regardless of trabectedin or doxorubicin at 

the early time points, while they are longer present at ET-15, as well as after 

treatment with trabectedin in ML017/ET. 

In conclusion, we identified CNAs that are specific features of the PDX models, like 

Group I in either gains or losses; Group III (gains) which could be implicated in the 

process of acquired resistance; and Group III (losses) which may be a specific 

characteristic of ML017/ET and could be defined as marker of resistance. 

5.2.5 BEYOND PTEN AND PIK3CA: DSC3, FAT4, IMPDH2 AND PAK7 AS NOVEL 

MUTATIONAL FEATURES OF MLPS 

Focusing on the SNVs compendia, we initially assessed the percentage of the 

genome affected by SNV, a parameter known as mutational load in ML017 and 

ML017/ET. We identified 82 and 142 affected genes, respectively, and a similar 

median number of variants per sample of 16 and 19 (Table 5.5). Data suggests no 

significant variant selection upon treatment. The different number of total variants, 

336 and 415 (Table 5.5) in ML017 and ML017/ET, respectively, is mainly due to one 

replicate of ET-24 condition in ML017/ET that behaves as an outlier (Figure 5.9). 

Most variants in both models were single base changes, while less than 50 were 

insertions or deletions. 

 ML017 ML017/ET 

Number of samples 20 20 

Number of affected genes 82 142 

Median number of variants per sample 16 19 

Total variants 336 415 

Table 5.5 Number of mutated genes and number of variants in ML017 and ML017/ET 
cohorts. 
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Figure 5.9 Mutational load of ML017 (upper panel) and ML017/ET (lower panel) cohorts. 
The number of SNV, insertions (INS) and deletions (DEL) are reported. 
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Then, we went deeper in the characterisation of these variants and identified the 

most frequent in the two cohorts. As shown in Figure 5.10, in addition to the 

previously cited mutations in PTEN and PIK3CA genes (described in Table 4.6), we 

identified a set of genes such as ANK3, CRYGB, DSC3, FAT4, IMPDH2, KCNA3, MUC7 

and PAK7 (also known as PAK5) harbouring mutations that characterised the whole 

cohort in both models (described in Table 5.7 and Table 5.8). Other genes such as 

ABCA13, BRCA1, SNTA1, AOX1, ZFPM2, THBS4, ABCC9, ABCG2 in ML017 and 

CRYGB, HYDIN, MAP2, DIAPH2, AKAP13, PAX9, DICER1, SRP72 in ML017/ET are 

specific of the single replicate implying some biological variability within the 

samples. As reported in VariantsAllelicFraction.xlsx available at3, all samples are 

characterised by the same mutated locus in each gene with a high allelic fraction 

close to 50%, suggesting a prevalently monoclonal nature of the tumour cells. 

Genes in Table 5.7, such as ANK3, CRYGB, FAT4 (variant c.9674C>A), MUC7, and 

KCNA3, were reported as benign or well-tolerated, thus with no significant impact 

on the final protein structure. Differently, genes in Figure 5.10 and Table 5.8, such 

as DSC3, FAT4 (c.9678T>A), IMPDH2 and PAK7, carried probably damaging or 

deleterious variants, thus with a detrimental effect on the protein translation. 

In conclusion, we identified two genes that are frequently mutated in MLPS, such 

as PTEN and PIK3CA, and a group of variants in genes such as DSC3, FAT4 (variant 

c.9678T>A), IMPDH2 and PAK7, that could impaired protein translation. 

                                                        
3 Figshare: https://doi.org/10.6084/m9.figshare.17181104.v1,  
Zenodo: https://doi.org/10.5281/zenodo.5807695   
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Figure 5.10 Oncoplot of ML017 (upper panel) and ML017/ET (lower panel) cohorts. Genes 
are reported on the left, the number of samples carrying a mutation in that gene is reported 
on the right. ET, trabectedin; DOXO, doxorubicin. 



Gene Symbol Entrez ID Cytoband start end ref alt type subtype impact 
PIK3CA 5290 3q26.32 178952148 178952149 C CTTTT indel ins frameshift_variant 
PTEN 5728 10q23.31 89653831 89653832 G GGC indel ins frameshift_variant 

Gene Symbol codon_change aa_change polyphen sift dbsnp Impact 
severity in Cosmic 

in 1000 
Genome 
Project 

cadd scaled 

PIK3CA c.3205_3206ins
TTTT p.Ter1069PhefsTer5 - - - HIGH No No - 

PTEN c.132_133dup p.Val45AlafsTer10 - - - HIGH No No - 

Table 5.6 Annotations for variants in typical MLPS genes PTEN and PIK3CA. ref, reference; alt, alterate; impact, type of variant; aa, aminoacid; sift, SIFT prediction; 
dbsnp, code of the variant as reported in dbsnp; cadd scaled, impact of the variant as reported by CADD. For more information on annotations see Materials and 
methods, Chapter 4. 

Gene Symbol Entrez ID Cytoband start end ref alt type subtype impact 
ANK3 288 10q21.2 61834708 61834709 G T snp tv missense_variant 
CRYGB 1419 2q33.3 209010498 209010499 G A snp ts missense_variant 
FAT4 79633 4q28 126371844 126371845 C A snp tv missense_variant 

MUC7 4589 4q13.3 71347456 71347460 GACT G indel del inframe_deletion 

Gene Symbol codon_change aa_change polyphen sift dbsnp Impact 
severity in Cosmic 

in 1000 
Genome 
Project 

cadd scaled 

ANK3 c.5930C>A p.Pro1977Gln benign Tolerated low confidence - MED No No 8,78 
CRYGB c.251C>T p.Pro84Leu benign tolerated rs200143566 MED No No 5,29 
FAT4 c.9674C>A p.Thr3225Lys benign tolerated - MED No No - 

MUC7 c.1003_1005del p.Thr335del -  rs867973893 MED No No - 
Table 5.7 Annotations for shared variants in ML017 and ML017/ET. ref, reference; alt, alterate; impact, type of variant; aa, aminoacid; sift, SIFT prediction; dbsnp, 
code of the variant as reported in dbsnp; cadd scaled, impact of the variant as reported by CADD. For more information on annotations see Materials and 
methods, Chapter 4. 
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Gene Symbol entrezID Cytoband start end ref alt type subtype impact 

DSC3 1825 18q12.1 28574258 28574259 C A snp tv missense_variant 

FAT4 79633 4q28 126371848 126371849 T A snp tv missense_variant 

IMPDH2 3615 3p21.31 49064004 49064005 A G snp ts missense_variant 

PAK7 57144 20p12.2 9520248 9520249 G A snp ts missense_variant 

Gene Symbol codon_change aa_change polyphen sift dbsnp Impact 
severity in Cosmic 

in 1000 
Genome 
Project 

cadd scaled 

DSC3 c.2573G>T p.Gly858Val Probably damaging deleterious  MED No No 18,1 

FAT4 c.9678T>A p.Asn3226Lys Probably damaging deleterious  MED No No 11,73 

IMPDH2 c.857T>C p.Met286Thr benign deleterious  MED No No 13,69 

PAK7 c.2020C>T p.Arg674Trp Probably damaging deleterious rs575889963 MED No Yes - 
Table 5.8 Annotations for shared variants with a predicted damaging impact on the protein structure in ML017 and ML017/ET. ref, reference; alt, alterate; 
impact, type of variant; aa, aminoacid; sift, SIFT prediction; dbsnp, code of the variant as reported in dbsnp; cadd scaled, impact of the variant as reported by 
CADD. For more information on annotations see Materials and methods, Chapter 4. 



5.2.6 UVSSA AS A POSSIBLE MARKER OF ACQUIRED RESISTANCE 

The comparison between ML017 and ML017/ET revealed five differentially 

mutated genes (DMGs) (Fisher-test, p-value <0.01) that characterised each model 

exclusively as shown in Figure 5.11: KCNA3 was specifically mutated in ML017, 

while variants in genes like NLGN1, UVSSA, SSTR5, SLC1A2 were private of 

ML017/ET. All variants had no impact on the protein structure as shown in Table 

5.9. However, the UVSSA gene, affected by an in-frame deletion of six bases and 

was also identified in the 4p.16 cytoband specifically lost in ML017/ET (see Section 

5.2.4 of this Chapter). Given the diploidy of the genome of ML017 and ML017/ET 

(Figure 5.5), UVSSA lost one allele and the other one was affected by an in-frame 

deletion, thus it is unlikely to be translated into a protein. 

Figure 5.11 Differentially mutated genes (DMGs) between ML017 and ML017/ET. Panel A: forest 
plot and associated p-values. Panel B: samples carrying variants in DMGs in ML107 and 
ML017/ET. 



Gene Symbol entrezID Cytoband start end ref alt type subtype impact 

SLC1A2 6506 11p13 35333893 35333894 G T snp tv missense_variant 

SSTR5 6755 16p13.3 1129828 1129829 C G snp tv missense_variant 

NLGN1 22871 3q26.31 173998554 173998555 C A snp tv missense_variant 

UVSSA 57654 4p16.3 1343466 1343473 AGTTCCT A indel del inframe_deletion 

KCNA3 3738 1p13.3 111215915 111215916 G C snp tv missense_variant 

Gene Symbol codon_change aa_change polyphen sift dbsnp Impact 
severity in Cosmic 

in 1000 
Genome 
Project 

cadd scaled 

SLC1A2 c.412C>A p.Leu138Met possibly_damaging tolerated  MED No No - 

SSTR5 c.961C>G p.Leu321Val benign tolerated  MED No No 14,16 

NLGN1 c.1934C>A p.Pro645His benign tolerated  MED No No 13,69 

UVSSA c.256_261del p.Phe86_Leu87del    MED No No - 

KCNA3 c.1516C>G p.Gln506Glu benign tolerated  MED No No 9,59 

Table 5.9 Annotations for variants in DMGs in ML017 and ML017/ET. ref, reference; alt, alterate; impact, type of variant; aa, aminoacid; sift, SIFT prediction; 
dbsnp, code of the variant as reported in dbsnp; cadd scaled, impact of the variant as reported by CADD. For more information on annotations see Materials and 
methods, Chapter 4. 



5.3 STUDY ON THE EFFECTS OF TRABECTEDIN AT THE TRANSCRIPTIONAL LEVEL 

In order to study the transcriptional effects of trabectedin exposure in PDX models, 

RNA-Seq experiments were performed on RNA purified from tumour biopsies 

withdrawn at the same treatment schedule using a whole-transcriptome RNA-Seq 

kit which allows the quantification of both protein-coding and non-coding RNAs 

(see Materials and methods, Section 4.8.3.2). After quality control three samples, 

namely ML017/ET-2-CTRL-B, ML017/ET-2-ET-72-B, ML017/ET-2-ET-15-B, were 

excluded from downstream analysis (see Materials and methods, Section 4.8.2.2). 

The compendia of RNA reads were analysed with two different levels of complexity: 

i) pseudo-counts algorithms were used to investigate the modulation of known 

annotated genes (see Materials and methods, Section 4.8.3.2.1); ii) transcripts 

reconstruction algorithms were exploited to identify novel features that could drive 

yet unknown transcriptional mechanisms (see Materials and methods, Section 

4.8.3.2.2). 

The aims of this part of the project can be briefly summarised as follows: 

• to compare the RNA-Seq data of MLPS models at basal conditions to identify 

transcriptional markers that could explain acquired resistance against the 

treatment; 

• to study the time course effects of trabectedin in both models; 

• to compare the transcriptional effects of trabectedin to the standard 

treatment with doxorubicin. 

First, we evaluated sample distribution with Principal Component Analysis (PCA) in 

order to identify preferential groups in an unsupervised manner. Data depicted in  

Figure 5.12 shows three major groups: 

• group A: defined by samples on the right-bottom side of the graph. It is 

composed by CTRL ML017 samples and those at ET-24 or ET-72 and the vast 

majority of samples from ML017/ET PDX model. A more detailed insight 

revealed that group A is heterogeneous as it still possible to distinguish two 

subgroups: A1 including ML017 sample (indicated by triangles) and A2 
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including ML017/ET samples (indicated by circles), thus suggesting a slight 

differences between the two models; 

• group B depicted in orange colour, is associated with samples under 

doxorubicin treatment in both ML017 and ML017/ET. This suggests that 

treatment with doxorubicin elicits similar responses in both ML017 and 

ML017/ET models; 

• group C represented by all four replicates of ET-15 in ML017, thus 

suggesting a completely different transcriptional modulation at this time 

point in the responsive model only in comparison to the previous groups. 

Overall, this unsupervised cluster analysis strongly suggests that long term 

exposure to trabectedin in ML017 PDX models induces a completely different 

transcriptional program in comparison to early time point that is warranted of 

detailed investigation. 
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5.3.1 TRANSCRIPTIONAL COMPARISON AND GENOMIC DATA INTEGRATION OF ML017 

AND ML017/ET AT BASAL CONDITIONS 

In order to identify transcriptional markers that could explain acquired resistance 

to trabectedin treatment, we compared the transcriptional landscape derived from 

PDX tumours at basal conditions. To this aim, we performed a differential 

expression analysis between ML017/ET and ML017. We identified 243 differentially 

expressed genes (DEGs) 74 of which were up-regulated and 169 of which were 

down-regulated (Figure 5.13).  

Figure 5.12 PCA of ML017 and ML017/ET samples based on pseudocounts. ML017 are 
depicted as triangles, ML017/ET as circles. Colours indicate conditions as in the legend. PC, 
principal component. 
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We initially performed two different types of analysis in order to dissect the role of 

DEGs in driving trabectedin resistance: 1) pathway analysis and 2) genomic 

mapping analysis. The first revealed that DEGs were not significantly  involved in 

any biological pathway suggesting that the mechanism of resistance does not 

depend on specific biological function. Instead, when we analysed the genomic 

regions on which each DEG mapped, we observed that the vast majority of them 

belonged to the same genomic cytobands. In particular, 63 down-regulated genes 

mapped on 4p16.3, 4p15.2 and 17q21.3 cytobands, thus exactly the same regions 

found in the ML017/ET model (Figure 5.8). As shown in Figure 5.14, the 

transcriptional down-regulation and the loss of genetic material are coherent 

events, thus suggesting a specific inhibition of these genes in ML017/ET, therefore 

they could be considered as specific discriminant between responsive and resistant 

models.  

 

Figure 5.13 Heatmap showing z-scores of normalised value counts of DEGs in the 
comparison between ML017/ET (black bar) and ML017 (grey bar) control samples. 
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Figure 5.14 Copy number and transcriptional data integration related to DEGs mapping to cytobands 
in Group I losses. Panel A refers to 4p15.2, panel B to 4p16.3 and panel C to 17q21.31. For each 
panel, the upper side shows the chromosome ideogram with cytoband of interest highlighted by a 
rectangle. Lines show the length of the region of interest (mb, mega bases). Gene panel shows genes 
that map to the region and are also DEGs. Arrow indicates the coding reading direction. Copy number 
log-ratio panel shows values as reported by GISTIC2. TPM z-score panel depicts the transcript per 
million (TPM) z-score of gene expression. Colours as reported in the legends on the left. 
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5.3.2 TIME-DEPENDENT TRANSCRIPTIONAL EFFECTS OF TRABECTEDIN 

In order to study the time course effects of trabectedin in both models, we studied 

the transcriptional modulation induced by trabectedin treatment. For each model, 

analysis was performed by comparing each time point to its own basal conditions 

as reported and described in Materials and methods, Section 5.3.2. 

Upper panel of Figure 5.15 shows that in ML017 the greatest transcriptional 

modulation was elicited at ET-15 (4883 DEGs), while 829 and 209 DEGs were found 

at ET-24 and ET-72, respectively 4 . The lower panel of Figure 5.15 reported a 

selection of the most significant pathways obtained through gene set enrichment 

analysis (GSEA)4: to provide an indication of the pathway regulation, circles are 

coloured based on the normalised enrichment score (NES, see Materials and 

methods, Chapter 4), purple for positive values and green for negative values. At 

ET-24, pathways were mainly related to the transcriptional regulation of the TP53 

gene, the activation of general gene expression and MAPK-related processes. The 

same pathways, excepting the MAPK, were still up-regulated at 72h, although 

resulted less enriched. At the same time point we found the downregulation of the 

pathways related to the metabolism of steroids and lipids. At ET-15 the 4883 DEGs 

were grouped into 233 pathways, of which 40 were activated and 193 of which 

were inhibited. The activated pathways were mainly involved in functions like the 

remodelling of the extracellular matrix organisation, the production of collagen and 

the regulation of the insulin-like Growth Factor (IGF) suggesting a phenotypic 

change in MLPS cells. Differently, at this time point functions like the methylation 

of the DNA, the regulation of rRNAs and the pathway of the RNA polymerase I were 

inhibited. 

                                                        
4 Figshare: https://doi.org/10.6084/m9.figshare.17181104.v1,  

Zenodo: https://doi.org/10.5281/zenodo.5807695   
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Figure 5.15 Upper panel shows the number of DEGs modulated by trabectedin in ML017 
model. Control is set to zero. Lower panel shows most significant pathways from GSEA 
with Reactome. The colour represents the normalised enrichment score (NES) as indicated 
in the legend: negative values for negative enrichment (down-regulation), positive values 
for positive enrichment (up-regulation). Radius of the circles is proportional to the number 
of genes in the pathways. 
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In summary, the overall data suggests that trabectedin has a biphasic effect on the 

sensitive ML017 PDX model: an early effect (24h and 72h) mainly characterised by 

a-specific cytotoxic response followed by a second delayed transcriptional effect 

that drives the phenotypic and morphological changes of the tumour cells. 

Analysis was performed following the same pipeline in the ML017/ET resistant 

model. As shown in Figure 5.16, trabectedin induced an early effect at ET-24 (1052 

DEGs), while it dramatically decreased along with the time of treatment (219 and 3 

DEGs, respectively). In correspondence to the first response, we identified the 

activation of the transcriptional regulation of TP53, the RNA polymerase II 

transcription and the gene expression pathways that were equally regulated in the 

responsive model at the same time point. Otherwise, at the same time in ML017/ET 

we also found the activation of the pathways of the cell cycle, the homology direct 

repair and the inhibition of the pathway of the GPCR. At 72h, the main effect was 

related to the activation of the immune system, while at 15 days the 3 DEGs were 

not associated with any function. 

This evidence shows the differences in the transcriptional response to trabectedin 

between ML017 and ML017/ET models: in the responsive model the drug is able to 

trigger a time-dependent effect as shown previously, while in the resistant model 

it induces an early cytotoxic effect. Prolonged treatment does not elicit any other 

response in ML017/ET thus confirming resistance to trabectedin. 
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Figure 5.16 Upper panel shows the number of DEGs modulated by trabectedin in 
ML017/ET model. Control is set to zero. Lower panel shows the most significant 
pathways from GSEA with Reactome. The colour represents the normalised enrichment 
score (NES) as indicated in the legend: negative values for negative enrichment (down-
regulation), positive values for positive enrichment (up-regulation). Radius of the circles 
is proportional to the number of genes in the pathways. 
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Finally, we also investigated the effects of doxorubicin, that is the golden-standard 

therapy for MLPS. 

As shown in Figure 5.17, at 24h doxorubicin is able to elicit a transcriptional 

response in both models, with a greater effect in ML017 (2420 DEGs) than in 

ML017/ET (484 DEGs). In the responsive model, DEGs were classified in 169 

pathways, 7 activated and 162 inhibited. These last were mainly involved in 

pathways like the Cell Cycle, the DNA Repair, the Rho GTPases and the regulation 

of cholesterol biosynthesis, while those up-regulated were mainly related to the 

pathway of TP53 and extracellular matrix remodelling, however with lower 

enrichments than those obtained with trabectedin treatment. 

This evidence shows that at 24h some effects elicited by doxorubicin partially 

overlap those triggered by trabectedin in a time-dependent manner, even though 

with different genes and different enrichments. Besides these slight analogies, the 

two drugs cause overall different transcriptional responses. Finally, as regards to 

doxorubicin, deregulated genes in ML017/ET participate in the same biological 

functions as in ML017 suggesting no cross-resistance to this drug. 
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5.3.3 DISCOVERING YET UNKNOWN TRANSCRIPT MODULATION 

The evidence of the great transcriptional modulation at 15 days after the third dose 

of trabectedin and the technical availability of a deep read depth allowed us to 

investigate yet unknown transcriptional mechanisms underlying drug mechanism 

Figure 5.17 Upper panel shows the number of DEGs modulated by doxorubicin in 
ML017 (on the right) and in ML017/ET (on the left). Control is set to zero. Lower 
panel shows the most significant pathways from GSEA with Reactome. The colour 
represents the normalised enrichment score (NES) as indicated in the legend: 
negative values for negative enrichment (down-regulation), positive values for 
positive enrichment (up-regulation). Radius of the circles is proportional to the 
number of genes in the pathways. 
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of action. To this aim, we customised the Tuxedo protocol described in (Pertea et 

al., 2016) and further explained in Materials and methods, Chapter 4. 

For each sample we aligned sequencing reads with HISAT2 and assembled 

transcripts with StringTie (hg19 human genome reference). Then, we compared 

assemblies to the reference annotation and counted the number of known 

transcripts, e.g. those perfectly matching genome annotation, and totally unknown 

transcripts, e.g. mapping to intergenic regions in comparison to the annotation. As 

reported in Table 5.10 the number of known transcripts was fairly the same under 

each condition in both ML017 (mean of 82705.3) and ML017/ET (mean of 

83630.47), while as regards to the number of unknown transcripts, the mean 

number in ET-15 condition in ML017 is 90856.75, greater than the mean of 

73558.81 in other conditions of ML017 and 61747.12 in ML017/ET. Thus, M017 

responsive model at ET-15 showed the greatest modulation occurring at novel 

transcripts level. 

In order to investigate further the effects of trabectedin treatment, we computed 

a transcript count table that allowed differential expression analysis. To this aim, 

we compared each treatment condition to control samples in ML017 and 

ML017/ET, independently. 

First, we normalised transcript counts (Figure 5.18) and then we computed 

unsupervised analysis with the PCA (Figure 5.19). We found that, even if with a low 

variance, ML017 and ML017/ET samples formed two distinct groups suggesting a 

different transcriptional modulation. However, at the transcript level we could not 

identify defined distinct groups as in the gene-level analysis, maybe due to bias 

introduced by this kind of analysis where the number of novel transcripts could 

have introduced a sort of background noise. 
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 Sample id Transcripts matching annotation Novel transcripts 

ML017 

1-CTRL-A 86777 70039 
1-CTRL-B 89609 77285 
2-CTRL-A 82243 59002 
2-CTRL-B 89717 71263 

 87086,5 ± 3504,18 69397,25 ± 7619,51 
1-ET-24-A 89494 98666 
1-ET-24-B 83593 84152 
2-ET-24-A 91192 68628 
2-ET-24-B 83257 60233 

 86884 ± 4056,14 77919,75 ± 17013,77 
1-ET-72-A 87005 75630 
1-ET-72-B 90164 82551 
2-ET-72-A 73950 43170 
2-ET-72-B 83094 68824 

 83553,25 ± 7024,95 67543,75 ± 17188,40 
1-ET-15-A 84357 89429 
1-ET-15-B 86517 94074 
2-ET-15-A 69153 89487 
2-ET-15-B 67232 90437 

 76814,75 ± 10025,81 90856,75 ± 2194,05 
1-DOXO-24-A 88701 105714 
1-DOXO-24-B 82484 80969 
2-DOXO-24-A 70330 51998 
2-DOXO-24-B 75237 78817 

 79188 ± 8071,25 79374,5 ± 21955,22 

ML017/ET 

1-CTRL-A 86450 67212 
1-CTRL-B 85428 65177 
2-CTRL-A 85906 71693 

 85928 ± 511,35 68027,33 ± 3333,64 
1-ET-24-A 77791 36686 
1-ET-24-B 88123 78929 
2-ET-24-A 83950 63999 
2-ET-24-B 85411 66436 

 83818,75 ± 4374,66 61512,5 ± 17796,19 
1-ET-72-A 88147 65539 
2-ET-72-A 86897 70353 
2-ET-72-B 74379 53551 

 83141 ± 7613,81 63147,67 ± 8652,49 
1-ET-15-A 84341 67288 
1-ET-15-B 79444 46928 
2-ET-15-A 81775 48797 

 81853,33 ± 2449,44 54337,67 ± 11254,18 
1-DOXO-24-A 83049 55071 
1-DOXO-24-B 80645 56581 
2-DOXO-24-A 87270 78988 
2-DOXO-24-B 82712 56473 

 83419 ± 2778,61 61778,25 ± 11493,76 
 merged 194188 3340 
Table 5.10 Table shows the number of transcripts matching annotation and the number of novel 
transcripts identified in ML017 and in ML017/ET. 
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Figure 5.19 PCA of transcripts counts for each sample of ML017 (in grey) and ML017/ET (in 
black). PC, principal component. 

The number of identified differentially expressed transcripts (DETs) is shown in 

Figure 5.20. The number of DETs5 followed the same trend as at the gene level 

                                                        
5 Figshare: https://doi.org/10.6084/m9.figshare.17181104.v1,  

Zenodo: https://doi.org/10.5281/zenodo.5807695  

Figure 5.18 Transcript counts before (raw counts) and after normalisation (normalised 
counts) in the whole cohorts. 
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analysis, with the strongest transcriptional modulation at 15 days after the third 

dose of trabectedin and while lower responses were present in ML017/ET. The 

percentage of novel transcripts went from 35.9% in ET-72 to 47.82% in ET-15 in 

ML017, and from 37% to 53% in both ET-24 and ET-72 in ML017/ET. As expected, 

known DETs correspond to DEGs that we found modulated with the gene-level 

analysis. However, as the major transcriptional modulation was again identified at 

15 days in ML017, we investigated the possible role of unknown transcripts in the 

biological functions regulated at this time point. 

We compared novel DETs among conditions: we identified and removed from 

further analysis 48 transcripts since they were coherently modulated by both 

trabectedin at each time-point and doxorubicin. We retained 2719 DETs specifically 

related to ET-15, of which 2354 were described as possible new isoforms of already 

known genes. Most of them were single transcripts related to one gene (Figure 

5.21, panel A). The remaining 365 novel transcripts were mostly up-regulated 

(n=280) and equally distributed across chromosomes (Figure 5.21, panel B). 

The group of 2354 DETs identified as new possible isoforms were analysed with 

CPAT (see Materials and methods Section 4.8.3.2.2) to assess the probability of 

being translated into a protein product. Of these, 990 had a high probability to be 

translated into functional protein products (see CPAT.xlsx6). 

                                                        
6Figshare: https://doi.org/10.6084/m9.figshare.17181104.v1,  

Zenodo: https://doi.org/10.5281/zenodo.5807695   
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Figure 5.20 Number of DETs in ML017 (left panel) and in ML017/ET (right panel). In grey 
known transcripts, in black unknown transcripts. 

 

Figure 5.21 Number of transcripts identified for each gene expressed in logarithmic scale . 
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5.4 STUDY ON THE EFFECTS OF TRABECTEDIN ON FUS-DDIT3 BINDING TO THE 

DNA 

FUS-DDIT3 represents the etiopathological event of MLPS and is considered the 

leading cause of the block of adipocyte differentiation (see Background Section 

2.1.3). According to the results presented so far, trabectedin is able to restore the 

differentiation process after prolonged treatment. However, this evidence was 

derived from transcriptional data through which the role of FUS-DDIT3 was not 

considered. 

Therefore, with the aims: 

• to characterise the binding sites of FUS-DDIT3 and identify its putative 

target genes; 

• to investigate the role of FUS-DDIT3 in response to trabectedin treatment; 

We performed ChIP of DDIT3 followed by sequencing as described in Materials and 

methods, Chapter 4. 

5.4.1 FUS-DDIT3 BINDING SITES AND TARGET GENES 

In order to answer the first aim, we selected samples at basal conditions and 

derived a consensus from the three replicates applying the strict condition of 

considering a peak as real when present in all replicates. Following this rule, we 

obtained 30516 binding sites. 

In order to assess the reliability of the model, we first made a motif analysis to 

identify the sequence of the binding site of FUS-DDIT3. As reported in Table 5.11, 

the most over-represented motif was exactly DDIT3 as reported in the Jaspar 

database with the ID MA0019.1. The sequence logo is shown in Figure 5.22. 

The motif was identified in the 97% (n=29449) of the binding regions from the 

consensus. It is composed of twelve letters of which the most conserved are from 

the 4th to the 9th position. The position of DDIT3 motif was almost perfectly centred 

as shown in Figure 5.23. This evidence further confirmed the good quality of the 
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chromatin immunoprecipitation and the specificity of the antibody used together 

with the reliability of the analysed binding sites. 

Motif name ID (Jaspar 
database) 

Number of 
regions Global p-value Position Position p-

value 
Ddit3::Cebpa MA0019.1 29449 < 0.001 - Over [-4,6] < 0.001 

CEBPD MA0836.1 29449 < 0.001 - Over [-10,0] < 0.001 

CEBPG MA0838.1 29449 < 0.001 - Over [-10,0] < 0.001 

CEBPB MA0466.2 29449 < 0.001 - Over [-10,0] < 0.001 

CEBPE MA0837.1 29449 < 0.001 - Over [-10,0] < 0.001 

CEBPA MA0102.3 29449 < 0.001 - Over [-10,0] < 0.001 
Table 5.11 The six most significant motif results from consensus binding sites in control 
samples from PscanChIP. Motif name as reported in the Jaspar database (see Materials and 
methods, Chapter 4). 

Figure 5.22 DDIT3::Cebpa sequence logo as reported in the Jaspar database 
(see Materials and methods, Chapter 4). 
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Figure 5.23 Position and histogram of the best motif occurrences of the 
DDIT3:Cepba regions in ML017 control samples as reported by PScanChIP (see 
Materials and methods, Chapter 4). 
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As shown in Table 5.11, among the most significant represented motifs we 

identified also those of the CCAAT/enhancer-binding protein (C/EBP) family of 

transcription factors, the protein family DDIT3 belongs to. Interestingly, they were 

identified in exactly all 29449 regions where DDIT3 motif was detected, however 

they were not centred, otherwise they were located beside DDIT3 as reported in 

the column “Position” of Table 5.11 and as shown in Figure 5.23. These results 

suggest that the C/EBP family might act as a co-factor of FUS-DDIT3. 

 

Then, in order to investigate the precise genome location of FUS-DDIT3 binding 

sites and their associated genes, we annotated the binding regions as described in 

Materials and methods, Chapter 4. As reported in the upper panel of Figure 5.25, 

most of the 30516 binding regions (44%) were annotated to distal regions, e.g. 

regions that are more than 15 kb far from the nearest transcription start site (TSS); 

Figure 5.24 Positions of the best occurrences of the C/EBP family of transcription factors, 
from a to e in comparison to  the centred position of the DDIT3 motif. 
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11% mapped to promoter regions, while the remaining were located in 

untranslated (UTR) or intronic regions. Coherently, most peaks mapped far more 

than 10 kb from the TSS as in the lower panel of Figure 5.25. 

Then, we selected the 2981 genes associated with promoter regions and 

performed an enrichment analysis with the aim to identify biological functions 

directly related to FUS-DDIT3 targets. 

As shown in Figure 5.26, FUS-DDIT3 target genes were mainly involved in the 

biological functions that suggest adipocyte differentiation like adipogenesis, 

regulation of lipid metabolism by peroxisome, PPARα activates gene expression, 

white fat cell differentiation, and transcriptional regulation of white adipocyte 

Figure 5.25 Percentage distribution on the genome (upper panel) and distance from the 
transcription starting site (TSS) of 30516 binding regions in ML017 controls. Colours as in 
the legends. 
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differentiation. Besides, we also found the involvement of  SMAD2/SMAD3/SMAD4 

transcriptional regulation and EGF/EGFR signalling pathway. 

 

Figure 5.26 Functional enrichment of genes associated with binding sites located on 
promoter regions based on the Reactome database. On x-axis -log10 of adjust p-values. 
Colour represents gene ratio as in the legend (see Materials and methods, Chapter 4). 

As reported in Table 5.12, among the genes involved in these pathways, we 

identified PPARγ, a key transcription factor in the process of differentiation of 

mesenchymal cells into completely differentiated adipocytes that is already known 

to be inhibited by FUS-DDIT3 (Pérez-Mancera et al., 2008). Then, genes like LPL, 

PLIN1, PLIN2 and ADIPOQ are typical markers of fully differentiated adipocytes, 

thus their role as target if the chimera suggests a critical role of FUS-DDIT3 towards 

their transcriptional regulation. 



ID Description Count geneID 

WP236 Adipogenesis 48 

ZMPSTE24, LMNA, MEF2D, RXRG, AGT, KLF6, CISD1, NR1H3, CELF1, STAT6, DDIT3, IGF1, NCOR2, GTF3A, KLF5, 
HIF1A, NDN, SMAD3, PLIN1, SREBF1, RARA, GADD45B, RETN, EPAS1, CYP26B1, STAT1, KLF7, CREB1, IRS1, TRIB3, 

PCK1, NRIP1, PPARA, PPARG, KLF15, WWTR1, MBNL1, ADIPOQ, PRLR, MEF2C, NR3C1, EBF1, TWIST1, FZD1, 
SERPINE1, NAMPT, LPL, PLIN2 

WP4149 White fat cell differentiation 16 
NR1H3, DDIT3, KLF5, TLE3, NR2F2, SREBF1, RARA, KLF2, CREB1, PPARG, KLF15, MECOM, CTNNA1, NR3C1, EBF1, 

IRF4 

WP1425 
Bone Morphogenic Protein (BMP) 

Signalling and Regulation 
8 BMPR1A, TOB1, SMAD4, BMPR2, TOB2, BMPR1B, SMAD1, SMURF1 

WP107 Translation Factors 20 
EIF4G3, EIF3I, EIF4EBP2, EIF3A, EIF4B, EIF2S1, EIF5, EEF2K, EIF1, EIF3G, EIF2B4, EIF2S2, EIF3D, EIF4G1, EIF4E, 

PAIP1, ETF1, EEF1A1, EIF3B, EIF2S3 

WP2586 Aryl Hydrocarbon Receptor 18 
ARNT, PTGS2, KLF6, NCOR2, MAP2K1, NQO1, NFE2L2, NRIP1, NFKB1, VEGFA, GCLC, NCOA7, PLAGL1, ESR1, EGFR, 

CD36, LPL, MYC 

WP437 EGF/EGFR Signaling Pathway 43 
ERRFI1, JAK1, VAV3, MEF2D, PIK3C2B, INPPL1, GAB2, EPS8, ATXN2, PEBP1, SPRY2, SOS2, FOS, NEDD4, MAP2K1, 

MAP2K5, MAPK7, AP2B1, MAP3K3, AP2S1, STAT1, CREB1, NCOA3, CBLB, NCK1, PLSCR1, PLD1, AP2M1, TNK2, 
PIK3R1, MEF2C, MAPK14, GJA1, MAP3K4, TWIST1, RALA, EGFR, PTPN12, ASAP1, JAK2, STXBP1, ABL1, SH3KBP1 

R-HSA-
400206 

Regulation of lipid metabolism by 
Peroxisome proliferator-activated 

receptor alpha (PPARalpha) 
37 

NFYC, ARNT, G0S2, AGT, ARNTL, NR1H3, GLIPR1, MED13L, NCOR2, CDK8, ARNT2, CHD9, SREBF1, NR1D1, MED13, 
ACOX1, ANGPTL4, MED26, SIN3B, SLC27A1, MED25, NPAS2, TRIB3, NCOA6, NCOA3, PPARA, PPARG, TBL1XR1, 

HMGCR, PPARGC1B, CCNC, TIAM2, CD36, ABCB4, FDFT1, PLIN2, TBL1X 

R-HSA-
1989781 

PPARA activates gene expression 36 
NFYC, ARNT, G0S2, AGT, ARNTL, NR1H3, GLIPR1, MED13L, NCOR2, CDK8, ARNT2, CHD9, SREBF1, NR1D1, MED13, 
ACOX1, ANGPTL4, MED26, SLC27A1, MED25, NPAS2, TRIB3, NCOA6, NCOA3, PPARA, PPARG, TBL1XR1, HMGCR, 

PPARGC1B, CCNC, TIAM2, CD36, ABCB4, FDFT1, PLIN2, TBL1X 
R-HSA-

2173796 
SMAD2/SMAD3:SMAD4 heterotrimer 

regulates transcription 
15 

CDK8, SNW1, RNF111, SMAD3, UBB, TGIF1, SMAD7, SMAD4, UBA52, TGIF2, WWTR1, CCNC, SERPINE1, MYC, 
CDKN2B 

R-HSA-
2173793 

Transcriptional activity of 
SMAD2/SMAD3:SMAD4 heterotrimer 

18 
NCOR2, CDK8, SNW1, RNF111, SMAD3, UBB, TGIF1, SMAD7, SMAD4, NEDD4L, UBA52, TGIF2, WWTR1, SKIL, 

CCNC, SERPINE1, MYC, CDKN2B 
R-HSA-
381340 

Transcriptional regulation of white 
adipocyte differentiation 

27 
CDK4, MED13L, NCOR2, CDK8, KLF5, PLIN1, NR2F2, CHD9, SREBF1, MED13, ANGPTL4, MED26, MED25, NCOA6, 

NCOA3, PCK1, PPARA, PPARG, TBL1XR1, ADIPOQ, NFKB1, EBF1, CCNC, CD36, LPL, FABP4, TBL1X 

Table 5.12 Significant pathways and genes in pathways for enrichment analysis of promoter regions referred to control samples of ML017 based on Reactome 
and Wikipathways databases. 



The transcriptional modulation of genes is not strictly related to transcription 

factors bound to promoter regions, indeed they can play their regulatory role even 

by attaching to regions of the DNA very far from the TSS. Therefore we considered 

the whole set of 9097 putative target genes and made an enrichment analysis. 

As shown in Figure 5.27 and Figure 5.28, apart from the previously discussed 

pathways associated with promoters, we found also the involvement of tyrosine 

kinases, the signalling of VEGF, the extracellular matrix organisation and the TGF-β 

pathways. 

Figure 5.27 Functional enrichment of genes associated with binding sites of FUS-DDIT3 in 
consensus regions of controls samples of ML017 based on the Reactome database. On x-
axis -log10 of adjust p-values. Colour represents gene ratio as in the legend (see Materials 
and methods, Chapter 4).  
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In conclusion, by targeting DDIT3 through a ChIP-Seq approach: 

1. we identified FUS-DDIT3 binding sites at the genome-wide level and its 

putative target genes;   

2. we confirmed FUS-DDIT3 binding sites correspond to the canonical DDIT3 

binding motif; 

3. we showed that members of the (C/EBP) family of transcription factors 

might act as cofactors of FUS-DDIT3; 

4. we demonstrated that FUS-DDIT3 target genes are involved in extracellular 

matrix remodelling and differentiation pathways. 

Figure 5.28 Functional enrichment of genes associated with binding sites of FUS-DDIT3 in 
consensus regions of controls samples of ML017 based on the Wikipathways database. On 
x-axis -log10 of adjust p-values. represents gene ratio as in the legend (see Materials and 
methods, Chapter 4).  
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5.4.2 STUDY OF THE INTERACTION OF FUS-DDIT3 WITH TRABECTEDIN 

In order to understand the role of trabectedin treatment on FUS-DDIT3 in MLPS, 

we performed ChIP-Seq at 24h and 72h after the first dose of treatment and 15 

days after the third dose of treatment with trabectedin. Since ChIP-Seq 

experiments represent a photograph of the genome-wide binding events of a 

specific transcription factor, they may be affected by technical biases like non-

specific binding or low efficacy of the antibody, we used biological replicates for 

each condition to determine relevant biological events. To note, the presence of 

FUS-DDIT3 binding at all time points, e.g. 24h and 72h after the first dose and 15 

days after the third dose, was first confirmed by western blot done in the 

Laboratory of Oncology of the Mario Negri Institute (data not shown here). 

First, we computed the binding motif for samples under each condition and 

confirmed the DDIT3 binding motif as in Figure 5.22. Then, we evaluated sample 

distribution through a PCA as shown in Figure 5.29: control samples (basal) were 

similar to those at ET-72, samples at ET-24 showed a high variability, while samples 

at ET-15 formed an independent group. This first insight suggests a different 

binding pattern at the late time point of treatment. 
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In order to investigate the differences in the binding activity of FUS-DDIT3 under 

trabectedin treatment we performed a differential binding analysis as described In 

Materials and methods, Chapter 4. 

First, we computed a consensus among all samples identifying 117643 consensus 

binding sites, then we made a differential binding analysis by comparing all 

conditions in pairs. As shown in Table 5.13, we identified differentially bound peaks 

(DBPs) only between ET-15 versus control or versus ET-72. Since ET-72 did not 

showed differences with controls, and the 31778 DBPs of ET-15 versus control were 

overlapping with those of ET-15 versus ET-72, we focused directly on these 39581 

DBPs (Figure 5.30). 

  

Figure 5.29 PCA of ChIP-Seq ML017 samples after derivation of the consensus among 
binding sites. Colours as in the legend. 
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 CTRL ET-24 ET-72 ET-15 

CTRL - n.s. n.s. 31778 

ET-24  - n.s. n.s 

ET-72   - 39581 

ET-15    - 

Table 5.13 Number of DBPs per each couple of compared conditions as calculated with 
DiffBind. 

 

Figure 5.30 Volcano plot showing DBPs in the comparison between ET-72 and ET-15. FDR, False 
Discovery Rate. In blue non-significant DBPs (FDR>0.01), in pink significant DBPs (FDR<=0.01). 
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Among the 39581 DBPs, 39580 were either no longer bound or less bound to the 

DNA at 15 days after the third dose of trabectedin, meaning that at late time points 

trabectedin was able to displace FUS-DDIT3 from its binding sites. The lower or 

absent enrichment in these regions is evident in Figure 5.31. Therefore, we 

investigated the nature of these DBPs. First, we annotated them and showed that 

Figure 5.31 Read enrichment mapping onto DBPs evaluated through SeqMINER on 
merged sample replicates at basal conditions (CTRL), 72h and 15 days 
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almost 43% mapped to distal intergenic regions and far from the TSS, while less 

than 10% mapped to promoter regions as shown in Figure 5.32. 

The total 39581 differential regions were associated with 9856 unique genes. Then, 

we investigated the biological functions in which these genes were implicated. 

Again, we first selected genes in promoter regions. 

 

Among DBPs associated with promoter regions, we found those that were 

implicated in the adipogenesis and differentiation pathways as shown in Figure 5.33 

and that were previously observed at basal conditions (see Section 5.4.1 of this 

Chapter). 

Figure 5.32 Percentage distribution on the genome (upper panel) and distance from 
the transcription starting site (TSS) of DBPs in the comparison between ET-15 and ET-
72. Colours as in the legends. 
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Then, a further functional analysis on the whole DBPs set (Figure 5.34, Figure 5.35) 

showed that most of the target genes affected by the treatment with trabectedin 

were involved in the main functional processes shown at basal condition (see 

Section 5.4.1 of this Chapter), like extracellular matrix remodelling and the 

signalling of VEGF. 

In conclusion, we showed that the effect of trabectedin on FUS-DDIT3 target genes 

is explicated at 15 days, the late time point at which we showed that the drug is 

able to displace or decrease the binding of FUS-DDIT3 on the DNA. Interestingly, 

the event is related to key pathways like extracellular matrix remodelling and 

adipocyte differentiation, thus suggesting a role of trabectedin in restoring the 

differentiation program through the direct interaction with the chimera. 

Figure 5.33 Functional enrichment of genes associated with DBPs in the comparison 
between ET-15 and ET-72 mapping on promoter regions of ML017 based on the Reactome 
database. On x-axis -log10 of adjust p-values. Colour represents gene ratio as in the legend. 
(see Materials and methods, Chapter 4). 
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Figure 5.34 Functional enrichment of genes associated with DBPs in the comparison 
between ET-15 and ET-72 of ML017 based on the Reactome database. On x-axis -log10 of 
adjust p-values. Colour represents gene ratio as in the legend (see Materials and methods, 
Chapter 4). 
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Figure 5.35 Functional enrichment of genes associated with DBPs in the comparison 
between ET-15 and ET-72 of ML017 based on the Wikipathways database. On x-axis -log10 
of adjust p-values. Colour represents gene ratio as in the legend (see Materials and 
methods, Chapter 4). 

5.4.3 EARLY RESPONSE TO TRABECTEDIN IS CYTOTOXIC AND INDEPENDENT ON FUS-

DDIT3 

ChIP-Seq is a useful tool to investigate the activity of transcription factors starting 

from the identification of their binding sites to the prediction of their target genes, 

however it gives no information on the transcriptional regulation. Thus, to fill in this 

gap, many approaches have been developed among which data integration with 

transcriptional expression data (e.g. RNA-Seq) or chromatin immunoprecipitation 

of histone modifications. The first provides a direct indication of the gene 

regulation when two or more conditions are compared, the latter represents a 

biological indication of the transcriptional activity. Indeed, H3K4me1 and H3K4me3 

correspond to sites of active transcription, while H3K27Ac is a marker of active 

enhancer. The identification of genomic regions characterised by histone 

modifications together with specific sites of binding for transcription factors 

represent a valid indication of the transcriptional activity. 
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At this point, our main aim was to determine at what extent trabectedin treatment 

might influence gene transcription through the interaction with FUS-DDIT3 

chimera. To pursue this issue, we used an integrated approach to combine 

transcription factor binding sites, histone marks and transcriptional data. 

In our study, we decided to use the histone mark H3K4me3 in order to identify 

active regions of transcription. However, the unavailability of biological replicates 

of H3K4me3 mark at basal and further conditions did not allow us to investigate 

the transcriptional activity at CTRL, ET-72 and ET-15 conditions of ML017. Instead, 

biological replicates at 24 hours allowed us to identify genes associated with region 

of active transcriptional activity after one exposure to trabectedin. 

First, we derived a consensus peakset from the four available replicates of 

H3K4me3 at ET-24 identifying 15576 regions. We annotated those regions and, as 

expected, most of them (84%) mapped on promoters (Figure 5.36). Then, we made 

an enrichment analysis on the 11819 genes associated with these promoter regions 

in order to identify biological activated functions. 

 

Figure 5.36 Percentage distribution on the genome of H3K4me3 binding regions in ML017 
at 24h. Colours as reported in the legend.  

A selection of the most significant pathways from the Reactome database is shown 

in Figure 5.37. We found the transcriptional regulation by TP53, the activation of 

the cell cycle, the mechanisms of apoptosis and DNA repair. We also found the 
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regulation of PTEN, a gene that was found impaired in MLPS as described in 5.2.3. 

Then, in order to achieve a complete overview of the transcriptional regulation in 

tumour basal conditions of MLPS, we compared these results to those from RNA-

Seq analysis in Results, paragraph 5.3.2. By overlapping the pathways from 

H3K4me3 marks and from DEGs at 24h, we confirmed the early cytotoxic response 

to trabectedin with the activation of regulation of TP53, the involvement of DNA 

replication and cell cycle, the apoptotic response as shown in Table 5.14. Instead, 

the state of activation or inhibition of Antigen processing: Ubiquitination & 

Proteasome degradation and Class I MHC mediated antigen processing & 

presentation are not clear, since they resulted inhibited from RNA-Seq analysis. 

 

Figure 5.37 Functional enrichment of 11819 genes associated with promoter regions from 
H3K4me3 ChIP-Seq based on the Reactome database. On x-axis -log10 of adjust p-values. 
Colour represents gene ratio as in the legend (see Materials and methods, Chapter 4). 

 

ID Description N Genes geneID 

R-HSA-3700989 Transcriptional Regulation by 
TP53 14 

ARID3A,CDKN1A,TNFRSF10C,
TNFRSF10D,ZNF385A,PIDD1,E
2F1,TP73,PLK3,MDM2,GADD
45A,E2F7,PMAIP1,DDB2 

R-HSA-69306 DNA Replication 6 POLA2,LIG1,CDT1,E2F1,CDC6,
E2F2 
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ID Description N Genes geneID 

R-HSA-5663202 Diseases of signal transduction 6 CDKN1A,FGF2,MDM2,DLL4,H
BEGF,MAMLD1 

R-HSA-69242 S Phase 6 POLA2,LIG1,CDT1,CDKN1A,E2
F1,CDC6 

R-HSA-69002 DNA Replication Pre-Initiation 5 POLA2,CDT1,E2F1,CDC6,E2F2 
R-HSA-1257604 PIP3 activates AKT signaling 4 MDM2,HBEGF,CDKN1A,FGF2 

R-HSA-9006925 Intracellular signaling by second 
messengers 4 MDM2,HBEGF,CDKN1A,FGF2 

R-HSA-5357801 Programmed Cell Death 3 TP73,E2F1,PMAIP1 
R-HSA-109581 Apoptosis 3 TP73,E2F1,PMAIP1 

R-HSA-983169 Class I MHC mediated antigen 
processing & presentation 1 CDC20 

R-HSA-983168 
Antigen processing: 

Ubiquitination & Proteasome 
degradation 

1 CDC20 

Table 5.14  Common pathways and genes between RNA-Seq analysis on DEGs at 24h and 
ChIP-Seq of H3K4me3 at the same time point according to the Reactome database. 

As shown from pathways in Figure 5.37 and in Table 5.14, none of them is related to 

FUS-DDIT3 binding sites identified at CTRL (see Section 5.4.1 of this Chapter), thus 

suggesting that the first response to drug treatment is cytotoxic and independent 

from FUS-DDIT3. 

5.4.4 TRABECTEDIN DISPLACES FUS-DDIT3 FROM THE DNA AND RESTORES 

ADIPOCYTE DIFFERENTIATION 

As previously explained, the unavailability of histone marks at different times of 

treatment did not allow us to investigate transcriptionally active regions at different 

time of treatment. However, since we found that most FUS-DDIT3 binding sites 

changed at 15 days after trabectedin treatment (see Results Section 5.4.2) and we 

had transcriptional data at the same time point, we integrated ChIP-Seq and RNA-

Seq in order to study the transcriptional modulation of FUS-DDIT3 target genes. 

First, we compared the DEGs found at 15 days after the third dose (N=4883, see 

Results, Section 5.3.2) with the genes associated with the DBPs (N=9856, see 

Results, Section 5.4.2). As shown in the Venn diagram in Figure 5.38, we found 2292 

genes in common. 
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Then, we compared pathways identified by the transcriptional analysis (see Results, 

Section 5.3.2) with those associated with DBPs at 15 days (see Results, Section 

5.4.2). As shown in Table 5.15, we identified 11 overlapping pathways and genes, 

among which extracellular matrix organisation, collagen and elastic fibre formation 

and signalling by receptor tyrosine kinases. 

Since these pathways were related to target genes of FUS-DDIT3 and they were 

also transcriptionally modulated, this data might suggest a possible role of 

trabectedin in displacing FUS-DDIT3 chimera from its targets with a consequent 

modulation of their transcriptional activity that is directly related to differentiation 

programs. 

Pathway ID Description N Common Genes 

R-HSA-1474244 Extracellular matrix 
organization 65 

PHYKPL,FBLN5,COL6A6,ADAMTS5,EFEMP1,COL6A
2,MMP15,HTRA1,TNC,COL5A1,TGFB3,FGF2,COL1
5A1,COLGALT2,LAMA4,LOXL2,P4HA3,ITGA2,COL6
A1,LUM,JAM2,ADAM12,MFAP5,ITGA9,ASPN,COL
14A1,ITGA8,COL18A1,CAPN13,SERPINE1,PRKCA,
MMP14,FBN2,ITGB6,FMOD,ELN,ADAMTS14,LRP4
,COL27A1,FBN1,COL12A1,SPARC,NTN4,COL1A2,IT
GA11,NID1,LAMA3,LOX,COL16A1,P4HA2,BMP4,C
OL4A3,COL21A1,ADAMTS3,MMP2,DMD,THBS1,H
SPG2,LTBP2,MFAP4,ADAMTS2,CTSS,LTBP1,DCN,F
BLN2 

Figure 5.38 Venn diagram showing the number of common and private genes in the 
comparison between DEGs at 15 days after the third dose from RNA-Seq analysis and the 
DBPs from the ChIP-Seq analysis. 
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R-HSA-1630316 Glycosaminoglycan 
metabolism 25 

SLC9A1,GPC3,XYLT1,CHST7,EXT2,HEXB,LUM,CHST
9,UST,VCAN,ST3GAL4,SDC3,FMOD,KERA,EXT1,CH
ST15,CHST2,CEMIP,CHST11,CD44,ARSB,HSPG2,G
NS,B4GALT1,DCN 

R-HSA-9006934 
Signaling by 

Receptor Tyrosine 
Kinases 

23 

VEGFD,FGF10,COL6A6,COL5A1,FGF2,LAMA4,PDG
FD,ITGA2,ELMO1,SPRY1,FGFR1,PRKCA,PIK3R1,CO
L27A1,THBS2,COL1A2,LAMA3,COL4A3,THBS1,FLR
T2,SHC3,FGF1,GRIN2B 

R-HSA-3000178 ECM proteoglycans 21 
COL6A6,COL6A2,TGFB3,TNC,COL5A1,LAMA4,ITGA
2,LUM,ITGA9,ASPN,ITGA8,SERPINE1,ITGB6,FMOD
,LRP4,SPARC,COL1A2,LAMA3,COL4A3,HSPG2,DCN 

R-HSA-5173105 O-linked 
glycosylation 17 

GALNT5,THSD1,ADAMTS5,ADAMTS14,GCNT1,GA
LNT16,ADAMTS15,ADAMTS3,SPON2,THBS2,GALN
T10,THBS1,ADAMTS2,ADAMTSL4,ST6GALNAC2,B
3GLCT,GALNT17 

R-HSA-1474290 Collagen formation 17 

P4HA2,COL6A6,ADAMTS14,COL4A3,COL5A1,COL
21A1,ADAMTS3,COL14A1,COL15A1,COL12A1,COL
GALT2,ADAMTS2,P4HA3,COL1A2,LOX,LAMA3,COL
16A1 

R-HSA-1566948 Elastic fibre 
formation 16 

BMP4,FBLN5,MFAP5,TGFB3,EFEMP1,FBN1,ITGA8,
LTBP2,MFAP4,FBN2,LOXL2,LTBP1,LOX,FBLN2,ITGB
6,ELN 

R-HSA-1650814 
Collagen biosynthesis 

and 
modifying enzymes 

15 
P4HA2,COL6A6,ADAMTS14,COL4A3,COL5A1,COL
21A1,ADAMTS3,COL14A1,COL15A1,COL12A1,COL
GALT2,ADAMTS2,P4HA3,COL1A2,COL16A1 

R-HSA-2129379 Molecules associated 
with elastic fibres 13 BMP4,FBLN5,MFAP5,TGFB3,EFEMP1,FBN1,ITGA8,

LTBP2,LTBP1,FBN2,FBLN2,ITGB6,ELN 

R-HSA-6806834 Signaling by MET 8 COL5A1,COL27A1,SH3GL3,LAMA4,PIK3R1,COL1A
2,ITGA2,LAMA3 

R-HSA-194840 Rho GTPase cycle 3 ARHGAP26,ARHGAP20,ARHGEF18 
Table 5.15 Common pathways and genes between RNA-Seq analysis on DEGs at 15 days 
and DBPs at the same time point according to the Reactome database. 
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6 DISCUSSION AND CONCLUSIONS 

 

In this work for the PhD program, we integrated different types of high-throughput 

sequencing data from both the DNA and the RNA of MLPS PDX models with the 

main aim to evaluate the molecular features responsible for the sensitivity to and 

the resistance against trabectedin. As pharmacological features can be sustained 

by complex genomic and transcriptomic networks, we used bioinformatics and 

computational approaches organised in specific pipelines customised to fit the  

biological questions. 

The results achieved through this work shed light on novel biological aspects 

related to MLPS and their response to trabectedin treatment. The main results of 

this analysis can be summarised into the following four main points. 

1. We provide a measure of the extent to which PDX overlaps clinical features 

of MLPS tumours. 

2. We showed that loss of genomic material in 4p15.2, 4p16.3 and 17q21.31 

cytobands is a distinctive feature of acquired-resistance to trabectedin, 

even if further investigation is needed, and that genes mapping on them are 

coherently downregulated in the comparison between resistant and 

responsive controls. 

3. We demonstrated that trabectedin elicits its action mainly at the 

transcriptional level by restoring the process of adipocyte differentiation 

after prolonged treatments. 

4. We hypothesised a direct role of the drug in competing with the FUS-DDIT3 

oncoprotein binding to the DNA causing a re-activation of the 

transcriptional processes. 

These results will be discussed accordingly in the following sections. 
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6.1 THE GENOMIC LANDSCAPE OF PDX OVERLAPS THAT OF MLPS TUMOURS AND 

AFFECTS THE SENSITIVITY TO TRABECTEDIN 

 

We started this PhD work from the genomic analysis of the previously established 

PDX models of MLPS namely ML006, ML015, ML017 and ML017/ET (Frapolli et al., 

2010), (Bello et al., 2019). However, the absence of FUS-DDIT3 oncoprotein in 

ML015 and the unavailability of a healthy matched sample for ML006 forced us to 

analyse only ML017- and ML017/ET-bearing mice in our study.  

We showed that ML017 and ML017/ET fairly reproduce the main genomic features 

of MLPS tumours. Beside FUS-DDIT3 translocation, MLPS PDX carried SNVs in the 

PTEN and PIK3CA genes, two of the most frequently affected genes in MLPS tumour 

biopsies (Assi et al., 2019), (Keung and Somaiah, 2019). In recent years, many 

genomic studies have been done on liposarcomas, however only few of them 

considered MLPS in their cohorts (Keung and Somaiah, 2019), (Hofvander et al., 

2018), (Ohguri et al., 2006). Copy number features have been described in MLPS, 

such as gains in chromosome 8, 13q or loss of chromosome 6 and 16q11, however 

a gold-standard on the genomic architecture of MLPS does not exist yet, even if 

most studies agree on the diploidy of the genome and the monoclonal nature of 

MLPS (Antonescu et al., 2000), (Hofvander et al., 2018), a feature that we 

confirmed in both ML017 and ML017/ET. Moreover, sarcomas are generally 

considered tumours with a low mutational burden as reported in the sarcoma 

(SARC) cohort of The Cancer Genome Atlas (TCGA) (Abeshouse et al., 2017), a 

feature that we confirmed in ML017 and ML017/ET. Given this evidence, we 

showed that our models are in line with previously reported MLPS characteristics, 

thus they can be considered representative of the disease and they also give a 

comprehensive view of the genomic landscape of MLPS. 

SCNAs are responsible for carcinogenesis and tumour progression, affecting large 

portions of the genome in many cancer types. Amplificated regions usually host 

oncogenes while genetic loss frequently affects tumour suppressor genes. SCNAs 
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have also a critical role in response to drug therapy (Zack et al., 2013), (Beroukhim 

et al., 2010). We showed that cytobands 4p15.2, 4p16.3 and 17q21.31 were 

specifically lost in the resistant model. Since ML017/ET was established through 

different and continuous passages in mice following a strict schedule of trabectedin 

treatment, we can hypothesise that these three regions have been lost upon drug 

pressure and they could be associated with acquired resistance against 

trabectedin. However, it should be considered that in this work only one model was 

used to mimic the resistance against trabectedin, thus results need to be confirmed 

in other models to strengthen this evidence, and moreover it should have 

confirmation in patients that have shown resistance to treatment. This point will be 

pursued as a future plan for this project.   

UVSSA (UV-stimulated scaffold protein A) is one of the most interesting genes 

mapping on 4p16.3 cytoband. UVSSA carried an in-frame deletion and lost one 

allele in ML017/ET model only. This gene is involved in the Transcription-Coupled 

Nucleotide Excision Repair (TC-NER), a mechanism that removes helix-distorting 

lesions from the genome (van der Weegen et al., 2020). The role of UVSSA protein 

in the TC-NER is crucial since it recruits the TFIIH (transcription factor IIH) complex 

after the stalling of the RNA Pol II (RNA polymerase II) at the site of damage (van 

der Weegen et al., 2020). The involvement of UVSSA in the TC-NER acquired more 

importance in the light of the previously identified interactions of trabectedin with 

this pathway. Indeed, one of the main mechanisms of trabectedin is the inhibition 

of active transcription through the blockade of RNA Pol II. The block of transcription 

is usually rescued by the degradation of RNA Pol II that depends on a proficient TC-

NER. Studies have shown that cells with defective TC-NER due to mutations in XPC, 

XPD, XPA, XPG are resistant to trabectedin treatment (Assi et al., 2019), (Larsen et 

al., 2016). The impairment of the UVSSA gene in ML017/ET was confirmed also at 

the protein level with orthogonal experiments and this result was published by 

Bello et al. (Bello et al., 2019). 
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6.2 TRABECTEDIN ACTS AS A TRANSCRIPTIONAL REGULATOR AND INDUCES A 

PHENOTYPIC CHANGE AFTER PROLONGED TREATMENT 

 

In a previous work, we demonstrated that treatment with trabectedin is able to 

mediate the transcriptional regulation of myxoid liposarcoma cell lines leading to 

morphological changes indicated by the formation of lipids and further confirmed 

by the presence of lipoblast in vivo (Forni et al., 2009). In order to clarify the 

molecular mechanisms behind trabectedin mechanism of action, here we studied 

the transcriptional modulation induced by the drug in both ML017 and ML017/ET 

models by comparing each treated condition to controls as explained in Materials 

and methods, Sections 4.7 and 4.8.3.2. Our results suggest that the greatest 

transcriptional effect was elicited at the latest time point, e.g. 15 days after the 

third dose of trabectedin. We identified the activation of functions that are related 

to the remodelling of the extracellular matrix, the production of collagen, the 

formation of elastic fibres and the regulation of the insulin-like growth factor. This 

evidence sustains that trabectedin is able to induce a phenotypic change in MLPS 

that drives the reactivation of adipocytic differentiation also at the molecular level 

and further confirms the morphological and phenotypical changes toward the 

adipocyte state assessed by independent techniques. Since early time points 

suggest an a-specific response to the drug, e.g. TP53 activation, the activation of 

the differentiation process requires prolonged and continuous treatments.   

On the other hand, in the resistant ML017/ET model, trabectedin elicits an early 

cytotoxic response at 24 hours, while no other transcriptional evidence is 

registered at later time points, in accordance to the feature of acquired-resistance 

observed with the growth-curves of the animal models (Bello et al., 2019). This data 

suggests that prolonged treatment with trabectedin leads to acquired resistance 

against the drug mimicking the clinical outcome. Nonetheless, we showed that 

ML017 and ML017/ET-bearing models had different transcriptional signatures 

already at basal condition. Indeed, 243 genes were inhibited in the resistant model 

and mapped exactly on the same regions that were specifically lost in ML017/ET. 
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Thus, this result highlights that from a loss of genetic material derives coherent loss 

of transcriptional activity. This is further justified by the already cited UVSSA protein 

inactivation. 

The use of anthracyclines as doxorubicin as first-line therapy in MLPS has prompted 

us to compare the effects of this drug to trabectedin. Doxorubicin causes 

cumulative toxicity, thus prolonged treatment is not allowed (Frapolli et al., 2019). 

We showed that some effects seen with trabectedin at 15 days after the third dose 

can be reproduced by doxorubicin already at 24h, even though with different genes 

involved. However, beside this slight overlap, overall the two drugs trigger different 

transcriptional responses. Finally, doxorubicin deregulated genes in ML017/ET 

participate in the same biological functions as in ML017 suggesting no cross-

resistance to this drug. 

In a recent work, we showed that the differentiation program induced by 

trabectedin can be further increased by the combination with pioglitazone (Frapolli 

et al., 2019). Pioglitazone is a drug commonly used for the treatment of type II 

diabetes which acts as an agonist of PPARg. The synergistic effect of trabectedin 

and pioglitazone in boosting the differentiation of tumour cells in animal models, 

the evidence that the combination could overcome resistance to trabectedin alone 

(Frapolli et al., 2019) and the availability of pioglitazone as a generic drug, have 

eased the path to the opening of a phase II pilot study on the combination versus 

trabectedin alone, called TRABEPIO (NCT04794127, (Mario Negri Institute for 

Pharmacological Research, 2021)). Despite strong evidence of an enhanced effect 

on differentiation, the molecular mechanism that underlies this interaction is not 

known. In the light of the present study that improved the knowledge on 

trabectedin mechanism of action, it would be interesting to further investigate its 

interaction with pioglitazone with a similar approach used here.  

By studying the transcriptional modulation induced by drug treatment, we focused 

only on the entire repertoire of already annotated genes. However, the 

development of sequencing technologies has allowed the identification of novel 

isoforms of already known genes and/or of novel transcripts. They have become an 
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attractive topic since new variants of oncogenes have been discovered (Huang et 

al., 2021) and have been also associated with drug resistance (Lian et al., 2019). 

Thus, we investigated unknown transcripts that could underlie drug mechanism of 

action. Although this level of analysis did not show clear distinct groups as in the 

gene-level analysis probably due a higher background noise in the data, we showed 

that the highest number of unknown transcripts was identified at 15 days after the 

third dose of trabectedin in ML017 in correspondence to the highest gene 

modulation described so far. Here, we identified 990 transcripts with a high 

probability to be translated into protein, thus they could be implicated in specific 

regulatory functions warranted further investigation. 

6.3 TRABECTEDIN COULD BE RESPONSIBLE FOR THE DISPLACEMENT OF THE FUS-

DDIT3 ONCOPROTEIN FROM ITS BINDING SITES 

 
In this work we provide a genome-wide landscape of the FUS-DDIT3 binding sites 

in MLPS. Previous works have described single targets of the FUS-DDIT3 

oncoprotein. Indeed, Di Giandomenico et al. studied the PTX3 and FN1 genes as 

targets of FUS-DDIT3 (Di Giandomenico et al., 2014), Pérez-Mancera showed that 

FUS-DDIT3 directly blocks the PPARg and C/EBPa transcription factors (Pérez-

Mancera et al., 2008) causing the inhibition of the adipogenesis process, while the 

only genome-wide analysis of FUS-DDIT3 was done by Chen et al. in a cell line model 

(Chen et al., 2019). In this work we made a step further by assessing all the binding 

sites of FUS-DDIT3 on the DNA of human tumours implanted in mice. We confirmed 

PTX3, FN1, PPARg and C/EBPa as targets of the chimera, however we showed that 

FUS-DDIT3 could affect other factors that are notoriously involved in adipogenesis 

like the PPARa, IGF1, ADIPOQ, PLIN2 and LPL genes. We found that most genes 

were associated with pathways like white fat cell differentiation, signalling by VEGF 

and extracellular matrix remodelling that suggested a role of the oncoprotein in 

regulation of the expression of these pathways. 

Moreover, we showed that the CCAAT/enhancer-binding protein (C/EBP) family of 

transcription factors is likely to act as a co-factor of FUS-DDIT3. Indeed, C/EBP 
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binding motif was found beside all bindings sites of FUS-DDIT3. DDIT3 itself belongs 

to the C/EBP transcription factor family. It is known to form heterodimers with 

other C/EBP members and co-participate in transcriptional regulation programs 

(Wang et al., 2019). This evidence suggests that FUS-DDIT3 may cooperate with the 

C/EBP family, a mechanism that warranted further investigation. 

We exploited further the mechanism of FUS-DDIT3 in MLPS and studied its 

behaviour under trabectedin treatment. We showed that at a later time point, e.g. 

15 days after the third dose of trabectedin, most of the binding sites were lost 

suggesting that the drug could be able to displace FUS-DDIT3 from its target sites 

or at least to compete with the drug in the binding to the DNA. It is worth noting 

that at this time point we see a late response after the last administration of the 

drug, however we cannot exclude that some drug is still attached to the DNA due 

to the long lasting half-life time of trabectedin. Also, a fraction of cell still carry the 

chimera FUS-DDIT3 as demonstrated by western blot (not shown here) and proven 

by the ChIP-Seq that otherwise could have not been done.  However, integration 

with transcriptional data confirmed that the modulation of FUS-DDIT3 binding is 

followed by a transcriptional modulation of these target genes.  

Even if further investigation is needed at both the molecular and pharmacological 

levels, overall the image depicted by ChIP-Seq and RNA-Seq data suggests a double 

mechanism of trabectedin in MLPS: a first early effect that is independent from 

FUS-DDIT3 and is mainly associated with the cytotoxicity of the drug; a second late 

effect that is exerted in the responsive model with a direct action on FUS-DDIT3, 

the displacement of which restores the normal differentiation process of the cells. 
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6.4 LIMITATIONS OF THE STUDY 

 

There are some limitations in this study that could be addressed in the ongoing plan 

of the research.  

First, the study focused on one PDX model, ML017, that represents a limitation to 

the generalisation of the findings to MLPS. We initially started from the analysis of 

other two models, ML006 and ML015, however due to unpredictable technical 

issues they could not be considered for further analysis. In order to overcome this 

issue, we focused on the biological reproducibility of the data, in fact for each 

sequencing experiment we set at least three or four samples per condition. In line 

with this, the study of the resistance against trabectedin in ML017/ET model alone 

needs further assessment in other models or in clinical-derived data. 

The other limitation mainly concerns ChIP-Seq data. Due to sample unavailability 

and the long working time that this technique required, we could not complete the 

analysis of the histone modifications in the responsive model and could not analyse 

the ML017/ET model. Moreover, due to the complex pharmacokinetics of the drug, 

further and complementary experiments need to be performed to better clarify the 

mechanisms underlying trabectedin mechanism of action. 

6.5 CONCLUSIONS 

We started this PhD work with the aim to elucidate the mechanism of 

responsiveness to and resistance against trabectedin in MLPS.  

We presented a comprehensive study of MLPS-bearing PDX models that we 

exploited with bioinformatics and computational approaches by integrated 

different levels: genomic, transcriptomic and DNA-protein interactions.  

This PhD work offers an unprecedented broad molecular picture on MLPS and their 

response to drug treatment. It conveys a methodological workflow for 

pharmacogenomic studies. Then, it presents these PDX models as a valid tool for 

the study of MLPS that could overcome the need of statistical numerosity for drug 

testing.  
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Lastly, the mechanistic insights into the efficacy of trabectedin described here 

might help to design novel therapeutic strategies to enhance tumour response or 

to overcome drug resistance mechanisms. 
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