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Space-based quantitative passive optical remote sensing of the Earth’s surface typically
involves the detection and elimination of cloud-contaminated pixels as an initial processing
step. We explore a fundamentally different approach; we use machine learning with cloud
contaminated satellite hyper-spectral data to estimate underlying terrestrial surface
reflectances at red, green, and blue (RGB) wavelengths. An artificial neural network
(NN) reproduces land RGB reflectances with high fidelity, even in scenes with
moderate to high cloud optical thicknesses. This implies that spectral features of the
Earth’s surface can be detected and distinguished in the presence of clouds, even when
they are partially and visibly obscured by clouds; the NN is able to separate the spectral
fingerprint of the Earth’s surface from that of the clouds, aerosols, gaseous absorption,
and Rayleigh scattering, provided that there are adequately different spectral features and
that the clouds are not completely opaque. Once trained, the NN enables rapid estimates
of RGB reflectances with little computational cost. Aside from the training data, there is no
requirement of prior information regarding the land surface spectral reflectance, nor is there
need for radiative transfer calculations. We test different wavelength windows and
instrument configurations for reconstruction of surface reflectances. This work provides
an initial example of a general approach that has many potential applications in land and
ocean remote sensing as well as other practical uses such as in search and rescue,
precision agriculture, and change detection.
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1 INTRODUCTION

Surface properties derived from satellite solar backscattered
ultraviolet (UV) through near- and short-wave infrared (NIR,
SWIR) reflectances have a multitude of uses for studies on marine
and terrestrial biogeochemistry, including the response of
ecosystems to climate variability, change, and feedback
processes as well as time-sensitive applications such as
drought or other hazard detection (e.g., Anyamba and Tucker,
2012; Yuan et al., 2014; AghaKouchak et al., 2015; Frouin et al.,
2019; Groom et al., 2019). A cornerstone of many satellite-based
scientific studies involving the Earth’s surface is atmospheric
correction, the process of removing the effects of the
atmosphere and other factors, when processing satellite
radiance data. The corrections need to account for the effects
of absorbing and scattering gases and particles in the Earth’s
atmosphere. Additional corrections may be needed in order to
remove unwanted surface signals such as from ocean glitter or
shadows. Atmospheric correction remains an active area of
research for Earth remote sensing (e.g., Frouin et al., 2019).

Satellite instruments in Low or Geostationary Earth Orbits
(LEO, GEO), including multi-angle and polarization-sensitive
sensors, have provided surface reflectances and albedos at
wavelength bands from UV to the SWIR (Duchemin and
Maisongrande, 2002; Govaerts et al., 2004; Maignan et al.,
2004; Diner et al., 2005; Muller et al., 2007; Claverie et al.,
2018; He et al., 2019; Li S. et al., 2019). In this work, we use
data from the MODerate-resolution Imaging Spectroradiometer
(MODIS) instruments in LEO. There are several available
MODIS land surface reflectance data sets, including some that
have undergone detailed processing in the time domain to
quantify bidirectional reflectance distribution functions
(BRDFs) that describe how the surface reflectance varies with
the sun-satellite geometry. These include the nadir BRDF-
adjusted reflectance (NBAR), also known as the MODIS
MCD43 product (Schaaf et al., 2002; Wang et al., 2018), and
the Multi-Angle Implementation of Atmospheric Correction
(MAIAC), known as the MCD19 product (Lyapustin et al.,
2011a; Lyapustin et al., 2011b; Lyapustin et al., 2012). Deriving
the terrestrial BRDF and optional information regarding aerosol
properties necessitates complex algorithms that use data acquired
over a window of time with assumptions regarding variability
over the considered time period. As a result of the processing
required over the time window (typically 16 days), data sets may
not be immediately available after the satellite overpass. In
addition, these algorithms also detect and remove pixels that
are affected by clouds; this can significantly reduce the available
spatial coverage (e.g., Banks and Mélin, 2015). For example,
Mercury et al. (2012) showed that globally a cloud cover of
around 28% is found with MODIS data at 5 km × 5 km
resolution.

In this work, we examine whether it is possible to reconstruct
red, green, and blue (RGB) land surface reflectances in cloudy
conditions using nearly all-sky satellite-based radiances measured
by hyper-spectral instruments. The satellite instrument that we
use is the Global Ozone Monitoring Experiment 2 (GOME-2)
that was designed primarily for atmospheric composition

measurements. GOME-2 offers continuous spectral coverage
from the UV through NIR (240–790 nm). Specifically in this
work, we test whether the spectral measurements in the visible
through NIR (403–790 nm) from GOME-2 can be used to
accurately estimate the underlying land surface reflectances in
cloudy pixels with machine learning trained on NBARs from the
MODIS MCD43 data set that was found to perform well for
estimating the gross primary production of vegetation (Joiner
et al., 2018). In addition, we test the approach using discrete
wavelength windows to determine the most important ranges for
reconstruction of RGB surface reflectances in cases of light to
moderate amounts of cloud and heavy aerosol loading.

The basic assumption behind our approach is that a machine
learning method, such as an artificial neural network (NN), is
capable of disentangling and extracting a surface spectral
fingerprint (in this case, as it relates to RGB land reflectances)
from observed spectral reflectances. These observations are
affected by scattering and absorption from air molecules
(Rayleigh and Raman scattering and absorption from gases
such as O2, H2O, NO2, and O3), aerosols, and clouds. The use
of deep learning with NNs as well as other types of machine
learning has seen explosive growth in many areas of remote
sensing including hyperspectral image analysis such as for tasks
in image classification, anomaly detection, target recognition,
parameter inversion, pansharpening, and data fusion from
preprocessing to mapping (see, e.g., the reviews of Lary et al.,
2016; Zhu et al., 2017; Maxwell et al., 2018; Ma et al., 2019, and
references therein).

Here, a principal component analysis is used to precondition
the spectral inputs to the NNs. Similar methods have been
employed in ocean remote sensing in the presence of aerosol,
thin clouds, and Sun glint using simulated data for training (e.g.,
Gross-Colzy et al., 2007a, Gross-Colzy et al., 2007b; Schroeder
et al., 2007). Our approach uses a large sample of measured
spectra from a satellite instrument rather than simulated data for
training inputs. The resulting trained NN is then applied globally
for 1 year for evaluation under a wide range of conditions. In
addition, we test the approach for observations with optically
thicker clouds than previously attempted (clouds that appear
white to the human eye) as well as cases of heavy absorbing
aerosol loading. We show with radiative transfer simulations that
there is sensitivity to the Earth’s surface as seen from satellite-
based instruments even in cases of cloud optical thickness
exceeding ten. In a companion work, Joiner et al. (2021)
employ a similar approach with a higher spatial resolution
hyper-spectral imager and examine remote sensing of
vegetation using near-infrared bands in a case study that
contains overcast cloud conditions.

Our approach is fundamentally different from other image
restoration methods that rely on either the availability of
temporally adjacent clear sky reference images (temporal
methods), estimates of the surface reflectance (spatial
methods), or remaining parts of an image (non-
complementation methods) (e.g., Zhang et al., 2018; Wang
et al., 2019; Li et al., 2019b, and references therein). Spectral
methods have been employed in image dehazing that has far
ranging applications in Earth science, search and rescue, event
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recognition, and aerial surveillance (e.g., Mehta et al., 2021, and
references therein). Spectral approaches have also been employed
for ocean remote sensing (e.g., Steinmetz et al., 2011; Frouin et al.,
2014; Frouin and Gross-Colzy, 2016). Here, we describe a spectral
method that encompasses and goes beyond dehazing and can be
described as spectral cloud clearing. Beyond the RGB information
provided in the training data set, our approach does not require
any additional a priori information about the Earth’s surface or
atmospheric absorption or scattering, nor does it require radiative
transfer calculations or look up tables. The ultimate success of the
method does however require a high quality sample of
training data.

2 MATERIALS AND METHODS

2.1 GOME-2 Spectra
We use reflectance measurements from GOME-2 (Munro et al.,
2016), a satellite instrument with spectral coverage from the UV
to the NIR including the so-called red edge from approximately
670 nm through the start of the strong O2 A band near 758 nm.
This instrument has a spectral resolution of the order of 0.5 nm at
the wavelengths of interest (∼400–800 nm). It flies on the
European Meteorological Satellites operational (EUMETSAT
MetOp) series. Here, we use data from GOME-2A (aboard
MetOp-A) in 2018. MetOp-A, launched on October 19, 2006,
is in a LEO with a local equator crossing time near 09:30. We use
data from GOME-2 bands 3 and 4 covering 397–604 and
593–790 nm, respectively. We used GOME-2A level 1B data
from version R2 with no further adjustments. In 2018,
GOME-2 was collecting data in a reduced swath mode
(960 km swath), with pixels sizes approximately 40 × 40 km2

at nadir. While this spatial resolution is considered low for many
applications, the algorithm developed here and tested with
GOME-2 can be implemented and evaluated with higher
spatial resolution hyper-spectral imagers.

2.2 MODIS MCD43 and Other Land Data
Sets
We use NBAR data from the collection 6 MODIS MCD43C data
set (Schaaf et al., 2002; Schaaf, 2015; Wang et al., 2018). MODIS
instruments fly on the National Aeronautics and Space
Administration (NASA) Terra and Aqua satellites in late
morning (10:30 equator crossing time) and early afternoon
(13:30 equator crossing time) polar orbits, respectively. Among
the available MODIS bands, here, we use bands 1, 4, and 3,
corresponding to red (R, 620–670 nm), green (G, 545–565 nm),
and blue (B, 459–479 nm), respectively, that fall within the
GOME-2 spectral range. MCD43 NBARs are reported on a
daily basis. These data are constructed from clear-sky
reflectance data observed over a 16 days window, computed on
a daily basis and weighted towards the reported day. Therefore,
these data are not true daily data, but rather can be considered as
somewhat smoothed over a rolling 16 days window. The
MCD43C NBAR data are averaged on a grid of 0.05° latitude
by 0.05° longitude.

We collocate MCD43C data to GOME-2 footprints by
averaging all NBARs for gridboxes whose centers fall within
the rectangular area defined by the corners of a given GOME-
2 pixel. We similarly compute the fraction of snow in a GOME-2
pixel according to the Interactive Multi-sensor Snow and ice
mapping system (IMS) data set (U.S. National Ice Center, 2008)
in the northern hemisphere and the Near-real-time Ice and Snow
Extent (NISE) data set (Brodzik and Stewart, 2016) in the
southern hemisphere. We also calculate the fraction of water-
cover within a GOME-2 pixel as in Qin et al. (2019).

2.3 Neural Network Architecture
Figure 1 describes the general approach of training a neural
network (NN) to estimate RGB land surface reflectances
(henceforth denoted RGBG2 or RG2, GG2, BG2) from all-sky
GOME-2 spectra.

In order to reduce the dimensions of the GOME-2 spectral
measurements used as predictors (shown in the top left box in
Figure 1), we perform an principal component analysis (or eigen-
decomposition) of the input spectra, in the form of a covariance
matrix. To train the NN, we use GOME-2 data from all orbits on
several days encompassing all seasons (Jan. 2-3, Mar. 2-3, May 2-
3, Jul. 6-7, Sep. 3-4, and Nov. 2-3 of 2018). The dates were chosen
to avoid days when GOME-2A was operating in a more narrow
swath mode. The 2 days in each chosen month were selected to
provide good coverage over all land masses. While we have not
undertaken a detailed study on the sampling of data needed for
good global results, we find that this sample appears to be
adequate as will be shown below.

The eigen-decomposition is accomplished using all spectra
from these days. We then compute coefficients of the leading
eigen-modes in order to represent each spectrum with these
leading modes. The number of included leading modes was
optimized as discussed below. The leading mode coefficients
can then be thought of as pseudo-observations to be used as
predictors or features in the NN training rather than the full
spectral complement. Before the eigen-decomposition, there are
additional options to select a particular wavelength range, spectral
resolution (by smoothing the GOME-2 spectra), and spectral
sampling. These options can be used to simulate performance for
other instruments.

The next step in the process is quality assurance, which we
found to be critical to the overall performance of the NN. The
quality assurance tests, developed by trial and error, were found
to give good performance of the trained NN as compared with
independent data as described below. We use the following
quality assurance (QA) checks in order to flag potentially
erroneous training and evaluation data over land only. They
include the removal of spectra over 1) snow and ice; 2) water; 3)
optically thick clouds; 4) scenes with high Solar Zenith Angles
(SZAs > 70°); and 5) spectra that cannot be well reconstructed
with the leading modes.

We obtained superior training results when data over snow
were removed from the training sample. The spectral signature of
the snow for the wavelengths used here may be confused with that
of clouds. In addition, the MCD43 algorithm may not produce
appropriate daily NBARs for training in the presence of partial or
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rapidly changing snow conditions. We remove all pixels with
snow or ice fraction > 5% as determined by the IMS and NISE
data. We found a few remaining snow contaminated pixels,
particularly in the southern hemisphere where the IMS data
were not available. To remove these, we filter data using the
empirically derived expression GM - (1.5 BM - 0.02) < 0.

We also found that eliminating mixed land/water pixels
improved performance as water reflectance properties may not
be well-captured within MCD43. We eliminate all pixels with
water fractions > 5%. To remove optically thick clouds, we filter
out all pixels with a red reflectance, ρG2, > 0.6.

We then eliminate spectra by evaluating the reconstruction
with leading modes as follows. For each spectrum, the error in the
spectrum reconstructed with the leading modes (defined as the
difference between the reconstructed spectrum and the original
spectrum) is computed for every wavelength. If the maximum
absolute error for a given spectrum is 5 times more than the
standard deviation of reconstruction errors computed over all the
wavelengths of all spectra in the training set, then that spectrum is
excluded from the training and evaluation samples; this flagging
may identify damaged spectra, such as those with large noise
found in the south Atlantic Anomaly area and those potentially
affected by saturation in glint conditions as discussed by Gorkavyi
et al. (2021).

The collocated MODIS MCD43-based RGB NBARs (denoted
RGBM or RM, GM, BM) are used as the predicted or target
variables. These MODIS data are derived from observations
made in clear skies over a rolling 16 days period. They may be
considered as clear sky data adjusted to remove atmospheric,
aerosol, and sun-satellite geometric effects, interpolated to the
location of cloud, aerosol, and atmospheric-contaminated
GOME-2 data. The coefficients of the leading eigenvectors of

GOME-2 spectra that have passed all quality assurance checks are
the predictors. Optionally, sun-satellite geometry parameters can
be added as predictors. Here, we use the cosines of the SZA, view
zenith angles, and phase angles, θ0, θ, and ϕ, respectively, where
the phase angle is defined as the angle at a given point between the
Sun and satellite. The resulting NN training can be described by

RGBG2 � fNN ρG2, cos θ0( ), cos θ( ), cos ϕ( )( ). (1)

The NN basically acts as a non-linear regression function that
attempts to separate the spectral signature of the surface
reflectance from that of the atmosphere including clouds,
aerosol, and gaseous absorption. We provide more
interpretation of how the NN is able to perform this
separation below.

The NN training is performed with half of the available
samples from the above-mentioned dates that pass all quality
assurance tests. After the training process has converged, results
generated from the trained NN are applied to independent
GOME-2 predictor data and are then compared with
collocated MODIS data for samples not used in the training.
An optional step at this point is to check for outliers and fine tune
the quality control to remove these data. This is how we
developed the final quality assurance checks. The trained NN
can then be used to apply the cloud clearing globally in a simple
and efficient manner, requiring only the eigenvectors and weights
of the NN.

The reconstruction errors for the three color bands, denoted
RGB_error, can be similarly estimated by training a second NN
with the same predictors but with targets consisting of absolute
values of the differences between GOME-2 reconstructed and
corresponding collocated MODIS reflectances, i.e.,

FIGURE 1 | Flow diagram showing how RGB surface reflectances and their uncertainties are estimated with machine learning (a neural network, NN) using
continuous hyper-spectral measurements from instruments such as GOME-2 trained on MODIS RGB (RGBM) surface reflectances.
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RGB_error � fNN ρG2, cos θ0( ), cos θ( ), cos ϕ( )( ). (2)

The reconstruction error standard deviation is then given by
RGB_error × 1.25 assuming a normal distribution.

We employ the same general NN architecture as that used by
Joiner and Yoshida (2020) for estimation of gross primary
production (GPP) from MODIS NBARs. Briefly, a configuration
within the Interactive Data Language (IDL) software package consists
of a three layer feed-forward artificial NN with two hidden layers and
2N nodes in each layer, where N is the number of inputs. The output
layer has three nodes, one each for R, G, and B NBAR; this produced
similar results as when separate networks were created for each of the
output bands. For activation functions we use a soft-sign for the first
layer, a logistic (sigmoid) for the second layer, and a bent identity for
the third layer. An adaptive moment estimation optimizer minimizes
the error function with a learning rate of 0.1. Inputs and outputs are
both scaled to produce zero means and unit standard deviations.
Similar results were reproduced with Python codes and different
architectures.

While we have eliminated both snow and water contaminated
pixels here, we note that this does not mean that our approach is
not applicable to either snow- or water-covered pixels. For
example, the use of short-wave infrared bands (not available
on GOME-2) along with an appropriate training data set over
snow may enable the approach to be applied over snow-covered
surfaces. Similarly, applications over water surfaces should also be
possible with appropriate training data.

3 RESULTS

Figure 2 shows a random sample of GOME-2 spectra under
various conditions ranging from mostly clear (those with lowest

reflectances) to highly cloudy (those with the highest
reflectances). Several gaseous absorption bands are seen
including the O2 B band near 685 nm and the O2 A band near
∼760 nm. The rapid rise in reflectance between about 685 and
760 nm, known as the red edge, is apparent particularly in the
mostly clear sky pixels. In general, clouds tend to flatten out the
spectra. The effect of increased Rayleigh scattering at shorter
(bluer) wavelengths is also apparent in the all sky reflectances; this
is manifested as increasing reflectances from green to blue
wavelengths although the surface reflectance is generally lower
in the blue as compared with the green.

3.1 Dependence on Inputs
We perform a series of NN trainings and evaluations using
different wavelength ranges along with optional smoothing
and resampling of the spectra to simulate other instruments.
With the full spectral range, resolution, and sampling of GOME-
2, we can simulate and compare the potential performance of
various current and future satellite instruments. Table 1
summarizes the evaluations with statistics comparing
reconstructed RGBG2 with the target RGBM.

We find that 14 coefficients of the leading eigenvectors is close
to optimal for RGB estimation using the full wavelength range of
403–795 nm. There is no apparent benefit from using additional
eigenvectors (results not shown) and some degradation with less
than 14. The leading eigenvectors (principal components) are
shown in Supplementary Figures S1, S2. Correlations and root
mean squared difference (RMSD) are highest for the red band
and lowest for blue which may reflect differences in the signal to
noise ratios in the different bands.

The reconstruction of NBARs includes not only atmospheric
correction and cloud and/or aerosol clearing, but also the BRDF
adjustment to nadir viewing. This use of the three angles that
define the sun-satellite geometry as predictors helps in this
respect. We conducted another training without using these
angles as predictors. The results of exp. #2 in Table 1 without
angles as predictors show a relatively small degradation as
compared with results that used the sun-satellite angles in exp.
#1. This is an indication that the NN is learning about the canopy
scattering and shadowing directly from the spectra. The NN also
appears to learn how to deal with complex cloud and aerosol bi-
directional effects from the spectra.

Nearly identical results are obtained using the full wavelength
range of GOME-2 bands 3 and 4 and a reduced range that
removes wavelengths in the O2 A band (403–758 nm) (not
shown). A small degradation is seen with the reduced
wavelength range of 403–680 nm where red edge wavelengths
are removed (exp. #3 of Table 1). Removing wavelengths in the
blue region (using 500–758 nm in exp. #4) does not produce
substantial degradation for the red and green bands. Using only
wavelengths in the blue range (403–500 nm) produces noticeable
degradation to the reconstruction of blue reflectance (exp. #5),
although the overall RMSD may be acceptable for some
applications. This wavelength range would be applicable to the
Ozone Monitoring Instrument (OMI) that is used to estimate
column amounts of trace gases such as NO2 and does not cover
green or red wavelengths. Using red through the red edge

FIGURE 2 | Random sampling of GOME-2 spectra (colors chosen at
random) on various days in 2018 with major atmospheric gaseous absorption
bands labeled above and MODIS bands indicated as labeled above and
approximate values of cloud optical thicknesses (COT) (assuming
overcast conditions) and conditions (e.g., Clear Sky) labeled near the
corresponding spectra.
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(603–758 nm, exp. #6) produces some degradation in statistics for
the red band as compared to results obtained with the green
through red wavelength range.

We simulate RGB reconstruction that would be achieved using
a lower spectral resolution hyper-spectral sensor such as the
planned NASA Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE) Ocean Color Instrument (OCI) that will have spectral
coverage from the UV through the NIR at approximately 5 nm
spectral resolution and at 1 km spatial resolution (Werdell et al.,
2019). We averaged together every 25 GOME-2 samples (GOME-
2 sampling is approximately 0.21 nm) to produce PACE-like
spectra. We obtain negligible degradation in RGB estimates as
compared with those obtained using full GOME-2 spectral
resolution with the same wavelength range (not shown).
Further testing by averaging every 50 GOME-2 samples
produced similar results (not shown), indicating that high
spectral resolution is not required in order to achieve good
surface reflectance estimates in cloudy conditions.

We computed the full error covariance of the GOME-2 surface
RGB reconstruction. We find that the errors for all bands are
substantially correlated. This bodes well for applications that rely
upon ratios or differences of bands, such as in the computation of
some vegetation indices. The error correlation between red and
blue is 0.73, red and green is 0.85, and green and blue is 0.89. We
list statistics for band differences in Table 1 (last grouping, for
exp. #1) that shows, as expected based on the error correlations,
higher correlations between target and predicted surfaces
reflectances for band differences as compared with some of
the individual bands.

3.2 Dependence on Cloudiness
Figure 3A shows two dimensional (2D) density plots
comparing the target RM with the reconstructed RG2 using
the range 400–795 nm on August 2, 2018, a day not used in the
NN training. The r2 value is 0.97, and the overall bias is
negligible. However, a small bias is shown at lower values
of RM.

The effective cloud fraction, fc, is a quantity used in solar
backscatter trace-gas retrievals to indicate the fraction of clear
and cloudy radiance components in a pixel with thin and/or
broken clouds. This quantity is used in conjunction with the so-
called independent pixel approximation (IPA) where the top-of-
atmosphere (TOA) measured radiance at a given wavelength λ,
Im(λ), is expressed as a combination of clear and cloudy radiances
weighted by fc, i.e.,

Im λ( ) � Ig λ( ) 1 − fc λ( )[ ] + Ic λ( ) fc λ( ), (3)

where Ig and Ic are the clear sky and cloudy sky sub-pixel
radiances, respectively, computed in an atmosphere with
Rayleigh scattering and atmospheric absorption (all radiance
quantities here are normalized by the solar irradiance). In the
commonly used Mixed Lambertian-Equivalent Reflectivity
(MLER) model, Ig and Ic are modeled with the assumption of
Lambertian surfaces with equivalent reflectivity, LER
(dimensionless), that can be computed using

I � I0 + LER × T

1 − LER × Sb
, (4)

TABLE 1 | Statistical comparison of 131,544 GOME-2 independent (not used in training) data points with collocated MODIS data from training/evaluation days listed above.
Statistics include the root mean squared difference (RMSD), bias (mean of RGBG2–RGBM), and variance explained (r2). The table is segmented into different experiments,
denoted by “exp. #”. The last grouping is for band differences.

color(s) exp. # exp. description λ Range
(nm)

r2 Bias RMSD

R 1 GOME-2 bands 3and4 403–795 0.982 0.000 0.016
G 1 full λ ranges used 403–795 0.970 0.000 0.012
B 1 sun-sat. angles used 403–795 0.953 0.000 0.010

Ra 2 similar to exp. 1 but 403–795 0.978 0.000 0.018
Ga 2 without sun-sat. angles 403–795 0.962 0.000 0.014
Ba 2 used as predictors 403–795 0.944 −0.000 0.010

R 3 similar to exp. 1 but 403–680 0.979 0.000 0.017
G 3 NIR red edge 403–680 0.968 0.000 0.013
B 3 λ range removed 403–680 0.947 0.000 0.010

R 4 similar to exp. 1 but blue 500–758 0.981 −0.000 0.016
G 4 and some NIR λ range removed 500–758 0.969 −0.000 0.012

B 5 blue λ range only 403–500 0.924 −0.000 0.012

R 6 red, and red edge 603–758 0.966 0.001 0.022
R 6 λ range only 675–758 0.964 −0.002 0.023

R-B 1 similar to exp. 1 403–795 0.980 −0.001 0.011
R-G 1 but for band differences 403–795 0.974 −0.001 0.008
G-B 1 403–795 0.961 −0.000 0.006

aSun-satellite geometry (3 angles) not included as predictors.
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where I0 is the radiance contributed by the atmosphere in the
presence of a black surface, T is the total amount of irradiance
(direct plus diffuse) reaching the surface converted to the ideal
Lambertian reflected radiance (divided by π) in the direction an
observer then multiplied by the transmittance between surface
and top-of-atmosphere that includes the effects of atmospheric
absorption and scattering, and Sb is the diffuse flux reflectivity of
the atmosphere for its isotropic illumination from below. In the
MLER model, the cloud LER is assumed to be 0.8, a number that
well reproduces Rayleigh scattering in partly cloudy and thin
cloud scenes over a range of different conditions (e.g., Ahmad
et al., 2004). An fc value of 1.0 indicates optically thick cloud
completely covering a pixel. The effective cloud fraction, fc, should
not be confused with the geometrical cloud fraction; fc used within the
MLERmodel is a construct designed to produce the observed amount
of scattering and absorption for a pixel of thin and/or broken clouds
and/or aerosol without having to employ complex cloud/aerosol
models with many parameters. While the MLER model may seem
a too simplistic representation of clouds, it is found to well reproduce
the complex radiative transfer within a cloudy atmosphere including
Rayleigh scattering and atmospheric absorption (see the review of
Stammes et al., 2008, and references within). In theMLERmodel, fc is
formally wavelength dependent. Cloud shadowing and other bi-
directional effects and their interaction with Rayleigh scattering as
well as unaccounted for particle or gaseous absorption contribute to a
relatively small fc wavelength dependence.

We estimate fc by first using Eq. 4 to compute Ig (with
reconstructed surface reflectance) and Ic. Then, we invert Eq.
3 with the observed reflectance and the assumption of a Rayleigh
scattering atmosphere (i.e., aerosol and trace-gas absorption are
not included). We use parameters I0, T, and Sb computed with the
Vector Linearized Discrete Ordinate Radiative Transfer
(VLIDORT) code (Spurr, 2006).

Figure 3B shows R differences (RG2-RM) as a function of fc.
There is a noticeable increase in the RG2 standard deviation with
increased cloudiness. It should be noted that the bulk of the data
samples have fc < 0.2. There is a small positive bias in RG2 for fc >
0.15, and the bias grows noticeably for fc > 0.6.

Figure 3C shows that fractionally, the estimated errors are
largest at low RG2 values (∼60% at RG2 � 0.025) and decrease with
increasing RG2 (24% at RG2 � 0.075, 14% at RG2 � 0.125, and 9% at
RG2 � 0.225). The estimated RG2 uncertainty shows the expected
increase with fc at 0 < fc < 0.2 in Figure 3D. Estimated errors
remain relatively flat for 0.2 < fc < 0.6, similar to the actual errors
shown in Figure 3B. However, while the actual errors increase for
fc > 0.6 as clouds become more opaque, this behavior is not seen
in the estimated errors. This may be a result of poor sampling at
the highest values of fc.

3.3 Radiative Transfer Simulations
To help interpret the results, we performed additional
calculations with VLIDORT. Figures 4, 5 show results for

FIGURE 3 | Density plots using (independent) red band data (denoted “R”) from August 2, 2018 with colors indicating the number of points in a bin as indicated
along the top; bins with a single point are indicated as a dot rather than a filled box; (A) scatter diagram of the predicted surface red reflectance fromMODIS MCD43 (RM)
versus that reconstructed from all sky GOME-2 data (RG2) with statistics including the number of points (N) and standard deviation (std) and the 1:1 line shown in red; (B)
RG2–RM as a function of the effective cloud fraction fc computed with the GOME-2 R band (higher fc values indicate higher geometrical cloud fractions and optical
thicknesses). Red diamonds indicate binnedmeans and red vertical bars the binned standard deviations; (C) predicted RG2 errors as a function of RG2; (D) predicted RG2

errors as a function of fc computed with the red (R) band.
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cloud optical thicknesses (τ) of 10 and 20, respectively, for
vertically and spectrally homogeneous clouds (optical
parameters constant) at a height of 5 km with a 1 km
geometrical thickness. Using wavelength invariant parameters
is a reasonable approximation for clouds with sufficiently large
particles (Deirmendjian, 1969). Atmospheric and cloud
absorption are neglected in these simulations. We used two
different models for cloud phase functions; results for a cloud
of ice crystals with an effective diameter of 60 μm (Baum et al.,
2014) are shown in the left panels of Figures 4, 5 and results for
the C1 water cloud droplet model of Deirmendjian (1969) with
effective diameter of 12 μm are shown on the right panels. Results
for these figures are shown for a geometry of nadir view and solar
zenith angle of 45°.

Figures 4A,B, 5A,B show simulated observed reflectances in
cloudy conditions (calculations for clear skies are shown in panels
A) for four wavelengths spanning ultraviolet (UV) through short-
wave infrared wavelengths (SWIR) (354 (UV), 420 (blue), 680
(red), and 2,200 (SWIR) nm) as a function of the surface albedo
(A). As expected, the reflectances increase with decreasing
wavelength owing to the effects of Rayleigh scattering and as
shown in the GOME-2 spectra. For the clear sky simulations at
the two longest wavelengths, the reflectance is nearly equal to the
surface albedo as may be expected. The reflectances are seen to
increase at all wavelengths with increasing surface albedo.
Although this surface albedo dependence is smaller for a cloud
optical thickness of 20, it is still present. This is an indication of
sensitivity to the surface albedo.

FIGURE 4 | Radiative transfer calculations for nadir and solar zenith angle of 45° for an ice cloud model (left panels) and C1 model (right panels, see text for more
detail) showing reflectance (R) for cloudy cases with cloud optical thicknesses of 10 in A and B (clear sky calculations also in panel A); one minus the effective cloud
fraction, fc, in C, D; and the sensitivity of the reflectance to a unit change in surface albedo (A), denoted dR/dA as a function of surface albedo for four wavelengths
spanning the ultraviolet through short-wave infrared.
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We similarly show the quantity one minus the effective cloud
fraction fc in Figures 4C,D, 5C,D as a function of A. This quantity
may be interpreted as the fraction of the observed raidance
corresponding to a clear sky portion of the scene within the
IPA MLER model. This fraction is about 30% for the ice cloud
and 50% for the water cloud. Here, we see that fc is fairly spectrally
invariant, particularly for the visible through SWIR bands, as
discussed in more detail below. The UV wavelength shows some
deviations from wavelength invariance at higher surface albedos.

Figures 4E,F, 5E,F display the sensitivity of the reflectance (R)
to the surface albedo (denoted dR/dA) as a function of A. The
results show, as expected, higher sensitivity to the surface at
higher surface albedos, a slight decrease in sensitivity with
decreasing wavelength (owing to Rayleigh scattering), and
slightly lower sensitivities for the ice cloud model as compared
with the C1 model resulting from the different cloud phase
functions. Values of the sensitivity can be interpreted
approximately as the fractional change in observed

reflectance resulting from a change in surface albedo.
Sensitivities range from about 0.15 for the ice cloud model
with low A to as high as 0.7 for high A for the C1 model in the
τ � 10 case and from about 0.05 to 0.45 for the corresponding
τ � 20 simulations. These results are consistent with a basic
model of cloud transmittance given by Krotkov et al. (2001).
Corresponding calculations for a view zenith angle of 40° are
provided in the supplement.

3.4 Spatial Dependence
Figure 6A shows the observed all-sky red reflectance, ρR, on
August 2, 2018 along with the reconstructed RG2 (Figure 6B), the
difference between the target and reconstructed R (RM-RG2,
Figure 6C), and estimated RG2 uncertainties from the NN
fitting (Figure 6D). At this wavelength with typical non-desert
land surface reflectances, a ρR of 0.4 corresponds approximately
to cloud optical thickness, τ, of 5, ρR � 0.6 corresponds roughly to
τ � 10, and ρR � 0.7 corresponds to τ � ∼ 20 (Kujanpää and

FIGURE 5 | Similar to Figure 4 but for cloud optical thickness of 20.
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Kalakoski, 2015). So even at high values of observed ρR, a small
fraction of incoming sunlight reaches the surface and is then
reflected from the surface and penetrates through the clouds to
reach a satellite-borne sensor. Even though the fraction of
surface-reflected light may be quite small, its spectral signature
still may be distinguished from that of the clouds and atmosphere
in observations with sufficient signal-to-noise ratios. The
estimated RG2 uncertainties shown in Figure 3D display
generallly larger errors for more heavily clouded conditions as
expected. In the presence of small amounts of undetected snow or
ice within a GOME-2 pixel, RG2 would likely be underestimated
as the trained NNmay confuse snow for clouds and subsequently
try to reconstruct the snow- or ice-free part of the pixel, i.e., snow
clearing.

Some R differences may result in part from the fact that the
underlying MCD43 RM is estimated using a moving weighted
16 days window and is not a true daily product. In addition, the
MCD43 product may occasionally be affected by cloud and/or
aerosol contamination or a small amount of available data.

Overall, RG2 provides nearly complete coverage over the
GOME-2 swaths, capturing the major spatial features in the

RM training data set. On this day, a global map of aerosol
optical thickness from the NASA Global Modeling and
Assimilation Office’s (GMAO’s) Modern-Era Retrospective
Analysis for Research and Applications, Version 2
(MERRA-2) assimilation (Gelaro et al., 2017) shows high
aerosol loading across northern Africa towards the Saudi
Arabian peninsula and the Indian subcontinent as well as in
southern Africa and the western United States. The absorbing
aerosol index (AAI), an indicator of absorbing types of aerosol
such as dust and smoke, derived from the Ozone Mapping and
Profiler Suite (OMPS) on the Suomi National Polar
Partnership (SNPP) satellite (Torres, 2019) shows high
values across the Sahara (> 2) and MiddleEast (see
supplement) presumably owing to the transport of dust.
High AAI values are also seen over other areas, likely from
smoke transported from fires including over southern Africa,
the western US, and Siberia. Differences between target and
predicted R are not substantially higher in these regions as
compared with other areas, indicating that the training
appears to work reasonably well in the presence of high
absorbing aerosol loading.

FIGURE 6 | Results for GOME-2 red (R) reflectances on August 2, 2018: (A) GOME-2 original R reflectance (ρR) to show presence of clouds (generally higher
reflectances) (B) reconstructed from GOME-2 (RG2); (C) surface reflectance difference map, collocated MODIS MCD43 RM minus RG2; (D) estimated RG2 uncertainties.
Maps for (B–D) show only for GOME-2 pixels with observed red R < 0.6.
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Figure 7 shows GOME-2 all sky, reconstructed, and MCD43
target surface RGB images for August 2, 2018. GOME-2 pixels are
substantially impacted by clouds as well as Rayleigh scattering. The
GOME-2 atmospherically-corrected, nadir-adjusted, cloud-cleared
reconstructed RGB image of the Earth’s land surface by eye is almost
indistinguishable from that of the target MCD43 data. A close
examination of the images shows some apparent artifacts in the
reconstructed GOME-2 data on the easternmost part of the swath
that crosses over southeast Asia. However, the GOME-2 data show a
bit more uniformity in the surface RGB over the highly cloudy
Indian subcontinent region. Note that to enhance the contrast, all
RGB images shown here are selectively scaled using the IDL
ScaleModis procedure supplied with the coyote library from
Fanning Software Consulting that is based on code originally
developed by the MODIS rapid response team for image display.

We studied a sample of the outlier cases produced with
GOME-2 that did not agree well with collocated MODIS data.
In some of these, we found excess filling-in of solar Fraunhofer
lines that is indicative of additive effects in the observed radiances

as discussed by, e.g., Gorkavyi et al. (2021). Scattered light, dark
current, non-linearity, bad or dead pixels, changes in the spectral
response function from inhomogeneous slit illumination or
temperature changes, eclipses, detector memory effects,
saturation, and cloud three dimensional (3D) effects (light
scattered from clouds or aerosol outside the area of the
ground footprint) are examples of effects that may lead to
additive radiance errors in GOME-2 and similar instruments
(e.g., Lichtenberg et al., 2006; Gorkavyi et al., 2021). These
additive error could in turn result in problems reconstructing
surface reflectances from cloudy spectra and the artifacts seen by
eye if not flagged by our quality control.

Figure 8 provides a zoomed in view of the Saharan region that
was impacted by both dust and clouds. The whitish and grayish
pixels in the top panel indicate cloud contamination, particularly
in the lower right corner of the panels where ρR exceeds 0.6 and is
removed from the images. Here, the increase in green vegetation
towards the bottom of the lower two images can be seen clearly
although some noise is present in the easternmost orbit at this

FIGURE 7 | Top: GOME-2 RGB image from August 2, 2018; Middle: Reconstructed surface RGB image from GOME-2; Bottom: Surface RGB from MODIS
MCD43 averaged over GOME-2 pixels. Snow/ice covered pixels are not masked out. Orbital gaps as well as pixels with reflectances > 0.7 or not passing the
reconstruction check are masked out. Ocean data are colored as blue and are not considered in this study.
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transition which is also seen to be cloudy. Many of the details
from the MODIS data are well captured by GOME-2 despite the
heavy aerosol loading across the region that is present on this day.
Additional RGB imagery for a date in a different season (February
1, 2018) is shown in the supplement where the NN has apparently
performed snow clearing as well as cloud clearing along with the
corresponding aerosol loading and AAI.

3.5 Temporal Dependence
We processed 1 year of GOME-2 data (2018) to analyze time
series of the reconstructed reflectances at different sites. Our QA
checks caught many but not all outliers. We therefore applied an
additional simple outlier check by checking whether any points at
a given location fell outside the range of the annual mean ±4
standard deviations. We selected locations near eddy covariance
flux towers. Here we show one example and provide additional
time series in the supplement.

Figure 9 shows one example over southeast Asia where
there is substantial seasonal variability. The time series of
the reconstructed RGBs are noisier in general than those of
the collocated MCD43 target data. The reconstructed
surface reflectances capture the overall seasonal
variations from higher values at the beginning of the year
through a transition to lower values at the middle to late part
of the year. In this example, about 30% of data are filtered by
the snow check, 4% by the high cloudiness check (here we
allow data up to a red reflectance of 0.7), and 0% by the
reconstruction check. One low value around day 103 is not
flagged by the four standard deviation check (possibly due to
unflagged snow) but could be detected by a more
sophisticated time series continuity check. Examples in
the supplement show a few cases of possible cloud
contamination in the MODIS target data used for
training and evaluation.

FIGURE 8 | Similar to Figure 7 but zoomed in on northern Africa; Top: GOME-2 RGB image from August 2, 2018; Middle: Reconstructed surface RGB image from
GOME-2; Bottom: Surface RGB from MODIS MCD43 averaged over GOME-2 pixels.
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3.6 Interpretation of NN Learning Within the
MLER Framework
Gupta et al. (2016) conducted 1D radiative transfer simulations in
complex cloudy conditions using three different cloud models and a
range of geometrical cloud fractions to show that fc is fairly
wavelength invariant over a large spectral range from the UV to
the NIR. We show additional supporting calculations in Figures
4C,D, 5C,D. The near wavelength invariance of fc implies that in the
absence of gaseous, cloud, or aerosol absorption, the radiative
transfer in a complex scene can be modeled with approximately
one parameter: fc. If fc, and its relatively small wavelength
dependence, can be distinguished from the spectral dependence
of the underlying surface, then it is possible to reconstruct a surface
RGB image in cloudy conditions.We have utilized machine learning
to accomplish this task with a large, representative training set. We
may then compute fc at the training wavelengths using the
reconstructed reflectances as described above and examine its
wavelength dependence.

Figure 10A shows fc derived at the red wavelength band. Note
that here we have used the reconstructed NBAR as a proxy for the

LER. A more exact estimate of fc should account for the BRDF-
dependence of the reflectance (Vasilkov et al., 2017; Vasilkov et al.,
2018). For our purpose of roughly estimating fc and its wavelength
dependence, use of the reconstructed NBAR as the surface LER
should suffice; however, note that neglect of the surface BRDF may
contribute to wavelength and cross track dependence in fc.
Figure 10B shows the difference between fc computed for the red
and blue wavelengths.

Larger spread and bias is seen in the comparison of fc from red
and blue wavelengths in Figure 10C as compared with red and
green wavelengths in Figure 10D. There is only a small mean
difference of 0.01 between fc at red and green wavelengths.
Rayleigh scattering, which is much stronger at blue
wavelengths, reduces the effects of cloud shadowing as well as
cloud and surface bi-directional effects, causing larger differences
between red and blue wavelength fc. Negative values are shown
here and may be due to a combination of factors including
shadowing, unaccounted for effects of absorbing aerosol, and
GOME-2 calibration error. GOME-2A is known to have suffered
from radiometric degradation (Munro et al., 2016). The NN
training is able to adjust for absolute calibration error in GOME-2

FIGURE 9 | Time series near the MAGIM eddy covariance site in China of target (MCD43, black line with stars) and reconstructed surface reflectances (GOME-2:
colored + with extended lines in the y direction to indicate the one standard deviation uncertainty) for (A) Red; (B) Green; and (C) Blue bands, and (D) Observed
reflectances from GOME-2 pixels. Bias and standard deviation of the reconstructed reflectances with respect to the target are provided for each band (color). The
number of outliers found by the four standard deviation outlier check is indicated in (C) (in this case zero). Points filtered by the quality assurance (QA) checks are
given in (D) including snow (red diamonds), extremely high cloudiness (blue diamonds), or poorly reconstructed spectra from the leading 14 principal components (none
in this case).
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relative to MODIS. The slight improvement in results obtained
when angles are used as predictors may result from better ability
to adjust for any remaining geometrically-dependent biases.

The near wavelength invariance of fc provides an explanation of
how the NN is able to separate the surface and cloud spectral
signatures by extracting fc, or similar information, and its relatively
small wavelength dependence. The near spectral invariance of fc
shown in our radiative transfer calculations (Figures 4C,D, 5C,D),
also suggests that our cloud-clearing method may be able to fill
spectral gaps in the RGB training data set in order to estimate more
complex surface spectral signatures such as from chlorophyll
absorption. Finally, this example gives an indication as to why the
errors in the reconstructedRGBs are correlated; an error in the derived
fc should produce spectrally correlated errors in estimated surface
reflectances. Other works have similarly exploited the spectral
differences between ocean surface reflectance and spectrally smooth
clouds, aerosol, and ocean glint (e.g., Steinmetz et al., 2011; Frouin
et al., 2014; Frouin and Gross-Colzy, 2016, and references therein).

4 DISCUSSION AND CONCLUSION

We have provided an approach to reconstruct RGB imagery in
moderately cloudy and aerosol-contaminated conditions using

hyperspectral imagery. Our approach employs a NN trained on
an appropriate sample of data. In a scattering atmosphere, surface
spectral effects are present in satellite-observed spectra and the
machine learning algorithm appears able to separate surface
spectral fingerprints from those of cloud, aerosol, and
atmospheric scattering and absorption and to account for the
presence of cloud and vegetation shadowing. Once trained, the
NN estimates the surface reflectances simply and efficiently,
requiring only a few matrix muliplications and applications of
non-linear functions for each processed spectrum.

We stress that the success of the method depends critically on
the quality of the training data set. In this study, we utilize high
quality daily NBARs that can be accurately averaged over a larger
GOME-2 pixel. An advantage of our approach is that a large
training sample can be constructed over a wide range of
conditions; it does not depend upon simulating a multitude of
situations for training including the complex conditions that
occur with real observations. Our approach is also robust in
the presence of relative calibration error. However, we note that
for application to other higher spatial resolution instruments,
similar high quality training data may not be available. Joiner
et al. (2021) apply a variation of the approach described here to a
case study from a higher spatial resolution imager for a scene in
which parts of the image are visibly obscured by clouds. Instead of

FIGURE 10 | fc computed at different wavelengths from August 2, 2018 GOME-2 data: (A) fc computed at the red band wavelength; (B)map of difference between
computed fc at red and blue wavelengths; (C) density plot of fc at red and blue wavelengths; (D) density plot of fc at red and green wavelengths. The red line in panels (C)
and (D) is the 1:1 line.
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using MODIS data for training, they use a clear sky image taken a
short time before a cloudy image with the assumption that the
surface reflectance remains constant during that time. They show
that under the conditions of their case study scene, many surface
details are recovered with a relatively small amount of image
smearing. In that study, it was not clear how much of the spatial
smearing resulted from instrumental artifacts and geophysical
effects.

While cloud and aerosol 3D effects are less common in large
pixel sensors such as GOME-2 as compared with higher
resolution imagers such as MODIS, they may occur under
certain conditions and lead to additive errors. In cases of
broken but optically thick clouds with a homogeneous surface
underneath, GOME-2 may be able to reconstruct the surface
reflectance from the clear parts of a scene. However, for imagers
that resolve such clouds, the signals from underneath thick clouds
may be spectrally and spatially scrambled, leading to a spatially
smeared reconstructed image. Future studies will apply similar
approaches to other higher spatial resolution imagers under a
greater variety of conditions. Ultimately, the results of such
studies will help to determine whether our spectral image
reconstruction approach will be accurate enough for a given
application under different conditions.

There are a host of potential applications of the approach
developed here to extract information about the Earth’s
surface, over both land and ocean. This study focuses on
land surfaces; subsequent studies will address the ocean
surface. We plan to test the approach with other higher
order level 2 data products as target output variables. The
desired precision and accuracy as well as availability of
adequate training data sets will be considerations that
factor into whether or not this approach will be feasible
for a given application.

While our approach was implemented with GOME-2 that
provides complete spectral coverage from the UV through NIR,
there will be many more instruments available for such
applications in the future that have enhanced capabilities. For
example, the results obtained here are applicable to PACE and
other hyper-spectral instruments that will provide substantially
higher spatial resolution. The NASA geostationary tropospheric
emissions: monitoring of pollution (TEMPO) (Zoogman et al.,
2017) (expected launch in the 2023 time frame) will provide
nearly complete spectral coverage of UV through part of the red
edge (740 nm) over much of North America at an hourly time
step at ∼5 km spatial resolution. Other instruments to be
launched over the next several years may provide spectral
coverage appropriate for certain applications. For example, the
European Space Agency (ESA) FLuORescence Imaging
Spectrometer (FLORIS) on the FLuorescence EXplorer (FLEX)
mission will fly in low Earth orbit with approximately 300 m
spatial resolution and spectral coverage from 500 to 780 nm
(i.e., green through NIR) over a 250 km swath (Coppo et al.,
2017). The NASA surface biology and geology (SBG) and the
German Environmental Mapping and Analysis Program
(EnMAP) (Storch et al., 2020) will produce hyper-spectral

imagery using wavelengths from the visible through SWIR.
These instruments are particularly well suited for applications
related to land biochemical processes. The methods developed
here are also applicable to hyper-spectral imagery acquired by
instruments on the international space station as well as aircraft
and other suborbital platforms.
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