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Abstract: Fresh vegetables are an essential part of a healthy diet, but microbial contamination of
fruits and vegetables is a serious concern to human health, not only for the presence of foodborne
pathogens but because they can be a vehicle for the transmission of antibiotic-resistant bacteria. This
work aimed to investigate the importance of fresh produce in the transmission of extended-spectrum
β-lactamases (ESBL)-producing Enterobacteriaceae. A total of 174 samples of vegetables (117) and farm
environment (57) were analysed to determine enterobacterial contamination and presence of ESBL-
producing Enterobacteriaceae. Enterobacterial counts above the detection limit were found in 82.9%
vegetable samples and 36.8% environmental samples. The average count was 4.2 log cfu/g or mL,
with a maximum value of 6.2 log cfu/g in a parsley sample. Leafy vegetables showed statistically
significant higher mean counts than other vegetables. A total of 15 ESBL-producing isolates were
obtained from vegetables (14) and water (1) samples and were identified as Serratia fonticola (11)
and Rahnella aquatilis (4). Five isolates of S. fonticola were considered multi-drug resistant. Even
though their implication in human infections is rare, they can become an environmental reservoir of
antibiotic-resistance genes that can be further disseminated along the food chain.
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1. Introduction

Consumption of fresh produce has risen worldwide as consumers grow interested in
their nutritional values and their association with a healthy diet; thus the World Health Or-
ganization advises a daily intake of at least 400 g of fruit and vegetables. At the same time,
microbial load of fruits and vegetables is a serious concern to human health, since a large
portion of foods of plant origin are consumed raw, with a growing number of foodborne
outbreaks linked to fresh produce [1–3]. Besides contributing to the spread of foodborne
pathogens, an additional health concern is that vegetables represent a vehicle for the
transfer of antibiotic-resistant bacteria or antimicrobial resistance genes to humans, which
may occur through the consumption of contaminated fresh produce [4,5]. Recently, the
European Food Safety Authority assessed the importance of several food-producing envi-
ronments in the EU, including plant-based food production, in the emergence and spread of
antimicrobial resistance [6]. This Scientific Opinion points to faecal microbial contamination
of fertilisers, water and the production environment as specific interventions to minimise
bacteria, such as carbapenem-resistant or extended-spectrum cephalosporin-resistant En-
terobacteriaceae. Moreover, the report recognises the multiple data gaps as evidencing
the importance of transmission routes leading to contamination with antibiotic-resistant
bacteria at primary production and post-harvest stages of food-producing systems [6].

Extended-spectrum β-lactamases (ESBL) are enzymes conferring resistance to a great
number of β-lactam antibiotics and there is an increased prevalence of members of the
family Enterobacteriaceae producing ESBL, not only nosocomial, but also in the com-
munity [7,8]. The presence of ESBL-producing bacteria in vegetables has been reported
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in several studies [9–14] though the results are diverse, from the total absence of ESBL-
producing bacteria [9] to isolation rates of 15% [10].

The order Enterobacterales, in which the family Enterobacteriaceae is included, has
undergone a recent major revision [15], with the description of six additional new families.
Throughout this work, the references to species of the family Enterobacteriaceae follow the
former taxonomic outline defined in the last edition Bergey’s Manual [16].

Therefore, the aims of this work were to determine the importance of raw vegetables
for direct human consumption as vehicles of extended-spectrum beta-lactamase-producing
Enterobacteriaceae and their potential as environmental sources of contamination.

2. Materials and Methods
2.1. Sample Collection and Processing

A total of 117 samples of fresh vegetables were collected from two conventional farms,
one organic farm and from a street market. All the vegetables were from Spain. Samples
were of lettuce (Lactuca sativa, n = 23), tomato (Solanum lycopersicum, n = 19), cucumber
(Cucumis sativus, n = 19), carrot (Daucus carota subsp. sativus, n = 18), escarole (Cichorium
endivia var. latifolium, n = 13), pepper (Capsicum annuum, n = 10), parsley (Petroselinum
crispum, n = 9) and coriander (Coriandrum sativum, n = 6). Fifty-seven additional samples
from soil (n = 18), water (n = 14) and air (n = 13), as well as from the hands of farm workers
(n = 12), were also taken in the farms.

Vegetables were lightly cleaned to remove foreign matter and nonedible parts were
cut using sterile tools. Ten grams of each vegetable and soil sample were homogenised with
90 mL of buffered peptone water (BPW; Oxoid, Thermofisher, UK). Water samples were
processed by filtering 100 mL of the sample through a 0.45 µm filter and soaking the filter in
100 mL of BPW. A volume of 100 L air-sample was collected in farms using a microbial air
sampler (Biotest Hycon, Dreieich, Germany) fitted with a ChromAgar Enterobacteria plate
(ChromAgar, Paris, France). One hand swab sample was taken from each farm worker,
which was then soaked in a 10 mL of BPW tube.

BPW homogenates were diluted 1:10 in 0.1% peptone (Oxoid) and appropriate ten-fold
dilutions were spread onto ChromAgar Enterobacteria plates (ChromAgar) and incubated
at 37 ◦C for 24 h. Pink/reddish colonies were recorded as suspected Enterobacteriaceae and
blue ones as suspected E. coli.

The remaining homogenates were incubated for 24 h at 37 ◦C. One loopful of the
enriched solution was streaked onto ChromAgar ESBL (ChromAgar) plates for the isolation
of ESBL-producing bacteria. Plates were incubated at 37 ◦C for 24 h and colonies with
morphology associated with β-lactam resistance were selected for further characterisation.

2.2. Matrix-Assisted Laser Desorption Ionisation Time-of-Flight (MALDI-TOF) Identification
of Isolates

The isolates were grown on Tryptone Soya Agar (TSA) plates (Oxoid) for 16–24 h at
37 ◦C. Colony material was collected with a sterile pipette tip and smeared as a thin film
on a MALDI target plate. After air drying, each sample was overlaid with 1 µL of the
matrix solution (α-Cyano-4-hydroxycinnamic acid, CHCA) and allowed to dry. Spectra
were acquired with the MALDI Biotyper system (Bruker Daltonik, Bremer, Germany) and
compared with the reference database (Bruker Daltonik).

2.3. Antimicrobial Susceptibility Testing

MAST D72C AmpC and ESBL detection kit (MAST group, UK) was used for ESBL con-
firmation. Equivocal results were confirmed using the combination disk diffusion test fol-
lowing the indications of EUCAST (https://eucast.org/; accessed on 29 September 2021).
In addition, representative isolates were selected to determine minimum inhibitory con-
centration (MIC) by microdilution using Sensititre EUVSEC2 plates (Thermofisher, UK)
with the following antimicrobials: cefoxitin, cefotaxime, cefotaxime/clavulanic acid, cef-
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tazidime, ceftazidime/clavulanic acid, cefepime, ertapenem, imipenem, meropenem and
temocillin. MIC interpretation was carried out according to EUCAST cutoff values.

E. coli CECT 434 was used as a negative control, while E. coli M1L9c was used as
positive control for ESBL production.

The detection of multidrug-resistant (MDR) isolates was carried out using a selection
of antimicrobial agents of different categories, according to the proposal of the European
Centre for Disease Prevention and Control and the Centers for Disease Control and Pre-
vention [17]. The antimicrobial agents were ampicillin, cefuroxime, cefotaxime, cefepime,
aztreonam, imipenem, gentamicin, ciprofloxacin, trimethoprim-sulphamethoxazole and
chloramphenicol [17].

2.4. PCR Detection and Characterisation of ESBL-Associated Genes

The presence of blaTEM, blaSHV and blaCTX-M genes in phenotypically confirmed ESBL-
producing isolates was checked by PCR using the primers and conditions described else-
where [18] (Supplementary Table S1).

Amplified products were purified and both strands were sequenced in a Mega-
BACE 500 sequencer (GE Healthcare Life Sciences, UK). DNA sequences were compared
with curated sequences contained in the Bacterial Antimicrobial Resistance Reference
Gene Database (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047; accessed on
29 September 2021).

2.5. Data Analysis

Enterobacteriaceae and E. coli counts were transformed and expressed as log cfu/mL or
log cfu/g. Descriptive statistics of each count (mean, standard deviation, minimum and
maximum) were calculated and, for each value of the agricultural groups (sample type,
sample group, origin, and agricultural practices), normality/no normality assumptions
about bacterial population distributions were examined. The Kruskal–Wallis one-factor
ANOVA and the Mann–Whitney U procedure were used for testing the mean difference
in counts among the groups and to determine their relationships. Subsequently, the
nonparametric Kruskal–Wallis test was conducted for post-hoc pairwise comparisons on
all possible pairwise contrasts. The IBM SPSS Statistics for Windows, Version 26.0 (IBM
Corp., Armonk, NY, USA) program was used for data analysis.

3. Results
3.1. Enterobacteriaceae and E. coli Counts

Enterobacterial counts above the detection limit of 2 log cfu/g for vegetables and soil,
and 1 cfu for sample volume for air, water and hands of workers were found in 97 (82.9%)
vegetable samples and 21 (36.8%) environmental samples. The average count was 4.2 log
cfu/g or mL, with a maximum value of 6.2 log cfu/g in a parsley sample. Leafy vegetables
(lettuce, escarole, parsley and coriander) showed statistically significant (p < 0.05) higher
mean counts than other vegetables (Table 1).

Twenty-nine (16.7%) samples presented counts of E. coli above the limit of detection,
all but one obtained from vegetables, with an average value of 2.3 log cfu/g; five of them
showed values higher than 3 log cfu/g, the upper limit established in the microbiological
process hygiene criteria for precut ready-to-eat fruits and vegetables in the EU (Table 1) [19].

3.2. Isolation of ESBL Strains

Suspected ESBL isolates were obtained from Chromagar ESBL plates in 31 (17.8%)
samples. Most of the suspected samples (26) were of vegetables, 20 of leaf vegetables
and 6 of other vegetables. Five environmental samples of water (3), soil (1) and hands of
workers (1) carried presumptive isolates. Confirmation with MAST D72C kit resulted in
15 ESBL-producing isolates, 14 from vegetables and 1 from a water sample (Table 2).

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047


Foods 2021, 10, 2609 4 of 8

Table 1. Counts (log cfu/g or mL) of Enterobacteriaceae and E. coli in vegetables and environmental
samples.

n Enterobacteriaceae Counts 1 E. coli Counts 1

Lettuce 23 4.1 ± 1.1 (19) 2.7 ± 1.6 (3)
Escarole 13 5.4 ± 0.3 (13) 3.0 ± 0.0 (1)
Parsley 9 5.3 ± 0.5 (9) 2.4 + 1.0 (5)

Coriander 6 5.1 ± 0.8 (6) 1.7 ± 0.0 (4)

Leaf vegetables 51 5.0 ± 1.0 (47) 2.5 ± 0.9 (13)

Tomato 19 3.6 ± 0.8 (12) 2.3 ± 0.9 (4)
Cucumber 19 3.9 ± 0.8 (11) 1.7 ± 0.0 (3)

Pepper 10 3.5 ± 0.5 (10) 2.7 ± 0.9 (4)
Carrot 18 4.7 ± 0.9 (17) 1.8 ± 0.2 (4)

Other vegetables 66 3.9 ± 0.9 (50) 2.1 ± 0.8 (15)

Total vegetables 117 4.5 ± 1.0 (97) 2.3 ± 0.8 (28)

Soil 18 3.3 ± 0.8 (13) - 2

Water 14 3.0 ± 0.4 (6) -
Air 13 0.6 ± 0.4 (4) -

Worker hands 12 3.7 ± 0.6 (2) 2.8 ± 0.0 (1)

Environmental 57 2.9 ± 1.2 (21) 2.8 ± 0.0 (1)

Total 174 4.1 ± 1.2 (118) 2.3 ± 0.8 (29)
1 Average count ± standard deviation in log cfu/g or mL. In brackets, number of samples showing counts above
the detection limit. 2 Counts below the detection limit (2 log CFU/g for vegetables and soil, and 1 cfu for sample
volume for air, water and hands of workers).

Table 2. ESBL-producing Enterobacteriaceae isolated from vegetables and farm environment samples.

Isolate ID Source Antibiotic Resistance
Profiles 1 MDR ESBL Gene

ZA07E1 Rahnella aquatilis Carrot AMP, CXM, CTX No blaRAHN2
CI03E Serratia fonticola Coriander AMP, CXM No blaFONA5
CI10E Serratia fonticola Coriander AMP, CXM, CTX, CN Yes blaFONA5

CI04E1 Serratia fonticola Coriander AMP, CXM, CTX No
PE11E Serratia fonticola Cucumber AMP, CXM, CN Yes
ES09E Serratia fonticola Escarole AMP, CXM No
ES48E Rahnella aquatilis Escarole AMP, CXM, CTX No blaRAHN2
ES16E Rahnella aquatilis Escarole AMP, CXM, CTX No
LE18E Serratia fonticola Lettuce AMP, CXM, CTX No blaFONA5
PJ02E Serratia fonticola Parsley AMP, CXM, CTX, FEP, ATM Yes
PJ07E Serratia fonticola Parsley AMP, CXM, CTX, ATM Yes
PJ21E Serratia fonticola Parsley AMP, CXM, CTX No
PJ27E Serratia fonticola Parsley AMP, CXM, CTX, CN Yes blaFONA5
TO30E Rahnella aquatilis Tomato AMP, CXM, CTX No
AG24E Serratia fonticola Water AMP, CXM No

1 AMP, Ampicillin; CXM, Cefuroxime; CTX, cefotaxime; FEP, cefepime; ATM, aztreonam; CN, gentamicin.

The detection of ESBL-producing bacteria was statistically related (p < 0.05) to the
concentration of Enterobacteriaceae found in the sample, with a significant effect detected in
the samples with Enterobacteriaceae counts above 5 log cfu/g.

The isolates were identified as Serratia fonticola (11) and Rahnella aquatilis (4).
Genes encoding CTX-M β-lactamases were detected in six (40%) isolates, whereas no

ESBL-genes were detected with the specified primers in the remaining nine isolates. The
ctx-M gene was detected in four isolates of S. fonticola and two of R. aquatilis, all of them
isolated from vegetables. Analysis of sequences revealed that the genes from S. fonticola
were similar to blaFONA5 genes and those from R. aquatilis were similar to blaRAHN2 gene
(Table 2).
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Five isolates of S. fonticola were resistant to antimicrobial agents of different cate-
gories, thus being considered MDR. No isolate was resistant to imipenem, ciprofloxacin,
trimethoprim-sulphamethoxazole or chloramphenicol (Table 2).

Five S. fonticola and four R. aquatilis isolates representative of the positive samples
were selected to determine minimum inhibitory concentrations (MIC). All the isolates
showed an intermediate MIC value for temocillin. Three R. aquatilis and one S. fonticola
isolate had MICs above the clinical breakpoint for cefotaxime and a reduction greater than
two-fold concentration in the presence of clavulanic acid, which could be explained by
the presence of ESBL enzymes. The remaining isolates had a detectable MIC value for
cefotaxime below the breakpoint, again showing a reduction greater than two-fold in the
presence of clavulanic acid. One R. aquatilis and two S. fonticola isolates had MICs above
the breakpoint for cefoxitin, and one S. fonticola isolate for cefepime as well (Table 3).

Table 3. Minimum inhibitory concentrations of five S. fonticola and four R. aquatilis isolates.

Isolate ID Source FOX
(0.5–64)

FOT
(0.25–64)

FC
(0.06/4–64/4)

TAZ
(0.25–128)

TC
(0.12/4–128/4)

FEP
(0.06–32)

ETP
(0.015–2)

IMI
(0.12–16)

MERO
(0.03–16)

TRM
(0.5–128)

ZA07E1 Rahnella
aquatillis Carrot 2 4 * <0.06/4 <0.25 <0.12/4 0.25 <0.015 <0.012 <0.03 8 **

CI03E Serratia
fonticola Coriander 4 0.5 <0.06/4 <0.25 <0.12/4 <0.06 <0.015 <0.012 <0.03 4 **

CI04E1 Serratia
fonticola Coriander 8 * 1 <0.06/4 <0.25 <0.12/4 <0.06 <0.015 <0.012 <0.03 8 **

ES16E Rahnella
aquatillis Escarole 1 2 * <0.06/4 <0.25 <0.12/4 0.12 <0.015 <0.012 <0.03 4 **

ES48E Rahnella
aquatillis Escarole 8 * 2 * <0.06/4 <0.25 <0.12/4 0.12 <0.015 <0.012 <0.03 4 **

LE18E Serratia
fonticola Lettuce 2 0.5 <0.06/4 <0.25 <0.12/4 <0.06 <0.015 <0.012 <0.03 2 **

PJ02E Serratia
fonticola Parsley 16 * >64 * 0.5/4 1 <0.12/4 4 * <0.015 <0.012 <0.03 4 **

TO30E Rahnella
aquatillis Tomato 0.5 1 <0.06/4 <0.25 <0.12/4 <0.06 <0.015 <0.012 <0.03 4 **

AG24E Serratia
fonticola Water 4 0.5 <0.06/4 <0.25 <0.12/4 <0.06 <0.015 <0.012 <0.03 8 **

FOX, cefoxitin; FOT, cefotaxime; FC, cefotaxime/clavulanic acid; TAZ, ceftazidime; TC, ceftazidime/clavulanic acid; FEP, cefepime; ETP,
ertapenem; IMI, imipenem; MERO, meropenem; TRM, temocillin. * Above the resistance breakpoint. ** Intermediate value between
susceptible and resistant breakpoint.

4. Discussion

Enterobacteriaceae and E. coli counts are used as indicators of faecal contamination and
lack of hygiene during food production, but there is a growing concern as many strains
are becoming resistant to antibiotics used to treat human infections, such as carbapenems
or colistin [20]. The results obtained in this study show that ready-to-eat fresh produce,
especially leaf vegetables, presented high counts of Enterobacteriaceae and, to a lesser
extent, of E. coli. The results are in accordance with similar works, thus Falomir et al. [21]
detected coliforms counts in 50% of vegetable samples, carrot and lettuce being the most
contaminated, suggesting the probability of contact with a source of contamination (soil,
water, manure) during growth [14,22]. In another study, Mukherjee et al. [23] reported an
overall prevalence of E. coli of 8% positive samples, being higher in leaf vegetables but
lower than the prevalence found by us (16.7%), and an average count of 3.1 log MPN/g
(2.3 cfu/g in our study). The environmental sample showing E. coli counts was taken from
the hands of a farm worker, highlighting the importance of good food hygiene in reducing
the microbial load of ready-to-eat foods [24,25].

The isolation of ESBL-producing Enterobacteriaceae in vegetable samples in this study
confirmed previous reports that pointed to vegetables as a vehicle of dissemination of
resistance genes [10–14]. The detection of ESBL-producing bacteria was related to Enterobac-
teriaceae counts, indicating that routine monitoring of this bacterial group in fresh produce
is a good indicator both of hygiene quality and presence of antibiotic-resistant bacteria.

The isolates were identified as Serratia fonticola and Rahnella aquatilis. Antibiotic-
resistant S. fonticola and R. aquatilis have been found in vegetables and farm environ-
ments [10,12,26–29] and their presence is considered of minor importance from a health
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point of view, as they are linked to human diseases in rare instances [30,31]. However,
they can be the source of resistant genes which can be transferred to other bacteria caus-
ing human infections [32]. In addition, the ingestion of nonpathogenic ESBL-producing
bacteria may result in potential intestinal horizontal gene transfer to pathogens [33]. It
is important to keep in mind that the plasmid-encoded SFO-1 ESBL produced by Enter-
obacer cloacae is derived from the FONA enzyme of S. fonticola and has been observed in
hospital outbreaks of infection in Spain [34,35]. Furthermore, the detection of MDR among
S. fonticola isolates is an additional concern as other reports detected no MDR S. fonticola
in vegetable samples [27] and a review of clinical cases of S. fonticola infections reported
susceptibility to cefepime and gentamicin among the strains tested [36], whereas resistance
to both antimicrobials was found in this study, indicating a recent acquisition of resistance
to those agents. A recent report isolated a multidrug-resistant strain from a patient with a
biliary tract infection [37], highlighting the relevance of dissemination of resistance genes
among opportunistic bacteria.

As S. fonticola and R. aquatilis are considered environmental Enterobacteriaceae, irriga-
tion water and soil are the probable route of contamination of vegetables, as suggested by
other authors [10,14,38].

In conclusion, ESBL-producing S. fonticola and R. aquatilis are environmental Enterobac-
teriaceae commonly found in vegetables and other food commodities. Even though their
implication in human infections is rare, they can become an environmental reservoir of
antibiotic-resistant genes that can be further disseminated along the food chain.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10112609/s1, Table S1: Primers and conditions used for PCR amplification of blaTEM,
blaSHV, and blaCTX-M genes.
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