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ABSTRACT Weld bead detection is essential for automated welding inspection processes. The non-invasive
passive techniques, such as photogrammetry, are quickly evolving to provide a 3D point cloud with
submillimeter precision and spatial resolution. However, its application in weld visual inspection has not
been extensively studied. The derived 3D point clouds, despite the lack of topological information, store
significant information for the weld-plaque segmentation. Although the weld bead detection is being carried
out over images or based on laser profiles, its characterization by means of 3D geometrical features has not
been assessed. Moreover, it is possible to combine machine learning approaches and the 3D features in order
to realize the full potential of the weld bead segmentation of 3D submillimeter point clouds. In this paper,
the novelty is focused on the study of 3D features on real cases to identify the most relevant ones for weld
bead detection on the basis of the information gain. For this novel contribution, the influence of neighborhood
size for covariance matrix computation, decision tree algorithms, and split criteria are analyzed to assess the
optimal results. The classification accuracy is evaluated by the degree of agreement of the classified data
by the kappa index and the area under the receiver operating characteristic (ROC) curve. The experimental
results show that the proposed novel methodology performs better than 0.85 for the kappa index and better
than 0.95 for ROC area.

INDEX TERMS Welding, machine learning, decision tree, weld bead, photogrammetry, 3D model, nonde-
structive testing.

I. INTRODUCTION
Welding is an important task in the engineering field since
inadequate weld beads significantly reduce the mechanical
properties of the joints, causing a reduction of their effec-
tive lifetime, and possibly their collapse with drastic con-
sequences. For this reason, quality requirements are highly
standardized, e.g., [1]–[3]. However, they reach a vital point
when there are involved elements subject to critical efforts,
such as pressure vessels [4]. Quality control of weld joints
is carried out in several phases, normally beginning with the
initial visual inspection [5]. In this initial step, the external
part of the weld is measured by specifically qualified (weld-
ing inspector) according to international standards to locate
possible defects and external pathologies.

This first phase is carried out by expeditious methods,
commonly using manual instrumentation, such as gauges kits
or calipers, to generate a written report about the inspection
results. The manual nature of these methods can generate

inaccuracies. The certification of the weld joint is constrained
by human limitations, limit of visual perception, and the
precision provided by the manual instruments. Moreover,
for large weld joints, there is no possibility to inspect them
exhaustively, so only checked a discrete sample is checked.
Additionally, not all the dimensional features can be deter-
mined precisely, for example, the three-dimensional weld
misalignment [6]. As a result, the initial visual inspection
phase lacks precision and reliability, with a poor performance
in cost and time.

Geotechnologies encompass the set of sensors and com-
puter algorithms that allow the acquisition, modeling and/or
analysis of spatial features [7]. In spite of being associated
with remote sensing, they can reach up to submillimeter
scales. There are different geotechnologies available to eval-
uate the quality of welds and/or detect and measure surface
or subsurface cracks and other defects more accurately than
with the tools commonly used by the welding inspectors in
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the visual inspection tasks, such as inspection gauge kits.
Some of these geotechnologies include active thermography,
range cameras, laser scanning [8], structured light systems [9]
and photogrammetry [10]; techniques whose value to visual
inspection has been demonstrated in the recent years.

The automation of noninvasive techniques by means of
geotechnologies will allow the implementation of robotic
platforms that track and analyze a weld joint [11], [12]. The
actual approaches are either based on passive or active meth-
ods. Passive methods use optical cameras, and the bead iden-
tification is based on local thresholding over the images [13].
They are affected by illumination conditions and cannot
provide any geometrical measure, and require two or more
passive cameras to enable a photogrammetric reconstruction.
As an alternative, the active methods, which are based on the
use of an external illumination source, usually a laser beam
or structured light, produce range maps of the weld joint [14].
However, the generatedweld bead profiles are still inadequate
for a precise bead geometric extraction [15].

One of the key issues to achieving the automation is to
ensure the robust detection of the weld bead [16]. Machine
learning (ML) approaches have been used in different engi-
neering fields, and they are also beginning to be applied
in welding inspection due to the geometric complexity of a
weld bead [17], [18]. Neural networks have been used for
prediction of weld bead geometry for automation of laser
microwelding [19] and to determine the weld bead geometry,
width and height, by real-time measurement from an optical
camera and a laser-based sensor [20]. However, current stud-
ies are more prone to model the weld process and control of
the welding parameters [21], as current, voltage and/or speed,
in spite of visual inspection andmaintenance tasks. A relation
of ML algorithms used to model the welding process can be
found in [22].

The aforementioned methods are based on spatial oper-
ations such as edge/corner detection from the images/laser
profiles to identify the weld bead. The proposedmethodology
exploits special geometric properties of the 3D point clouds
as an input ofML algorithms. The 3D features encapsulate the
geometrical relationship between 3D points for a local neigh-
borhood [23]. They can be computed from the 3D covariance
matrix, or 3D structure tensor [24]. The 3D features have been
used with machine learning algorithms and classification
processes for complex operations such as building roof seg-
mentation fromLiDARpoint clouds [25] or semantic labeling
of mobile laser scanner point clouds [26], [27]. However,
to the best of the authors’ knowledge, no studies have been
found employing 3D geometric features forML classification
of weld beads.

The aim of this work is to employ the geometric features
from 3D point clouds of welds to perform automatic clas-
sification of the weld bead. The classification is based on
ML decision trees to identify the key geometric features.
To find the optimal weld bead detector, the number of feature
attributes are analyzed according to information gain, as well
as the point density for real case studies.

FIGURE 1. Workflow of the proposed methodology for weld bead
segmentation.

The industrial application of the proposed solution would
allow to undertake the complete digitalization of the welded
joints and to create a digital database of them to manage
their life cycle. By replacing the expeditious visual inspection
of the technician with an automated and traceable process,
the lack of precision, reliability and completeness of the first
phase of inspectionwould be eliminated. In addition, the exis-
tence of a digital registry easily storable in a database of all
visual inspections carried out, would allow to re-examine and
/ or monitor any weld joint for maintenance and prevention
purposes.

The benefits in the automation of dimensional control will
be especially significant for certain critical infrastructures
due to the very high number of existing welded elements
(e.g.: pressure vessels).

This paper is organized as follows. Section II describes the
specimens employed in the study cases, the 3D geometric fea-
tures, and the machine learning classifiers. The experimental
results are presented and analyzed in section III. Finally,
section IV explains the conclusions and future perspectives.

II. MATERIALS AND METHODS
In this section, the specimens employed for the case study
and the proposed classification approach are described. The
methodology is structured in three phases: the generation of
the weld point cloud, the 3D feature extraction and the clas-
sification in two information classes: weld bead and plaque.
The complete methodology is summed up in the following
figure (Fig. 1):

As shown in the figure above, it is stablished a training
step to identify the optimal parameters for machine learning
classification. By means of photogrammetry (section II.2)
are computed the 3D geometrical features (section II.3).
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The results allow to identify two key parameters: neigh-
borhood size (section III.1) and relevant 3D features
(section III.2). The final classification results are assessed in
section III.3.

A. MATERIALS
Specimens used for the study consist of welded metallic
plaques (Fig. 2). The welding procedure used is tungsten inert
gas welding (TIG). This kind of specimen has been chosen
due to the high usability of both the material and the welding
procedure in the structural and mechanical fields. The spec-
imens present a plane butt-welding, which has been chosen
due to its higher andmore complex surface and curvature than
other welding dispositions such as L- or T-welding.

FIGURE 2. Weld specimens. (a) Steel welding specimen with a smooth
surface. (b) Steel welding specimen of low carbon steel with the rougher
surface of a ship hull.

The first specimen is a low carbon steel (thickness
10 mm) which shows butt-welding with edge preparation
in V (Fig. 2.a). Its dimensions are 140 mm and 100 mm in
length and width, respectively. The nominal weld bead size
is 20 mm. The welding procedure was a TIG used in the
construction and industrial sectors. The second study case
is a real naval welding specimen of low carbon steel which
shows butt-welding with edge preparation in V (Fig. 2.b).
Its dimensions are 300 mm in length and 7.5 mm thick.
The nominal weld bead is 25 mm. The texture and rough-
ness of both specimens are different due to their superficial
peculiarities caused by the metallurgical process and surface

treatment. The first specimen presents a smooth and bright
surface, while the second presents a rough surface with little
brightness. The selection of two specimens with different
surface finishes will allow to identify any problems in the
3D reconstruction process that can be propagated to the final
weld bead classification.

For the photogrammetric reconstruction, two DSLR cam-
eras were employed, a Canon EOS 500D and an EOS 700D,
with a Sigma 50 mm macrolens (Table 1). Both cameras
are commercial and semiprofessional, so their cost is more
affordable than a professional DSLR.

TABLE 1. Technical specifications of the photogrammetric systems.

B. 3D RECONSTRUCTION
As commented previously, three-dimensional reconstruction
technologies are beginning to be applied in visual inspections
tasks as a replacement for the inaccurate manual gadgets,
such as calipers or welding gauge kits. However, the employ-
ment of geotechnologies is not widespread among welding
inspectors. The main advantage of geotechnologies is the
capacity to obtain 3D models in a noninvasive and remote
way. These 3D models have the form of a point cloud with
submillimeter spatial resolution and precision [8]. At this
point, photogrammetry offers higher versatility for this task
with a low cost, especially compared to metrological instru-
ments, such as the articulated coordinate measuringmachines
(ACMM), at approximately 70-100 times lower cost. This
manuscript is focused on the novel employment of the 3D fea-
tures in weld bead detection. Please note that some geotech-
nologies, such as the photogrammetry records along with the
3D coordinates and the superficial radiometry of the weld
cover, may allow the characterization of weld pathologies,
such as corrosions.

The macro-photogrammetry procedure for 3D submillime-
ter reconstruction of welds was addressed in [6] and [8].
The key issues for weld bead detection lie in the image
acquisition. The lighting conditions are the main constraint
for the image acquisition and camera configuration. By the
computation of the depth of field for small-object photogram-
metry [28], it is possible to establish the optimal weld-camera
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distance, ensuring that the weld bead, as well as the plaque,
are correctly focused. For a predefined optimal camera shoot-
ing distance, the low-cost protocols are focused on the acqui-
sition of several images with different angle orientations but
ensuring that at any weld area is acquired from at least
two different viewpoints. For a more efficient reconstruc-
tion, it is possible to arrange two or three cameras in pre-
defined positions that can follow the weld bead longitudinal
axis [29], [30].

Once the images are acquired, they are processed following
the flowchart (Fig. 3) discussed in [9]: (i) tie-point extraction
and matching; (ii) camera orientation; and (iii) dense recon-
struction. For the practical implementation, open source soft-
ware is available, such as GRAPHOS [31] or MICMAC [32].

FIGURE 3. Macro-photogrammetry pipeline.

Briefly, the tie-point extraction and matching is one of the
most important steps, since they constitute the framework
for the orientation process (i.e. the indirect resolution of the
spatial position of the images), including the camera self-
calibration (i.e. the estimation of the internal camera parame-
ters and lens distortion). Given that the constraints related to
the weld, namely shape and illumination conditions, classical
algorithms based on intensity levels are useless, requiring
robust strategies like ASIFT [33]. Regarding camera orien-
tation, collinearity equations are employed to determine the
internal camera parameters (focal length, principal point and
distortion) and exterior camera parameter (three translations
and three rotations). Finally, 3D dense point cloud generation
is based on the semi-global matching technique [34]. More
details about the generation of dense point cloud can be found
in [35].

C. 3D FEATURE EXTRACTION
Geometric features are extracted according to the depth (Z)
values of the covariance matrix of a local neighborhood
(square in this case). This neighborhood will be the object
of study and discussed in the experimental results section
since, as shown in equation (1), any element contributes to
the feature computation quadratically. Instead of comput-
ing the classical geometric features as the average Z value,

or the height standard deviation, features derived from the
local covariance matrix representing second-order invariant
moments within the point positions are employed [36]. For
the computation the initial point cloud local coordinate ref-
erence system has to be reoriented to eases the generation of
a regular grid of 3D points, avoiding imbalances in the geo-
metric features computation. As result Z values will represent
the weld heights. The 3D geometric features [37]–[39] are
computed on the resulting PCA analysis for local neighbor-
hoods in a regular grip map. PCA is a procedure to obtain the
three vector components of the data through the computation
of eigenvectors from the covariance matrix extracted from the
three-dimensional coordinate of the points. This procedure is
usually employed to compute the best fitting plane, and it has
already been used to compute weld misalignment [9]. Con-
sidering a point cloud of n points with coordinates x, y, z (1),
where xm, ym, zm are the centroid coordinates, the covariance
matrix (2) for each of them is calculated from the matrix of
points (A). The covariance matrix (Cov) has the values of the
variance in the principal diagonal (2). By the diagonalization
process of matrix Cov, the eigenvectors of the covariance
matrix are obtained, and as a result, the three eigenvalues
(λ1, λ2, λ3).

A =

 x1 − xm y1 − ym z1 − zm
...

...
...

xn − xm yn − ym zn − zm

 (1)

Cov =
1
n
AtA =

 σxx σyx σxz
σyx σyy σyz
σzx σzy σzz

 (2)

The eigenvalues correspond to the principal components of
the spatial distribution of the points; they are sorted as λ1 ≥
λ2 ≥ λ3 and employed to compute the 3D features, which can
be grouped as dimensional features [23], [36]: linearity (3),
planarity (4) and sphericity (5), and other measures such
as omnivariance (6), anisotropy (7), eigenentropy (9) and
surface variation (10), also called the change of curvature.

L =
λ1 − λ2

λ1
(3)

P =
λ2 − λ3

λ1
(4)

S =
λ3

λ1
(5)

O = 3
√
λ1λ2λ3 (6)

A =
λ1 − λ3

λ1
(7)

3 = λ1 + λ2 + λ3 (8)

E = −
3∑
i=1

λi

3
log

(
λi

3

)
(9)

C =
λ3

λ1 + λ2 + λ3
(10)

Since it is part of the feature computation, the sum of the
eigenvalues (3) is also considered (8).
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Additionally, and as an alternative of the classical fea-
tures, only the median absolute deviation – MAD of the
weld heights is considered, namely, the median (m) of the
absolute deviations from data median (mZ ), since it is a robust
estimator of a variable dispersion [40], [41]:

MADZ = m (|zi − mZ |) (11)

where zi are the weld heights obtained after a principal com-
ponent analysis (PCA) reorientation prior to the regular grid
generation.

A total of 9 geometric features are tested. As commented
previously, the 3D features are computed for a regular square,
local neighborhood.

D. MACHINE LEARNING CLASSIFICATION
Classification is implemented by modern machine learning
techniques. There are two possible approaches: supervised
or unsupervised classifications [42], according to whether
informational classes or clusters are defined. Clusters are
point groups with similar characteristics, so they do not nec-
essarily need to correlate with classes of interest for welding
inspectors and technicians.

Supervised classification was chosen to identify the more
relevant 3D features, and because it provides more precise
results [43]. It requires an initial training phase where a subset
of points is catalogued by a human operator according to
the informational classes (weld bead or plaque). The ML
algorithm extracts the patterns among the points attributes
and the informational classes. The generated model will be
used to classify new instances. However, the models are not
necessarily comparable to every weld configuration.

To choose the ML algorithm part of the proposed method-
ology, three different ML decision trees were tested. A com-
plex decision was decomposed into the union of several
simpler decisions [44]. In addition, among all the attributes
available (in this case, the 3D geometric features), only a
subset is employed for the final classification. This subset is
chosen by the optimization of splitting criteria, such as the
Gini index or the gain ratio.

One of their key features is that when the model is trained,
the new data instances are tested against only the selected
attributes according to the tree level. As a result, the com-
putational time is improved in comparison to the classical
classifiers which test all attributes for each new instance.
They were chosen instead of other ML approaches, such
as neural networks or support vector machines (SVM) [45],
since they are not a black-box algorithm, allowing an easy
interpretation of the nodes of the classification model.

The ML decision trees tested are: J48, Reptree and Hoefd-
ing tree; all of them are implemented in theWeka data mining
open-source software [46]. J48 is Weka’s implementation of
C4.5 release 8 [47]. This is a widely used algorithm in ML.
It generates a decision tree by a recursive splitting of the
dataset. The algorithm considers all possible data splits and
selects the one that provides the highest ratio of information
gain. The splitting criteria are based on the entropy (H ),

which measures the uncertainty for the information content
of a discrete variable X [48]:

H (X) = −
m∑
i=1

Pi · log2 Pi (12)

where P is the probability mass function of X , and m is all
the possible values for X . Information gain (1H ) measures
the amount of information provided by the attribute. As a
result, it allows the optimal split threshold that provides the
maximum information to be identified. This variable is used
in decision trees to establish a sequence using the attributes.
Information gain measures the reduction in entropy (12),
so the change in entropy when an attribute Y is used to
partition X is defined as:

1H (X ,Y ) = H (X)− H (X |Y ) (13)

where H(X|Y)is the conditional entropy. To reduce the bias
from the information gain (13), J48 employs a variant called
the information gain ratio [49]. The gain ratio takes into
account the number and size of branches when choosing an
attribute, avoiding bias to attributes with a large number of
values:

Gain ratio (X ,Y ) =
1H (X ,Y )
SI (X ,Y )

(14)

where SI is the split information, which measures the poten-
tial information generated by dividing X into c classes with
respect to the values of Y .
The reduced error pruning tree [50], also called the REP-

Tree, is characterized by the reduction of the decision tree and
the removal of tree subsections that do not improve the clas-
sification results (pruning). The splitting criteria employed is
the information gain (13). This algorithm was chosen since it
allows the tree depth to be controlled.

Finally, the Hoeffding tree is an incremental decision tree
capable of learning frommassive data streams [51]. It is based
on the Hoeffding bound, which states howmany instances are
required at each node to carry out the classification within a
predefined precision [52]. The split criterion employed in the
present manuscript for the Hoeffding tree is the information
gain (13).

The classification results are assessed by Cohen’s kappa
index from the confusion matrix and the receiving operating
characteristic (ROC) curve area. The kappa statistic (κ) (15)
measures the degree of agreement of categorized data [53].
It is widely used in remote sensing and ML applications to
assess the classification results. It is defined in the range
[−1, 1] with zero being the expected value for a random
classification, 1 is a perfect agreement, and negative values
indicate no agreement, but they are unlikely in practice.
In remote sensing applications, the threshold for good or
adequate classification is 0.85 [54]. In a more general way,
according to [55], values in the range 0.81-1.00 represent an
almost perfect agreement. The statistic (15) is computed on
the basis of a confusion matrix with the classification results,
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as shown in the following table:

κ =
P0 − Pe
1− Pe

(15)

where P0 is an observational probability of agreement
(observed accuracy) and Pe is a hypothetical expected prob-
ability of random agreement. From the confusion matrix
(Table 2) can be drawn other model performance values, such
as precision (16) and recall or sensitivity (17):

precision =
TP

TP+ FP
(16)

recall =
TP

TP+ FN
(17)

The area under the ROC curve (AUC) provides a compar-
ison between the predicted and actual instance values in a
classification by measuring the precision and the recall [56].
It measures the probability that randomly chosen instances
(e.g., weld bead class and plaque class) will be correctly
classified. It is widely used for model comparison since it
describes the model performance for a complete range of
classification thresholds. ROC area is defined in the range
[0, 1], with 0.5 being the expected value for a random clas-
sification. In addition, the ROC area is equivalent to the
nonparametricWilcoxon-Mann-Whitney statistic [57], which
is an estimate of the probability that the classifier ranks a
randomly chosen positive example higher than a negative
example [58].

TABLE 2. Synthesis of confusion matrix.

III. EXPERIMENTAL RESULTS
First, the point cloud is, by definition, an unorganized entity,
with no topology and heterogeneous density. To avoid any
imbalance in the feature extraction, the input point cloud is
rearranged in a grid map, consisting of regular squares of a
predefined spatial resolution.

Despite photogrammetry being able to plan the output
spatial resolution expressed in terms of object sample dis-
tance (OSD), the final product does not follow the grid map
rigorously due to the process errors (matching, camera orien-
tation, stereo densification) and the inherent characteristic of
the scene (mainly shadows and occlusions). To generate the
regular grid, the point cloud density is computed according
to an ideal equilateral triangles distribution for a circular
neighborhood [59]. Once the minimum spatial resolution is
established, the point cloud is segmented into a regular grid

oriented according to the X and Y axis. If more than one point
falls inside any grid cell, the final cell value is expressed in
terms of the points’ centroid. Since the point cloud axes play a
role in the grid generation, prior to the segmentation, a simple
PCA analysis is applied to reorient the point cloud according
to the weld bead dominant direction.

The advantages of the grid generation are that it pro-
vides a 3D regular point cloud with topological information,
as well as the decrease in the number of involved points in
the feature extraction. This last issue allows a reduction in
the computational cost and the aforementioned problems of
heterogeneous point density.

The weld specimens described in section II.1 were
reconstructed using macrophotogrammetry techniques.
Specimen 1 was reconstrued at a very short distance, 0.38 m,
due to the subtle detail of the weld bead (maximum height
of 1.54mm). A total of 23 images were acquired with a DSLR
camera (Table 1), with a theoretical OSD of 36 microns. The
average spatial resolution of the final 3D point cloud was
57 microns. Taking into account this value along with the
a priori error of 93 microns, the regular grid map was set at
0.05 mm. The regular grip was generated by means of the
open-source software, CloudCompare [60].

The naval weld (specimen 2) was reconstructed from a set
of 28 images acquired at a short distance, 70 cm, with a DSLR
(Table 1). Due to the larger size of this specimen,more images
were taken compared to the previous case. The planned OSD
was 69 microns, and the final point cloud had a spatial
resolution of 71 microns. The point cloud a priori precision
was verified against an ACMM by robust statistics, with an
expected error of 0.204 mm. Since the spatial resolution was
approximately 0.07 mm, the grid map was generated for the
nearest round resolution, 100 microns. The smaller neighbor-
hood size was 0.5 mm, 2.5 times the expected precision of the
point cloud.

Second, the grid points were grouped by a square, local
neighborhood to compute the representative 3D features of
the clusters. They were chosen on the basis of the grid
resolution. For specimen 1, they ranged between 0.50 mm
and 2.50 mm, at nonregular intervals: 0.50, 0.75, 1.00, 1.25,
1.50, 2.00 and 2.50 mm. For the naval welding (specimen 2),
the minimum size tested was also be 0.5 mm to provide a
comparison of the higher neighborhood size of specimen 1.
The rest of the sizes ranged up to 4 mm with increments of
0.5 mm; a total of 8 sizes were tested.

In Fig. 4 are shown the geometrical features computed
from specimen 1 for the covariance matrices obtained for the
0.50 mm neighborhood and described in section II.3.

As a final step of the data training, a small weld section was
chosen as the training area for theML classification. For spec-
imen 1 (Fig. 2.a) a training area of 18 x 70 mm was defined,
being the 18 mm aligned according to the weld bead axis.
This training area was chosen to be large enough for the com-
putation of geometric features of the weld bead and plaque.
Please note that it was chosen in an area without the presence
of flaws and/or edge imperfections that could disrupt the
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FIGURE 4. Example of 3D features: (a) original point cloud; (b) linearity, (c) planarity; (d) sphericity; (e) omnivariance; (f) anisotropy;
(g) eigenentropy; (h) surface variation. The scale is in millimetres.

learning process. In this way, the proposed methodology was
verified with a small training area. For specimen 2 (Fig. 2.b)
the training area was similar; 20 × 75 mm.

A. LOCAL NEIGHBORHOOD SIZE ANALYSIS
To find the optimal neighborhood, different sizes were eval-
uated using the same training dataset. Smaller areas imply
that the classifier was more sensitive to the errors propa-
gated by the geometric features from the point cloud noise.
In contrast, larger areas reduced the computational time,
but they reduced the weld bead definition, since the same
neighborhood contained features of both classes, so the final
classification precision decreased. In Tables 3 and 4 are listed
the main assessment parameters of the ML algorithms tested.
It employed k-fold cross-validation, which split the training
data into k equal-sized partitions [61], [62]. The classifier
was trained using k − 1 folds, and the error was computed
by checking the obtained classifier with the remaining fold.
As a result, the classifier’s estimated error was the average
value of the errors committed in each fold. For the study case,
k was set equal to 10. A total of 50 iterations were carried
out for each ML algorithm and neighborhood size, for a total
of 21000 tests for specimen 1 (500 for each classifier and size
case). To compare the different models, a two-sided paired
t-test was employed [46], using a significance level of 5%.
In tables 3 and 4 are shown the results of theKappa coefficient
and weighted ROC area for the 6 ML classifier variants in
relation to the 7 neighborhood areas. The J48 algorithm was
set as a reference for the t-test.

TABLE 3. Kappa coefficient results for the training area of specimen 1.

TABLE 4. Weighted ROC area for the training area of specimen 1.

In Table 3 only two cases are statistically worse (denoted
as ∗ in the table), in relation to the reference classifier. The
rest are statistically compatible at the set significance level.
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In a similar way, in Table 4 all tested cases are compatible
statistically, with the exception of the Hoeffding tree for the
neighborhood size of 0.75 mm (denoted as # in the table).

For both parameters, the best results were achieved for
neighborhood areas between 1 and 1.25 millimeters and
degradation is shown as the area for the 3D feature com-
putation was increased, but it was not statistically signifi-
cant (Fig. 5). Only the Kappa index for J48 and the smaller
neighborhood size was statistically worse, in relation to the
rest of the sizes for the classifier (Table 5). This behavior
was expected, since the number of points involved in the
covariance computation was lower, and the noise from the
input point cloud was beginning to appear.

FIGURE 5. Classification assessment parameters variation according to
local neighborhood size for specimen 1. (a) Kappa index. (b) ROC area.

TABLE 5. Kappa coefficient results of the J48 classifier for the training
area of specimen 1.

A similar study was carried out with specimen 2, the naval
welding. In spite of both specimens using butt-welding, the
weld bead of the second welding was composed of several
passes and had a rough surface, a higher weld height, and the
plaques presented an angular misalignment. As commented
previously, the training area had a size of approximately 20×
75 mm in length and width, respectively. Tables 6 and 7 show
the same experiment that Tables 3 and 4 show, namely, 50 iter-
ations of 10-fold cross-validation for different neighborhood

TABLE 6. Kappa coefficient results for the training area of specimen 2.

TABLE 7. Weighted ROC area for the training area of specimen 2.

sizes. Due to the wider size of the weld bead, the sizes tested
ranges from 0.5 mm to 4.0 mm. A total of 24000 results were
obtained.

The first conclusion drawn for the Kappa and ROC area
is that smaller neighborhood sizes do not guarantee optimal
classification results. The main causes of this behavior are the
influence of the point cloud noise, as well as the low number
of points employed for the features computations. As the grid
size was set at 500 microns, only 25 points were employed in
the covariance matrix computation for the smaller size tested.

The best results were between 2 and 3 millimeters, with
an increase of uncertainty for larger sizes, as a result of
the transition areas between the weld bead and the plaque.
This tendency can be seen graphically in Fig. 6. Among the
ML algorithms tested, the performance differences are not
statistically significant, as in the previous study case.

B. GEOMETRIC FEATURE CONTRIBUTION
The decision tree algorithm allows a hierarchical distribution
of the features to be generated according to the ratio of gained
information as a split criterion. As a result, the 3D features
with a random behavior highly correlated with others were
not considered. In table 8 is shown the information gain (13)
and the gain ratio (14) of the geometric features for speci-
mens 1 and 2 for a 1.25 mm and 2 mm neighborhood size,
respectively. From the table it can be concluded that MADZ
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TABLE 8. Ranked attributes. The information metric is in bits.

FIGURE 6. Classification assessment parameters variation according to
local neighborhood size for specimen 2. (a) Kappa index. (b) ROC area.

and linearity are the features that contain less information,
namely, they cause less the entropy than the other features.
For specimen 2, the attributes are ranked differently, with
fewer clear differences, but in both cases, the planarity is one
of the main relevant attributes.

Since the application of a cut-off in Table 8 could be
arbitrary, different classifications were carried out with the
training dataset for the J48 algorithm and the neighborhood
size of 1.25 mm. The most relevant feature combinations
for specimen 1 are plotted in Fig. 7.a, where it is shown
that with only 2 features, it is possible to achieve a result
sufficient for the weld bead detection (Kappa index > 0.90).
As expected, the planarity feature plays a critical role for the
plaque detection, while the omnivariance isolates the weld
bead. This combination also provides adequate classification
results for the naval welding (Fig. 6.b).

C. MACHINE LEARNING CLASSIFICATION ANALYSIS
As commented in section II.4, the implementation of ML
algorithms is carried out by the open sourceWeka datamining

FIGURE 7. Contribution of the geometric features to the classification.
(a) Specimen 1. (b) Specimen 2.

software [46] and the grid map generation and results visual-
ization with CloudCompare [60]. To avoid repetition of the
previous subsection, only the key classification results are
plotted. Since the classification results are dependent on the
neighborhood size, the predicted classes are projected over
the original point cloud using a nearest neighbor interpolation
with CloudCompare. Fig. 8 shows the classification results,
the probability associated with the prediction, and the points
tagged as classification errors on the basis of a human clas-
sification for specimen 1. The neighborhood sizes shown in
Fig. 8 are 0.50 mm (a to c), 1.25 mm (d to f) and 2.00 mm
(g to i). The final ML algorithm is J48, as was shown, there
were no significant differences with the other ML algorithms.

For the smaller neighborhood (Fig. 8.a) there is a slight
lack of definition in the weld bead borders and the presence
of salt and pepper classification errors. However, since they
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FIGURE 8. Classification results for specimen 1 for different neighborhood sizes: 0.50 mm (a), 1.25 mm (d) and 2.00 mm (g); probability associated
to the prediction (b, e, h) and points labelled as classification error (c, f, i). Scale is in millimetres.

are isolated, forming small clusters, they could be removed
easily by clustering analysis. Although the 0.5 mm and
1.25mm neighborhoods yielded similar weld beads, the latter
(Fig. 8.d) clearly had the best classification, both spatially,
and numerically (Table 9). Fig. 8.i shows a 1 mm bias of
the weld longitudinal axis (half of the 2 mm neighborhood).
The results could also be accepted as adequate, since the
classification performance is still good enough (Kappa index
higher than 0.90), and the computational time decreased due
to the low number of instances for the ML classification

which could be a clear advantage in online quality control
within the automated industrial process. Please note, that in
all cases, the predicted classes had a high confidence prob-
ability, approximately 85%, marked in yellow in Fig. 8. The
classification results shown in Fig. 8 and the rest of the neigh-
borhood sizes were assessed against a human classification of
the weld bead. The classification assessment parameters are
listed as follows:

Significant degradation of the classification results is
shown for the higher size (2.50 mm), due to the excessive
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FIGURE 9. Comparison of the Kappa index, overall accuracy and weighted
ROC area for the classification verification of specimen 1.

size in relation to the weld bead, leading to a classification
uncertainty in the transition areas. Neighborhood sizes higher
than 1.25 mm did not show a stable tendency (Fig. 9).

Similar to the previous study cases, the main classification
assessment parameters for specimen 2 are shown in Table 10,

TABLE 9. Classification assessment parameters of specimen 1.

where the predicted classes are compared against the theo-
retical class to provide a vectorization by a human operator.
The irregular shape of the tested naval welding constrains
the result, being the maximum Kappa value reached for a
neighborhood size of 2.5 mm.

In Fig. 10 are shown the classification results for the
J48 decision tree of the naval welding for three different

FIGURE 10. Classification results for specimen 2 for different neighbourhood sizes: 1.00 mm (a), 2.50 mm (c) and 3.50 mm (d); probability
associated with the prediction (b, d, f). Scale is in millimetres.

14724 VOLUME 7, 2019



P. RodrÍguez-Gonzálvez, M. RodrÍguez-MartÍn: Weld Bead Detection Based on 3D Geometric Features and ML Approaches

TABLE 10. Classification assessment parameters of specimen 2.

neighborhood sizes. A suboptimal one (Fig. 10.a and 10.b)
where the number of points involved in the computation
is not sufficient in relation to the input spatial resolution
and the surface characteristics of the weld. This roughness
causes the weld bead points to be classified incorrectly.
This behavior was one of the aims in the specimen selec-
tion (see section II.1), where two different surface finishes
were selected for evaluation. The optimal neighborhood size,
2.50 mm, is shown in Fig. 10.c and 10.d. There were still
incorrectly classified weld bead points, but there were few
enough to provide a robust weld detection and extraction. For
this size, the transition effects begin to appear. For a high
neighborhood size (3.50 mm), the weld bead limits are not
sufficiently defined (Fig. 10.e).

Fig. 11 shows the aforementioned effect of neighborhood
size in the covariancematrix computation. For specimen 2 the
optimal value is approximately 2.5 mm (Fig. 11), where for
specimen 1 the reference values start to decrease for sizes
higher than 1.25 mm (Fig. 9).

FIGURE 11. Comparison of the Kappa index, overall accuracy and
weighted ROC area for the classification verification of specimen 2.

IV. CONCLUSION
In this manuscript, a novel procedure based on 3D geometric
features and machine learning classifiers were tested to auto-
matically detect the weld bead from point clouds obtained by
photogrammetric techniques. In this manner, working with
a 3D information approach, due to the weld complexity and
weld industry requirements, opens a range of possibilities in
the application ofML inwelding inspection context. The geo-
metric features were computed from the covariance matrix in
an easy a quick way for a regular grip point cloud, equivalent

to a 2.5D surface. With only a subset of features, it is possible
to isolate the weld bead from the plaques, the key features
being identified as the planarity and the omnivariance.

Two different steel welds with different surface qualities
were tested for three machine learning decision trees in
six different configurations. They were analyzed against the
training areas to determine whether there were any perfor-
mance differences due to the split criterion employed. In all
cases, the reference classifier J48 yielded no significantly
different results against the reduced error pruning tree and
the Hoeffding tree. All the results were assessed by the Kappa
index and the area under the ROC curve.

It was determined that the neighborhood size for the fea-
ture computation varies according to the weld characteristics.
However, for submillimeter point clouds, the minimum size
recommended ranges from 1.00 mm. Lower sizes decrease
the classification accuracy due to the low number of involved
points and the presence of noise. In contrast, very wide
neighborhoods do not improve the results due to the presence
of impure areas, where both the weld bead and the plaque
are mixed. The classification results showed high Kappa
coefficients and ROC areas for both cases, approximately
0.85 - 0.95 and 0.95 - 0.99 respectively, for the optimal
neighborhood size.

To conclude, the presented methodology allows the
automation of the weld bead extraction for noninvasive meth-
ods for a visual inspection using the three-dimensional infor-
mation provided by close-range photogrammetry technique.
Given the high number of variables present in the study,
further studies on automatic weld bead detection by machine
learning and geometric features will focus on employing
RGB values provided by photogrammetry in the ML clas-
sification to improve the precision and recall results. More-
over, some of the weld pathologies that can be detected in
visual inspection can only be identified by their color, e.g.,
corrosion pitting, so these will be tested with the addition
of radiometric information for their classification. Besides
deep neural network approaches will be subject of further
studies to complement the propose methodology in the case
of the aforementioned pathologies. Regarding the geomet-
ric pathologies, such as overlaps or undercuts (and others
included in the quality standards), a higher number of classes
will be considered to identify and classify them.
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