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If (A, B) is a finite system over a commutative von Neumann 
regular ring R, the problem of searching for a matrix F such 
that the pencil [sI−A −BF ] has some prescribed Smith nor-
mal form is reduced to the case where R is a field, a problem 
which for controllable systems is described by a well-known
theorem of Rosenbrock on pole assignment [12], and was then 
generalized to noncontrollable pairs [14]. It this paper, von 
Neumann regular rings are characterized as the class of com-
mutative rings for which the solution of the above problem 
over the ring is equivalent to its solution in each residue field.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and notation

Let R be a commutative ring with 1. An m-input, n-dimensional linear system over R
is a pair of matrices (A, B), where A ∈ Rn×n and B ∈ Rn×m.
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Von Neumann regular rings appear in a natural way when trying to generalize to com-
mutative rings some known results in systems theory over fields. The reader is referred 
to [4,13], and the references therein to see the applications of von Neumann regular rings 
to systems theory.

Given a system (A, B), it is customary to modify its structure by means of state 
feedback, i.e. A is replaced by A + BF , for some matrix F ∈ Rm×n.

Let R[s] be the polynomial ring over R in the indeterminate s. Given n polynomi-
als φ1(s), . . . , φn(s) in R[s], such that φi(s)|φi+1(s), for i = 1, . . . , n − 1, consider the 
n× n diagonal matrix M = diag{φ1(s), . . . , φn(s)}. This paper deals with the following 
invariant factor assignment problem:

(A,B,M) : Given (A,B), find F such that M ∼ sI − (A + BF )

where ∼ denotes equivalence over R[s], i.e. we look for n ×n invertible matrices P (s), Q(s)
in R[s] such that M = P (s)(sI − (A + BF ))Q(s).

If m is a maximal ideal of R, the reduction of (A, B, M) modulo m (i.e. the image 
under the natural map R → R/m) is denoted by (Am, Bm, Mm) and is defined in the 
natural way: find a matrix Fm with coefficients in the residue field R/m such that Mm ∼
sI − (Am + BmFm) over (R/m)[s].

Since R/m is a field, if (Am, Bm) is controllable, Rosenbrock’s theorem on pole assign-
ment [12] states that a solution to (Am, Bm, Mm) exists if and only if

n∑
i=j

ci,m ≤
n∑

i=j

dn+1−i,m, j = 1, . . . , n, (1)

with equality for j = 1, where c1,m ≥ · · · ≥ cn,m are the controllability indices of 
(Am, Bm) (see the definition in [14]) and di,m is the degree of φi,m(s) (the reduction 
of φi(s) modulo m) for all i. For noncontrollable systems, the problem can be solved 
with the majorization and interlacing inequalities used by Zaballa in [14].

Of course, solvability of (A, B, M) implies solvability of (Am, Bm, Mm) for all m. In 
this paper, we prove in Theorem 6 that commutative von Neumann regular rings are 
characterized as those rings satisfying the following local–global property: any prob-
lem (A, B, M) has a solution F over R if and only if (Am, Bm, Mm) has a solution Fm

over R/m, for all maximal ideals m in R. That is to say, the solution of the problem
(A, B, M) over a ring R is a local–global property exactly when R is a von Neumann 
regular ring. The key tool to prove this is a local–global argument like those used by 
Pierce [11], Guralnick [9] and Costa [5].

2. Preliminaries

We shall see for which rings R and for which matrices M does it make sense to 
consider an invariant factor assignment problem (A, B, M), where (A, B) is an m-input, 
n-dimensional linear system over R.
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2.1. Admissible rings

First, note that since we are asking if every matrix with coefficients in the ring R[s]
is equivalent to a diagonal matrix, this makes sense only if R[s] is an elementary divisor 
ring, in the sense of Kaplansky [10]: every rectangular matrix is equivalent to a diagonal 
matrix D, with diagonal elements di satisfying di|di+1, for i = 1, . . . , n − 1. By [1, 
Theorem 15], R[s] is an elementary divisor ring if and only if R is von Neumann regular, 
i.e. for all a in R there exists x such that a = a2x. This justifies why we choose to work 
over commutative von Neumann regular rings. See [7] and [8] for further properties and 
characterizations of regular rings.

2.2. Admissible structures

In the sequel, assume that the commutative ring R is von Neumann regular. When 
varying F , any matrix equivalent to sI − (A + BF ) will have determinant equal to 
χ(A + BF ), up to multiplication by unit elements of R (the units of R[s] are those 
of R, since R has no nonzero nilpotents). Therefore, the problem (A, B, M) over the 
ring R makes sense only if M has determinant of degree n and with leading coefficient 
invertible in R, in which case M will be called an admissible structure matrix for the 
system (A, B).

As the next example shows, an admissible structure does not need to have monic 
elements.

Example 1 (Non-monic structures). Let R be any von Neumann regular ring which is 
not a field. By [7, p. 7], the ideal of R generated by any nonunit and nonzero element is 
of the form eR, for some idempotent e different from 0 and 1. Then, ((1 − e)s + e)(es +
1 − e) = s is a nontrivial factorization of s into two polynomials of degree 1. Therefore, 
d1 := (1 − e)s + e is a divisor of d2 := s(es + 1 − e), neither of d1, d2 is monic (nor 
has leading coefficient invertible) but d1d2 = s2, monic of degree 2. Consequently, the 
matrix diag(d1, d2) is a Smith normal form over R[s], and it is admissible, in the sense 
explained above. This justifies that, when working over von Neumann regular rings, it 
is too restrictive to consider only monic Smith normal forms.

3. Main results

Wee shall need the following result [5, Theorem 1.2]: a property definable by algebraic 
(polynomial) equations1 holds for a commutative von Neumann regular ring if and only 
if it holds for every localization at a maximal ideal.

1 The precise meaning of property definable by algebraic equations is given in [5, pp. 225–226] and includes, 
in particular, properties defined in terms of a finite set of algebraic equations in a finite set of unknowns, 
but the number of unknowns and equations involved may be (countably) infinite.
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Recall that for a regular ring R and a maximal ideal m, the localization Rm is a field 
[7, Theorem 3.1], and in fact it is isomorphic to the residue field R/m. Therefore, in [5, 
Theorem 1.2] we may replace localization by residue field.

We are ready to prove our first result.

Theorem 2. Let R be a commutative von Neumann regular ring. Then, any problem 
(A, B, M) (with M an admissible structure) has a solution over R if and only if it has a 
solution modulo each maximal ideal.

Proof. If a problem (A, B, M) admits a solution over R, there exist matrices F, P (s),
P ′(s), Q(s), Q′(s) such that

P (s)P ′(s) = I,Q(s)Q′(s) = I, P (s)(sI − (A + BF ))Q(s) = M (2)

Reducing modulo some maximal ideal m yields

Pm(s)P ′
m(s) = I,Qm(s)Q′

m(s) = I, Pm(s)(sI − (Am + BmFm))Qm(s) = Mm,

so we have found a matrix Fm and invertible matrices Pm(s), Qm(s) which solve problem 
(Am, Bm, Mm) over the field R/m.

Conversely, suppose that for each maximal ideal m, the problem reduced modulo m, 
(Am, Bm, Mm), admits a solution over R/m.

Let us see that problem (A, B, M) is definable by algebraic equations, in the sense 
of [5]. The countable set of unknowns will be

X = {fij} ∪ {pijk} ∪ {p′ijk} ∪ {qijk} ∪ {q′ijk}

where (fij) are the coefficients of F , and pijk is the coefficient of sk in the position (i, j)
of P (s), and similarly for P ′(s), Q(s), Q′(s). Analogously, the set of parameters defining 
the problem is Y = {aij} ∪ {bij} ∪ {φik}, where A = (aij), B = (bij) and φik is the 
coefficient of sk in φi(s).

Furthermore, for each positive integer N , denote by SN the set of all equations re-
sulting from equating coefficients of each power of s in all positions of the matricial 
equations (2), when P (s), P ′(s), Q(s), Q′(s) have degrees bounded by N , i.e. we consider 
only those variables in X with k ≤ N (see example below). It is clear that all equations 
in SN are expressions in the polynomial ring Z[X ∪ Y ], i.e. sums of arbitrary products 
of certain variables from X and Y . Also, the problem (A, B, M) will have a solution if 
and only if all equations of SN are satisfied for some N , but we do not know a priori an 
upper bound for N .

Now, the sets SN have a very important property: if N < N ′, then SN is just the 
restriction of SN ′ , when specializing to zero all variables appearing in SN ′ and not in SN

(concretely, all variables with an index k satisfying N < k ≤ N ′). This property gives 
a total order on the sets SN , which in particular ensures the conditions required in the 
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discussion preceeding Theorem 1.2 in [5]. Thus, the cited theorem can be applied, and a 
local solution is lifted to a global solution. �

As an immediate consequence, one obtains a version of Rosenbrock’s theorem for von 
Neumann regular rings.

Corollary 3 (Rosenbrock’s theorem for von Neumann regular rings). Let (A, B) be a 
controllable system over a commutative von Neumann regular ring R. Then, a problem 
(A, B, M) has a solution over R if and only if the inequalities (1) hold over R/m, for 
each maximal ideal m in R.

The following example may help clarify the proof of Theorem 2.

Example 4. With the notations of Theorem 2, suppose that P (s), P ′(s) are of size 2 × 2, 
with unknown coefficients given by

P (s) =
[
p110 + p111s + p112s

2 p120 + p121s + p122s
2

p210 + p211s + p212s
2 p220 + p221s + p222s

2

]

P ′(s) =
[
p′110 + p′111s + p′112s

2 p′120 + p′121s + p′122s
2

p′210 + p′211s + p′212s
2 p′220 + p′221s + p′222s

2

]

In the set S2, for example, the equation corresponding to the coefficient of s2 in position 
(1, 1) of the matricial equation P (s)P ′(s) = I is

p110p
′
112 + p111p

′
111 + p112p

′
110 + p120p

′
212 + p121p

′
211 + p122p

′
210 = 0

Making zero the variables p′212, p122, p′112, p112 not appearing in S1, we get p111p
′
111 +

p121p
′
211 = 0, which is one of the equations of the set S1, namely the one corresponding 

to s2 in position (1, 1).

Remark 5. As an example of how to take profit of properties definable by algebraic 
equations, we can prove that polynomials in one indeterminate over von Neumann regular 
rings satisfy the following property: if two elements generate the same ideal, then they 
are associates. This is precisely the condition needed to ensure that in an elementary 
divisor ring, the diagonal reduction (Smith normal form) obtained from a matrix is really 
canonical, up to multiplication by units. This topic is discussed e.g. in Chapter 15 of [3], 
and in [10, pp. 465–466], where examples are given of commutative rings not satisfying 
this property.

To prove this, the fact that two polynomials f(s), g(s) generate the same ideal in R[s]
can be translated into the following polynomial condition: there exist a(s), b(s) in R[s]
such that f(s)a(s) = g(s) and g(s)b(s) = f(s). Also, the fact that f(s), g(s) are as-
sociates means that there exist u, v in R with uv = 1 and f(s)u = g(s). Thus, the 
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problem is clearly definable by algebraic equations, as required in the discussion pre-
ceding [5, Theorem 1.2]. Moreover, for each maximal ideal m of R, the problem reduced 
modulo m consists in finding a nonzero element ū in the field R/m such that f̄(s)ū = ḡ(s), 
subject to the condition that f̄(s), ̄g(s) generate the same ideal in the principal ideal do-
main (R/m)[s]. Such an element ū certainly exists in R/m, and by [5, Theorem 1.2], the 
existence of a residual solution ū for all m implies that there is a global solution u in R.

Next theorem gives a new characterization of commutative von Neumann regular 
rings.

Theorem 6. For a commutative ring R, the following conditions are equivalent.

(i) R is von Neumann regular.
(ii) Any problem (A, B, M) admits a global solution over R if and only if it admits a 

residual solution over R/m, for each maximal ideal m.

Proof. (i) ⇒ (ii). This has already been proved in Theorem 2.
(ii) ⇒ (i). Let R be a commutative ring satisfying (ii), and take an arbitrary element 

a of R. To prove that R is regular, we must find some x such that a = a2x. Consider 
the following problem with sizes n = 1, m = 1: (A = [0], B = [a2], M = [s − a]), where 
we look for some F = [f ] such that sI − (A +BF ) ∼ M . That is, we look for some unit 
element p in R satisfying p(s − (0 + a2f))p−1 = s − a, or equivalently, a2f = a.

Let m be a maximal ideal of R. If a ∈ m, then also a2 ∈ m, and the equation to be 
solved in R/m is 0̄f̄ = 0̄ (here, ̄ denotes reduction modulo m), so any f̄ is a solution. On 
the other hand, if a does not belong to m, then ā is nonzero in the field R/m, and ā2f̄ = ā

admits a solution f̄ = ā−1. Thus, the problem has a solution in every residue field, hence 
by (ii) there must be a solution over R, i.e. a2f = a, as we wanted to prove. �
Example 7. Consider the finite ring R = Z/6Z and the matrices

A =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 3 0 0
0 0 4 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0 0
0 0 0
0 4 0
0 3 0

⎤
⎥⎥⎦ ,

M =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 3s + 1 0
0 0 0 4s4 + 3s3 + 3s2 + 3s + 5︸ ︷︷ ︸

(3s+1)(4s4+3s2+5)

⎤
⎥⎥⎥⎥⎦ .

Let us see if the problem (A, B, M) is solvable over R. It suffices to solve it in ev-
ery residue field. R has two maximal ideals 2R, 3R, with corresponding residue fields 
isomorphic to Z/2Z, Z/3Z respectively.



128 M.V. Carriegos et al. / Linear Algebra and its Applications 482 (2015) 122–130
Over R/2R, we see that (Am, Bm) is controllable and in Brunovsky canonical form, 
with controllability indices (3, 1, 0, 0). Besides, Mm = diag(1, 1, s +1, s3+s2+s +1), with 
degree sequence (0, 0, 1, 3). The inequalities (1) are satisfied, so the problem is solvable.

On the other hand, over R/3R, (Am, Bm) is controllable and in Brunovsky canonical 
form, with controllability indices (2, 2, 0, 0), and Mm = diag(1, 1, 1, s4 + 2), with degree 
sequence (0, 0, 0, 4). Again, the problem is solvable.

An explicit global solution is obtained by combining the solutions in R/2R ∼= 3R and 
in R/3R ∼= 4R, and then lifting via the decomposition R = 3R + 4R:

F = 3

⎡
⎣ 1 1 1 0

0 0 0 1
0 0 0 0

⎤
⎦ + 4

⎡
⎣ 0 1 2 0

0 0 0 2
0 0 0 0

⎤
⎦ =

⎡
⎣ 3 1 5 0

0 0 0 5
0 0 0 0

⎤
⎦

This matrix F satisfies M ∼ (sI − (A + BF )).

Let us see an example of a von Neumann regular ring with infinitely many maximal 
ideals, where our results can be applied.

Example 8. Let R = C(N, R) be the ring of continuous real-valued functions over N, the 
set of natural numbers, with the discrete topology. Note that the set of maximal ideals 
of R is infinite, it is in 1–1 correspondence with βN, the Stone–Cěch compactification 
of N, see [6]. That R is a von Neumann regular ring can be proved directly (showing 
that each finitely generated ideal is generated by an idempotent element), or applying 
the results in [6] (because N is a P -space).

Remark 9. Let R be a commutative von Neumann regular ring, and M, M ′ matrices 
over R, such that xI −M and xI −M ′ have invariant factors {(di(x))} and {(d′i(x))}, 
for i = 1, . . . , n. The following diagram summarizes the relationship among similarity, 
equivalence and invariant factors in this situation.

M ≈ M ′ 1.⇔ xI −M ∼ xI −M ′ 2.⇔ {(di(x)) = (d′i(x))}ni=1
�3. �4. �5.

M ≈ M ′ 6.⇔ xI −M ∼ xI −M ′ 7.⇔
{

(di(x)) = (d′i(x))
}n

i=1

Here, ∼ denotes equivalence of matrices, ≈ denotes similarity, (∗) means the ideal gen-
erated by some element ∗, and I is the n × n identity matrix. In the last row, ̄ denotes 
reduction modulo some maximal ideal m, and statements hold for all m.

The equivalences 1. and 6. are consequence of [3, Corollary 16], 3. was proved by 
Guralnick [9], and so 4. follows from the commutativity of the diagram. On the other 
hand, 7. holds because (R/m)[x] is a principal ideal domain, and 2. because R[x] is 
an elementary divisor domain, with the additional property discussed in Remark 5. 
Therefore, commutativity yields 5. and hence all statements are equivalent.
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With the help of the above diagram, the reader can arrive at the main result of this 
paper via this alternative approach: given a problem (A, B, M), first prove that there 
exists a matrix A′ with sI−A′ ∼ M , and then find F such that A +BF ≈ A′. Applying 
the equivalence 3., the solution to this similarity problem over R is equivalent to its 
solution in each residue field.

Remark 10. The following is an example of a noncommutative von Neumann regular 
ring. Let A = K

n×n be the ring of n ×n matrices with coefficients in a field K. Since A is 
noncommutative, for any a ∈ A one must find x such that a = axa (see [8]). Indeed, we 
put a in Hermite form: a = PJQ, with P, Q invertible and J = diag(1, . . . , 1, 0, . . . , 0). 
Note that J3 = J , from which it follows that

a = PJQ = PJ3Q = P (P−1aQ−1)J(P−1aQ−1)Q = a(Q−1JP−1)a = axa

4. Conclusions

In this paper, we have proved that the invariant factor assignment problem which 
we called (A, B, M) has a solution over a commutative ring R if and only if R is von 
Neumann regular. Once more, like in [4,13], commutative von Neumann regular rings 
are characterized by a systems property, which shows that regular rings are a very 
appropriate class of commutative rings to which many results from systems theory over 
fields can be extended.

Although all our work deals with commutative rings, it is worth to note that systems 
over noncommutative rings have also been studied (see e.g. [2]), and there are plenty of 
noncommutative von Neumann regular rings, like the one of the previous remark.
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