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Abstract

Quantification - or proportion estimation - plays an important role in many practi-

cal classification problems. On the one hand, a machine that automatically classifies

an element into a group of predefined classes will make suboptimal decisions if the

class distribution in the test (real) domain differs from the one assumed in learning.

Estimating the new class distribution is necessary in order to adapt the classifier to the

new operational conditions. On the other hand, there are some real domains where the

quantification task itself is the main goal. Some fields, such as quality control, direct

marketing, tendency study or some textual recognition tasks, require methods that can

reliably estimate the proportion of elements within each category without any concerns

about how each element has been classified individually. We describe several quantifi-

cation techniques that rely on supervised learning and provide these estimations based

on: (a) the classifier confusion matrix, (b) the posterior probability estimations, and

(c) distributional divergence measures. We illustrate these techniques, as well as their

robustness against the base classifier performance in a practical seminal quality con-

trol setting where the ultimate goal is to quantify the proportion of sperm cells with

damaged/intact acrosome.

1. Introduction

Many works in the machine learning domain are focused on extracting the best possible

features from a set of objects and optimizing a classifier. Once the classifier is designed, it

is applied as-is to a data set in order to predict the class each individual belongs to. This
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process has been widely studied and is called classification. Image [19, 4] or speech and

audio processing [22] are just some applications that involve classification tasks.

In many supervised learning studies the fact that training and test data follow the same,

although unknown, distribution is taken for granted [10]. In particular, prior class proba-

bilities estimated from the training data set are considered to truly reflect the target class

distribution. However, time or space class stationarity cannot be assumed in many practical

fields. Indeed, if the class distribution of the present sample differs from the one of the

training set, the classifier will be suboptimal. For example, if a word sense disambiguation

system is trained using instances of words from a certain domain (e.g., Sports news), but it

is then used with instances from a different domain (e.g., Political news), where the sense

priors are different, the accuracy is affected [6]. It is important to highlight that there will

be a fracture in classifier performance if the test class distribution differs from the one as-

sumed in learning. Whenever there is such a change, estimating this new class proportion

will be important to adapt the classifier to the new context. This is a common problem that

has brought forth some high attention lately [18, 20, 23, 24].

In order to prevent a drop in classifier performance, several approaches have been pro-

posed. A minimax approach [1] tackles this uncertainty problem by optimizing the classifier

for a class prior probability that minimizes the maximum possible classifier error that may

result from a shift in the class prior probabilities. Others, however, attempt to adapt the

classifier to new operating conditions. Some authors rely on an eventual perfect knowl-

edge of the new conditions by the end user [9], but when this is not possible, Saerens et al.

[20] propose a re-estimation process of the new conditions as long as the classifier provides

estimates of the posterior probabilities of class membership and an unlabeled data set is

available. Based on the new estimated conditions (priors), the classifier is adapted in order

to minimize the error rate or risk.

There are also other problems where the goal is not to classify each item in a set, but

to estimate the proportion of elements of each class, which is known as quantification [11].

Although it has been less explored in the literature, quantification has been applied to some

real domains, such as quality control [2, 21], news categorization [12, 13], analysis of

technical-support call logs [14] or word text disambiguation [5, 6].

Reliably estimating the class proportion of positive/negative samples with no concerns

about the individual classification could be addressed in a naı̈ve way by counting the in-

stances classified as positives and negatives by the classifier. This has been referred as

Classify & Count (CC) by Forman [11, 12] in the context of news categorization. Except

for (nearly) perfect classifiers, this approach is not adequate. In his studies, methods based

on the classification confusion matrix (Adjusted Count (AC) and Median Sweep (MS)) are

found to outperform the naı̈ve CC method.

On the other hand, Saerens et al. [20] found that in order to improve the classifier

accuracy by readjusting the classifier outputs for the new priors, methods based on the

classifier posterior probability estimates outperform those that rely on the confusion matrix.

In this chapter, we explore this method based on posterior probabilities (PP), but in this case

in order to directly estimate the new class distribution.

When there is a shift in the a priori probabilities of the classes between the training and

the test (real) set, the data distributions, as well as the class posterior probability distribution

also change. Measuring the divergence between this test distributionand different generated
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calibration labeled sets would allow to find the class distribution for which this divergence

is minimum [15]. The Hellinger Distance [8] is used as distributional divergence metric in

this method.

To summarize, in this chapter we consider quantification methods based on:

• The classifier confusion matrix (AC, MS)

• The posterior probability estimations (PP)

• Distributional divergence measures (HD)

The remainder of the chapter is organized as follows: The theoretical approach and

algorithms of the quantification methods are exposed in Section 2.. In section 3. an illustra-

tion of the quantification methods using real data set of a semen quality control application

is given and, finally, the conclusions are pointed out in Section 4..

2. Class Distribution Estimation Methods

Consider a classification problem with a training data set St = {(xk,dk),k = 1, . . .,K}where

xk is the feature vector of the k− th element of the set, dk is its class label, which takes its

value in Ω = {d1,d2, . . .dM}.
The a priori probability of belonging to class di in St is denoted by pt(d = i) = pt(di)

1. Consider that all the elements xk ∈ St have been independently recorded according to the

class probability density function p(x|di).

Let us also consider a classifier trained using St that makes decisions in two steps: it

first computes a soft output ŷk
i and then, based on it, makes a hard decision d̂k ∈ Ω. It is

well known that if the classifier is trained minimizing an appropriate cost function [4], the

soft outputs ŷk
i will provide an estimation of the a posteriori probability of the observation

xk belonging to class di provided by the classifier (p̂t(di|x)).

Let us now suppose that the trained classification model is applied on another data

set with unknown a priori probabilities p(di), which are probably different (due to many

factors, as we have previously pointed out) from the ones of the training set. The naı̈ve

approach to estimate the actual class distribution is usually based on counting the labels

assigned by the classifier (CC method). The estimations made with this method will not be

reliable: (i) the classifier performance will drop if there is a difference between p(di) and

pt(di), and (ii) there is no guarantee that the errors made will compensate between them.

In the following subsections some quantification techniques to estimate the true a priori

probability will be described. These techniques are based on the classifier confusion matrix,

on the posterior probability estimations provided by the classifier and on the divergence

between distributions measured by means of the Hellinger Distance.

2.1. Estimation Based on the Confusion Matrices

The performance of a classifier can be summarized by its confusion matrix, which is an

observation of the number of elements classified as belonging to the class i while they

actually belong to the class j:

1The subscript t will be used for estimates on the basis of the training set in the remaining of the chapter.
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Table 1. Confusion Matrix for a binary classification problem

Predicted

d̂1 d̂0

True class
d1 TP FP

d0 FP TN

The observed count of positives P′ from the classifier will include both true positives

and false positives. Similarly, the number of real positive examples is P = T P+ FN while

the number of actual negatives is N = FP + T N. This is used to compute the following

rates:

• True Positive rate: t pr = p̂(d̂1|d1) = T P/P

• False Positive rate: f pr = p̂(d̂1|d0) = FP/N

• False Negative rate: f nr = p̂(d̂0|d1) = FN/P

• True Negative rate: tnr = p̂(d̂0|d0) = T N/N

Now, let us say that the probability that a classifier gives a positive prediction (in a

binary case) is:

p̂(d̂1) = p̂(d̂1|d1) · p̂(d1)+ p̂(d̂1|d0) · p̂(d0) =

= p̂(d̂1|d1) · p̂(d1)+ p̂(d̂1|d0) · (1− p̂(d1)) =

= t pr · p̂(d1)+ f pr · (1− p̂(d1))

Solving the equation we get:

p̂(d̂1) = t pr · p̂(d1)+ f pr− f pr · p̂(d1) =

= f pr + p̂(d1) · (t pr− f pr)

what leads to the estimation of the a priori probability of the positive class as:

p̂(d1) =
p̂(d̂1)− f pr

t pr− f pr
(1)

It is assumed that there is no fundamental variation in the f pr and t pr characteristics

between the training and testing distributions because the within-class densities (p(x|di)) do

not change from the training to the new data sets [20]. Therefore the confusion matrix can

be estimated from the training data set, as the class labels are not available on the test set.

This estimation can be made by using techniques such as stratified k-fold cross-validation.

This value of k is recommended to be as high as possible. When performing 10-fold cross-

validation, for example, each classifier is trained on 90% of the data, which could be a
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substantial difference in the early part of the learning curve if the positive cases are scarce

in the data set. For this reason, 40 or 50-fold-cross-validation should be used instead [13].

If we are dealing with a problem which has n classes, the following system of n linear

equations with respect to p(d̂ j) should be solved in order to estimate the new class prior

probabilities of the n classes:

p̂(d̂i) =
n

∑
j=1

p̂t(d̂i|d j)p̂(d j), j = 0,1, . . .,n (2)

where p̂(d j) is the estimation of the a priori probability of the class j and p̂(d̂i) is the

observed class probability by looking at the classifier labels d̂.

The solution of the expression (1) (or the equation system (2)), however, can be non-

consistent with the basic probability laws (i.e., values outside the interval [0,1]) as it has

been highlighted in [13]. In a binary problem, it is suggested to clip the negative values to

zero and fix the probability of the other class to one.

Based on this Adjusted Count (AC) method, Forman also proposes the Median Sweep

(MS) method [12]. Briefly, it can be described as follows: first, several confusion matrices

are computed for different classification thresholds; Then, the AC method is applied for

each matrix and finally, the class distribution estimation is computed as the median of the

estimations derived from each confusion matrix.

2.2. Estimation Based on the Posterior Probability

Given a model whose outputs ŷi provide estimates of posterior probabilities, Saerens et

al. [20] propose an iterative procedure based on the EM algorithm in order to adjust the

classifier outputs for the new deployment conditions without re-training the classifier. This

is carried out by indirectly computing the new class prior probabilities, what is the goal in

this chapter.

The model’s outputs ŷk
i yields an approximation of the a posteriori probabilities of

each class, while the class frequencies in the training set are an estimation of the a priori

probabilities, so we initialize the prior and a posteriori probabilities with them:

p̂(0)(di|xk) = ŷk
i (3)

p̂(0)(di) =
Ni

t

Nt

(4)

Consider p̂(r)(di) the estimation of the new a priori probabilities and p̂(r)(di|xk) the new

a posteriori probabilities at the r−th iteration of the algorithm. These estimations are given

by equations (5) and (6) respectively.

p̂(r)(di) =
1

N

N

∑
l=1

p̂(r−1)(di|xk) (5)
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p̂(r)(di|xk) =

p̂(r)(di)

p̂(0)(di)
p̂(0)(di|xk)

M

∑
j=1

p̂(r)(d j)

p̂(0)(d j)
p̂(0)(d j|xk)

. (6)

This procedure is repeated during R iterations, or until the difference between the r−th

iteration and the (r−1)− th iteration is lower than a certain threshold (e.g., 10−4).

This method is called the Posterior Probability method (PP).

2.3. Estimation Based on the Hellinger Distance

As it has been mentioned before, we focus on problems where the within-class conditional

densities are fixed, but the class prior probabilities may shift after the classification model

is generated. In this case, the joint probabilities p(x,d0) and p(x,d1) also vary and so the

unconditional density p(x), as well as the posterior probabilities p(d0|x) and p(d1|x).

The effect of shifting class distributions on the data distribution p(x) for a binary clas-

sification problem is illustrated in figures 1 and 2. In this example each class is defined by

a univariate Gaussian distribution.

x

pt(x, d0)

pt(x, d1)

x

p(x)

Figure 1. Training data. Joint probabilities pt(x,d0) and pt(x,d1) (left) and unconditional

density pt(x) (right) for prior class probabilities (pt(d0), pt(d1)) equal to (0.2,0.8) .

The joint probabilities pt(x,d0) and pt(x,d1) for the training dataset with class prior

probability (pt(d0), pt(d1)) and the data density p(x) are shown in Fig. 1, while Fig.

2 plots the data distribution for the test set when the prior probabilities have changed

(p(d0) 6= pt(d0), p(d1) 6= pt(d1)). It is clear that this shift in class proportions, implies

also a significant change in the data distribution p(x).

Generating several validation data sets with different prior probabilities, and calculat-

ing the differences between these sets and the test set data distributions would allow us to

detect these changes and therefore, estimate the new class proportions (the proportion of

the validation set which would minimize that difference).

When it comes to measure the difference between two probability distributions, the

Kullback-Leibler divergence DKL [17] becomes the most widely used option.
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x

p(x, d0)

p(x, d1)

x

p(x)

Figure 2. Test (future) data. Joint probabilities p(x,d0) and p(x,d1) (left) and uncondi-

tional density p(x) (right) for prior class probabilities (p(d0), p(d1)) in the test set equal to

(0.7,0.3).

The KL divergence between probability distributions p and q on a finite set X is given

by

DKL(p||q)) = ∑
x∈X

p(x) log
p(x)

q(x)
(7)

This measure is always non-negative, taking values from 0 to ∞, and DKL(p||q)) = 0 if

p = q. Strictly speaking, however, the KL divergence is not a distance, since (a) in general

it is asymmetric (DKL(p||q)) 6= DKL(q||p)) and (b) it does not satisfy the triangle inequality.

The fact that it is not defined when q(x) = 0 limits also its use in certain applications where

these situations arise.

The Kullback-Leibler divergence as well as the χ2 measure and the Hellinger Distance

are particular cases of the family of f-Divergences [8] used for measuring the divergence

between distributions. χ2 measure and, as it has previously been pointed out, KL divergence

are both asymmetric, and not strictly distance metrics, which makes the Hellinger Distance

very appealing for our purpose. Recently, it has been receiving attention in the machine

learning community in order to detect failures in classifier performance due to shifts in data

distributions. In particular, Cieslak and Chawla [7] have shown that the HD measure is

very effective in detecting breakpoints in classifier performance due to shifts in class prior

probabilities. Here, we address the problem of class distribution estimation following a

HD-based approach.

The HD between two probability density functions q(x) and p(x) can be expressed as

H(q, p) =

√∫ (√
q(x)−

√
p(x)

)2

dx (8)

where HD is non-negative, bounded (it takes values from 0 to
√

2) and it is symmetric (i.e.,

H(q, p) = H(p,q)). Additionally, it is defined for whatever value of p(x) and q(x) and does

not make any assumptions about the distributions themselves.

Similarity between the training data distribution and future distributions in the discrete

case can also be measured with HD by converting them into binned distributions with a
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Figure 3. Hellinger distance between the test data distribution and different validation data

distributions. The dashed line is the class-1 prior probability of the test data set.

probability associated with each of the b bins. The HD between the training data T and the

unlabeled test data U with n f features is then calculated as

H(T,U) =
1

n f

n f

∑
f=1

H f (T,U) (9)

where the distance between T and U according to feature f is computed as

H f (T,U) =

√√√√ b

∑
i=1

(√
|Tf ,i|
|T | −

√
|U f ,i|
|U |

)2

(10)

Note that b is the number of bins, |T | the total number of training examples and |Tf ,i|
the number of training examples whose f feature belongs to bin i. Similarly, |U | and |U f ,i|
correspond to the same characteristics for the test set.

Let us go back to the problem previously presented with its test data distribution de-

picted in Fig.2. It corresponds to a test set with class prior probabilities p(d0) = 0.7 and

p(d1) = 0.3. Fig. 3 plots the Hellinger distance between the distribution of this test data set

and different data distributions obtained from the available training data set by subsampling

it. These validation data sets differ in the class distributions (from pv(d1)= 0 to pv(d1)= 1).

Note that the minimum HD is achieved for that validation data set which has the same a

priori probabilities as the test set (pv(d1) = 0.3).

We address the problem of estimating the class proportions of a new unlabeled data set

by finding the calibration data distribution which has the minimum distance to the former.

These artificially generated distributions can be extracted from the available training data

set either by stratified sub-sampling or over-sampling the examples accordingly.

Data sparseness is a problem that usually have to be faced in real practical applications.

In real life training data sets are very likely not to be fully representative in all regions of the

n f (number of features) dimensional space. When this happens, the curve in Figure 3 (which

has been obtained from a large enough data set) would be noisy, like the ones represented
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Figure 4. Sperm cell data set. Hellinger distance (HD) between the distributions of a test

set with p(d1) = 0.3 and different calibration sets (left). The resulting curve is fitted on the

right to a polonomial of degree 5 (right).
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Figure 5. Sperm cell data set. Hellinger distance (HD) between the distributions of the

outputs of a test set and different calibration sets given by a classifier (left). Once again the

curve is fitted on the right to a polonomial of degree 5 (right).

in figures 4 and 5 on the left. This problem might be partially solved by filtering the curve,

downsampling it (e.g., by computing the median among that value and the nearest points),

or fitting the resulting curve with a polinomial of degree n (see figures 4 and 5 on the right).

The difference between a calibration data set (with known labels) and the test set can

be measured either by computing the HD between both data distributions or by computing

the HD between the outputs assigned by a classifier that provides posterior probability esti-

mates (e.g., a neural network). In this case, the problem is simplified because distributional

divergences are measured with data defined in a one-dimensional space (for a two class

problem) or in a L−1 space for a general multi-class problem with L classes. Figures 4 and

5 shows a comparison of the HD between distributions and between the distributions of the

same data sets, respectively.

Finally, the method to compute the Hellinger Distance between two discrete distribu-

tions T and V is shown in Algorithm 1. The proposed prior probability estimation method

based on it is shown in Algorithm 2.
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Algorithm 1 Compute HD (V, T, b)

Require: N f eatures(V) = N f eatures(T), number of bins b > 0

1: HD = 0, n f = number of features in V and T

2: for i = 1 to n f do

3: h = 0

4: Combine V and T , and discretize into b bins

5: nbT ← number of elments of T in each bin

6: nT ← number of elments of T

7: nbV ← number of elments of V in each bin

8: nV ← number of elments of V

9: for j = 1 to b do

10: h = h+

(√
nbT [ j]

nT
−
√

nbV [ j]
nV

)2

11: end for

12: HD = HD+
√

h

13: end for

14: return HD
n f

Algorithm 2 Estimate HD (XValid , LValid , XTest , b)

Require: Training set labels LValid = {d/d ∈ {0,1}}, N f eats(XValid) = N f eats(XTest)≥ 1,

Nelems(XValid) = Nelems(LValid) and num. bins b > 0

1: for i = 0.01 to 1 in small steps do

2: Extract a subset V from XValid with a proportion i of positives

3: HD curve[i] = Compute HD(V,XTest,b)
4: end for

5: return p̂ = arg min(HD curve)

3. Experimental Study

An experimental illustration of the methods explained in Section 2. will be shown in this

section. We have assessed the performance of the CC, AC, MS, and PP methods, as well as

the mentioned approaches that rely on the Hellinger distance.

The data used in these experiments have been obtained from a real boar semen qual-

ity control application based on computer vision2. This dataset has 1861 instances: 951

damaged (class 1) and 910 intact (class 0) spermatozoon acrosomes. The acrosome is a

membrane that is over the spermatozoon’s head and allows the penetration into the egg. For

this reason, if a sample has a high proportion of damaged acrosomes, it will be useless for

fertilization purposes. Some texture descriptors derived from the Discrete Wavelet Trans-

form (DWT) have been used. Each image is characterized by a vector of 20 features which

are known as Wavelet Co-occurrence Features [3]. For further details about how images

have been aquired and processed we refer the interested reader to [16].

2We would like to thank CENTROTEC for providing us the semen samples and for their colaboration in

the acquisition of the images.
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A back-propagation Neural Network with one hidden layer and a logistic sigmoid trans-

fer function for the hidden and the output layer has been used in the classification stage.

Learning was carried out with a momentum and adaptive learning rate algorithm. The

training is carried out minimizing a loss function in order to take the classifier outputs as

estimates of posterior probabilities [4]. The loss function that has been used in these ex-

periments is the mean square error. Data were normalized with zero mean and standard

deviation equal to one.

As a previous step, 10-fold cross validation with several training cycles and neurons in

the hidden layer has been carried out in order to determine the performance of the network

with each different configuration. A network with 2 neurons in the hidden layer trained

during 400 cycles proved to be the best one, in terms of both the miss classification rate

(which was 4.27%) and simplicity, so we have used this configuration in the following

experiments.

The mismatch between the real class distribution and the estimation provided by the

different approaches assessed in this work is measured by means of the Mean Relative Error

(MRE). It focuses on the possitive class (the class of interest) and measures the importance

of the error (i.e., it is not the same to have an absolute error of 1% when the a priori

probability is 5% than when it is 50%). The MRE (measured in %) is defined as follows:

MRE(p(d1), p̂(d1)) =
|p(d1)− p̂(d1)|

p(d1)
100 (11)

where p(d1) and p̂(d1) are the true and the estimated a priori probabilities of class 1, re-

spectively.

3.1. Comparison of Methods

The performance of the methods has been evaluated in a test set for a proportion of class-1

examples that varies between 0.05 and 0.50 with a fixed set size of 280 elements. The class

proportions in the training set are always balanced, and it has the 70% of the minority class

of the whole dataset. Both training and test set are always disjoint and randomly extracted

amongst the whole dataset.

For the estimation of each different test set proportion, 100 runs were conducted in

order to avoid random effects. These runs result from the extraction of 20 random training

sets and, for each of them, 5 sets with the desired distribution extracted from the remaining

examples are tested. The final results are the average of these 100 runs.

First of all, we have compared the methods based on the Hellinger Distance using the

data distribution p(x) and the classifier’s outputs distribution p(y), both with and without

fitting the curve, in order to compare their performance. In order to avoid adjusting the

bins in the HD based methods, each one is applied for a number of bins varying from 10

to 110 in steps of 10, and the final estimated a priori probability is the median of these 11

estimations.

Table 2 shows the relative errors of the estimations, as well as their ranks when esti-

mating the prior probabilities of several sets with different proportions of class-1 elements.

HDx and Adj. HDx are the HD of the data distribution itself and the HD obtained by fitting
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the curve to a polynomial of degree 5, respectively (as it is shown in Figure 4). Similarly,

HDy and Adj. HDy are conducted with the outputs of a classifier (see figure 5).

Table 2. MRE (%) of the methods based on the Hellinger Distance.

Test set class-1 prop. HDx Adj. HDx HDy Adj. HDy

0.05 68.03 (4) 45.15 (3) 21.35 (2) 15.97 (1)

0.15 13.85 (3) 23.59 (4) 7.46 (2) 5.83 (1)

0.25 7.35 (3) 14.23 (4) 3.58 (2) 3.53 (1)

0.35 6.73 (3) 9.47 (4) 2.50 (2) 2.16 (1)

0.45 7.22 (4) 4.23 (3) 1.97 (1) 3.44 (2)

Avg. Rank 3.4 3.6 1.8 1.2

According to these results, the Hellinger Distance is a more reliable method when it

is computed using the outputs instead of the data itself, and, what is more important, it

performs even better when the HD curve is fitted to a polynomial of degree 5 instead of

taking the minimum of the curve itself.

Next, we compare this method with CC, AC, MS, and PP. The confusion matrices re-

quired for AC and MS were estimated from the training set by 50-fold cross validation, as

suggested in [13]. Table 3 shows the relative errors and the ranks of these methods.

Table 3. MRE (%) of CC, AC, MS, PP, and HDy with adjusted curve.

Test set class-1 prop. CC AC MS PP Adj. HDy

0.05 81.93 (5) 20.85 (3) 24.28 (4) 11.39 (1) 15.97 (2)

0.15 20.38(5) 6.25 (3) 7.66 (4) 4.61 (1) 5.83 (2)

0.25 8.81(5) 3.26 (2) 3.63 (4) 2.74 (1) 3.53 (3)

0.35 4.10(5) 2.30 (3) 2.36 (4) 2.04 (1) 2.16 (2)

0.45 1.65(4) 1.56 (2) 1.65 (3) 1.49 (1) 3.44 (5)

Avg. Rank 4.8 2.6 3.8 1 2.8

Results clearly show the benefits from using an estimation method instead of relying on

the naı̈ve Classify and Count (CC), as expected.

In these experiments, the average ranks show that PP clearly outperforms the others. As

suggested by Saerens, this iterative procedure performs better when the posterior probabi-

lity estimates yielded by the classfier are well approximated [20]. The performance of AC

and HDy is quite similar, and better than MS. Thus, for a test proportion of 0.15, the best

method has been PP, with a MRE of 4.61%. Adj. HDy and AC yields errors of 5.83% and

6.25%, respectively, while the error of MS is higher than 7.50%. Finally CC is the worst,

yielding a relative error of 20.38%.

In the next section, we will study the robustness of the methods with respect to the

performance of the classifier.
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Figure 6. Variation of the MRE with each method when using networks trained during 100,

125, 160, and 400 cycles (from top to bottom and from left to right).

3.2. Robustness

According to Table 3, PP has been the best quantification method when using a neural

network trained during 400 cycles. In this section, we explore how this quantification is

affected by the classifier performance underlying all the estimation methods. To test this,

we used networks trained with a lower number of cycles – in order to obtain a poorer per-

formance when yielding the a posteriori probability estimates –. The dataset and number

of runs are the same as explained in the previous section. We have carried out experiments

with networks trained during 100, 125, 160, and 400 cycles. The aim of these new quan-

tifications is to find out how important is the tuning of the classifier in the estimation of a

priori probabilities.

Figure 6 shows the evolution of the MRE (in %) for each different number of training

cycles.

Although the PP method gives the best estimations for an optimal classifier, the pictures

show that its performance is very sensitive to changes in the classifier training conditions.

Thus, for a network trained with 100 cycles, the MRE may be higher than 150%, while the

maximum relative error when the network is trained during 400 cycles is around 11%.

It is clear that Adj. HDy outperforms the other quantification methods when training the

network during 100, 125, and 160 cycles, specially with low proportions of class-1 elements

in the test set, when the performance of the network is quite poor.

Moreover, it can be observed that the error provided by the Adj. HDy method hardly de-

teriorates when the base classifier performance does. In fact, the maximum MRE is around
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Figure 7. Evolution of the area under curves in figure 6 of each method along the evaluated

scenarios.

25% when the networks are trained with 125 and 160 cycles, and around 40% when the

number of training cycles is 100. In order to illustrate this, we have computed the areas

under the curves in Figure 6 as a measure of the overall performance of the estimation

methods. The comparison is shown in figure 7. As the curves have been plotted by join-

ing the MRE of 10 different test distributions, the AUC have been computed by using the

numerical integration based on the trapezoid’s rule.

It is clear that the Adj. HDy method is more robust than the others with respect to the

changes in the classifier performance. Therefore, we can conclude that the performance of

this method based on the Hellinger distance does not strongly depend on the performance

of the network.

4. Conclusion

In this work, we study the problem of automatically quantifying the proportion of data

from different classes in a supervised classification environment. The class distribution

estimation helps to adapt a classifier to an environment that shows a shift in the class prior

probabilities with respect to the training data set; in order to prevent a drop in classifier

performance, but it is also an important task by itself, as we have pointed out.

We present and describe quantification methods based on: (a) the classifier confusion

matrix (AC, MS), (b) the posterior probability estimations provided by the classifier (PP)

and (c) distributional divergence measures (HD). All these techniques are illustrated on

a real empirical study based on computer vision that quantifies the proportion of sperm

cells with damaged/intact acrosome in a given boar semen sample. Results show that all

techniques get a significant improvement with respect to the naive approach of classify and

count (CC) and highlight the robustness of the HD method against the classifier tuning,

as well as the superiority of the PP method when the classifier provides good posterior

probability estimates. There are many works that can be done on this particular field like

developing the selection or fusion of quantification techniques, in order to get an improved

performance.
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