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9 Abstract Knowledge of environmental variability

10 and how it is affected by disturbance is crucial for

11 understanding patterns of biodiversity and determin-

12 ing adequate conservation strategies. The aim of this

13 study is to assess environmental variability in patches

14 undergoing post-fire vegetation recovery, identifying

15 trends of change and their relevant drivers. We

16 particularly evaluate: the value of three spectral

17 indices derived from Landsat satellite data [Normal-

18 ized Burn Ratio (NBR), Normalized Difference Veg-

19 etation Index (NDVI) and Wetness Component of the

20 Tasseled Cap Transformation (TCW)] for describing

21 secondary succession; the effectiveness of three met-

22 rics (diversity, evenness and richness) as indicators of

23 patch variability; and how thematic resolution can

24 affect the perception of environmental variability

25 patterns. While the system was previously character-

26 ised as highly resilient from estimations of vegetation

27 cover, here we noted that more time is required to fully

28 recover pre-fire environmental variability. Usingmean

29 diversity as indicator of patch variability, we found

30 similar patterns of temporal change for the three

31 spectral indices (NBR, NDVI and TCW). Analogous

32 conclusions could be drawn for richness and evenness.

33Patch variability, measured as diversity, showed

34consistent patterns across thematic resolutions,

35although values increased with the number of spectral

36classes. However, when the variance of diversity was

37plotted against thematic resolution, different scale

38dependencies were detected for those three spectral

39indices, yielding a dissimilar perception of patch

40variability. In general terms, NDVI was the best

41performing spectral index to assess patterns of vege-

42tation recovery, while TCW was the worst. Finally,

43burned patches were classified into three classes with

44similar trends of change in environmental variability,

45which were strongly related to fire severity, elevation

46and vegetation type.

47Keywords Diversity � Richness � Evenness �

48Landsat � Disturbance � Post-fire recovery

49

50

51Introduction

52Understanding patterns of species diversity and their

53causes is a traditional theme in ecology (Peet 1974;

54Huston 1994). Nevertheless, in the current context of

55loss of biodiversity and decreasing supply of ecosys-

56tem services (Schröter et al. 2005), it has additionally

57become an urgent matter of environmental, social and

58political concern. The occurrence of a species at a site

59depends on environmental variability, which
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60 determines: (1) the range of suitable habitats; (2) their

61 spatial configuration, which influences ecological

62 processes as migration or competition; and (3) their

63 variation over time (Dufour et al. 2006), which is

64 associated with disturbance and succession. Distur-

65 bance has been assumed to be one of the most

66 important factors driving species diversity (‘‘interme-

67 diate disturbance hypothesis’’ by Connell 1978 and

68 others), even if this relationship has been demonstrated

69 as less consistent than expected (Mackey and Currie

70 2001) and dependent upon the spatial scale of measure

71 (Hammer and Hill 2000; Dumbrell et al. 2008).

72 Consequently, a better knowledge of environmental

73 variability at varying scales, dynamics and drivers of

74 change are crucial for understanding diversity patterns

75 in disturbed landscapes and determining adequate

76 conservation strategies.

77 In the Mediterranean Region, fire is probably the

78 main disturbance (Lavorel 1999), shaping landscapes

79 at different spatio-temporal scales (De Luis et al.

80 2008). In this area fire frequency has increased

81 (Moreno et al. 1998; Pausas and Vallejo 1999) as a

82 consequence of climatic factors (i.e. coincidence of hot

83 and dry seasons and precipitation variability). Another

84 factor is the accumulation of fuel loads subsequent to

85 land abandonment, which results in landscape homog-

86 enization (Suárez-Seoane et al. 2002). Fire has a

87 complex effect on vegetation regeneration, mainly due

88 to differential responses to fire regimes (Wittenberg

89 et al. 2007; Groeneveld et al. 2008). In this sense,

90 Keeley et al. (2005) evaluated four hypothesis (see also

91 Bond and van Wilgen 1996) finding that post-fire

92 recovery patterns are determined by: (1) fire severity

93 and post-fire fluctuations in precipitation (‘‘event-

94 dependent hypothesis’’); (2) length of the fire free

95 period, which affects reproductive failure and fuel

96 accumulation (‘‘fire interval hypothesis’’); (3) internal

97 density-dependent control, which regulates the change

98 from herbs to woody species (‘‘self-regulatory hypoth-

99 esis’’); and (4) extrinsic environmental factors that

100 vary spatially (‘‘environmental-filter hypothesis’’). As

101 a result of both disturbance and succession working in

102 changing conditions, landscape becomes a heteroge-

103 neous mosaic of patches with different burning histo-

104 ries, which may enhance its biodiversity (Keeley et al.

105 2005). Since recurrence is high and recovery is quick

106 (due to resprouting abilities or seed bank persistence),

107 Mediterranean mosaics are highly dynamic (Trabaud

108 and Galtié 1996, Dı́az-Delgado and Pons 2001).

109Furthermore, the perception of landscape complexity

110(i.e. patterns and associated processes) can be prob-

111lematic because it depends on mapping decisions

112(Arnot et al. 2004). Landscape pattern measures may

113vary depending upon choices on spatial, temporal and

114thematic scales (Levin 1992;Wu et al. 2002;Wu 2004;

115Saura 2004). However, whilst ecologists are aware of

116the effect of spatio-temporal scales, few studies have

117investigated how thematic resolution affects the

118understanding of the reality. In this sense, Bailey

119et al. (2007a, b) and Buyantuyev and Wu (2007)

120demonstrated that different spatial pattern characteris-

121tics can be identified at different thematic resolutions.

122Since there is no single optimal thematic resolution in

123geospatial information, multiscale analyses based on

124biological traits are required when assessing relation-

125ships between landscape structure and species behav-

126iour (Baudry and Burel 1997). For example, coarse

127thematic resolutions are suitable when analyzing

128highly mobile or generalist species, which perceive

129less detail in landscape. By contrast, detailed resolu-

130tions are more appropriate for species with small

131movement capacity or with a preference for homoge-

132neous habitats, which perceive more landscape classes

133(Suárez-Seoane and Baudry 2002).

134Classical studies monitor a small number of local

135fire events for a few years. This make difficult to infer

136patterns at larger spatial and temporal scales (Röder

137et al. 2008). At the present, the use of spectral indices

138derived from multi-temporal satellite data is becom-

139ing widespread to assess long temporal changes in

140full sets of landscape elements. In the study area, fire

141scar mapping (Lozano et al. 2007a), fire risk mod-

142elling (Lozano et al. 2007b, 2008) and vegetation

143recovery (Lozano et al. 2005) have been successfully

144characterized using three spectral indices: Normal-

145ized Burn Ratio (NBR) (Key and Benson 1999),

146Normalized Difference Vegetation Index (NDVI)

147(Rouse et al. 1973) and Wetness Component of the

148Tasseled Cap Transformation (TCW) (Crist and

149Cicone 1984). NBR is applied for fire mapping, fire

150risk modelling and severity estimation. It maximizes

151reflectance changes related to fire events, since near-

152infrared reflectance (NIR) decreases due to vegetation

153removal and mid-infrared reflectance (MIR) increases

154with the amount of bare soil. NDVI is likely the most

155widely utilized index in vegetation applications,

156showing reasonably good results in all phases of the

157fire cycle. It separates green vegetation from other
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158 surfaces because chlorophyll absorbs red light and

159 reflects NIR wavelengths. TCW is one of the best-

160 performing spectral indices for monitoring post-fire

161 recovery. It contrasts visible and NIR wavelengths

162 (where light absorption by water is low) to SWIR

163 (short-wave infrared) and MIR bands (where that

164 absorption is much significant). In most cases,

165 spectral indices are used as continuous values to

166 characterize vegetation, or converted into Boolean

167 variables by means of the application of particular

168 thresholds to map different landscape elements. Here

169 we explore the advantages of reclassifying spectral

170 values into several classes to describe landscape

171 under different thematic resolutions, avoiding the

172 uncertainty problems associated with misclassifi-

173 cation in categorical maps (Shao and Wu 2008).

174 These data will form the basis for calculating patch

175 variability by applying different metrics based in

176 estimations of diversity, since they might give rise to

177 different conclusions (Yue et al. 2005). Diversity

178 metrics (Magurran 2004) have been widely used

179 when characterizing post-fire recovery at a local scale

180 (e.g. Calvo et al. 2002; Arnan et al. 2006) but they

181 have been used less often in combination with

182 spectral indices at a large scale.

183 The general aim of this study is to detect changes

184 in environmental variability in patches affected by

185 post-fire recovery, evaluating the effect of applying

186 different patch metrics, Landsat spectral indices and

187 thematic resolutions. More specifically, we try to: (1)

188 Compare the effectiveness of each spectral index for

189 assessing vegetation recovery and then environmental

190 variability (measured as diversity and its components:

191richness and evenness); (2) Evaluate the role of

192thematic scale (i.e. reclassification choices to define

193spectral classes) on the results, looking for scale

194dependencies; (3) Identify types of temporal change

195in patch variability and their environmental drivers.

196Study area

197The study area is the Natural Park of Lago de

198Sanabria y Alrededores, in north-western Spain

199(Fig. 1), which comprises about 23,000 ha. Land-

200scape pattern is patchy as a consequence of a long

201history of fire events and human activities. At

202elevations ranging from 900 to 1,300 m.a.s.l. (where

203most of local population lives), woodlots of Quercus

204pyrenaica and riparian communities of Salix spp.

205occur in a matrix of mixed shrubland (mainly Erica

206spp. and Genista spp.). At higher elevations (1,300–

2072,100 m.a.s.l.), where topography is steep, the main

208landscape element is a fire-adapted heathland com-

209munity dominated by Erica australis and, to a lower

210extent, Calluna vulgaris. Fire events, the main

211problem for wildlife conservation, take place very

212frequently during early spring (mid-late March) and

213summer (July to late September). Fire ignition is

214mainly attributed to the local population (about 90%,

215Gutierrez, pers. com.), which has been using fire for

216centuries to manage vegetation. During the study

217period (1991–2005), 24.90% of the area was burned

218once, 4.75% twice, 0.40% three times and 0.05% up

219to four times. See Lozano et al. (2007b) for a more

220detailed description.

Fig. 1 Location of the

study area in Spain. The

figure shows heathland

patches, the landscape

elements most affected by

fire, superimposed on

shaded relief
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221 Materials and methods

222 A general scheme of the methodology developed in

223 this paper can be found in Fig. 2.

224 Satellite data, maps of burned areas and patch

225 selection

226 One Landsat image was acquired for each year

227 throughout the period 1991–2005 (eleven TM and

228 four ETM ? images) covering the Natural Park. Most

229 of the images were taken in late summer (August and

230 September) in order to consider the majority of the

231 burning season. Geometric correction (Palá and Pons

232 1995) was based on ground control points (at least 50)

233 defined on the un-referenced images (50 9 50 km)

234 with the support of orto-photographs at 70 cm (year

235 2000). 60% of the points were used to estimate the

236 geometric fit (second order 3D polynomial) and the

237 remaining 40% for validation purposes. The resam-

238 pling option was the Nearest Neighbor Algorithm. The

239 sub-pixel georectified images were then radiometri-

240 cally corrected using the algorithms proposed by

241 Markham and Barker (1986) and Moran et al. (1992).

242 Atmospheric correction was based on the default

243 transmittance method proposed by Chávez (1996).

244 Down-welling transmittance values for bands 5 and 7

245 were taken from Gilabert et al. (1994), whose study

246 area had similar atmospheric conditions to our site.

247 Topographic correction was based on a non-

248lambertian empirical model, the C-correction method

249(Riaño et al. 2003), derived from the approach of

250Teillet et al. (1982). Radiometric normalisation of the

251time-series using pseudo-invariant scene features

252(Hall et al. 1991) enabled a reliable intercalibration

253between TM and ETM ? images to a common

254reference image.

255Maps of burned areas for 1992–2005 (Lozano et al.

2562007a) were derived from Landsat images bymeans of

257the differenced Normalized Burned Ratio (dNBR).

258Overall accuracy was 88.39%, commission error

25910.09% and omission error 14.37%. Patches were

260defined as spatial aggregations of pixels with the same

261fire history (i.e. recurrence and year of fire event).

262Spatial continuity within a patch is maintained con-

263sidering the eight neighbors of each pixel. A sample of

264ten patches was randomly selected for each year. We

265only considered patches burned once during the study

266period, since the effect of fire recurrence on environ-

267mental variability is not the subject of this paper. Due

268to low fire occurrence, years 1993, 1996, 2003 and

2692004 were excluded, leaving 10 years for further

270analysis. The final number of studied patches was 100

271(10 patches 9 10 years). Mean patch size was

27223.89 ha (SD = 50.38), 48.2% of which covered 5–

27310 ha, 30.0% 10–20 ha, 11.74% 20–50 ha, 6.09% 50–

274100 ha and 3.9% more than 100 ha.

275Definition of classes at various thematic

276resolutions from different spectral indices

277In order to measure patch variability from spectral

278indices, continuous values have to be reclassified into

279classes, the number of which is dependent on

280thematic resolution. Three spectral indices were used:

281NBR (Eq. 1), NDVI (Eq. 2) and TCW (Eq. 3).

NBR ¼ ðqNIR � qSWIRÞ=ðqNIR þ qSWIRÞ ð1Þ

283283NDVI ¼ ðqNIR � qREDÞ=ðqNIR þ qREDÞ ð2Þ

285285TCW ¼ 0:15TM1 þ 0:18TM2 þ 0:33 TM3

þ 0:34 TM4 � 0:71TM5 � 0:46TM7 ð3Þ

287287qNIR, qRED and qSWIR are the reflectance of near

288infrared, red and short-wave infrared bands, respec-

289tively. TMx stands for the channel reflectance of

290Thematic Mapper Sensor.

291Values of each spectral index were grouped into

292five, nine and 13 classes, thus reflecting three

293different thematic resolutions. Since each index has

Fig. 2 General schematic representation of the methodology.

Steps, databases and statistical analysis are represented in white

rectangular boxes, light-gray cylinders and dark-gray ovals,

respectively
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294 a different range of values which can make the

295 assemblage and interpretation of the classes confus-

296 ing, linear regression analysis was used to transform

297 spectral data into more understandable and compara-

298 ble field vegetation cover values (see Table 1).

299 Vegetation was recorded in 21 patches in late

300 summer 2005. We measured total vegetation cover

301 as the sum of all vertical layers above the soil

302 (if more than one layer exists, then vegetation cover

303 can be higher than 100%). The sampling strategy was

304 based on two factors: time elapsed since the last fire

305 and size of fire scars. Five experimental units

306 (30 9 30 m) were randomly distributed within each

307 patch, so that they corresponded spatially to pixels in

308 the satellite images. In patches bigger than 50 ha, up

309 to eight units were defined to account for higher

310 internal heterogeneity. Within each experimental

311 unit, we systematically defined five sampling units

312 of 1 m2: one in the middle and one in each of the

313 diagonals. Overall, we measured 111 experimental

314 units and 555 sampling units.

315 Patch variability metrics, general dynamics

316 and scale dependencies

317 To assess temporal changes in patch variability from

318 the year before the fire event (x - 1) until the seventh

319post-fire year (x ? 7), we utilized spectral data to

320calculate three metrics: diversity, richness and even-

321ness, evaluating their role as indicators of environ-

322mental variability. Diversity (H0) was measured by

323means of an adaptation of the Shannon index (Eq. 4;

324Shannon and Weaver 1949) using spectral class

325frequency as input data. Richness (S) was calculated

326as the number of spectral classes in a given patch.

327Evenness (J0) was the pixel equi-distribution among

328spectral classes (Eq. 5). The procedure was coded in

329MatLab (MatLab 2004).

H0 ¼ �Rpilog2pi ð4Þ

331331where pi is the probability of each pixel to allocate

332into each spectral class. E{A, B, …, i, …, T} are

333spectral classes.

J0 ¼ H0=H0
max ð5Þ

335335where H0 is the diversity and H0
max is the logarithmic

336value for richness.

337If fire shows a heterogeneous pattern of severity,

338we expect a high number of spectral classes and,

339therefore, a high value of diversity, richness and

340evenness. Parallel reasoning can be applied to

341vegetation recovery. Conversely, low values of

342diversity, richness and evenness will be linked to

343homogeneous patterns originated from very intense/

344weak disturbance/recovery processes.

345Diversity values (H0) were specifically used to

346explore the existence of scale-dependencies between

347spatial patterns and thematic scale. The observation

348of a phenomenon shows a scale dependency when its

349mean intensity varies with scale. If a statistical

350relationship exists between the scale and the variable

351under analysis, it is possible to undertake scale

352transfers (i.e. to translate the mean value of the

353phenomenon to a certain scale from values obtained

354at another) (Wiens 1989; O’Neill et al. 1991; Auger

355et al. 1992; Suárez-Seoane and Baudry 2002; Peters

356et al. 2007). In order to detect scale dependencies, the

357variance of the annual mean diversity (caused by

358disturbance or recovery, according to the year: x - 1,

359x, x ? 1, …, x ? 7) was plotted, for each spectral

360index, against thematic resolution. A break in the

361slope variance/scale will indicate differences in the

362perception of the process across thematic resolutions.

363We then tested whether the slopes of the lines either

364sides of the break were significantly different by

Table 1 Definition of three thematic resolutions (C5, C9 and

C13), containing five, nine and 13 classes of spectral values,

respectively

Class CR5 C9 C13

1 0–30 0–15 0–10

2 30–60 15–30 10–20

3 60–90 30–45 20–30

4 90–120 45–60 30–40

5 [120 60–75 40–50

6 75–90 50–60

7 90–105 60–70

8 105–120 70–80

9 [120 80–90

10 90–100

11 100–110

12 110–120

13 [120

Classes were set up according to ranges of total vegetation

cover (values are expressed in percentages). Values were used

to calculate patch variability metrics
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365 running ANOVAs. Measures done at the scale where

366 such a rupture is detected are especially relevant

367 because they can be up and down transferred. This

368 analysis allowed the objective choice of a particular

369 thematic resolution to simplify the last part of the

370 study, avoiding redundancy in the results.

371 Identification of classes of environmental

372 variability dynamics: relevant drivers

373 To identify groups of patches exhibiting similar

374 temporal trends in environmental variability, we

375 stored the mean values of Shannon diversity (H0)

376 from the year before the event to the fifth post-fire

377 year for the three spectral indices (NBR, NDVI and

378 TCW) and the thematic resolution selected in the

379 previous step. Here we only used 70 patches,

380 corresponding to fires occurred between 1992 and

381 2000 (1993 and 1996 were excluded because of low

382 fire occurrence, and the years after 2000 because of a

383 short regeneration period with available data). The

384 implementation of a hierarchical cluster analysis

385 allowed groups of patches with similar dynamics to

386 be defined for each spectral index. These dynamics

387 were clustered using relative Euclidean distance and

388 Ward’s method, setting the minimum agglomerative

389 coefficient for group consideration as 80%. Ward’s

390 clustering method minimizes within group variance

391relative to between group variance (van Tongeren

3921995). Next, the clusters identified in the previous

393step were re-grouped into the final classes. Analyses

394were undertaken in R statistical package (R 2.4.1.

3952006).

396In order to understand the drivers behind the

397identified dynamics, we used the Random Forest

398Algorithm (Breiman 2001) from a set of eleven

399environmental variables likely to be related to

400recovery responses (Table 2). These variables

401describe: (1) frequency of the vegetation types most

402affected by fire events in the surroundings of a given

403pixel, (2) topography and (3) patch features related to

404the fire regime. All these variables were calculated at

405pixel level and then averaged for each patch (except

406patch area). Regarding the estimation of fire severity,

407the standard deviation was also considered because it

408is related to the spatial variability generated by the

409disturbance. The Random Forest procedure is based

410on classification and regression trees. Each node is

411split by the best predictor selected from a subset of

412randomly chosen predictors. This method performs

413very well when compared to other classifiers in

414discriminant analysis, support vector machines or

415neural networks and is robust against overfitting

416(Breiman 2001). In addition, only two parameters

417must be set by the user (number of variables in the

418random subset at each node and number of trees in

Table 2 Environmental variables included in the Random Forest analysis

Variable Description

Vegetation type

Young_forest Frequency (0–1) of young forests in a 7 9 7 kernel

Shrubland Frequency (0–1) of mixed shrublands in a 7 9 7 kernel (dominated by Cytisus scoparius and Genista spp.)

Heathland Frequency (0–1) of heathlands in a 7 9 7 kernel (dominated by Erica spp.)

Topography

Elevation Elevation (m)

Slope Slope (degrees)

Solar_rad Annual solar radiation (MJ/(cm2
9 year))

Time_rad Solar insolation duration (hours)

Topo_hum Topographic wetness index (no unit)

Fire-related parameters

Severity_mean Mean of fire severity (estimated as the change of the NBR value) for pixels included in the patch

Severity_std Standard deviation of fire severity (estimated as the change of the NBR value) for pixels included in the patch

Area Burned patch area (ha)
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419 the forest), being the method not very sensitive to

420 their values (Liaw and Wiener 2002). We established

421 the number of trees to be created in 50,000 iterations.

422 The number of variables to be considered in each

423 split that minimized fit error (assessed by the out-of-

424 bag observations) was then calculated by means of an

425 iterative procedure that, in addition, identified and

426 removed outlier observations. Finally, we ran the

427 algorithm and explored the error rate of the resulting

428 model and the importance of each variable measured

429 as: (1) prediction accuracy of the out-of-bag portion

430 of the data compared to other variables (mean

431 decrease in accuracy), and (2) decrease in node

432 impurities (mean decrease Gini).

433 Results

434 Temporal changes in patch variability: the role

435 of spectral indices, patch metrics and thematic

436 scale

437 Mean diversity (H0) showed similar patterns of

438 temporal change across thematic scale, although

439 values increased when the number of spectral classes

440 was higher (Fig. 3). It must be highlighted that

441 diversity drastically increased within the fire year

442 (associated with the spatial heterogeneity generated

443by disturbance), decreasing then abruptly and stabi-

444lizing to the seventh post-fire year. The level of

445diversity reached at the end of the time span was

446always higher than that measured in the pre-fire state.

447Comparing diversity values obtained from the three

448spectral indices (Fig. 4), we found coherence among

449them, with NDVI always showing the highest values

450and TCW the lowest. However, some differences

451could be observed: NDVI-based values were quite

452similar for the year of the event and the first post-fire

453year, slowly decreasing in subsequent years, and

454almost equalling the values measured the year before

455the fire. However, TCW and NBR performed dis-

456similarly, as they showed differences among the year

457of the event and the following year. Moreover, they

458revealed higher values of diversity at the end of the

459recovery time series in comparison with the pre-fire

460situation. The same results were found for all

461thematic resolutions.

462Analogous conclusions could be drawn for rich-

463ness (S) and evenness (J0) (Fig. 5) when compared

464with diversity (H0) (Fig. 4) to characterize changes in

465patch variability from the three spectral indices.

466Nevertheless, some slight differences could also be

467noticed. For the year of the fire event, no differences

468in evenness were detected by spectral indices, with

469maximum dissimilarities for richness. Moreover, the

470year after the fire, only diversity and evenness

Fig. 3 Temporal changes in patch variability measured as

mean diversity (H0) from the year before the event (x - 1) to

the seventh post-fire year (x ? 7) at different thematic

resolutions. The graph shows the mean values obtained for

the three spectral indices (NDVI, NBR and TCW)

Fig. 4 A comparison of temporal changes in patch variability

measured as mean diversity (H0) for the three spectral indices.

Years are referenced to the year of the event (x). Values

correspond to the nine-class thematic scale as an example
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471 measured from NDVI revealed an increase in

472 variability.

473 Figure 6 plots the variance of the diversity (H0)

474 against thematic resolution, showing different

475 responses for the three spectral indices. TCW did not

476 show any visible pattern in this sense (F = 2.227,

477 P = 0.155, df = 1), while a significant slope break

478 was detected at the 9-classes scale for NDVI

479 (F = 4.679, P = 0.046, df = 1). NBR also detected

480 a slight but not significantly break at that resolution

481 (F = 3.194, P = 0.093, df = 1). Therefore, a scale

482dependency occurred at this intermediate thematic

483resolution. As a consequence, results obtained at this

484scale can be transferred to the other proposed thematic

485levels.

486Classes of environmental variability dynamics:

487relevant drivers

488Cluster analysis yielded high agglomerative coeffi-

489cients, ranging from 0.955 to 0.858. We obtained nine

490groups of patches (three groups for each spectral

491index) with similar dynamics of environmental

492variability (note that groups based on the TCW index

493were rejected because of their poor performance).

494These classes were then grouped into three final

495classes (Table 3; Fig. 7), which were modelled to

496predict their occurrence from a set of environmental

497variables. Patches from classes 1 and 3 showed a

498strong increase in variability associated with fire

499events and a subsequent decrease. Class 1 was mainly

500explained by the altitude (i.e. elevations below 1,300

501and above 1,750 m.a.s.l.) and a high spatial hetero-

502geneity of fire severity, while class 3 was associated

503with low severity fires. Patches from class 2 had the

504highest variability (before and after fire), reaching a

505maximum in the first recovery year and showing

506more consistency through time. They were linked to a

507high shrubland frequency ([0.5), a low and/or high

508heathland frequency (\0.35 and[0.75) and a high

509mean fire severity.

Fig. 5 Temporal changes in patch variability measured as mean evenness (J0) and richness (S) for the three spectral indices. Values

correspond to the nine-class thematic scale

Fig. 6 Variance of the annual mean values of diversity (H0),

caused by disturbance or recovery according to the year,

plotted against thematic resolution for each spectral index
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510 Discussion

511 Temporal changes in patch variability: the role

512 of the thematic scale and the spectral indices

513 Many authors have studied ecosystem resilience to

514 fire in Mediterranean systems on the basis of

515 estimations of vegetation cover at either local (from

516 field data; e.g. Calvo et al. 2002) or large scales (from

517 raw spectral values derived from remote-sensing

518 sources; e.g. Dı́az-Delgado et al. 2002). The present

519 study offers a complementary approach which

520 allowed the characterization of secondary succession

521 in disturbed patches at different thematic scales, on

522 the basis of environmental variability estimated from

523 satellite data. Variability strongly determines the

524 number and distribution of available habitats and,

525 therefore, is a more relevant determinant of species

526occurrence (Dufour et al. 2006) than vegetation cover

527in itself. We have shown that, while this system was

528characterised as highly resilient based on estimates of

529vegetation cover (Lozano et al., pers. com.), longer

530time scales are required for these communities to

531fully recover pre-fire levels of environmental vari-

532ability. This fact highlights the need to combine

533different approaches to describe ecological complex-

534ity in a more realistic way.

535We found that patches regained most of their pre-

536fire structural properties during the 2 years following

537the disturbance. This high resilience to fire has also

538been found in other Mediterranean areas (Kutiel

5391994; Dı́az-Delgado et al. 2002; Riaño et al. 2002;

540Wittenberg et al. 2007). In this sense, Pausas and

541Vallejo (1999) noted that, within the first year after a

542fire, vegetation cover reached 52.4% in north facing

543slopes. However, in terms of environmental variabil-

544ity, after the initially rapid regeneration, patches do

545not reach their original levels and slowly continued

546recovering, with peaks detectable in the third year,

547which may correlate with an increase in species

548richness, as noted by other authors (Ne’eman et al.

5491995). The level of patch variability achieved at the

550end of the full time span under study was, in general

551terms, still higher than that measured in the pre-fire

552state. This fact suggests that certain structural prop-

553erties (i.e. diversity) require more time than others

554(i.e. vegetation cover) to fully recover, probably

555owing to different rates of ecological processes such

556as dispersion, colonization or competitive exclusion

557across the mosaic generated by the disturbance (Hurtt

558and Pacala 1995; Dufour et al. 2006). According to

559Keely (1991), most species massively disperse their

560propagules in spring and summer (prior to autumn

Table 3 Random Forest models generated for each dynamic identified by the cluster analysis (note that groups based on the TCW

index were rejected because of their poor performance)

Index-specific cluster Final class n Total error (%) Error absence (%) Error occurrence (%)

G1_NBR Class 1 54 14.81 9.68 21.74

G2_NDVI Class 1 52 15.38 3.22 33.33

G2_NBR Class 2 50 14.00 6.90 23.81

G1_NDVI Class 2 53 28.30 19.30 40.90

G3_NBR Class 3 62 35.48 11.63 89.47

G3_NDVI Class 3 59 30.51 4.76 94.1

The final class assigned to each group, the number of observations (n) and the errors are shown for each dynamic

Fig. 7 Dynamic of patch variability for each of the three final

classes identified by the cluster analysis
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561 fires) through passive mechanisms, which may cause

562 a delay in recovery for seeders. Therefore, a primary

563 determinant of similarities between pre- and post-fire

564 states is the dominance of seeders or resprouters in

565 the community, with greater similarities detectable

566 between both states when resprouting species dom-

567 inate (Keely et al. 2005), as is the case in this study.

568 This is relevant for biodiversity because higher

569 variability implies that more varied environmental

570 conditions and, thus more species, can coexist

571 (Statzner and Moss 2004).

572 Ecological processes operate at a range of scales in

573 the landscape. Therefore, ecological systems become

574 structured in hierarchies which are specific to each

575 phenomenon, comprising different levels of organi-

576 zation relevant at different scales (Allen and Starr

577 1982; O’Neill et al. 1986; Urban et al. 1987; Kotliar

578 and Wiens 1990; Wu and David 2002). As a

579 consequence, the scale chosen for examining these

580 processes affects the way in which the system is

581 perceived (He and Gaston 2000). Ecological studies

582 frequently use area-based information derived from

583 field surveys, aerial photography or remote sensing

584 sources. Since the boundaries of these areal units

585 (plots, pixels) are usually arbitrary (or constrained by

586 the resolution of available data), the procedure of

587 defining/changing the scale may show problems

588 related to the Modifiable Areal Unit Problem (Open-

589 shaw and Taylor 1981; Jelinski and Wu 1996). In this

590 study, problems may arise from the aggregation of

591 the same set of input data (one for each spectral

592 index) into classes (three thematic resolutions), which

593 often lead to error propagation and controversial

594 results (Wu et al. 2000). This problem should be

595 further explored since it may have significant influ-

596 ences on the determination of relationships among

597 organizational levels and the translation of informa-

598 tion across scales. On the other hand, despite its

599 relevance, the analysis of thematic resolution should

600 be done in concert with modifying spatial and, if

601 possible, temporal resolutions. When considering just

602 one scale component, sound conclusions are not

603 warranted. All three scale components are related,

604 making it more relevant to analyze simultaneous

605 scale effects.

606 In general terms, patch variability (measured as

607 Shannon diversity) due to fire events showed similar

608 patterns of temporal change across thematic resolu-

609 tions. This is in concordance with Buyantuyev and

610Wu (2007), who found that the effects of thematic

611resolution on many landscape metrics tend to show

612consistent general patterns. As expected, variability

613increased with thematic resolution. In this sense,

614many authors (e.g. Uuemaa et al. 2005) noticed that

615the effectiveness of metrics to monitor landscape

616patterns is highly influenced by the way that the map

617has been defined (i.e. depending on the level of detail

618of information). Bailey et al. (2007a, b) concluded

619that data of an intermediate level of thematic

620resolution are sufficient for general biodiversity

621monitoring, which is in accordance with our findings.

622Our patterns of temporal change differed according to

623the spectral index used to describe the environment,

624yielding different effects of scale-dependency on

625landscape perception at different thematic scales. The

626existence of these scale dependencies can be related

627to the fact that different species with different life

628traits perceive environmental variability caused by

629disturbance/recovery differently (e.g. specialist or

630poorly mobile species with preferences for homoge-

631neous environments against generalist or highly

632mobile species living in heterogeneous landscapes;

633Suárez-Seoane and Baudry 2002).

634Trends in environmental variability obtained from

635the three spectral indices were consistent, allowing

636for small differences. NDVI appears to perform best

637and TCW most poorly, a finding contrary to results

638achieved when evaluating vegetation cover by Loz-

639ano et al. (pers. com.). Even if all indices are related

640to vegetation, each provides different properties. For

641example, NDVI is more closely linked to photosyn-

642thetic activity and NBR to water content and ground

643signals. Therefore, the former should provide better

644results when dealing with cover classes (vegetation

645variability) and the latter when exploring differences

646between bare soil and vegetation. It seems that

647photosynthetic activity is homogenised at a lower rate

648than water content and vegetation cover, which

649determines the influence of the ground signal.

650Diversity, richness and evenness as indicators

651of environmental variability

652Many metrics have been used and ‘‘misused’’ to

653quantify landscape structure (Li and Wu 2004) during

654recent decades. Among them, diversity indices have

655been demonstrated as particularly appropriate for

656describing landscapes at detailed thematic resolutions
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657 while others, such as grain and dominance, work

658 better at low thematic resolutions (Bailey et al.

659 2007a, b). Here, we explored three diversity-based

660 metrics (i.e. Shannon diversity, richness and even-

661 ness), founding similar trends of change through the

662 study period. This contrasts with Yue et al. (2005)

663 who found different tendencies when different diver-

664 sity metrics were used to measure landscape patterns.

665 In our case, we can conclude that the three metrics

666 are redundant if used in combination, as they are

667 providing similar information. This makes them

668 useful and coherent indicators (Li and Wu 2004) of

669 environmental variability only if used independently

670 of each other, with richness providing the least time-

671 consuming measure. However, some differences

672 between the three patch metrics were detected

673 according to the behaviour of the three spectral

674 indices when measuring the variability induced

675 immediately after the disturbance event, with greater

676 similarity between richness and diversity than even-

677 ness. Such specific differences between indices can

678 be due to the water content of the vegetation, which is

679 related to TCW values, and which seems to be more

680 spatially homogeneous before and after the fire event

681 than the features related to NDVI (photosynthesis)

682 and NBR (ground signal, water content and others)

683 (Lozano et al. 2007b, 2008).

684 Classes of environmental variability dynamics:

685 relevant drivers

686 A closer investigation of patch variability dynamics

687 has shown three main classes of change which were

688 strongly related, among other factors, to the severity

689 of fire event, which seriously affects the resprouting

690 capabilities of shrubland (Keely et al. 2005) and,

691 therefore, determines post-fire recovery. Class 1 of

692 patch variability dynamic was associated with the

693 most heterogeneous pattern of fire severity, which

694 was responsible for the creation of a mosaic of

695 patches affected to differing degrees, as reflected in

696 the highest peak in environmental variability during

697 the fire event. The other relevant driver explaining

698 this dynamic was elevation, probably because it is

699 closely linked with radiation and precipitation, both

700 largely determining vegetation recovery (Dı́az-

701 Delgado et al. 2002). Radiation is less favourable to

702 vegetation development because is associated with

703 large water losses through evapotranspiration (an

704effect not compensated for by higher photosynthetic

705activity) (Röder et al. 2008), while precipitation is

706obviously related to higher water availability and,

707therefore, more rapid post-fire recovery. Class 2

708occurred in patches where intense fires homogenized

709the heterogeneous pre-fire spatial pattern, which very

710quickly recovered (after 1 year). This may be

711explained by: (1) the positive relationship between

712fire severity and shrubs found by Keely et al. (2005),

713who theorized that this may be due to the effect of

714high temperatures on the stimulation of dormant seed

715banks, which benefits non-resprouting species; (2)

716scarce vegetation cover before the fire or presence of

717rocky formations in the mosaic, (3) initially hetero-

718geneous water availability (e.g. patches close to a

719water course) or (4) human-related changes. Class 3

720was characterised by very rapid recovery associated

721with low severity fires; in this case, temporary

722habitats created by the fire do not persist for long

723and are rapidly recolonized.

724General conclusions

725Monitoring spatial and temporal changes in patch

726variability on a regular basis is a valuable tool for

727defining conservation measures for species living in

728fire-affected areas. This paper provides a methodo-

729logical framework useful for environmental managers

730to design policies related to vegetation post-fire

731recovery management on the basis of remote-sensed

732data. The method, which explicitly considers spatial

733heterogeneity, allowed us to (1) identify general

734trends in environmental variability; (2) understand

735the most crucial environmental factors affecting those

736trends; (3) identify levels of organisation within the

737system and scale dependencies where thematic scale

738transfers are possible. The combination of ecological

739(i.e. patch variability metrics) and spectral indices has

740shown promising results that should be further

741explored.
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