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Acute effects of small changes in crank length on gross efficiency and pedalling
technique during submaximal cycling
Ventura Ferrer-Rocaa,b, V. Rivero-Palomoa, A. Ogueta-Aldaya, J. A. Rodríguez-Marroyoa and J. García-Lópeza

aFaculty of Physical Activity and Sports Sciences, Department of Physical Education and Sports, Institute of Biomedicine (IBIOMED), University of
5 León, León, Spain; bHigh Performance Centre (CAR), Sant Cugat del Vallés, Barcelona, Spain

ABSTRACT
The main purpose of this study was to assess the acute effects of small changes in crank length
(assumable by competitive cyclists) on metabolic cost and pedalling technique during submaximal

10 cycling. Twelve amateur road cyclists performed three sets of submaximal pedalling (150, 200 and
250 W) at a constant cadence (91.3 ± 0.8 rpm) in a randomised order with three commonly used crank
lengths, preferred (172.5–175 mm), +5 mm and −5 mm. Energy cost of pedalling, kinetic and kinematic
variables were simultaneously registered. Changes in crank length had no significant effect on heart
rate (144 ± 13, 145 ± 12 and 145 ± 13 bpm, respectively) and gross efficiency (GE) (20.4 ± 2.1, 20.1 ± 2.2

15 and 20.3 ± 2.4%, respectively). A longer crank induced a significant (P < 0.05) reduction of positive
impulse proportion (PIP) (0.9–1.9%) due to a greater maximum (1.0–2.3 N · m) and minimum torque
(1.0–2.2 N · m). At the same time, the maximum flexion and range of motion of the hip and knee joints
were significantly increased (1.8–3.4° and P < 0.05), whereas the ankle joint was not affected. In
conclusion, the biomechanical changes due to a longer crank did not alter the metabolic cost of

20 pedalling, although they could have long-term adverse effects. Therefore, in case of doubt between two
lengths, the shorter one might be recommended.
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Introduction

AQ1

AQ2
AQ3

Previous studies have demonstrated the influence of biome-
25 chanical factors such as riding position (Garcia-Lopez et al.,

2008) or saddle height (Ferrer-Roca et al., 2014; Price & Donne,
1997) on cycling performance. However, the influence of other
factors such as crank length remains unclear (Macdermid &
Edwards, 2010). While some studies have reported that this

30 variable affects performance (Inbar, Dotan, Trousil, & Dvir,
1983; Klimt & Voigt, 1974; Martin & Spirduso, 2002AQ4 ; Too,
1990), others claim otherwise (Astrand, 1953; Barratt, Korff,
Elmer, & Martin, 2011; Martin, Malina, & Spirduso, 2001;
Morris & Londeree, 1997AQ5 ; Tomas, Ross, & Martin, 2010). Most

35 of them have been performed in order to maximise short-term
power output, with direct transference to track cycling, while
only a few studies have been carried out during submaximal
efforts, related to road cycling (Astrand, 1953; Klimt & Voigt,
1974; McDaniel et al; 2002; McDaniel et al; 2002; Morris &

40 Londeree, 1997).
To date, seven experimental studies have analysed the

effect of crank length on power output (supramaximal
effort). Three of them pointed out that intermediate crank
lengths (between 145 and 180 mm) produced higher power

45 output compared with extreme crank lengths (<140 and
>200 mm) (Inbar et al., 1983; Martin & Spirduso, 2002AQ6 ; Too
& Landwer, 2000). Three other studies comparing cranks
from 135 to 170 mm in children (Martin et al., 2001AQ7 ), from
120 to 220 mm (Tomas et al., 2010) and from 150 to

50190 mm (Barratt et al., 2011) in well-trained cyclists did
not find differences in power output. Another study was
conducted with small crank length variations (170, 172.5
and 175 mm) in female cross-country mountain bikers.
Crank length had no effect on maximum power output,

55whereas less time to reach maximum power was obtained
with the shortest cranks (Macdermid & Edwards, 2010).
Recent findings seem to agree that crank length does not
affect maximum power output in cycling (Barratt et al.,
2011; Macdermid & Edwards, 2010; Tomas et al., 2010),

60although they have highlighted the need to investigate
small changes in crank length, assumable by experienced
cyclists (Macdermid & Edwards, 2010).

From a biomechanical perspective, there is a discrepancy
between the industry standard crank lengths (165, 170,

65172.5 and 175 mm) and that recommended from a theore-
tical optimisation model, 145 mm for the average man (1.77-

 m height) (Hull & Gonzalez, 1988). To date, only four experi-
mental studies analysed the influence of crank length on
energy cost of cycling (Astrand, 1953; Klimt & Voigt, 1974;

70McDaniel, Durstine, Hand, & Martin, 2002; Morris &
Londeree, 1997). One of them investigated the effect of
pedalling with different crank lengths (165, 170 and
175 mm) in  six well-trained cyclists (Morris & Londeree,
1997). Non-significant differences were found between the

75three crank lengths and the preferred length. Similar results
were found on energy cost while pedalling with 160, 180
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and 200 mm crank lengths (Astrand, 1953) and riding with
145, 170 and 195 mm (McDaniel et al., 2002). Nevertheless,
Klimt and Voigt (1974) found differences when comparing

80 crank lengths from 100 to 200 mm. They recommended
different optimal crank length for children of 6, 8 and
10 years old (140, 150 and 160 mm, respectively), probably
due to the fact that lower limb height change with chil-
dren’s age. None of these four experimental studies took

85 changes in pedalling technique (kinetic and kinematic pro-
file) into account. This aspect could be critical because it
might affect both the energy cost of cycling and lower limb
muscular activity (Blake, Champoux, & Wakeling, 2012;
Mileva & Turner, 2003; Theurel, Crepin, Foissac, &

90 Temprado, 2012).
Therefore, the purpose of this study was to assess the acute

effects of small changes in crank length (±5 mm) on the
energy cost of cycling and pedalling technique (kinetic and
kinematic profiles) during submaximal pedalling. Additionally,

95 as a secondary purpose, the effect of the power output on
these variables was analysed.

Methods

SubjectsAQ8

Twelve amateur road cyclists participated in the study
100 (Table 1). Inclusion criteria were a minimum of 2 years com-

peting in cycling and training volume of more than 3000 km
before the study. Riders participated voluntarily and none
reported any medical problem at the time of undertaking it.
They were informed of the procedures, methods, benefits and

105 possible risks involved, and written consent was obtained
before starting the study. It was approved by the University
Ethics Committee and met the requirements of the
Declaration of Helsinki for research on human beings.

Procedures

110 All cyclists were tested at the beginning of their competition
season (February–March). The assessment protocol was per-
formed in a one-day session under similar environmental con-
ditions (20–25° C, 60–65% relative humidity). The cyclists
arrived at the laboratory (800- m altitude) with their bikes

115 after a 48-h period with no hard training. First , the cyclists’ 

anthropometrical characteristics and bikes were measured.
These measurements and the clipless pedals were matched
in a cycle ergometer that allowed the crank length modifica-
tion. Cyclists performed a 10-min warm-up period at a power

120output of 100 W, with a 5-min rest before starting the test.
They used their own cycling shoes, to avoid the influence of
this variable on energy cost of pedalling and the kinetic and
kinematic analyses.

The cyclists performed three sets of three submaximal
125pedalling sets (150, 200 and 250 W) with different crank

lengths (preferred, 5- mm shorter, 5- mm longer) in a

 randomised order. Both, physiological (energy cost of ped-
alling) and biomechanical variables (kinematic and kinetic
profiles) were simultaneously recorded. Each repetition

130lasted 6 min with 5-min rest in between. The recovery
period between sets was 10 min, sufficient to change the
seat and handlebar height in order to maintain the same
distance between the top of the seat and the pedal axis
and the same vertical distance between the seat and the

135handlebar, respectively. The riding position
was  standardised with the cyclists’ hands on the brakes
in order to avoid changes on metabolic cost due to
modification of the trunk angle (Heil, Derrick, &
Whittlesey, 1997).

140Three power output levels (150, 200 and 250 W) were
selected because they are representative of the effort in a
cycling stage (Vogt et al., 2007), and allow a respiratory
exchange ratio (RER) lower than 1.00, indicating no significant
anaerobic contribution (Rodriguez-Marroyo et al., 2009).

145Additionally, riders received continuous feedback on their
cadence and were asked to keep it constant at 90 rpm to
avoid any possible influence of cadence on the mechanical
variables of pedalling (Neptune & Herzog, 1999). The selected
cadence is representative of the seated pedalling cadence

150during flat stages (Rodriguez-Marroyo, Garcia-Lopez, Villa, &
Cordova, 2008; Vogt et al., 2006).

Anthropometric and bicycle measurements

An anthropometric tape (Holtain LTD; Crymych, UK) and a
Harpenden anthropometer (CMS instruments, London, UK)

155were used to measure bicycle and anthropometric dimensions
(height, trochanteric height and inseam length). Inseam length
was the barefoot distance between the ground and the pubis
(Ferrer-Roca et al., 2014). The same experimenter performed
all the measurements. Next, the main bike measurements

160were recorded (Figure 1) (Korff, Fletcher, Brown, & Romer,
2011). Both relative saddle height and relative crank length
(expressed in percentage) were calculated by dividing the
saddle height and the crank length by the inseam length
(Ferrer-Roca, Roig, Galilea, & Garcia-Lopez, 2012; Martin &

165Spirduso, 2002 AQ9), respectively.

Kinetic analysis

Kinetic analysis was performed on a validated electromag-
netically braked cycle ergometer (Lode Excalibur Sport,
Lode BV, Groningen, Netherlands) (Reiser, Meyer,

170Kindermann, & Daugs, 2000), which allowed the

Table 1. Characteristics (mean ± SD) of the cyclists and their bicycles.

Mean ± SD Range

Cyclists Age (year) 20.8 ± 2.8 18.0–27.0
Body mass (kg) 68.5 ± 6.6 57.0–79.1
Height (cm) 176.9 ± 6.4 166.5–182.4
Trochanteric height (cm) 90.3 ± 3.7 84.0–96.5
Inseam length (cm) 86.7 ± 4.5 78.5–95.7
Cycling experience (year) 8.1 ± 3.4 3.0–11.0
Training volume (km) 4063 ± 1595 3000–8000

Bicycles Saddle height (cm) 76.1 ± 3.3 69.5–81.5
Saddle height (% IL) 108.0 ± 2.8 103.4–113.7
Saddle back (cm) 7.5 ± 1.5 4.7–10.2
Crank length (mm) 173.3 ± 1.2 172.5–175.0
Handlebar-D (cm) 55.9 ± 1.9 52.2–58.5
Handlebar-V (cm) 9.0 ± 1.8 6.5–12.0

See Figure 1 for the main bike measurements. % IL, percentage of inseam
length.

2 V. FERRER-ROCA ET AL.

Author query
Please check whether the head levels are set correctly.

Author query
The spelling of "Martin and Spirduso, 2002" has been changed to match the entry in the references list. Please provide revisions if this is incorrect.

Deleted Text
Page 2 Deleted:
two

Deleted Text
Page 2 Deleted:
,

Deleted Text
Page 2 Deleted:
º 

Deleted Text
Page 2 Deleted:
 

Deleted Text
Page 2 Deleted:
our

Deleted Text
Page 2 Deleted:
ly

Deleted Text
Page 2 Deleted:
´

Deleted Text
Page 2 Deleted:
 

Deleted Text
Page 2 Deleted:
 

Deleted Text
Page 2 Deleted:
randomized

Deleted Text
Page 2 Deleted:
standardized



measurement of the torque exerted on the left and right
cranks independently every 2° of a complete revolution
(Dorel, Couturier, & Hug, 2009). Before starting the study,
a dynamic calibration procedure was performed (Calibrator

175 2000AQ10 , Lode BV, Groningen, Netherlands). The torque mea-
surements showed a coefficient of variation of
0.96 ± 1.20% (95% of confidence interval (CI) between
0.72 and 1.19%), and an intraclass correlation coefficient
of 0.999 (P < 0.001). Moreover, zero-offset calibration was

180 done before each testing session. All complete 6-min inter-
vals of the three sets of submaximal pedalling were
recorded (LEM software, Lode BV, Groningen,
Netherlands). For the kinetic analysis, the mean of ∼360
complete revolutions from minute  1 to minute  5 were

185 selected, and values of right and left cranks were averaged
(Figure 2). Pedalling rate, maximum torque and minimum
torque were directly obtained from the software.
Additionally, torque-time data and crank length were
exported to ASCIAQ11 format to calculate the rest of the

190 mechanical variables: positive impulse, negative impulse
and the positive impulse proportion (PIP).

PIP ð%Þ ¼ Positive Impulse
Positive Impulseþ Negative Impulsej j½ � � 1000

Kinematic analysis

Kinematic analysis of the cyclists “right side was performed
195assuming symmetry of motion between left and right sides

(Heil et al., 1997). Five reflective markers of 10 mm diameter
were attached to the cyclists” skin (greater trochanter, lateral
femoral epicondyle and lateral malleolus) and to the bikes
(crank and pedal axes of rotation) (Bini, Diefenthaeler, &

200Mota, 2010; García-López, Díez-Leal, Ogueta-Alday,
Larrazabal, & Rodríguez-Marroyo, 2015 AQ12). A high-speed digital
video camera (Sony Handycam HDR-HC7, Sony Inc, Europe,
200 Hz and 720 × 576 pixels) and a floodlight were positioned
4 m away from the sagittal plane, where a calibration frame

205was placed (1.00 × 1.20 m). Automatic tracking, processing
and analysing data were performed by a specific software
(Kinescan-IBV, Version 2001, Institute of Biomechanics of
Valencia, Valencia, Spain) (Garcia-Lopez et al., 2008). Six com-
plete revolutions were analysed in minutes 2 and 4 of every

210trial as representative values. Sagittal hip, knee and ankle
angles were determined following previous conventions
(Ferrer-Roca et al., 2014). Angular position values were
expressed as minimum and maximum flexion for the hip and
knee joints, and plantarflexion and dorsiflexion for the ankle.

215The range of movement (ROM) was also determined.

Energy cost of pedalling analysis

Oxygen uptake (VO2) and  RER (Medisoft Ergocard, Medisoft
Group, Sorinnes, Belgium), and HR (Polar Team, Polar Electro
Oy, Kempele, Finland) were continuously registered during the

220test, considering the average of the last 3-min period of each
set as representative data (Hopker, Coleman, Jobson, &
Passfield, 2012). Gross efficiency (GE) was calculated as the
ratio of work accomplished (expressed in kcal · min−1) to

Figure 2. Biomechanical variables analysed during pedalling. Kinetic analysis: torque-angle profile of a complete revolution and main selected variables for analysis.
Kinematic analysis: schematic illustration of reflective marker locations and definition of angles.

Figure 1. The main bike measurements: saddle height, saddle back, crank
length, vertical distance between the top of the saddle and the handlebar’s
brake (Handlebar-V) and distance between the front of the saddle and the
middle of the handlebars (Handlebar-D).
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energy expended (kcal · min−1) (Hopker et al., 2012; Rodriguez-
225 Marroyo et al., 2009).

Statistical analysis

The results are expressed as mean ± SD and CI 95% . SPSS+
V.17.0 statistical software was used (SPSS, Inc., Chicago, IL, USA).
The Shapiro–Wilk normality test was used to assess normality.

230 Two-way analysis of variance with repeated measures was used
to analyse the effect of the crank length and power output on
biomechanical and physiological variables. Newman–Keuls post
hoc analysis was used to establish statistical differences
between means. Effect sizes (ES) of the differences (Cohen’s d)

235 were also calculated. The magnitude of the differences were
considered to be trivial (ES < 0.2), small (0.2 ≤ ES < 0.5),
moderate (0.5 ≤ ES < 0.8), and large (ES ≥ 0.8). Values of
P < 0.05 were considered statistically significant.

Results

240 Table 1 illustrates the anthropometric and bicycle measure-
ments of the participants. The relative preferred crank length
was 20.0 ± 1.0 % of the inseam length (IC 95%AQ13 = 19.4–20.7%).
Relative preferred saddle height was 108.0 ± 2.8 % of the
inseam length (IC 95%AQ14 = 106.2–109.8%). The preferred crank

245 length selected by two-third of the riders (n = 8) was
172.5 mm, and the rest of the cyclists (n = 4) chose a crank
length of 175 mm.

Table 2 illustrates non-significant effects (P > 0.05) of crank
length (shorter, preferred and longer) on pedalling cadence,

250heart rate and GE. Additionally, higher power output increased
both heart rate (14–18 bpm each stage; ES = 7.00 and
P < 0.001) and GE (1.5–1.9 % each stage; ES = 2.87 and
P < 0.001).

Table 3 shows that a longer crank increased maximum
255torque (1.0–2.3 N · m, ES = 2.26 and P < 0.001) and decreased

minimum torque (1.0–2.2 N · m, ES = 1.93 and P < 0.001)
while PIP decreased (0.9–1.9 %, ES = 2.81 and P < 0.001).
Additionally, higher power output increased both maximum
torque (12.5–13.9 N · m, ES = 6.62 and P < 0.001) and PIP (8.9–

2609.7%, ES = 7.40 P < 0.001) while minimum torque increased
(2.9–4.1 N · m, ES = 2.16 and P < 0.001).

Tables 4 and 5 illustrate that a longer crank increased both
hip (1.8–2.5°, ES = 4.56 and P < 0.001) and knee maximum
flexion (2.9–3.4°, ES = 12.21 and P < 0.001), while the minimum

265flexion were not affected (P > 0.05). Consequently, both hip
(2.0–2.2°, ES = 4.48 and P < 0.001) and knee ROM increased
(2.7–3.0°, ES = 7.09 and P < 0.001). Ankle joint kinematics was
not affected by the crank length (Table 6). A high-power output
decreased both hip (1.8–1.9°, ES = 2.29 and P < 0.001) and knee

270minimum flexion (2.7–3.3°, ES = 2.63 and P < 0.001), and, to a
lesser extent, hip (1.2–1.6°, ES = 1.34 and P < 0.01) and knee
maximum flexion decreased (0.6–0.8°, ES = 0.96 and P < 0.05).
Consequently, both hip (0.3–0.7°, ES = 0.62 and P < 0.05) and
knee ROM increased (2.1–2.4°, ES = 1.12 and P < 0.001) (Tables

2754–5). A  high-power output also increased ankle dorsiflexion

Table 2. Mean ± SD of the physiological variables at different power outputs (150, 200 and 250 W) and at different crank lengths (shorter, preferred and longer).

Shorter crank Preferred crank Longer crank

150 W Cadence (rpm) 91.4 ± 0.6 91.3 ± 0.7 91.3 ± 0.6
Heart Rate (bpm) 129 ± 10 † ‡ 128 ± 10 † ‡ 128 ± 12 † ‡
Gross efficiency (%) 18.6 ± 1.3 † ‡ 18.4 ± 1.9 † ‡ 18.7 ± 2.3 † ‡

200 W Cadence (rpm) 91.2 ± 0.9 91.3 ± 0.7 91.4 ± 0.8
Heart Rate (bpm) 143 ± 13 † 144 ± 13 † 145 ± 14 †
Gross efficiency (%) 20.5 ± 1.8 † 20.4 ± 2.0 † 20.5 ± 2.5 †

250 W Cadence (rpm) 91.4 ± 0.7 91.4 ± 1.0 91.4 ± 1.0
Heart Rate (bpm) 161 ± 15 162 ± 13 162 ± 14
Gross efficiency (%) 22.0 ± 1.9 21.5 ± 1.7 21.6 ± 1.8

MEAN Cadence (rpm) 91.3 ± 0.7 91.4 ± 0.8 91.4 ± 0.9
Heart Rate (bpm) 145 ± 18 145 ± 18 146 ± 19
Gross efficiency (%) 20.8 ± 2.4 20.5 ± 2.3 20.7 ± 2.4

Significant difference (P < 0.05): Power (†150 vs 250 W, ‡ 150 vs 200 W).

Table 3. Mean ± SD of the kinetic variables at different power outputs (150, 200 and 250 W) and at different crank lengths (shorter, preferred and longer).

Shorter crank Preferred crank Longer crank

150 W Maximum torque (N · m) 37.2 ± 4.4 * † ‡ 37.6 ± 4.5 † ‡ 38.2 ± 4.5 †
Minimum torque (N · m) −13.3 ± 3.0 * † ‡ −13.9 ± 3.4 † ‡ −14.3 ± 3.2 † ‡
PIP (%) 76.8 ± 3.2 * † ‡ 76.3 ± 3.7 * † ‡ 75.7 ± 3.5 † ‡

200 W Maximum torque (N · m) 44.0 ± 5.4 * # 44.8 ± 5.3 * † 45.7 ± 5.4 †
Minimum torque (N · m) −12.0 ± 2.9 * # † −12.6 ± 3.1 * † −13.1 ± 2.7 †
PIP (%) 81.4 ± 4.2 * † 80.9 ± 4.0 † 80.5 ± 3.7 †

250 W Maximum torque (N · m) 49.8 ± 5.5 * 50.4 ± 5.5 * 52.1 ± 5.6
Minimum torque (N · m) −9.2 ± 3.3 * # −10.5 ± 2.3 * −11.4 ± 2.5
PIP (%) 86.5 ± 3.6 * # 85.8 ± 3.3 * 84.6 ± 3.5

MEAN Maximum torque (N · m) 43.9 ± 7.2 * # 44.5 ± 7.2 * 45.5 ± 7.6
Minimum torque (N · m) −11.4 ± 3.5 * # −12.3 ± 3.2 * −12.9 ± 3.0
PIP (%) 81.7 ± 5.4 * # 81.1 ± 5.3 * 80.4 ± 5.0

PIP, positive impulse proportion. Significant difference (P < 0.05): crank (* with longer crank, # shorter crank vs preferred crank) and power (†with 250 W, ‡ 150 vs
200 W).
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(2.6–3.1°, ES = 0.76 and P < 0.05) and ankle ROM (0.4–1.3°,
ES = 0.57 and P < 0.05) (Table 6). No significant combined
effects of crank length and power output were found.

Discussion

280 The main outcome of this study was that small changes in crank
length at submaximal intensity and at constant cadence did not
produce significant changes in the energy cost of cycling,
whereas significant changes on biomechanical variables (kinetics
and kinematics) were obtained. A longer crank slightly increased

285positive torque during the downstroke and decreased negative
torque during the upstroke, decreasing the PIP . Moreover, the
maximum flexion and the range of motion of both hip and knee
increased, while the ankle joint was not affected. These findings
reinforce the idea that kinetic changes do not have to be asso-

290ciated with metabolic changes (Korff, Romer, Mayhew, & Martin,
2007). Furthermore, kinematic and kinetic changes due to a
longer crank were not significant enough to alter the efficiency
of energy consumption (Ferrer-Roca et al., 2014). However,
further research should evaluate long-term effects of longer

295cranks on muscle coordinative pattern and overuse injuries.

Table 5. Mean ± SD of the knee kinematic variables at different power outputs (150, 200 and 250 W) and at different crank lengths (shorter, preferred and longer).

150 W

Knee Shorter crank Preferred crank Longer crank

Minimum flexion (°) 36.9 ± 4.2 † ‡ 37 ± 3.6 † ‡ 36.8 ± 3.5 † ‡

Maximum flexion (°) 109.5 ± 2.3 * # † 110.8 ± 2.2 * † 112.4 ± 2.2

ROM (°) 72.6 ± 3.9 * # † ‡ 73.8 ± 3.5 * † ‡ 75.5 ± 3.6 † ‡

200 W Minimum flexion (°) 34.6 ± 4.1 † 34.8 ± 4.2 † 35.0 ± 4.6 †
Maximum flexion (°) 108.6 ± 2.3 * # 110.3 ± 2.1 * 112.0 ± 2.0
ROM (°) 74.0 ± 3.8 * # † 75.5 ± 3.9 * 77.0 ± 4.2 †

250 W Minimum flexion (°) 33.8 ± 4.7 33.7 ± 4.8 34.1 ± 4.2
Maximum flexion (°) 108.7 ± 2.1 * # 110.0 ± 2.2 * 111.8 ± 2.3
ROM (°) 74.9 ± 4.4 * # 76.3 ± 4.5 * 77.6 ± 4.5

MEAN Minimum flexion (°) 35.1 ± 4.4 35.1 ± 4.4 35.3 ± 4.2
Maximum flexion (°) 109.0 ± 2.2 * # 110.3 ± 2.1 * 112.0 ± 2.1
ROM (°) 73.9 ± 4.0 * # 75.3 ± 4.0 * 76.7 ± 4.1

ROM, range of movement. Significant difference (P < 0.05): crank (* with longer crank, # shorter crank vs preferred crank) and power († with 250 W, ‡ 150 vs 200 W)

Table 4. Mean ± SD of the hip kinematic variables at different power outputs (150, 200 and 250 W) and at different crank lengths (shorter, preferred and longer).

150 W

Hip Shorter crank Preferred crank Longer crank

Minimum flexion (°) 28.0 ± 3.1 † 27.9 ± 2.8 † 27.8 ± 2.6 †

Maximum flexion (°) 71.9 ± 2.2 * # † ‡ 72.6 ± 2.2 * † 73.7 ± 2.5 †

ROM (°) 43.9 ± 2.7 * # 44.7 ± 2.6 * ‡ 45.9 ± 2.7

200 W Minimum flexion (°) 26.4 ± 2.8 † 26.4 ± 3.2 † 26.7 ± 3.3 † ‡
Maximum flexion (°) 70.9 ± 2.4 * # † 72.1 ± 2.4 * † 73.4 ± 1.8 †
ROM (°) 44.5 ± 2.3 * # 45.6 ± 2.8 * 46.7 ± 2.6

250 W Minimum flexion (°) 26.1 ± 3.1 26.0 ± 3.3 26.0 ± 3.0
Maximum Flexion (°) 70.3 ± 2.2 * # 71.4 ± 2.4 * 72.4 ± 2.3
ROM (°) 44.2 ± 2.7 * # 45.4 ± 2.6 * 46.3 ± 2.5

MEAN Minimum flexion (°) 26.8 ± 3.0 26.8 ± 3.0 26.8 ± 3.0
Maximum flexion (°) 71.0 ± 2.3 * # 72.0 ± 2.3 * 73.1 ± 2.2
ROM (°) 44.2 ± 2.5 * # 45.3 ± 2.6 * 46.3 ± 2.6

ROM, range of movement. Significant difference (P < 0.05): crank (* with longer crank, # shorter crank vs preferred crank) and power († with 250 W, ‡ 150 vs 200 W)

Table 6. Mean ± SD of the ankle kinematic variables at different power outputs (150, 200 and 250 W) and at different crank lengths (shorter, preferred and longer).

150 W

Ankle Shorter crank Preferred crank Longer crank

Plantar flexion (°) 43.2 ± 5.8 43.2 ± 5.4 43.0 ± 4.9

Dorsiflexion (°) 61.1 ± 7.0 † 61.6 ± 7.0 † 61.7 ± 7.8

ROM 17.9 ± 4.1 † 18.4 ± 4.0 18.8 ± 5.3

200 W Plantar flexion (°) 44.4 ± 5.6 44.4 ± 6.5 44.3 ± 5.8
Dorsiflexion (°) 62.1 ± 7.6 † 62.2 ± 8.5 62.3 ± 6.9
ROM 17.7 ± 4.0 17.9 ± 4.4 18.0 ± 3.6

250 W Plantar flexion (°) 44.9 ± 5.0 44.9 ± 5.1 45.1 ± 5.4
Dorsiflexion (°) 64.2 ± 6.8 64.2 ± 6.8 64.3 ± 7.5
ROM 19.3 ± 3.8 19.3 ± 4.6 19.2 ± 4.8

MEAN Plantar flexion (°) 44.2 ± 5.4 44.2 ± 5.6 44.1 ± 5.3
Dorsiflexion (°) 62.5 ± 7.1 62.7 ± 7.3 62.8 ± 7.2
ROM 18.3 ± 3.9 18.5 ± 4.2 18.7 ± 4.5

ROM, range of movement. Significant difference (P < 0.05): crank (* with longer crank, # shorter crank vs preferred crank) and power († with 250 W, ‡ 150 vs 200 W)
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The anthropometric characteristics (height and weight) and
cycling experience (8.1 ± 3.4 years) of the riders (Table 1) were
similar to those reported in previous studies involving amateur
cyclists (Ferrer-Roca et al., 2012). Mean crank length

300 (173.3 mm) was consistent with the optimum length (20% of
the inseam length) described in previous studies (Martin &
Spirduso, 2002).

Effects of the changes in crank length

In the present study, changes in crank length had no signifi-
305 cant effect on the physiological variables. The metabolic cost

was similar when pedalling at the same cadence with the
three crank lengths (Table 2). These results were consistent
with three of the four previous submaximal studies, which did
not find differences between crank lengths from 160 to

310 200 mm (Astrand, 1953), from 165 to 175 mm (Morris &
Londeree, 1997) and from 145 to 195 mm (McDaniel et al.,
2002), regardless of the commonly used crank length by the
riders. On the other hand, the only study that pointed out
differences in metabolic cost due to changes in crank lengths

315 was performed with children from 6 to 10 years old (Klimt &
Voigt, 1974). On the basis of the results obtained in the pre-
sent research and the previous studies, the stronger scientific
evidence is in favour of the non-influence of changes in crank
length on energy cost of pedalling in trained adults.

320 Changes in crank length affected kinetic variables, increas-
ing positive and decreasing negative torques and the PIP
(Table 3). This might be due to the fact that the crank torque
is negative between ~210 and 330° of the crank cycle during
seated pedalling (Korff et al., 2007) and a longer crank length

325 decreases the negative torque, which needs to be compen-
sated with a greater positive torque in order to maintain the
same power output. Furthermore, these differences had no
effect on GE , which is consistent with other studies that
demonstrated no correspondence between pedal force effec-

330 tiveness and energy cost of pedalling (Korff et al., 2007;
Mornieux, Stapelfeldt, Gollhofer, & Belli, 2008; Theurel et al.,
2012). Nevertheless, these biomechanical changes should
have important effects on muscle coordinative pattern. In
fact, a previous study carried out with non-cyclists demon-

335 strated that a longer crank (195 vs 155 mm) decreased sig-
nificantly the EMG amplitude of the biceps femoris, while
tibialis anterior and soleus increased, with no change in rectus
femoris (Mileva & Turner, 2003). Moreover, other studies high-
lighted that muscle fatigue could be reduced by decreasing

340 the activity of the main leg extensor muscles during down-
stroke (i.e., vastus lateralis and rectus femoris as knee exten-
sor) and increasing the activity of the main leg flexor muscles
during upstroke (i.e., rectus femoris as hip flexor, biceps
femoris and tibialis anterior) (Mornieux et al., 2008; Takaishi,

345 Yamamoto, Ono, Ito, & Moritani, 1998; Theurel et al., 2012).
Further research should investigate modifications of the mus-
cle coordinative patterns due to changes in crank length in
trained cyclists, meanwhile pedalling at representative inten-
sities and cadences (i.e., 200–300 W and ~90–100 rpm).

350 Furthermore, the minimum flexion angle of the hip, knee and
ankle joints were similar when pedalling with the different crank
lengths (Table 4), which was probably due to the modification of

the saddle height in order to maintain the same seat–pedal
distance at the bottom point of the pedalling cycle (Barratt

355et al., 2011). This setting was not considered in some previous
studies, and could be the reason why they found a decrease in
the minimum knee flexion due to a longer crank (Mileva &
Turner, 2003). In the present study, crank lengthening resulted
in an increase of the maximum flexion and the ROM at hip and

360knee joints, whereas the ankle joint was not affected. These
results are entirely consistent with those observed in previous
studies on supramaximal pedalling (Barratt et al., 2011; Too &
Landwer, 2000). However, kinematic changes were not signifi-
cant enough to alter the energy cost of pedalling, possibly

365because these changes were smaller (1.8–3.4°) compared with
those reported in other studies with wider crank length modifi-
cations (4–14° every ~35 mm of crank length) (Too & Landwer,
2000). Moreover, crank lengthening resulted in a greater max-
imum flexion of hip (lower than 20°) and knee (lower than 70°)

370than those obtained in earlier studies (Carpes, Dagnese, Mota, &
Stefanyshyn, 2009; Ferrer-Roca et al., 2012; García-López et al.,
2015 AQ15; Price & Donne, 1997), and was opposite to the natural
behaviour of these joints when pedalling power increases (as it
is explained below). The increase in knee flexion has been related

375to patellofemoral compression force (Bini, Tamborindeguy, &
Mota, 2010), and pedalling with cranks that are too long has
been associated with anterior knee pain (Asplund & Pierre, 2004)
which is one of the most prevalent overuse injuries and causes
loss of training time (Clarsen, Krosshaug, & Bahr, 2010). Further

380studies should evaluate the long-term effect of pedalling with
excessive crank length in relation to overuse injuries.

Effects of the power output increase

Logically, the power output increased the metabolic cost and
heart rate (Table 2). In line with previous studies performed with

385amateur cyclists, GE also increased from 18.4–18.7% at 150 W to
21.5–22.0% at 250 W (Chavarren & Calbet, 1999). More recently,
studies have showed that GE increases up to 50% of the max-
imum aerobic power in an incremental test, and is unchanged
from this point on (de Koning, Noordhof, Lucia, & Foster, 2012).

390Unfortunately, the present study did not measure the maximum
aerobic power of the cyclists. Nevertheless, 10 of the 12 riders
were able to perform a pedalling exercise at 300 W (with the
three crank lengths), obtaining similar results (P > 0.05) to 250 W
(21.8–22.3% vs 21.5–22.0%, respectively). These data were not

395finally included in the analysis because two cyclists were not able
to finish the set at 300 W, and another four cyclists showed a RER 
higher than 1.0 (i.e., GE should not be calculated from this value).

The increase in power output also affected biomechanical
variables (Tables 3 -6). The maximum torque during down-

400stroke increased while the torque values during upstroke
were less negative, causing better PIP as power output
increased (Table 3). These results were in line with previous
studies where the main effect of increasing power output at
constant cadence was an increase in maximum torque dur-

405ing the downstroke (Sanderson, 1991; Sanderson, Hennig, &
Black, 2000) and a reduction in minimum torque during the
upstroke (Rossato, Bini, Carpes, Diefenthaeler, & Moro, 2008).
In fact, “the capacity to produce propulsive torque during
the recovery phase reflects the ability of the cyclists at least

6 V. FERRER-ROCA ET AL.

Author query
The spelling of "García-López et�al., 2015" has been changed to match the entry in the references list. Please provide revisions if this is incorrect.

Deleted Text
Page 6 Deleted:
-

Deleted Text
Page 6 Deleted:
gross efficiency

Deleted Text
Page 6 Deleted:
gross efficiency

Deleted Text
Page 6 Deleted:
gross efficiency

Deleted Text
Page 6 Deleted:
ten

Deleted Text
Page 6 Deleted:
twelve

Deleted Text
Page 6 Deleted:
,

Deleted Text
Page 6 Deleted:
respiratory exchange ratio

Deleted Text
Page 6 Deleted:
gross efficiency

Deleted Text
Page 6 Deleted:
 to 



410 to support the contralateral segment weight during the
recovery phase” (Rossato et al., 2008). This effect has
recently been described as a strategy to delay fatigue in
the knee extensor muscles, implying greater activation of
the knee flexor muscles in the contralateral lower limb

415 (Theurel et al., 2012). In the present study, the natural
behaviour of the upstroke forces when power output
increased was contrary to the effects of a longest crank,
especially at 250 W, possibly because riders performed
their best potential (Sanderson et al., 2000), as well as the

420 best GE .
The kinematic variables were also affected by the power

increase (Tables 4 -6). In line with early studies, the minimum
flexion at hip and knee joints decreased (Bini &
Diefenthaeler, 2010), whereas the maximum flexion did

425 not decrease proportionally, so their ROM also increased.
This kinematic profile has been described as an adaptation
of professional cyclists developing higher power output
than amateur ones (García-López et al., 2015).
Furthermore, in the present study, the range of motion of

430 the ankle was always less than 20°, whereas in early studies,
elite cyclists showed values higher than 20°, considering the
ankle kinematics as a critical factor between cyclists of
different level (Chapman, Vicenzino, Blanch, & Hodges,
2009). In a previous study, changes in crank length were

435 followed by specific adaptation of the activity of the mus-
cles of the knee and ankle joints (Mileva & Turner, 2003).
Maybe, the kinematic changes of the present study come
from the activation of the tibialis anterior to keep the ankle
dorsiflexed across the top dead centre. This could provide a

440 more stable platform to transfer power to the pedal and a
greater activation of the gluteus maximus (hip extensor),
which is considered one of the main factors in reaching a
higher power output (Blake et al., 2012). Further EMG stu-
dies should confirm this hypothesis.

445 The main limitation of the present study was not having
performed an incremental maximal test on a separate day.
For this reason, the workout of the riders at different power
outputs (150, 200 and 250 W) could not be characterised in
terms of relative intensity of VO2max. However, previous

450 studies highlighted that biomechanical variables should be
analysed at the same absolute power output (e.g., 200 W)
instead of the relative one (e.g., 70% of VO2max or
3 W · kg−1) in order to properly understand their behaviour
(García-López et al., 2015; Leirdal & Ettema, 2011). Another

455 limitation of the study was the small number of cyclists who
participated. A larger sample would have allowed us to
calculate the correlations between biomechanical and phy-
siological variables. Similarly, if riders of different competi-
tive levels had been analysed, it would have been possible

460 to investigate the possible influence of this factor together
with the crank length on the physiological and biomecha-
nical variables. Further studies should address these
limitations.

Conclusions

465This is the first study to simultaneously analyse the effects that
small changes in crank length (±5 mm) have on biomechanical
and physiological variables during submaximal pedalling. These
small changes have no effect on energy cost of pedalling, which is
consistent withmost previous studies withmajor changes in crank

470length. However, changes on the pedalling biomechanics were
observed due to the increase of the crank length, and several of
them were opposite to the natural behaviour when pedalling
power increased. A longer crank length causes loss of PIP due to
a high positive crank torque applied during the downstroke in

475order to compensate the high negative crank torque applied
during the upstroke. Furthermore, crank lengthening resulted in
an increase of the flexion and the ROM at hip and knee joints,
which could have long-term effects related with patellofemoral
compression forces and changes on muscle coordinative pattern

480during distance events. Due to the fact that manufacturers offer a
narrow range of crank lengths (i.e., 165, 170, 172.5 and 175mm), in
case of doubt between two lengths, the shorter one might be
recommended. Further studies should analyse long-term effects
of different crank lengths on muscle coordinative pattern in

485trained cyclists and their relationship with overuse injuries.
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