
UN
CO

RR
EC

TE
D

PR
OO

F

Forest Ecology and Management xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Forest Ecology and Management
journal homepage: www.elsevier.com

Efficiency of remote sensing tools for post-fire management along a climatic gradient
José Manuel Fernández-Guisuraga ⁠⁎, Leonor Calvo, Víctor Fernández-García, Elena Marcos-Porras,
Ángela Taboada, Susana Suárez-Seoane
Biodiversity and Environmental Management Dpt., Faculty of Biological and Environmental Sciences, University of León, 24071 León, Spain

A R T I C L E I N F O

Keywords:
Atlantic-Transition-Mediterranean climatic gra-
dient
Bayesian Model Averaging (BMA)
Image texture
Model extrapolation
Model generality
Model inference
Model transferability
Pinus pinaster
Vegetation cover
WorldView-2

A B S T R A C T

Forest managers require reliable tools to evaluate post-fire recovery across different geographic/climatic contexts
and define management actions at the landscape scale, which might be highly resource-consuming in terms of
data collection. In this sense, remote sensing techniques allow for gathering environmental data over large areas
with low collection effort. We aim to assess the applicability of remote sensing tools in post-fire management
within and across three mega-fires that occurred in pine fire-prone ecosystems located along an Atlantic-Tran-
sition-Mediterranean climatic gradient. Four years after the wildfires, we established 120 2x2m plots in each
mega-fire site, where we evaluated: (1) density of pine seedlings, (2) percentage of woody species cover and
(3) percentage of dead plant material cover. These variables were modeled following a Bayesian Model Averag-
ing approach on the basis of spectral indices and texture features derived from WorldView-2 satellite imagery
at 2m spatial resolution. We assessed model interpolation and transferability within each mega-fire, as well as
model extrapolation between mega-fires along the climatic gradient. Texture features were the predictors that
contributed most in all cases. The woody species cover model had the best performance regarding spatial in-
terpolation and transferability within the three study sites, with predictive errors lower than 25% for the two
approaches. Model extrapolation between the Transition and Mediterranean sites had low levels of error (from
6% to 19%) for the three field variables, because the landscape in these areas is similar in structure and func-
tion and, therefore, in spectral characteristics. However, model extrapolation from the Atlantic site achieved the
weakest results (error higher than 30%), due to the large ecological differences between this particular site and
the others. This study demonstrates the potential of fine-grained satellite imagery for land managers to conduct
post-fire recovery studies with a high degree of generality across different geographic/climatic contexts.

1. Introduction

Forest fires are disturbances associated with significant social, eco-
nomic and environmental impacts (Nunes et al., 2016; Pinto et al.,
2017; Hong et al., 2018). In fire-prone forest ecosystems of the Mediter-
ranean Basin, many authors have identified an increase in fire regime
parameters, such as recurrence and severity, in large forest fires (Pausas
and Keely, 2009; Ferreira-Leite et al., 2011; Bento-Gonçalves et al.,
2012; Quintano et al., 2015), mainly as a consequence of land use
change (Pereg et al., 2018) and global warming (Doblas-Miranda et al.,
2017). In these ecosystems, vegetation recovery depends on the spa-
tial variation of landscape components, fire regime parameters and cli-
matic characteristics (Beaty and Taylor, 2001; Tessler et al., 2016). Di-
rect impacts of forest fires include the removal of the vegetation cover

(Shakesby, 2011), which may intensify soil erosion processes (Perrault
et al., 2017; Pereira et al., 2018) and sediment yield in vulnerable
areas (Esposito et al., 2017). Moreover, wildfires may seriously af-
fect the regeneration of the dominant tree species, mainly depending
on the fire regime (Fernandes and Rigolot, 2007; Calvo et al., 2008;
Fernández-García et al., 2018).

In fire-prone pine ecosystems, the assessment of understory and for-
est canopy recovery in the short term (less than 5years; Meng et al.,
2018) has a substantial implication in post-fire management strategies
(García-Morote et al., 2017; Meng et al., 2018) aimed at reducing the
risk of suffering erosive processes across large burned areas (Pausas et
al., 2008). Therefore, forest managers require reliable tools, as post-fire
spatially explicit models, to evaluate vegetation recovery at the land-
scape scale (Mansourian et al., 2005).
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The evaluation of the applicability of recovery models developed at
particular sites to other geographic/climatic contexts could provide a
valuable tool in post-fire management decision-making (Roach et al.,
2017). This would allow for exploiting data collected in other wildfire
locations (Latif et al., 2016), reducing data collection efforts in the area
of interest. Nevertheless, the applicability of post-fire recovery models
between burned sites remains a challenge because post-fire vegetation
structure and composition is highly influenced by climatic factors across
geographical gradients (Tao et al., 2013; Fernández-García et al., 2018),
primarily precipitation and temperature (Sevegnani et al., 2016), as well
as fire regime properties (Bond et al., 2005; Sevegnani et al., 2016).

Different problems must be faced in the evaluation of model ap-
plicability across different geographic/climatic contexts, such as: (i)
Site-specific indirect relationships between response variables and pre-
dictors based strictly on correlation rather than on an ecological basis
(Austin, 2002; Sundblad et al., 2009; Wenger and Olden, 2012), which
together with an excessive parameterization of the model, could lead
to a decrease in model generality (Wenger et al., 2011). (ii) Non-sta-
tionarity of the response-predictors relationships (Osborne et al., 2007;
Suárez-Seoane et al., 2014), which are not constant across space
(Brunsdon et al., 1996). (iii) The spatial heterogeneity of ecological rela-
tionships, which may restrict the transfer of relationships between sites
(Wenger and Olden, 2012). In the case of burned sites across a climatic
gradient, changes in vegetation structure can be associated to non-sta-
tionary responses between the field-sampled variables and the consid-
ered predictors, which may limit model applicability between sites and,
therefore, its implications in post-fire management.

The applicability of recovery models to other contexts can be as-
sessed in terms of spatial interpolation (applying model predictions to
areas that spatially overlap with the calibration dataset within the study
area), transferability (applying model predictions to areas that do not
spatially overlap with the calibration dataset, but with similar environ-
mental features in the study area) and extrapolation (applying model
predictions to other study sites with different environmental character-
istics) (Peterson et al., 2007; Jiménez-Alfaro et al., 2018).

Post-fire monitoring of large burned areas based on field work is
very informative, but highly time and labor intensive (Chuvieco and
Kasischke, 2007). In this sense, remote-sensing based techniques (RST)
are considered an essential tool for monitoring ecosystem recovery af-
ter fire (Lozano et al., 2012; Mitri and Gitas, 2013; Fernández-Manso
et al., 2016). Very high spatial (VHS) resolution imagery provided by
spaceborne sensors, such as WorldView-2, has been used to evaluate
post-fire recovery in heterogeneous burned environments (i.e. Jung et
al., 2013; Mitri and Gitas, 2013; Chu et al., 2016; Meng et al., 2018).
In fact, the fine pattern of variability observed in the vegetation after
heterogeneous fires cannot be captured with low spatial resolution sen-
sors (Meng et al., 2017). Several studies, such as that conducted by Chu
et al. (2016), showed the importance of using spectral indices derived
from VHS sensors as predictors of vegetation recovery after a fire dis-
turbance. Moreover, Viedma et al. (2012) proposed the use of satel-
lite imagery texture analysis to monitor post-fire vegetation structure.
In this sense, Gu et al. (2013) demonstrated that image texture alone
or in combination with spectral indices derived from VHS satellite im-
agery improved the estimation of the vegetation structure in heteroge-
neous burned areas. The vertical and horizontal structure of vegetation
in these areas influences spectral reflectance and, therefore, the per-
formance of spectral indices and texture features derived from satel-
lite imagery (Thenkabail et al., 2011). Particularly, canopy reflectance
varies with leaf area (Buchhorn et al., 2013; Zhu et al., 2013), pig-
ment composition (Xiao and Moody, 2008), vegetation biomass and
height (Buchhorn, 2014; Thenkabail et al., 2011), as well as with the
cover of different plant functional types and the total vegetation cover
(Buchhorn et al., 2013; Thenkabail et al., 2011).

The applicability of remote sensing products across different cli-
matic conditions has been evaluated in the assessment of burn severity
(Fernández-García et al., 2018), prediction of savanna vegetation vari-
ables such as shrub and tree density and cover (Tsalyuk et al., 2017),
estimation of tropical forest biomass (Foody et al., 2003; Cutler et al.,
2012) or prediction of leaf area index in pine forests (Sumnall et al.,
2016). However, to our knowledge, there are no studies addressing the
applicability of post-fire recovery models of large burned areas across
climatic gradients.

In this study, we aim to assess the applicability for land manage-
ment at short term of post-fire recovery models based on remote sens-
ing tools in fire-prone pine ecosystems located across an Atlantic-Transi-
tion-Mediterranean climatic gradient. Specifically, we: (1) generate a re-
mote sensing derived tool for evaluating post-fire vegetation recovery in
each study site located throughout the climatic gradient, comparing the
role of spectral indices and textural features derived from fine-grained
satellite imagery; (2) evaluate the spatial interpolation of the recovery
models within each study site of the climatic gradient; (3) assess model
transferability between geographically different subsets of each study
site; and (4) check a more challenging scenario in which we extrapolate
the recovery models built on one study site to predict recovery in the
other sites across the climatic gradient. We hypothesized that texture
features derived from satellite imagery will provide a greater contribu-
tion than spectral features in the recovery models given the ground spa-
tial heterogeneity of fire-prone ecosystems (Schoennagel et al., 2008).
We also expect that spatial interpolation would perform better than spa-
tial transferability, spatial extrapolation being the approach with the
poorest performance due to strong environmental variation along the
climatic gradient (Thuiller et al., 2004; Jiménez-Alfaro et al., 2018). Fi-
nally, we hypothesized that spatial extrapolation would achieve the best
results when applied from the extremes of the climatic gradient (At-
lantic and Mediterranean climatic conditions) towards the center of the
gradient (Transition climatic conditions). We expect this behavior be-
cause the range of environmental conditions would be narrower in the
center than in the extremes of the climatic gradient. Thus, the trunca-
tion in the model calibration data would be greater in the Transition cli-
matic conditions (Hernandez et al., 2006; Suárez-Seoane et al., 2014).

2. Materials and methods

2.1. Study area

We selected three megafires along an Atlantic-Transition-Mediter-
ranean climatic gradient within Spain (Fig. 1).

The Atlantic study site is located within the perimeter of a megafire
that occurred in September of 2013, which burned 2,523ha mostly
covered by Pinus pinaster forest. The site elevation ranges from 0 to
628m above sea level (m.a.s.l.) and has an abrupt morphology due to
the contrast between the granitic relief and the coastal plain. Soils are
acidic given the granitic nature of the lithology (Rodríguez-Lado, 2012).
The climate is Atlantic, with an annual average rainfall of 1655mm
and an annual average temperature of 13 °C, without summer drought
(Ninyerola et al., 2005). Vegetation cover following fire mainly consists
of Pinus pinaster and Eucalyptus globulus regeneration stands, the under-
story community mainly being composed by Ulex europaeus and Rubus
sp.

The Transition site is a mega-fire that occurred in August 2012.
The burned surface was 11,602ha, predominantly covered by a Pinus
pinaster forest. The relief is heterogeneous, with wide valleys, promi-
nent crests and sedimentary plains. Soils are acidic, originating from
siliceous lithologies (Calvo et al., 2008; Fernández-García et al., 2018).
The elevation ranges from 836 to 1499m.a.s.l. This area has transi
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Fig. 1. Location, year of wildfire, number of burnt ha and photographs of the study sites (four years after wildfires) in Spain across an Atlantic (A)-Transition (T)-Mediterranean (M)
climatic gradient.

tional climatic conditions between Atlantic and Mediterranean, with
average annual rainfall of 640mm and an average annual tempera-
ture of 10 °C, presenting two months of summer drought (Ninyerola
et al., 2005). Post-fire vegetation cover is constituted by Pinus pinaster
and Quercus pyrenaica regeneration stands and Halimium alyssoides,
Pterospartum tridentatum and Erica australis in the understory layer.

The Mediterranean site is a megafire of 29,752ha that occurred
in June 2012. Pre-fire and post-fire vegetation is dominated by Pinus
pinaster and Pinus halepensis regeneration stands, and Quercus coccifera,
Ulex parviflorus and Rosmarinus officinalis shrublands. The study site
has steep slopes and altitude ranges between 114 and 995m.a.s.l. Soils
are basic and the dominant lithological material is of sedimentary ori-
gin (CEAM, 2012). Average annual rainfall is 582mm and the aver-
age annual temperature is 16 °C, with three months of summer drought
(Ninyerola et al., 2005), corresponding to a Mediterranean climate.

2.2. Field data

Four years after the fire, a set of 120 2×2m field plots (equal
to WorldView-2 spatial resolution) was randomly established in each
study site. In each plot, we sampled three variables quantifying veg-
etation recovery at both population (dominant tree species) and com-
munity (understory) levels: density of pine seedlings, woody species
cover and dead plant material cover. Cover variables were quantified
as cover percentage using a visual method of estimation (Calvo et al.,
2008). These three variables are key indicators for land management
actions in areas affected by large forest fires (Solans-Vila and Barbosa,

2010; Veraverbeke et al., 2012; Fernández-Manso et al., 2016), as they
allow for identifying priority areas of high susceptibility to erosion
processes (Schmeer et al., 2018) and areas where afforestation strate-
gies should be implemented. In specific, the accumulation of dead plant
material after a forest fire can increase flammability (Whelan, 1995;
Chuvieco et al., 2004; Hart et al., 2015) and, therefore, the risk of new
fire events (Log et al., 2017). Each field plot was georeferenced with
a high-accuracy GPS receiver (Spectra Precision MobileMapper 20) in
post-processing mode. Registration accuracy was better than 0.50m in
terms of root mean square error (RMSE⁠X,Y).

2.3. WorldView-2 imagery data

The WorldView-2 images were acquired on June 15th, 2016, at
11:12:48 UTC for the Mediterranean site, June 23rd, 2016, at 11:38:02
UTC for the Transition site and June 18th June 2017, at 11:53:54 UTC
for the Atlantic site. Cloud cover was lower than 0.5% in the three im-
ages. The spatial resolution of the WorldView-2 multispectral sensor is
2m. This sensor captures data over eight spectral bands (DigitalGlobe,
2010): B1) coastal blue (400–450nm), B2) blue (450–510nm), B3)
green (510–580nm), B4) yellow (585–625nm), B5) red (630–690nm),
B6) red edge (705–745nm), B7) NIR1 (770–895nm) and B8) NIR2
(860–1040nm). Raw imagery was orthorectified with rational polyno-
mial coefficients, a digital elevation model with an accuracy better
than 20cm in terms of RMSE⁠Z and, at least, 100 ground control points
evenly distributed and extracted from aerial orthophotos of the Span-
ish National Plan of Aerial Orthophotography (PNOA). The atmospheric
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correction of the imagery was conducted using the FLAASH algorithm
(Berk et al., 1999; Matthew et al., 2003), which allowed a bottom of
atmosphere (BOA) reflectance product to be obtained. Data for atmos-
pheric correction, such as visibility and column water vapor amount,
were obtained from the State Meteorology Agency of Spain (AEMET).

Two types of products were extracted from the WorldView-2 BOA
reflectance imagery as predictors of vegetation recovery: spectral in-
dices and texture features. The chosen spectral indices (Table1A) have
proven to be useful in the estimation of forest and shrubland struc-
tural parameters (Shamsoddini et al., 2013; Mitchell et al., 2015; Liu
et al., 2017). Texture features comprised two 2nd-order textures (mean
and variance) calculated from bands 1, 3, 6 and 7 of the WorldView-2
imagery (Table1B). These texture measures and bands were chosen
based on previous research carried out in fire-prone pine ecosystems
(Fernández-Guisuraga et al., unpublished results). The 2nd-order tex-
tures were computed using the Gray Level Co-Occurrence Matrix
(GLCM) (Haralick et al., 1973). We selected a moving window of 3x3
pixels to capture the high landscape post-fire heterogeneity in our study
areas (Chen et al., 2004). Textures were calculated from the four differ-
ent window orientations (0°, 45°, 90° and 135°) and then averaged to
obtain directionally invariant texture measures (Zhang and Xie, 2012).

Predictors’ values were extracted for the pixels matching the field
plots where population and community variables were sampled.

2.4. Statistical framework

Vegetation recovery was modeled in each study site by means of
Bayesian Model Averaging (BMA; Raftery et al., 1997; Hoeting et al.,
1999) to account for uncertainty in the model selection process (Zhao
et al., 2013). Response variables were those sampled in the field plots
and predictors were the spectral indices and texture features, both de-
rived from WorldView-2 imagery. Several authors, such as Liang et al.
(2008), have demonstrated that BMA improves the predictive capacity
of other statistical techniques. Zellner’s g prior (Zellner, 1986) for model
coefficients was used along with the g-BRIC hyperparameter (Fernández
et al., 2001), which offers the best predictive performance (Fernández
et al., 2001) and provides the most parsimonious models (Liang et al.,
2008). The entire model space was fully enumerated by iterating all pos-
sible predictor combinations (2⁠12 iterations). A grid was plotted indi-
cating the signs and inclusion of coefficients versus posterior inclusion
probabilities (PIP) for the entire model space. Predictors with PIP>0.5
are considered to be highly correlated to the response variable (Barbieri
and Berger, 2003; Eicher et al., 2009).

Table 1
Spectral indices (A) and textural features (B) predictors derived from the WorldView-2
BOA reflectance imagery. p(i,j) represents the value in i,j cell of GLCM and N is the num-
ber of gray levels. ARI and TCARI formulas were adapted to WorldView-2 bands that span
within acceptable wavelength ranges of the equations presented in the literature.

(A) Index Formula Reference

Anthocyanin Reflectance Index
2 (ARI)

B7[(1/B3)-(1/B6)] Gitelson et al.
(2001)

Burnt Area Index (BAI) 1/[(0.1-B5) ⁠2+(0.06-B8) ⁠2] Chuvieco et al.
(2002)

Normalized Difference
Vegetation Index (NDVI)

(B7-B5)/(B7+B5) Rouse et al. (1973)

Transformed Chlorophyll
Absorption Reflectance Index
(TCARI)

3[(B6-B5)-0.2(B6-B3)(B6/
B5)]

Haboudane et al.
(2004)

(B) Texture Formula Reference
Local mean of GLCM window Haralick et al.

(1973)Pu and
Cheng (2015)

Local variance of GLCM
window

Haralick et al.
(1973)Pu and
Cheng (2015)

The predictive capacity of the models was computed as the root
mean square error (RMSE, eq.1) normalized using the maximum (y⁠max)
and minimum (y⁠min) value of observations for each response variable
(nRMSE, eq.2).

(1)

(2)

Model interpolation was evaluated within each study site by ran-
domly partitioning the field data into a training subset (2/3 of data)
to calibrate the models and a validation subset (1/3 of the data) to
assess the model performance. Transferability within study sites was
tested by partitioning the data into four geographic quadrants to avoid
an arbitrary split of the data (Osborne and Suárez-Seoane, 2002). Data
comprised within 3 out of 4 quadrants were used for training pur-
poses and data from the remaining quadrant for validation in an it-
erative procedure, performing a “geographic 4-fold cross-validation”
(Osborne and Suárez-Seoane, 2002; Radosavljevic and Anderson, 2014;
Jiménez-Alfaro et al., 2018). The extrapolation among study sites was
evaluated by applying the model equation derived from the training
subset of a study site to the full dataset of the other study sites in an iter-
ative procedure (Fig. 2). To evaluate the extrapolation performance, bi-
variate Pearson correlations were computed between the predicted val-
ues achieved by model extrapolation and the observed field values in
each study site.

All statistical analyses were performed using R (R Core Team, 2017)
using the BMS package (Zeugner and Feldkircher, 2015).

3. Results

3.1. Post-fire vegetation recovery tools: Importance of spectral and textural
features

Textural features were, for the three response variables, the most
contributing predictors in the recovery models along the climatic gra-
dient. Band 6 (red edge) and band 7 (NIR-1) textures presented a
PIP>0.90 in five out of nine recovery models (Fig. 3).

Spectral indices (ARI and NDVI) and texture features (variance of
band 3 and 7) were closely related (PIP>0.5) to pine seedling density
in the Transition site. The probability of each predictor being chosen for
this response variable was lower than 0.40 in the Atlantic and Mediter-
ranean sites. Woody species cover was strongly related with mean tex-
ture features in each study site across the climatic gradient, mainly with
the mean of band 6 (PIP>0.98) in the Atlantic and Mediterranean sites.
The estimation of dead plant material cover was associated to the mean
and variance of band 7 in the three study sites.

3.2. Interpolation, transferability and extrapolation

The spatial interpolation analysis carried out across the climatic gra-
dient (Table 2) showed the best performance, in terms of nRMSE, for
the case of the woody species cover model. The highest error was found
in the Atlantic site for the three recovery variables.

Transferability analysis (Table 2) exhibited a worse predictive per-
formance than spatial interpolation for each study site and recovery
variable. The most notable differences in terms of nRMSE between
model interpolation and transferability approaches were found for the
Mediterranean site. The best performing transferability analysis was
achieved for the woody species cover in the three sites across the cli-
matic gradient.
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Fig. 2. Theoretical approach to evaluate the recovery models generality in the study sites across the climatic gradient. The square of each site represents the fire perimeter and the points
the field plots.

The extrapolation of the recovery models across the climatic gra-
dient (Fig. 4) showed the best predictive capacity between the Transi-
tion and Mediterranean sites in both directions, with errors in terms of
nRMSE ranging from 6% to 19%. Extrapolation to and from the Atlantic
site obtained the highest prediction errors (nRMSE>30% in 11 out of
12 extrapolations). Extrapolation towards the Transition site from the
other study sites showed less error than in the opposite direction. The
best extrapolation results were obtained for the woody species cover
model, achieving the low predictive error (nRMSE>9%) between the
Transition and Mediterranean sites.

Pearson correlation analysis carried out between the prediction val-
ues achieved by model extrapolation and the observed field values
in each study site showed the highest correlations (r>0.7) when the
woody species cover model was extrapolated between the Transition
and Mediterranean sites (Table 3).

4. Discussion

4.1. Post-fire vegetation recovery tools: Importance of spectral and textural
features

Post-fire management decisions and restoration actions taken by
forestry managers are largely context-dependent (Taboada et al., 2017)
because post-fire vegetation recovery depends on pre-fire vegetation
community composition, fire regime and climatic factors of each spe-
cific site across large spatial scales (Puig-Gironès et al., 2017). The
search for new tools that may facilitate decision-making and reduce

field data gathering efforts in forest management has been one of
the most important aspects in recent years (Wulder et al., 2005;
Mohammadi et al., 2011; Meng et al., 2016), since most of management
decisions require accurate data at short-term to be applied (Schmidt et
al., 2018). For that reason, these tools should allow the transfer of pre-
dictive relations from the information obtained in different geographical
or climatic contexts (Foody et al., 2003; Cutler et al., 2012).

Our results showed that spectral indices and textural features de-
rived from fine-grained satellite imagery were good predictors of veg-
etation recovery in fire-prone pine ecosystems across an Atlantic-Tran-
sition-Mediterranean climatic gradient. Texture features provided the
greatest model contribution in the estimation of recovery variables. In
these fire-prone ecosystems, fire promotes heterogeneous vegetation re-
covery patterns (Schoennagel et al., 2008) that can be better detected
through texture features (Wood et al., 2012) accounting for discrete
pixel values and their spatial adjacency relationships (Gu et al., 2013),
than by other satellite products such as spectral indices. In this sense,
other authors such as Lu (2007), Ozdemir and Karnieli (2011), Sarker
and Nichol (2011) or Eckert (2012) also found that under heterogeneous
vegetation structure, texture features were more correlated with canopy
metrics than spectral indices.

Among the considered recovery variables, the density of pine
seedlings was satisfactorily explained only in the Transition site across
the climatic gradient. Pinus pinaster population in the Transition site pre-
sents an intensive seedling recruitment after fire (Tapias et al., 2001;
Tapias et al., 2004; Calvo et al., 2013) due to its high level of

5
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Fig. 3. Model inclusion grid based on the best 500 models in the Atlantic (A), Transition (T) and Mediterranean (M) study sites. Blue color corresponds to positive coefficients, red to
negative coefficients and white to non-inclusion (zero coefficient). Predictors are sorted from the highest to the lowest inclusion probability in the recovery models. Predictors highlighted
in red present a posterior inclusion probability (PIP) higher than 0.5 in the model space (B1 – B7 represent WorldView-2 bands; ARI=Anthocyanin Reflectance Index 2; BAI=Burnt Area
Index; NDVI=Normalized Difference Vegetation Index; TCARI=Transformed Chlorophyll Absorption Reflectance Index). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 2
Model interpolation performance (nRMSE) and transferability performance (mean
nRMSE±SD of the geographic 4-fold cross-validation) for the three study sites.

nRMSE

Interpolation Transferability

Atlantic site

density of pine seedlings 24.26% 34.67% ± 25.00%
woody species cover 20.05% 24.09% ± 7.34%
dead plant material cover 23.88% 28.88% ± 6.08%
Transition site
density of pine seedlings 12.01% 16.63% ± 2.91%
woody species cover 8.87% 15.83% ± 1.69%
dead plant material cover 14.63% 16.40% ± 1.72%
Mediterranean site
density of pine seedlings 18.49% 28.49% ± 10.17%
woody species cover 6.02% 21.62% ± 5.13%
dead plant material cover 17.30% 29.91% ± 5.93%

serotiny (Calvo et al., 2016; Taboada et al., 2017) and early flowering in
comparison with the other two study sites (Tapias et al., 2004). There-
fore, seedling recruitment in the Transition site was very high in rela-
tion to that in the Atlantic and Mediterranean sites. The higher surface
reflectance contribution of pine seedlings in the field plots of the Tran-
sition site could explain the population recovery in contrast to the At-
lantic and Mediterranean sites (Viedma et al., 2012).

Woody species cover was successfully modeled in the three sites
across the climatic gradient, using texture predictors derived from
WorldView-2 imagery. Specifically, red edge texture had the highest
model contribution in all cases. Although reflectance values depend on
the vegetation canopy structure (Middleton, 1991) and the sun angle
(Mänd et al, 2010), both varying among study sites, features derived
from the red edge region of the spectrum are insensitive to these varia-
tions (Sims and Gamon, 2002). Indeed, this region is more efficient than
others for differentiating soil background and vegetation spectral char-
acteristics (Schumacher et al., 2016), as well as minimizing atmospheric
effects (Mutanga et al., 2012).

Discrimination between dead plant material cover and photosyn-
thetic vegetation was successfully achieved through the texture fea
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Fig. 4. Extrapolation performance (nRMSE) of the density of pine seedlings (dP), woody species cover (Wc) and dead plant material cover (Dc) recovery models between the Atlantic,
Transition and Mediterranean sites. The thickest arrows correspond to extrapolations with an error lower than 40% in terms of nRMSE.

Table 3
Bivariate Pearson correlations between prediction values achieved by model extrapolation
and observed field values in each study site for the three response variables (dP=density
of pine seedlings; Wc=woody species cover; Dc=dead plant material cover).

Pearson
correlation (r) Atlantic site (A) Transition site (T)

Mediterranean site
(M)

From
T

From
M

From
A

From
M

From
A

From
T

dP 0.0399 0.1026 0.0997 0.2794 0.0445 0.2437
Wc 0.2926 0.2375 0.5314 0.7327 0.5479 0.7878
Dc 0.1369 0.1915 0.3529 0.3900 0.2819 0.5580

tures computed from the NIR region of the spectrum in the three study
sites. This result was consistent with the achievements of other authors
(Lasaponara, 2006; Veraverbeke et al., 2011) that also found a high
discriminatory capability in this spectral region because of the lower
NIR reflectance of burned vegetation in comparison with photosynthetic
vegetation (Schepers et al., 2014).

In addition to assess the performance of post-fire recovery models
independently in burned areas with different climatic conditions, it is
useful for land management purposes to evaluate the spatial generality
of models developed in one site to predict vegetation variables in other
sites (Cutler et al., 2012). The implementation of remote sensing-based
recovery models applicable to other contexts is a major challenge at the
present time in areas with high spatial variability (Tsalyuk et al., 2017).

4.2. Interpolation, transferability and extrapolation

Our results confirm the hypothesis that the spatial interpolation of
vegetation models showed better performance than spatial transferabil-
ity within each study site, with spatial extrapolation achieving a lower
performance than the other two approaches. These results were ex-
pected because the full range of environmental factors in different re-
gions across the climatic gradient extend beyond the range of model
calibration data within each region (Thuiller et al., 2004; Tsalyuk et
al., 2017; Jiménez-Alfaro et al., 2018). Moreover, data partitioning by
means of geographic criteria accomplished in transferability and extrap-
olation approaches would lead to an inferior model performance due
to non-stationary responses of vegetation in the distinct areas consid-
ered for model calibration and validation (Osborne and Suárez-Seoane,
2002). On the contrary, non-stationary responses are not expected to
impact the interpolation approach because the modeled relationships
are relatively constant within each study site.

We achieved the highest performance in the model transferability
approach within the Atlantic and Transition sites. The lower perfor-
mance of this approach in the Mediterranean site was probably due to
the stronger variation in the environmental factors and, therefore, in
the vegetation community structure within the geographic quadrants.
Spatial data partitioning in geographic quadrants would account for lo-
cal variation within each quadrant in the model calibration step, being
expected non-stationary responses between quadrants in the Mediter-
ranean site given its environmental heterogeneity (Unwin and Unwin,
1998). In this sense, model calibration data in this study site would
incorporate less heterogeneity in the environmental factors (Archibald
and Scholes, 2007), giving less accurate model predictions
(Suárez‐Seoane et al., 2014; Jiménez-Alfaro et al., 2018).
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The spatial extrapolation of recovery models across regions using dif-
ferent satellite scenes, despite being a complicated approach (Woodcock
et al., 2001), showed encouraging results. Extrapolation between the
Transition and Mediterranean sites in both directions exhibited a small
error, in line with the study conducted by Tsalyuk et al. (2017) in the
savanna ecosystems. However, extrapolation to and from the Atlantic
site obtained weaker results. This could be due to the ecosystem char-
acteristics of this site in comparison with the Transition and Mediter-
ranean sites, these two ecosystems being more similar in their global
structure and function, and therefore, in their spectral characteristics
(Cutler et al., 2012). The Atlantic site is located in a typical coastline
ecosystem with a large outcrop of granitic boulders and sparse vegeta-
tion canopy. Meanwhile, the Transition and Mediterranean sites have
a more similar and homogeneous canopy structure, although the plant
community and, therefore, the species composition, differ widely be-
tween these two sites. In line with our initial hypothesis, spatial extrap-
olation to the Transition site produced better results than in the opposite
direction (i.e. from the Transition site to the Atlantic and Mediterranean
sites). This may be attributable to the more homogeneous landscape in
the Transition site, probably due to the lower fire recurrence in com-
parison with the other two sites (Fernández-Manso et al., 2015). Models
trained in more heterogeneous landscapes would capture more variabil-
ity in the environmental factors and, therefore, they would be able to
predict better vegetation parameters in other sites with a narrower en-
vironmental variation (Suárez‐Seoane et al., 2014; Tsalyuk et al., 2017).

This study demonstrates the potential of fine-grained satellite im-
agery to conduct post-fire recovery models that are generalizable within
and between different burned ecosystems across a climatic gradient.
This remote sensing tool would allow land managers to reduce exten-
sive field-sampling campaigns to monitor vegetation recovery in burned
sites whose structure and function do not differ significantly from pre-
viously modeled sites. However, further research is needed to enhance
the generality and applicability of recovery models to areas with greater
variability in vegetation horizontal and vertical structure by exploring
other remote sensing products.

5. Conclusions

1. Fine-grained multispectral imagery was an appropriate tool to suc-
cessfully predict vegetation recovery in fire-prone pine ecosystems
along an Atlantic-Transition-Mediterranean climatic gradient.

2. Texture features computed from WorldView-2 imagery provided a
suitable estimation of post-fire vegetation recovery (density of pine
seedlings, woody species cover) and dead plant material cover under
different climatic conditions.

3. Post-fire recovery models showed a high spatial applicability across
burned areas with different climatic conditions, which may present
important implications for land management purposes.

4. The model interpolation approach achieved a high performance be-
cause the modeled relationships were relatively constant within each
study site and vegetation non-stationary responses were not ex-
pected. The transferability approach achieved a better performance
in the Atlantic and Transition sites, in contrast to the Mediterranean
site. In the latter case, the stronger variation in the environmental
factors within the geographic quadrants and, therefore, the possibil-
ity of non-stationary responses could lead to truncation in model cal-
ibration.

5. Model extrapolation between the Transition and Mediterranean sites
in both directions exhibited an error lower than 20%. Both study
sites have a similar and homogeneous canopy structure, although
the plant community differs widely between these two sites. Owing
to the similar structure and function of these ecosystems, they have

closer spectral characteristics in comparison with the Atlantic site,
where extrapolation approach gave the weakest results.

6. The modeling approach followed in this study would allow land man-
agers to evaluate post-fire vegetation recovery in burned sites across
climatic gradients with high reliability.
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