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Abstract

Heating, Ventilation, and Air Conditioning (HVAC) systems are gener-
ally built in a modular manner, comprising several identical subsystems in
order to achieve their nominal capacity. These parallel subsystems and el-
ements should have the same behavior and, therefore, differences between
them can reveal failures and inefficiency in the system. The complexity
in HVAC systems comes from the number of variables involved in these
processes. For that reason, dimensionality reduction techniques can be a
useful approach to reduce the complexity of the HVAC data and study
their operation. However, for most of these techniques, it is not possible
to project new data without retraining the projection and, as a result,
it is not possible to easily compare several projections. In this paper, a
method based on deep autoencoders is used to create a reference model
with a HVAC system and new data is projected using this model to be
able to compare them. The proposed approach is applied to real data
from a chiller with 3 identical compressors at the Hospital of Ledn.
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1 Introduction

Heating, ventilation and air conditioning (HVAC) systems represent about 50
% of the total consumption in the building sector, being the most energy-
consuming equipment. It is equivalent to 10-20 % of the final energy con-
sumption in developed countries [I]. Due to that exponential growth of HVAC
energy use, policies and regulations focus on promoting energy efficiency of those
building systems.

In order to understand how to improve the energy efficiency in buildings, it
is necessary to monitor the HVAC systems. The working state of these systems
should be analyzed to check the operation and detect malfunctions in those
systems [2]. The use of advanced visualization tools can help to improve the
efficiency of the systems [3]. However, the main problem creating these vi-
sualizations is that HVAC systems may comprise several modules and a vast
number of variables each. In addition, these modules are composed of identical
machines and elements working in parallel (according to the HVAC stages), so
it is expected to have variables with the same evolution, hindering data visual-
ization and comparison. For these reasons, it is necessary to reduce the number
of variables, so that the processes can be visualized in an easy way and the
visualization is consistent, allowing the data to be compared among the parallel
processes.

Tools for visualizing multivariate systems have already been tested previ-
ously in order to draw conclusions about the behavior of the process [4]. Never-
theless, one problem of these techniques arises when projecting new or out-of-
sample data points from the high dimensional space onto the low dimensional
space. In this case, it is required to use specific algorithm modifications or run
the algorithm again. Since these algorithms generally use random initialization,
if we train again to include the new data the projection output changes, we can-
not compare the results between reruns. Furthermore, it is impossible to deduce
process values in the projection areas that do not display projected points, since
these techniques are not bijective. Thus, it is necessary to use an additional in-
terpolation technique with the projection method, making the creation of maps
more complex and obtaining less accurate results [5]. As an example, the tools
proposed in [4] combine data projection by means of the dimension reduction
techniques such as Isomap, MDS, CCA, etc. [6] and an interpolation technique.

This paper proposes the use of a dimensionality reduction technique (Deep
autoencoder) to project data while overcoming the aforementioned issues. Us-
ing this technique, it would be possible to project new data without retraining
the algorithm, making easier the comparison among projections of different pro-
cess. Furthermore, the projection algorithm is simpler, because it is a bijective
method. Real data from a HVAC system at the Hospital of Ledn, a chiller of
1407 kW comprising 3 identical subsystems (3 compressors), are used to test
that dimensionality reduction technique.

This paper is structured as follows: The proposed approach is presented in
Section In Section [3] the testbed is described in detail. The experimental
results are analyzed in Section [d] Finally, conclusions are drawn in Section



2 Methodology

The main goal of our approach is to find a model that enables the projection of
process data (composed by a large number of variables) onto a low dimensional
space, where conclusions about the process behavior can be drawn in an intuitive
manner. That model should allow the projection of new process data without
modifying the distribution of the points already projected, in order to achieve a
consistent comparison of the new points with the old ones, avoiding the need of
model retraining. This kind of projection can be performed by means of Deep
Autoencoders (DA) [7]. DAs do not only enable the projection of new points,
but also define implicitly a backward projection from the low dimensional space
to the high dimensional input space, allowing to infer input process data from
areas of the output space where no previous projected data were available.

2.1 Deep autoencoders

An autoencoder is a type of neural network in which the output target of the
network is set to be equal to the input; i.e., it is an unsupervised learning method
which uses a back propagation algorithm for training. The autoencoder has at
least three layers: an input layer, a hidden (encoding) layer, and a decoding
layer. Since it is trained to reconstruct its inputs, the hidden layer is forced to
learn a good representation of the inputs, so if the hidden layer is limited to a
fewer number of neurons than that of the input layer, a dimensionality reduction
will be performed [§]. Autoencoders have been widely used not only for dimen-
sionality reduction, but also for feature extraction and denoising applications
[9].

Despite single-layer NNs have been proved to achieve universal approxima-
tion, the number of units required for that purpose might be unfeasibly large
and generalization is not guaranteed [10]. It must be noted that the complexity
of the relationships involved in HVAC systems is one of the elements under con-
sideration, because the efficiency of a HVAC system depends on many factors
(internal and external variables).

Deep learning (DL) models have turned out to be good at discovering in-
tricate structures in high dimensional data [II]. A deep autoencoder increases
the number of hidden layers creating always a symmetric network in which the
first half of the net represents the encoding, and the second half represents the
decoding [12]. Figure [1| shows the structure of a deep-autoencoder. Choosing
the structure of the autoencoder involves selecting the number of hidden layers
(depth) and the number of units for each layer (width) and it is not a trivial
task.

Recent works [I3], [14] have showed that deep architectures allow computation
of far more complex functions than shallow ones with a similar number of total
units. The composition of layers allows identifying an exponentially growing
number of input regions for large depths by means of successive space folding
mechanisms, thereby enabling complex mappings by reusing pieces of computa-
tion. Moreover, the restriction imposed by the rigidity of the folding mechanism
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Figure 1: Deep autoencoder structure

implicit in deep networks could be thought as a regularization mechanism that
helps in achieving better generalization properties than shallow models [13].

Representation learning is another reason for choosing deep structures. The
composition of successive nonlinear mappings that takes place in deep neural
networks results in multiple levels of abstraction. The initial layers capture basic
features of the input raw data, that are relevant for the problem, and subsequent
mappings result in more abstract and also problem-relevant features built upon
the former ones. In other words, DL networks turn out to learn feature detectors.
Moreover, introspection into the internal layers of DL networks has revealed that
the extracted features were surprisingly intuitive or meaningful in most cases.

The ability of DL networks in learning complex functions and their capability
for representation learning, as argued above, have thereby suggested the use of
deep autoencoders in this work for finding meaningful visual representations of
parallel processes from the same HVAC system.

2.2  Visual analysis using autoencoders

We propose to project the data acquired from one of the process of a HVAC
system, composed of several parallel units, in order to analyze its behavior.
Using a set of variables, identical for all parallel units, allows us to obtain a
reference model. Data from the reference unit are used to train a DA algorithm
(see Fig. [2)).

The proposed DA implements a “bottleneck” restriction of 2 output units
in the encoder stage, because the aim is a mapping onto a 2D space. Such
restriction forces the model to maximize the information flow in these two units
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Figure 2: Methodology



in order to minimize the reconstruction error of the original process data carried
out by the decoder stage.

e Encoder: once trained, this mapping of the high dimensional input space
onto a 2D space allows to obtain projections for both training process data
and new (test) process data.

e Decoder: this stage maps back 2D projections to high dimensional pro-
cess data, thereby allowing a reconstruction of process data vectors from
the projections. The implicit interpolation that appears in this stage can
be used to build visual component planes of the process variables, by ap-
plying it to a regular grid in the 2D space that covers the extent of the
projections.

This model can be used to achieve an effective visual comparison between
different parallel processes. This can be done by obtaining the projection of
data from the process unit used for training the model and then obtaining the
projection of the other process unit using the same model. Both projections can
be compared in the same visualization, considering that two projections lying
in a similar region of the visualization space will correspond to similar values
of the process variables. Thus, if all projections of two or more parallel process
units span the same region in the projection, it reveals that their whole behavior
is similar, while having projection clouds spanning different regions shows some
kind of dissimilarity between the processes.

To provide context, it is proposed to complement the visualization with the
information obtained from decoding the 2D regular grid points. Component
planes corresponding to each process variable can be built by assigning to each
point of the 2D grid a color corresponding to the value of its reconstructed a
process variable, according to a color scale. Also, contour levels can be added
to improve the visualization (see Fig. [2).

3 Experimentation system: Air-cooled chillers

The chiller plant at the Hospital of Ledn is used as experimental system. Ba-
sically, that plant consists of a chilled water production subsystem and a dis-
tribution subsystem. Air-cooled and water-cooled chillers can be found in the
production subsystem, together with valves, sensors and pumps needed to com-
plement the chiller operation. There are 5 identical air-cooled chillers, compris-
ing 3 internal refrigeration circuits each one, whose data are used as testbed for
the approach.

Each air-cooled chiller (model Petra APSa 400-3) has a maximum cooling
capacity of 400 tons (approximately 1407 kW) and includes 3 identical and in-
dependent refrigeration circuits (see Fig. [3). Each one is composed of a screw
compressor, an electronic expansion valve (EEV), and 3 individual condensers
in V form. A common evaporator is used for the 3 circuits. The compressor,
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Figure 3: Air-cooled chiller refrigeration circuits.

driven by a three-phase induction motor (400 V; 109 kW), has a maximum dis-
placement of 791 m?/h of R134a refrigeration gas. Its capacity can be regulated
between 50-100 % of maximum value by means of two auxiliary load and unload
valves. The condensers have 16 fans of 1.5kW, driven by variable speed drives.
Note that the compressor characterizes the electricity demand of the chiller (be-
cause it amounts to approximately 93 % of this demand). Each chiller requires
external elements, such as a primary pump, which is driven by a variable speed
drive to force water flow through the evaporator. Furthermore, an on/off valve
is used to avoid water flow when the chiller is not running.

The control board acquires and controls several internal variables, being
the most important ones listed in Table It communicates with a central
controller (Schneider Electric AS) which collects all chiller data using Modbus
RTU protocol. Data is structured and stored in a SQLite database. Later, a
Python service is used to preprocess raw data and build the training datasets.



Table 1: Internal variables to control each compressor circuit of the chiller.

Name Unit
Evaporating temperature C
Evaporating pressure bar
Condensing temperature °C
Condensing pressure bar
Compressor part load ratio %
Compressor current A
Chilled water leaving temperature C
Chilled water entering temperature C
Fan speed %
Ambient temperature C

4 Experimental results

To perform the experiments, a deep autoencoder has been trained in Python
using TensorFlow [15], which is an open source library capable of building and
training neural networks, and Keras [16], which is a high-level API running on
top of either TensorFlow or Theano. Both libraries together let us program and
train an autoencoder in an easy way. In addition, they can run on the GPU of a
graphics card so that models and the projection of new points can be calculated
faster, allowing the use of these techniques in almost real-time.

The data used in the experiments are acquired from a chiller at the Hospital
of Ledn, as described in the previous section. A model is obtained from the one
of the compressors, which will be known from this moment on as Compressorl.
This compressor has been selected as the reference unit, taking into account
the information obtained in tests which were made beforehand on the chiller.
These tests determined that it was the best calibrated compressor and the most
optimal one. The variables used as input space are the ones described in the
Table[I} This set of variables is acquired for each compressor. Once the reference
model has been trained with the data from the Compressorl, the other two
compressors, noted as Compressor2 and Compressor3 will be projected using
this model.

The parameters used to train the autoencoder model have been selected
manually due to the difficulty of using a method that allows identifying the
most satisfactory projection. Although there are indexes such as the continuity
and dissimilarity that can be used to measure the effectiveness of a projection
[1I77], the complexity of the autoencoders implies a high number of tests that do
not guarantee to obtain an optimal solution. For this reason, several projections
are performed with different parameterizations and the one that provides a more
intuitive visualization and comparison is selected according to our experience
[6], since the final purpose of the projection is to obtain information through
the visual analysis.

The resulting autoencoder consists of a 10-dimensional input layer and three
intermediate layers of 128, 64 and 2 dimensions respectively. The last two-
dimensional intermediate layer is the encoding layer. As for the decoding part
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Figure 4: Data projection of the compressors over the space created with the
model of the first compressor. The black line shows the projection area of the
reference model (Compressorl).

of the autoencoder, it is symmetric, as explained before.

Figure [4] shows the result of creating a reference model with the data from
Compressorl and then, applying this model to the other compressors. The
point colors are related to the number of compressors that work simultaneously
in the chiller, which provide information about the machine working load. The
black line marks the density of the model projection (Compressorl), i.e., this
line gives the visual information of the contour within which most of the points
of the model are projected. If the compressor to be compared works similarly
to the model, its points are projected within the contour line. Otherwise, it
indicates that the compressor does not have the same behavior as the reference
one.

Figure [4] shows that Compressor2 is almost entirely projected within the
contour, so it can be deduced that its operation is basically the same as that
of Compressorl (the reference one). However, in the case of Compressor3 pro-
jection, part of the dots are outside the contour and are projected to the right.
Thus, it reveals a clear difference between the operation of Compressor3 and the
reference (Compressorl). A thorough study of the chiller configuration proved
that both the structure and parameters of the Compressor3 circuit have slight
variations with regard to the other compressors. Specifically, the condenser of
Compressor3 circuit is 17 % larger and has two fans more than the other circuits.

Figure [5| shows the behavior of several variables of the three compressors.
It also shows the projection of the reference model (Compressorl) so that the
three circuits can be analyzed and compared in more detail. In these maps, the
color is representative of the value of the variable that is visualized (some of the
visualized variables as AT are calculated from the temperatures used during
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the projection) and the projection of the points is the result of applying the
trained DA to each compressor circuit. The contour lines that appear on the
projection come from applying the decoding model to the simulated grid that
we used as a reference. The color of these curves has the same meaning as the
color of the projected point, so they provide information about the distribution
of the visualized variable values through the map.

Observing the projection of the points, we can check, using the maps, the
similarity between the Compressorl and 2, and the difference with the Com-
pressor3. A priori, Compressor3 should take colder refrigeration gas (larger
condenser), causing lower power demand. However, it can be observed that AT
and the demanded current in the Compressor3 are a bit higher. The revision
of parameters of the fan speed drive allowed us to explain this behavior. Speed
limits on that configuration were discovered to try to compensate its associated
larger condenser. As seen on Compressor3 projection maps, fan speed is a little
lower than in the other two compressors. It can be also seen how the values of
the remaining variables are quite similar.

5 Conclusions

This paper presents a new approach to reduce the data from multivariate iden-
tical parallel processes so that they can be visualized. The resulting two-
dimensional visualizations can be compared in order to check whether the pro-
cesses are similar, since differences in the working process result in a different
projection.

A deep autoencoder is used to reduce the dimension of the data because
it provides a series of advantages with respect to other existing techniques.
It facilitates the projection of new points and it is also possible to carry out
the inverse process obtaining the values of the space input when a grid in the
output space is provided. The decoder component of the autoencoder has been
used to interpolate in the input space using a simulated grid. This data is
used to create a continuous projection on the maps to improve the information
visualization. Using this feature, only a single model is needed, instead of having
to incorporate additional techniques for interpolate the data. In addition, it is
possible to project new points on the created model of the process without
retraining the model.

In this paper, the technique was applied to a chiller with three parallel
refrigeration circuits which are assumed to be identical. Since these circuits
involve several variables, we use a dimension reduction technique to project
compressor data and analyze their operation. The internal variables influence
on the power demand of the compressor, which typically represents more than
90% of total energy demand in a chiller. Thus, compressor data are important
to verify energy efficiency of a chiller.

We showed that it is possible to use deep autoencoders to perform a dimen-
sionality reduction for industrial-oriented data visualization. We also showed
that it is possible to make comparisons using the projected data between the
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model created with one process and the data of the others, checking easily
whether the processes behavior are the same or not. It was found, using these
projections, that the Compressor3 circuit of the chiller is different from the other
two since the coordinates of the projected points are not the same.

As future work, this approach will be applied to the remaining air-cooled
chillers at the Hospital of Leén (5 chillers with 3 compressors each). In addi-
tion, this methodology will be improved by using algorithms which make more
practical the parameter selection and the training phase of the reference model
of the process.
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