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Abstract Maize (Zea mays L.) suspension-cultured cells with
up to 70% less cellulose? were obtained by stepwise
habituation to dichlobenil (DCB), a cellulose biosynthesis
inhibitor. Cellulose deficiency was accompanied by marked
changes in cell wall matrix polysaccharides and phenolics as
revealed by Fourier transform infrared (FTIR) spectroscopy.
Cell wall compositional analysis indicated that the cellulose-
deficient cell walls showed an enhancement of highly
branched and cross-linked arabinoxylans, as well as an
increased content in ferulic acid, diferulates and p-
coumaric acid, and the presence of a polymer that stained
positive for phloroglucinol. In accordance with this, cellulose-
deficient cell walls showed a fivefold increase in Klason-
type lignin. Thioacidolysis/GC-MS analysis of cellulose-
deficient cell walls indicated the presence of a lignin-
like polymer with a Syringyl/Guaiacyl ratio of 1.45, which
differed from the sensu stricto stress-related lignin that arose
in response to short-term DCB-treatments. Gene expression
analysis of these cells indicated an overexpression of genes

specific for the biosynthesis of monolignol units of lignin. A
study of stress signaling pathways revealed an overexpression
of some of the jasmonate signaling pathway genes, which
might trigger ectopic lignification in response to cell wall
integrity disruptions. In summary, the structural plasticity of
primary cell walls is proven, since a lignification process is
possible in response to cellulose impoverishment.
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INTRODUCTION

The primary cell wall is a complex structure surrounding the
protoplasm of elongating plant cells and it is crucial for shape
maintenance and directional growth during cell development
(Carpita 1996). Moreover, as the outermost layer of the plant
cell, it is an active component in response to biotic and abiotic
stresses with the capacity to monitor and maintain its integrity
by means of structural and compositional changes (Hamann
2014). As with other grasses, the primary cell wall in maize
(type 1) is mainly composed of a framework of cellulose
microfibrils embedded in a matrix of arabinoxylans. Smaller
amounts of xyloglucan, mixed-linked glucans, pectins and
glycoproteins can also be found as cell wall matrix
components (Carpita 1996).

Cellulose, the main load-bearing structure of plant cell
walls, is a polymer of 3-1,4 linked glucan chains synthesized by
transmembrane protein complexes (Guerriero et al. 2010).
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Cellulose is deposited in the cell wall in the form of microfibrils
probably composed of 18 or 24 chains (Jarvis 2013).
Arabinoxylans, the second major component of maize primary
cell walls, play a pivotal role since different populations
function by tethering adjacent cellulose microfibrils and
forming the matrix phase of cell walls (Scheller and Ulvskov
2010). The arabinoxylan backbone is composed of B-1,4-
linked xylose residues commonly substituted at C(O) 3 and/or
C(0) 2 with arabinose or (4-O-methyl) glucuronic acid (Fincher
2009). One of the unique features of arabinoxylans from
grasses is that the arabinose residues are often esterified at
C(0) 5 with the hydroxycinnamates, ferulic and p-
coumaric acid. Due to their high reactivity, polysaccharide-
esterified hydroxycinnamates promote arabinoxylan cross-
linking, playing a major role in maintaining the integrity of
grass cell walls (Buanafina 2009).

Lignin is a complex phenolic heteropolymer predom-
inantly deposited in the secondarily thickened cell walls of
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specialized plant cell types. Lignin drastically modifies cell wall
structure and functions, since after its deposition cell walls
acquire hydrophobicity and increase their resistance to
mechanical and chemical degradation (Vanholme et al. 2010;
Liu 2012) being a key factor in the evolution of tracheophytes
vascular system (Lucas et al. 2013). The main building blocks of
lignin are the 4-hydroxycinnamyl alcohols (or monolignols):
coniferyl and sinapyl alcohols with lesser amounts of p-
coumaryl alcohol (Boerjan et al. 2003). Monolignols are
synthesized in the cytosol from phenylalanine by the phenyl-
propanoid pathway and transported into the cell wall where
they are subjected to oxidative cross-linking by cell wall
peroxidases, laccases or otherphenol oxidases using hydro-
gen peroxide or oxygen as oxidants (Passardi et al. 2004;
Fagerstedt et al. 2010; Karkonen and Kuchitsu 2014). Once
polymerized into lignin, p-coumaryl, coniferyl and sinapyl
alcohol give rise to p-hydroxyphenyl (H), guaiacyl (G) and
syringy! (S) units, respectively (Vanholme et al. 2010; Liu 2012).

Lignification is a tightly developmentally regulated
process commonly associated with the formation of a
secondarily thickened cell wall during cell specialization.
Besides, the developmentally regulated lignin, biotic and
abiotic stresses can induce unexpected lignification known as
ectopic lignification (Cano-Delgado et al. 2000; Moura et al.
2010; Sattler and Funnell-Harris 2013; Miedes et al. 2014).
Although there are very few reports in the literature of this
phenomenon in exclusively primary-walled cell cultures, lignin-
like polymers have been shown to be produced by in vitro
model systems under certain conditions (Novo-Uzal et al.
2009; Karkonen and Koutaniemi 2010; Shen et al. 2013). In
some systems, hormonally triggered cells can differentiate
into tracheary elements, in which lignin is deposited in the
newly formed secondary cell wall (Fukuda and Komamine
1980; Oda et al. 2005). In other cases, triggered cell cultures
(normally by sucrose or elicitor treatments) release extrac-
ellular lignin into the culture medium (Simola et al. 1992; Lange
et al. 1995; Nose et al. 1995; Karkonen et al. 2009).

In the last few decades, a series of different approaches
using cellulose biosynthesis inhibitors, mutants or transgenic
plants have revealed compensatory effects between cellulose
and non-cellulosic components of both primary and secondary
cell walls. A reduction in cellulose content or an altered
pattern of cellulose deposition has been demonstrated to
cause changes in matrix polysaccharides and cell wall ectopic
lignification (Cano-Delgado et al. 2000, 2003; Desprez et al.
2002; Ellis et al. 2002; Hernandez-Blanco et al. 2007; Bischoff
et al. 2009; Hamann et al. 2009; Denness et al. 2011; Brabham
et al. 2014). Furthermore, lignin-defective transgenic plants
respond with qualitative and quantitative changes in the
polysaccharide counterpart® (Sonbol et al. 2009; Ambavaram
et al. 2011; Fornalé et al. 2012).

In previous studies, maize cell lines habituated to
otherwise lethal concentrations of DCB (2,6-dichlorobenzoni-
trile, dichlobenil), a well-known cellulose biosynthesis inhib-
itor, were obtained by means of incremental exposure over
many culturing cycles (Mélida et al. 2009; de Castro et al.
2014). These cell cultures had the capacity to cope with DCB
through the acquisition of a modified cell wall in which the
cellulosic scaffold was completely or partially replaced by a
more extensive network of highly cross-linked arabinoxylans
(Mélida et al. 2009 20103, 2010b, 2011). Our preliminary data
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indicated that DCB habituation could also induce ectopic
lignification (as cellulose-deficient walls from habituated cells
resulted positively for phloroglucinol staining) as a conse-
quence of a reduction in cellulose in maize cells. An in-
depth characterization of this phenomenon could further our
understanding of the chemical composition of ectopic lignin
and the relationship between ectopic lignification and stress
responses. In this study, we characterized cell walls from
maize suspension-cultured cells habituated to low (1 wM) and
high (6 wM) DCB concentrations and from DCB short-
term treated cell suspensions (I5, value for maize suspension
cultured cells is 0.5 wM DCB; de Castro et al. 2014), paying
special attention to the putative ectopic lignin/lignin-
like component as well as the expression levels of genes
specific for the biosynthesis of monolignol units of lignin and
others involved in common stress signaling pathways.

RESULTS

Cell wall fingerprinting indicated increased phenolics-to-
polysaccharides ratios due to DCB exposure

FTIR spectra of non-habituated (SNH), DCB short-term treated
(SNH+DCB) and habituated to (SH1) 1 and (SH6) 6 uM DCB
maize suspension-cultured cells were obtained, normalized
and baseline corrected. Averaged difference spectra were
obtained by digital subtraction of SNH spectra from each of
the DCB-treated/habituated cell lines (Figure 1). Compared
with SNH spectra, those from both short-term treated and
habituated cell walls showed negative peaks in the region
ranging from 900 to 1,200 cm™ ' where most of the cell wall
polysaccharides, including cellulose, absorb (Alonso-Simén
et al. 2011; Largo-Gosens et al. 2014). In addition, positive
peaks were detected associated with wave numbers indica-
tive of aromatic rings (1,515, 1,600 and 1,630 cm™ '), phenolic
rings (1,500 cm™') and phenolic esters (1,720 cm™")
(Kacurakova et al. 2000), indicating that both DCB-
treated and DCB-habituated cells were enriched in phenolics.
In accordance with this, wave number ratios 1,540/1,160; 1,540/
1,425 and 1,540/1,740 cm™ ' normally associated with increased
lignin-to-polysaccharides ratios raised in both DCB-treated and
DCB-habituated cells (Table 1).

Highly branched and cross-linked arabinoxylans increased in
parallel to the DCB habituation process

Cell wall fractionation showed that in both DCB-treated and
DCB-habituated cells, most of the non-cellulosic cell wall
polysaccharides  (70-80%)  corresponded to  KOH-
extractable hemicelluloses, namely KI and KIl fractions
(Figure S1). Moreover, differences were observed in cell
wall fractionation among cell lines. Of particular note was the
increase in strong alkali-extracted hemicelluloses (Kl fraction:
29% in SNH vs. 42% in SH6) exclusively associated with
habituation to high DCB concentrations (Figure S1).

The monosaccharide composition of each of the fractions
was determined by gas chromatography and spectrophoto-
metric methods (Figure 2). The CDTA-pectic fraction was
enriched in uronic acids, and minor amounts of the neutral
sugars Ara, Xyl, Gal and Glc were also detected (Figure 2A).
The abundance of uronic acids compared to neutral sugars
indicated the presence in the CDTA fraction of homopolymers
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Figure 1. Fourier transform infrared (FTIR) analysis of cell
walls

Averaged FTIR difference spectra obtained after digital
subtraction of the spectra of non-habituated (SNH) cell wall
FTIR spectra from SNH + dichlobenil (DCB), SH1 or SH6 cell
wall FTIR spectra. Maize cell lines were annotated as follow:
non-habituated (SNH); DCB short-term treated (SNH + DCB),
habituated to 1M DCB (SH1) or habituated to 6 uM DCB
(SH6) maize cell suspension-cultured cells.

based on the acidic sugars (i.e. homogalacturonan). However,
only minor differences in the CDTA fraction were found
between SNH and the rest of the lines. KOH-
extracted hemicelluloses were mainly composed of Ara, Xyl
and uronic acids, indicative of (glucurono-) arabinoxylans and/
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Table 1. Fourier transform infrared (FTIR) wave number
ratios characteristic of lignin and cell wall polysaccharides

FTIR peak

height ratio SNH SNH + DCB SH1 SH6
1540/1160 cm™" 0.09 0.14 0.13 0.21
1540/1425 cm™" 0.16 0.21 0.19 0.28
1540/1740 cm™" 0.16 0.18 0.18 0.25

Peak assignations%, 1,160 cm~ ', C-O-C vibration of the

glycosidic link in cellulose, xyloglucan or pectic polysacchar-
ides; 1,425 cm ™", C-H stretching in CH, groups of cellulose;
1,540 cm™ ', aromatic ring stretching in lignin; 1,740 cm ™", C-O
stretch in ester groups.
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Figure 2. Cell wall sugar analysis

Sugar composition of (A) CDTA, (B) Kl, (€) KIl and (D)
trifluoroacetic acid (TFA) cell wall fractions obtained from
(open square) spectra of non-habituated (SNH), (light grey
square) SNH + dichlobenil (DCB), (dark grey square) SH1
and (black square) SH6 cell lines. For maize cell line
annotations see Figure 1 legend. Ara (arabinose), Fuc
(fucose), Gal (galactose), Glc (glucose), Man (mannose),
Rha (rhamnose), UA (uronic acids), Xyl (xylose). Data
represents the means values =+ standard deviation (SD) of
three technical replicates. Asterisks indicate values that are
significantly different from SNH after a Student’s t-test
(P < 0.05).
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Table 2. Arabinose and xylose content in the KII fractions

(%) Ara + Xyl

Kll-extracted

Cell wall sugars Ara:Xyl ratio
SNH 17.9+0.9 59.5+1.7 0.64
SNH--DCB 15.6 £ 0.5 56.7£0.3 0.70
SH1 19.1+1.3 62.44+0.8 0.97
SH6 30.6 £2.9 71.5 £ 1.4 0.83

Mean values + standard deviation (SD) of three technical
replicates per line. For cell line annotation see Figure 1legend.

or acidic pectins associated to arabinoxylans (de Castro et al.
2014), followed by minor amounts of Gal and Glc (Figure 2B, C).
Quantitatively, KIlI represented the main fraction, and a
monosaccharide analysis revealed an increase in the Ara and
Xyl proportions associated with habituation to DCB (especially
with high concentrations), but not with short-term exposures
(Figure 2C; Table 2). The observed increase in the Ara-to-
Xyl ratio detected in SH1 and SH6 when compared with SNH,
indicated not only a quantitative increase in heteroxylans but
also the presence of highly substituted xylan populations
(Table 2). The final residues after CDTA and alkali extractions
were TFA-hydrolyzed. Gas chromatography analysis of the TFA
fraction resembled that from KI fraction with lesser
proportions of the acidic sugars, suggestive of alkali-
resistant heteroxylans (Figure 2D). No differences among
cell lines were found for this fraction.

Cellulose reduction is a consequence of habituation to DCB

Cellulose averaged approximately 25% of the cell wall dry
weight when assayed in SNH cells (Figure 3). Cellulose content

250
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© 200t \ i
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> \ N *
Ssof N \ * 1
g N N .
Z 100t N =N ;
*-o, \ N
2 50} \ N X |
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AP N |
SNH  SNH+DCB  SH1 SH6

Figure 3. Comparison of cellulose and lignin content in
spectra of non-habituated (SNH), SNH + dichlobenil (DCB),
SH1 and SH6 cell lines

For maize cell line annotations see Figure 1 legend. Data
represents means =+ standard deviation (SD) of at least four
replicates. Asterisks indicate values that are significantly
different from SNH after a Student’s t-test (P < 0.05).
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decreased along DCB-habituated «cells in a dose-
dependent manner, up to the 50 and 70% reduction found,
respectively, in SH1 and SH6 cells when compared with SNH
cells (Figure 3). However, short-term incubations with the
cellulose biosynthesis inhibitor did not induce significant
reductions in cellulose content. On the other hand, these
short-term incubations did increase the amount of a Klason-
resistant residue, which could be associated with lignin or a
lignin-like phenolic-rich material (Figure 3). This lignin-
like material was also found to be increased in the cell wall
of the DCB-habituated cells. Indeed, SH1 and SH6 cells
contained approximately 2 to 5 times more of this residue,
respectively, when compared with the SNH counterpart

(Figure 3).

Cell wall phenolic profile

Maize primary cell wall typically contains high levels of wall-
esterified phenolics, which appear as side-chain decorations
of arabinoxylans. p-Coumarate, ferulate and their oxidative
coupling products, diferulates, increased steeply over the
course of the DCB habituation process (Table 3). In
comparison with SNH, SH1 and SH6 cell walls were enriched
in the 5,5/, 8,5’ and specially the 8-0-4’ form of diferulates. In
all cases, enrichment was more noticeable in SH6 cells.

In comparison to SNH cells, trends similar to those for the
DCB-habituated cells were observed when the phenolic profile
of DCB short-term treated cells was analyzed (Table 3). Most
notably, there was a marked increase in cell wall esterified p-
coumarate, with SNH+DCB cells being 132- and 15-
fold enriched in p-coumarate when compared with SNH and
SH6 cells, respectively.

DCB induced the deposition of lignin-like polymers in maize
cultured cells

Phloroglucinol-HCI,  which  specifically  stains  4-O-
linked hydroxycinnamyl aldehyde residues of lignin (Pomar
et al. 2002), was used to preliminarily confirm the presence of
a lignin-like phenolic-rich material in the cell walls of DCB
short-term treated and habituated cells. This strategy
demonstrated that lignin accumulation depended on the
presence of DCB in the culture medium (Figure 4); maize
suspension-cultured cells stained negative for phloroglucinol
when cultivated in a medium lacking DCB (Figure 4A). In the
case of maize cells were incubated short-term in 6 uM DCB

Table 3. Cell wall esterified phenolics composition

Diferulates

p-Coumarate Ferulate Total 5,5'- 8-O-4’- 8,5'-*
mg g 'cell wall

SNH 0.21 0.82 1.83 0.48 0.76  0.59
SNH+-DCB 27.80 6.60 2.33 0.56 1.20 0.57
SH1 0.52 11.55 2.29 0.54 1.13 0.62
SH6 1.83 17.71 3.58 1.07 158 0.93

Mean values from two independent experiments per cell line.
For cell line annotation see Figure 1 legend. ® 8,5'-
diferulate was calculated as the sum of 8-5-open and 8-5
benzofurans forms.
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Figure 4. Phloroglucinol/HCI staining of spectra of non-
habituated (SNH), SNH + dichlobenil (DCB), and SH6 cells
For maize cell line annotations see Figure 1 legend.
Bar=o0.5mm.

(Figure 4B) and DCB-habituated cells (Figure 4C), positive
phloroglucinol staining was observed on the surface of cell-
aggregates. No evidence of differentiation into tracheary
elements were observed in any case (data not shown).

The presence of lignin-like polymers was further con-
firmed by thioacidolysis followed by gas chromatography

www.jipb.net

coupled to mass spectrometry (GC-MS) of the cleavage
products. This analysis also confirmed the presence of trace
amounts of sinapyl alcohol (S units) in SNH, SNH+DCB and SH1
cell walls (Figure 5B, D and data not shown). In addition to the
S units, measurable amounts of coniferyl alcohol (G units)
were detected in SH6 cell walls, but not in the other cell lines
(Figure 5E, F). Indeed, S units were (semi-quantitatively)
estimated to be more abundant in SH6 than in any other cell
line. Based on thioacidolysis results, an S/G ratio of 1.45 was
estimated for the SH6 lignin-like material (Table 4).

Lignin biosynthesis-specific genes are overexpressed in
DCB-habituated cells

In a previous study by our group, we demonstrated that the
genes functioning in the initial steps of the phenylpropanoid
pathway (Phenylalanine Ammonia-Lyase, Cinnamate 4-Hydrox-
ylase,  4-Coumarate ~ CoA  Ligase,  Hydroxycinnamoyl-
CoA Shikimate/quinate hydroxycinnamoyl Transferase and
Caffeic acid O-Methyltransferase) are overexpressed in DCB-
habituated cells (Mélida et al. 2010a). The corresponding
proteins from such genes are involved in the production of p-
coumaroyl-CoA and feruloyl-CoA, the substrates for hydrox-
ycinnamate esterification of arabinoxylans (Lindsay and Fry
2008). Given the evidence of the presence of lignin-
like polymers in DCB-habituated cells, quantitative RT-
PCR was used to monitor the transcript abundance of
cinnamoyl-CoA reductase (CCR), ferulate 5-hydroxylase (F5H)
and cinnamyl alcohol dehydrogenase (CAD), involved in the last
steps of monolignol synthesis (Figures 6, 7).

A general overexpression of the two ZmCCR genes was
observed in DCB-habituated cell lines (Figure 6A, B), whereas
short-term treatment with DCB induced only minor changes in
ZmCCR1 and ZmCCR2 mRNA levels. The expression of ZmF5H2
was significantly increased in all cell lines when compared with
SNH cells, and this enhancement was especially noticeable in
DCB-habituated lines (Figure 6D). In the case of ZmFs5H1, only
SH1 cells showed higher transcript abundance, and indeed this
gene was repressed in SNH+DCB and SH6 (Figure 6C). Both
DCB short-term treatment and DCB habituation induced an
overexpression of ZmCAD1, ZmCAD5 and ZmCAD7 genes in
comparison with SNH cells (Figure 7A, D, F). This enhancement
was especially marked in the case of ZmCAD7 transcript levels
in SH1 cells, whereas the abundance of ZmCAD6 transcripts
was only significantly increased in habituated cells (Figure 7E).
Moreover, there was a high overexpression (12-fold) of
ZmCAD2 in SH6 cells; however, the transcript levels of this
gene were significantly reduced in SH1 cells (Figure 7B).
Surprisingly, there was a significant repression of the
transcript levels coding for ZmCAD3 in DCB-habituated cell
lines (Figure 7C). The ZmCAD4 transcription levels were too
low to be accurately quantified by this procedure. Given the
general overexpression of the genes coding for CAD proteins
in response to DCB, we measured CAD activity in the different
cell lines (Figure 7G). CAD activity assayed from cell extracts
was significantly increased in SNH+DCB and SH6 when
compared with SNH cell lines, but unchanged in the case of
SH1 cells.

Apoplastic hydrogen peroxide accumulation
Both DCB short-term treated and DCB-habituated cells

accumulated significantly more H,0, in the spent medium

XXX 2015 | Volume XXXX | Issue XXXX | XXX-XX



O coN oV W N =

ooocvwuwuvuuvuumumuu b b BB PpWWWWWWWWWWNNNDNNDNDNDNDNDN=S=2 < 2 — =2 === =
S OWVWOONOUVDRWN=200VUONOCTITDRDRWN=20WVONOTUVIAWN-=0VOLONOUVTRAWN-=Q0OWOWOONOOIVNDWN-=O

6 Mélida et al.

A SNH m/z 269
2. L
5et6 Coniferyl alcohol p-O-4
2.0et6 |
Q
o
T 1.5e+6
3 .oe
=
=3
Qo
< 1.0e+6 |
5.0e+5 |
00 ﬂww—w
) SNH m/z 299
08 X 29 Sinapyl alcohol 4-0-4
w
2.0e+5 | é ol -
@ H
2 i
8 15et5F -
S Loub ol
2 )
< 1.0e+5 | iz
5.0e+4 |
0.0
rsess| C SNH+DCB m/z 269
 5e+6 |
e Coniferyl alcohol BO-4
2.0e+6 |
Q
o
5 1.5e+6
S .oe -
2
3
Qo
< 1.0e+6f
5.0e+5 |
0.0 MMMA»W i e
D SNH+DCB m/z 299
Se+5 | . 209 Sinapyl alcohol p-O-4
€
8
4e+5 f I
§ H &0l -
2 o
S sess| L
2 2o
H SERVOTIR N
2e+5 miz
1e+5 |-
0
vsesh E SH6 mi/z 269
5e+6 |
© Coniferyl alcohol -0-4
269
20e+6f &'
o £
2 H
§ 156 £
c 5 4
E H
< 10ev6f ¥ |
! 100 200
ez
5.0e+5 |
0.0 Z = h
F SH6 m/z 299
1.2e+7 - Sinapyl alcohol BO-4
g
1.0e+7 | H
2 i .
S 80e+6 | Fie
S E
S 6.0e+6 | ) |
Qo
2 ) Im'”‘l TV FTE
4.0e+6 miz.
2.0e+6 | [
0.0 " " ~— 1
32 34 36 38
Time (min)

Figure 5. Lignin monomer composition

Gas chromatography (GC) profiles of the thioethylated
monomers (erythro and threo isomers) arising from aryl-
glycerol-b-aryl ether (B-0-4) structures derived from (A, C and
E) coniferyl and (B, D and F) sinapyl alcohols from cell walls of
(A, B) SNH; (C, D) SNH+DCB; and (E, F) SH6 cell lines. For
maize cell line annotations see Figure 1 legend.
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Table 4. Lignin monomeric composition as revealed by
thioacidolysis

Total ionic current (x 10°) mg™" cell wall

Coniferyl Sinapyl

alcohol alcohol

(G units) (S units) SIG ratio
SNH 0 7.1E£1.2 -
SNH+DCB o 9.7t 0.7 -
SH1 0 9.5+0.2 -
SH6 20.6 £1.0 29.9 2.5 1.45

Mean values =+ standard deviation (SD) of three replicates per
cell line. For cell line annotation see Figure 1 legend. Values

than SNH cells (Table 5), although there is no clear relationship
between H,0, accumulation and the presence of lignin-
like polymers. SH6 cells, which showed the strongest ectopic
lignification, did not peak in H,0, content when compared
with SH1 or SNH+-DCB cells. In fact, SH6 cells accumulated less
H,O, during the lag and exponential phases than SH1 or
SNH-+DCB cells.

JA synthetic and JA signalling pathways overexpressed

To determine whether the accumulation of lignin-like material
formed part of an abiotic stress response mechanism, RT-
PCR was used to monitor the expression levels of several
genes from the jasmonic acid (JA) and salicylic acid (SA) stress
signaling pathways (Figure 8). Three 12-
oxophytodienoate reductase (OPR) genes, coding for proteins
involved in the synthesis of JA, were analyzed. Two of them
(ZmOPR1 and ZmOPR2) were always overexpressed in the
presence of DCB, but ZmOPR7 was only overexpressed in DCB-
habituated cell lines, and was slightly repressed by the short-
term exposure of SNH cells to DCB (Figure 8). NADPH oxidase
(NADPHOX) and maize protease inhibitor (MPI) genes are
reported to be JA-induced in response to abiotic stresses
(Shivaji et al. 2010). The results showed that both genes were
overexpressed in the presence of DCB.

For the SA stress signaling pathway, pathogenesis related
protein 1 (PR1) and non-expressor of PR1 (NPR1) genes were
studied. The ZmNPR1 gene was detected, but there were no
differences in the expression pattern induced by either DCB
exposure or DCB habituation. ZmPR1 transcripts were not
detected in any cell line.

DISCUSSION

In their natural habitats, plant cells must continuously
remodel their cell walls in order to grow and to interact
with the environment. In order to understand the limits of
these interactions, plant cells can be cultivated in fully
controlled experimental systems where their capacity to cope
with different situations can be better studied. The habitu-
ation of plant cell cultures to cellulose biosynthesis inhibitors
such as DCB represents a valuable tool to improve our
knowledge of the mechanisms involved in plant cell wall
structural plasticity (Shedletzky et al. 1992; Encina et al. 2002;
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Figure 6. Quantitative reverse transcription-polymerase chain reaction (QRT-PCR) characterization of (A, B) ZmCCR and (C, D)
ZmFs5H genes of spectra of non-habituated (SNH), SNH + dichlobenil (DCB), SH1 and SH6 cell lines

The gene expression levels of SNH4+-DCB, SH1 and SH6 cell lines were always compared against the SNH ones, which are
represented as left-sided bars. For maize cell line annotations see Figure 1legend. Data represent relative fold change relative to
SNH genes =+ standard deviation (SD) of three replicates. Asterisks indicate values that are significantly different from SNH after

a Student’s t-test (P< 0.05).

Manfield et al. 2004; Garcia-Angulo et al. 2009; Mélida et al.
2009; Brochu et al. 2010; de Castro et al. 2014, 2015).

In previous studies, we have shown that the habituation of
maize cells to DCB involves several metabolic modifications
(Mélida et al. 2010a; de Castro et al. 2014, 2015). Maize cells
habituated to high DCB levels (> 30 times higher than DCB I,
value) display strong reduction in cellulose and altered
expression of several Cellulose Synthase genes (Mélida
et al. 2009; 2010a). Although DCB induces oxidative damage
(based on lipid peroxidation levels in maize cultured cells;
unpublished results), given the level of detoxifying/antiox-
idant activities measured, it seems that DCB-habituated maize
cells do not rely on an antioxidant strategy to cope with this
herbicide, which contrasts with the strategy observed in cells
of other species, such as bean, in which antioxidant capacity is
enhanced when habituated to DCB (Garcia-Angulo et al. 2009;
Mélida et al. 2010a). Indeed, the ability of maize cells to grow
under high DCB concentrations resides mainly in their capacity
to reorganize their cell wall architecture. Through composi-
tional analysis and structural characterization of DCB-
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habituated cell walls, it has been possible to demonstrate
that these cells compensate for cellulose impoverishment
with other cell wall components. The mechanism for this
accommodation consists of producing a more extensive,
cross-linked network of arabinoxylans (Mélida et al. 2009;
20103, 2010b, 2011). More recently, we have found that some
of the cell wall modifications differ according to DCB
habituation level (de Castro et al. 2014).

In this study, we used maize cell suspension cultures
habituated to low (1 wM DCB, SH1) and high (6 uM DCB, SH6)
levels of DCB as well as non-habituated cells treated for a
short time with lethal doses of the herbicide (SNH+6 uM
DCB). In agreement with previous studies, we have shown
that habituated cell lines display dose-dependent reductions
in their cellulose content. These cellulose reductions (up to
70% less than in SNH) were compensated by a more extensive
network of arabinoxylans, which could only be extracted with
strong alkali.

In line with previous results obtained for maize callus
cultures habituated to high DCB concentrations (Mélida et al.
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Figure 7. Quantitative reverse transcription-polymerase chain reaction (QRT-PCR) characterization of (A-F) ZmCAD genes and
(G) CAD enzyme activity assay of spectra of non-habituated (SNH), SNH + dichlobenil (DCB), SH1 and SH6 cell lines

The gene expression levels of SNH+DCB, SH1 and SH6 cell lines were always compared against the SNH ones, which are
represented as left-sided bars. For maize cell line annotations see Figure 1 legend. For A-F, data represent relative fold change
relative to SNH genes =+ standard deviation (SD) of three replicates. For G, data represents means =+ SD of at least nine replicates.
Asterisks indicate values that are significantly different from SNH after a Student’s t-test (P < 0.05). ZmCAD4 mRNA transcripts

were not detected.
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Table 5. Apoplastic H,0, concentration measured in the
spent medium of the different cell lines

Lag Exponential Stationary
phase phase phase
H,0, (LM)
SNH 0.4+0.3 0.8+ 0.1 0.6 +0.1
SH1 1.9+ 0.3 2.41+0.2 2.3£0.2
SH6 0.8 0.1 1.7+ 0.5 2.4+t0.2
Incubation time 1 day 6 days
SNH+-DCB 1.0 £ 0.1 2.0to0.1

Mean values =+ standard deviation (SD) of three replicates per
line. Values were obtained at the different growth phases for
each line. Shortterm treated cells (SNH-+DCB) were
measured 1 day and 6 days after the addition of DCB. Values

2010b; 2011), we found that hydroxycinnamates, the arabi-
noxylan cross-linkers, experienced quantitative changes that
indicated a prominent role of these compounds in a cellulose-
deficient cell wall. This is actually one of the singularities of this
model system. Most of the cell lines habituated to cellulose
biosynthesis inhibitors (or other cell wall stresses) have had
type | primary cell walls (i.e. Arabidopsis, poplar, bean,
tomato), where cellulose reductions were compensated by

SNH

SNH +DCB
ZmOPR1 - L -5
ZmOPR2 - 124
ZmOPR7 _ 0.87
ZmNADPHOX - 1.39
zowes [+
ZmNPR1 - 0.97
ZmUBI - 1.00

pectins (Shedletzky et al. 1990; Encina et al. 2002; Manfield
et al. 2004; Brochu et al. 2010). In contrast to type I, type Il
primary cell walls are characterized by the presence of
phenylpropanoids (mainly ferulic and p-coumaric acids), which
have an important role in cross-linking hemicelluloses
(Wallace and Fry 1994). Ferulate and its dimers increased
steeply over the course of the DCB habituation process, but it
was the changes in the proportions of esterified p-coumarate,
which indicated that something else was happening. Indeed,
in this case the changes observed for the short-
term treatments were quite striking, as SNH+DCB cells
were 132- and 15-fold enriched in p-coumarate when compared
with SNH and SH6 cells, respectively. In the case of maize
plants, small amounts of p-coumaric acid are esterified to
arabinoxylans in primary walls, but later on in wall develop-
ment, it is found more extensively esterified to lignin (liyama
et al. 1994; Ralph et al. 1994a). Indeed p-
coumarate incorporation into the cell wall has been positively
correlated with lignification (Hatfield and Marita 2010).

These findings suggest the presence of ectopic lignin or
lignin-like polymers at least in the case of short-term treated
cells, where the induced stress would explain their presence.
Surprisingly, not only the short-term treated cells but also the
DCB-habituated ones displayed a pink to brownish colour after
phloroglucinol staining, indicative of lignin or lignin-
like polymers (Pomar et al. 2002).

Our results clearly show the presence of ectopic lignin in
maize primary cell walls of both DCB-habituated and short-

SNH SH1 SNH SH6
1.65 1.31
1.64 1.28
1.31 1.26
1.756 2.09
1.62 1.75
0.94 0.92
1.00 1.00

Figure 8. Relative expression levels of jasmonic acid (JA) and salicylic acid (SA) signaling pathways genes analyzed by reverse
transcription-polymerase chain reaction (RT-PCR) of spectra of non-habituated (SNH), SNH + dichlobenil (DCB), SH1 and SH6

cell lines

For maize cell line annotations see Figure 1 legend. 4 and a indicate less and more mRNA accumulation than SNH cells,
respectively. 12-oxophytodienoate reductase (ZmOPR1, ZmOPR2 and ZmOPR7), NADPH oxidase (ZmNADPHOX), maize protease
inhibitor (ZmMPI), and nonexpressor of pathogenesis related protein 1 (ZmNPR1). Pathogenesis related protein 1 (ZmPR1) was not
detected. Primers can be found in Supplemental Table S1. Numerals indicate the normalised ratios of RT-PCR band intensities
calculated by dividing the band intensity of SNH4-DCB, SH1 or SH6 by SNH for each gene.
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term treated cells. Therefore, phenolics not only act as
hemicellulose cross-linking units in this system, but also
constitute monolignol-based polymers similar to lignin that
might  contribute to  stiffening of a cellulose-
impoverished wall. Although ectopic lignification has been
observed in Arabidopsis mutants with reduced cellulose
synthesis and in seedlings treated with cellulose biosynthesis
inhibitors (Cano-Delgado et al. 2003; Bischoff et al. 20009;
Denness et al. 2011), there are few reports of this
phenomenon in exclusively primary-walled cell cultures (Ros
Barcelé 1997). Moreover, transcriptomic approaches using
Arabidopsis and poplar cell cultures habituated to cellulose
biosynthesis inhibitors have shown that several genes
specifically involved in lignin synthesis are downregulated
(Manfield et al. 2004; Brochu et al. 2010). Lignin-like polymers
have been shown to be produced by other in vitro model
systems under certain conditions (Karkonen and Koutaniemi
2010). However, although these systems achieve lignin
production in plant cultured cells, ectopic lignin deposition
in primary cell wall, the feature of cell suspension cultures
presented in this study, has rarely been reported (Christiernin
et al. 2005; Novo-Uzal et al. 2009; Shen et al. 2013).

In addition to its roles in cell wall stiffening, lignin
deposition has long been implicated as an important defense
mechanism against pests and pathogens?* (Vance 1980;
Barros-Rios et al. 2011). Lignin or lignin-like polymers are
induced and rapidly deposited in cell walls in response to both
biotic and abiotic stresses (Moura et al. 2010; Sattler and
Funnell-Harris 2013; Miedes et al. 2014). Two types of lignin can
be distinguished: (i) the one normally present in secondarily
thickened cell walls with a purely structural role, and (i)
ectopic lignin, unexpectedly deposited in response to biotic
and abiotic stresses. Lignin composition is highly heteroge-
neous and phylogenetically dependent, but also depends on
the role the lignin is expected to play. ‘Defense’ lignin is often
associated with elevated levels of H subunits compared with
structural lignin (Ride 1975; Lange et al. 1995; Sattler and
Funnell-Harris 2013). Although H units were not present in our
system (minor component in monocot lignin; Boerjan et al.
2003), given the phloroglucinol-tonality and compositional
differences between SNH+DCB (pink/indicative of a predom-
inance of S units) and the SH6 (brown/S-+G units) lignin-
like polymers, we propose that these polymers could arise
from different stimuli. While short-term DCB-treated cells
might produce a sensu stricto stress-related lignin, habituated
cells might accumulate a structural-related lignin. In accord-
ance with this, S to G ratio estimated for the lignin-
like polymer found in DCB-habituated cells (1.5) is close to
that of lignin from maize stems (1.4) (Fornalé et al. 2012).

By catalyzing the final hydroxyl-cinnamaldehyde reduction
to the corresponding alcohols, CAD is a key enzyme in
determining lignin content and composition (Mansell et al.
1974; Fornalé et al. 2012). Although several CAD isoforms (1, 5,
6 and 7) were overexpressed in SH1 cells, CAD activity was
found unchanged. Therefore, it could be assumed for this cell
line that higher proportions of the cinnamaldehyde moieties
are incorporated into the phenolic polymers, as occurs in CAD-
transgenic and mutant plants (Ralph et al. 2001; Dauwe et al.
2007; Fornalé et al. 2012). However, CAD activity was found to
be approximately three to four times enhanced for SNH-+DCB
and SH6 cells, respectively, compared to SNH. The increased
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CAD activity in SNH+DCB cells correlated with the over-
expression of several CAD isoforms (1, 5, 6 and 7), and since
only S units were found in measurable amounts in their cell
walls, these proteins are most probably involved in the
sinapaldehyde conversion to sinapyl alcohol. All of these
isoforms were also overexpressed in SH6 cells. As a differ-
ential result, habituated cells showed a high overexpression of
CAD2, which could be responsible for the synthesis of coniferyl
alcohol from coniferaldehyde. In view of these results, we
propose ZmCAD?2 as a candidate for the production of G units,
atleast in the case of maize cell cultures, as well as a key player
in the production of lignin-like polymers in SH6 cells.
Interestingly, CAD2 has been specifically associated with the
synthesis of structural lignin in maize plants (Fornalé et al.
2012), which would agree with the synthesis of a structural
related lignin in SH6 cells.

Concerning the two steps prior to CAD, different
expression patterns were found in each case. CCR isoforms
are responsible for the reduction of p-coumaroyl-CoA and
feruloyl-CoA to their respective aldehydes. Downregulation
of CCR in transgenic poplar has been associated with an up
to 50% reduction in lignin content and an increased
proportion of cellulose (Leplé et al. 2007). Interestingly, in
contrast to these poplar trees, DCB-habituated cells with the
opposite situation for the load-bearing polymers (less
cellulose and more lignin) showed a significant over-
expression of both CCR isoforms. On the other hand, and
also in poplar, upregulation of F5H increased the proportion
of S units, yielding an S/G ratio of greater than 35 versus
approximately 2 for wild type poplar lignin (Stewart et al.
2009). Both F5H isoforms were overexpressed in SH1 cells,
where only S units could be detected, while one of them
was highly downregulated for SH6 cells. In summary, rather
than a general stress response, a tight regulation of the
monolignol biosynthetic pathway was observed in DCB-
habituated cells.

Lignin polymerization is preceded by the peroxida-
se+H,0, (and/or lacasse+0,) dependent activation of
monolignols to free radicals (Fagerstedt et al. 2010). The
spent cell culture medium can be regarded as an extension of
the apoplast and it can therefore be used as a compartment to
monitor changes in the level of cell wall H,0, (Karkonen and
Kuchitsu 2014). The H,0, over-production of SNH+DCB and
SH cells may be explained in the context of a reactive oxygen
species over-production following cellulose inhibition, as has
been previously reported for Arabidopsis plants (Dennes et al.
2011) and maize cultured cells habituated to low DCB
concentrations (A Largo unpublished data). Given the steep
increase in lignin over the course of DCB habituation, a
relationship between lignin accumulation and increased
apoplastic H,0, contents may be expected (Nose et al.
1995; Karkonen et al. 2002). However, no differences in
apoplastic H,0, were found when SH1 and SH6 cells were
compared, indicating that H,O, is not a limiting factor in the
ectopic lignification reported in this system. An alternative
explanation would be that the lignification is consuming
apoplastic H,0, explaining the lower level of apoplastic H,0,
measured in SH6 cells when compared with SH1 or SNH+DCB
ones. Moreover, a study of class Ill peroxidase activity did not
show differences due to DCB habituation in maize cultured
cells (data not shown).

www.jipb.net



O o o1 W M =

vuuuuuumumumuu b b B PSS DSS DS DS DS DS PpWWWWWWWWWWNNNNNNNNNDNDNDN=S=S— 2 — = = = =3 =
g\g\UDOO\IO\\H-bWN—‘O\ooo\Imm.bwN—lo@OO\la\m.pwru—-o@oo\lo\m_pwm—-o\OOO\lc\\n-bWN—‘o

Lignin in primary cellulose-deficient cell walls 1

There are several lines of evidence that link ectopic
lignification in response to cellulose deficiency with JA
signaling. Constitutive expression of vegetative storage protein
1 (cev1) and ectopic lignin 1 (eli1-1) Arabidopsis mutants, are
defective in the cellulose synthase gene CESA3 involved in
cellulose biosynthesis during primary cell wall formation (Ellis
and Turner 2001; Ellis et al. 2002; Cano-Delgado et al. 2003). In
these mutants, cellulose biosynthesis impairment was com-
pensated by mechanisms such as ectopic lignification,
constitutive activation of the JA signaling pathway, and
increases in JA and ethylene proportions. In addition,
treatments with the cellulose biosynthesis inhibitor isoxaben
have been found to phenocopy elit-1 lignification in
Arabidopsis wild type seedlings (Cano-Delgado et al. 2003;
Hamann et al. 2009). In JA-insensitive plants, ectopic
lignification by isoxaben is reduced, indicating that JA
signaling is necessary (Cano-Delgado et al. 2003), a deduction
which is further confirmed by the finding that external
addition of methyl jasmonate to Arabidopsis cell cultures led
to increased expression of phenylpropanoid, particularly
monolignol biosynthesis (Pauwels et al. 2008). Our results
confirm a JA-dependent signaling process in response to
cellulose biosynthesis impairment, which led to ectopic
lignification. However, according to our RT-PCR results and
previous data from proteomic approaches (Mélida et al.
20103; M de Castro unpublished data), stimulation of the
lignification mechanism seems to be SA- and ethylene-
independent.

In summary, maize suspension-cultured cells with up to
70% less cellulose produced a more extensive and cross-
linked network of arabinoxylans together with a polymeric
lignin-like material. This modified cell wall architecture is the
result of the high structural plasticity of plant primary cell
walls in response to a disruption of cell wall integrity. We
propose that a JA signaling program might be triggering the
observed ectopic lignification, and this model system will be
used in future research in order to study the complex
networks involved in cell wall integrity maintenance
mechanisms.

MATERIALS AND METHODS

Plant material and DCB habituation process

Maize callus-cultured cells (Zea mays L. Black Mexican
sweetcorn) were obtained from immature embryos and
maintained in Murashige and Skoog media (Murashige and
Skoog 1962) supplemented with 9 M 2,4-D, 20g L™ sucrose
and 8% agar at 25°C under photoperiodic conditions (16:8;
3,000 luxa41pmolm™ s7'). Callus-cultured cells were
habituated to grow under originally lethal DCB concentra-
tions, by stepwise transfers to higher DCB levels up to a 12 uM
concentration (Mélida et al. 2009). Those cells growing on
solid medium were disaggregated and transferred to a liquid
medium containing 6 .M DCB (SH6) (Mélida et al. 2011). SH6
cells were maintained at 25 °C under light, rotary shaken and
routinely subcultured every 15 days. Control cells were
designated as  non-habituated maize  suspension-
cultured cells (SNH). Cell lines habituated to grow under
1M DCB (SH1) were obtained from SNH (de Castro et al.
2014).

www.jipb.net

In order to distinguish toxic DCB effects from those owing
to the habituation, short-term treatments with high (lethal)
DCB concentrations were performed. Maize control cells were
grown in a liquid medium containing 6 uM DCB for 6 days,
ensuring a toxic effect but not giving sufficient time to kill the
cells (H Mélida unpublished data). These cells were referred to
as SNH-+-DCB.

Cell wall preparation and fractionation

Cell walls were prepared according to Mélida et al. (2009).
Briefly, cells were collected during their exponential growth
phase, washed extensively with distilled water and immedi-
ately frozen. The cells were disrupted in liquid nitrogen using a
mortar and pestle. The resulting fine powders were subjected
to extraction in 70% (v/v) ethanol for 5 days. The suspensions
were filtered through glass-fiber filters (GF/A, Whatman2®),
and the pellets were washed six times with 70% ethanol and
six times with acetone and were subsequently air dried, to
obtain the alcohol insoluble residue. These were then
resuspended in 90% dimethylsulphoxide for 8 h three times,
filtered as above, washed twice with 0.01M phosphate
buffer pH 7.0 and incubated with 2.5 U mL™" of a-amylase type
VI-A dissolved in the same buffer for 24h at 37°C. The
suspensions were filtered again and washed with ethanol and
acetone as indicated above. The dry pellets were treated with
phenol:acetic acid:water (2:1:1, v/v/v) for two periods of 8h,
then washed and air dried. The final dry pellets were
considered the cell wall extracts.

Cell wall fractions were obtained by consecutively treating
the cell wall residues with KOH solutions according to Mélida
et al. (2009). Cell walls were extracted at room temperature
with 50 MM trans-1,2-Diaminocyclohexane-N,N,N’,N'-
tetraacetic acid (CDTA) at pH 6.5 for 8 h and washed with
distilled water. The residue was then incubated with 0.1 M
KOH +20mM NaBH, for 2h (x2) and washed with distilled
water. Then 4 M KOH+20mM NaBH, was added to the
residue for 4 h (x2), and washed again with distilled water.
The extracts were acidified to pH 5.0 with acetic acid, dialyzed
and freeze-dried, representing CDTA, Kl and Kl fractions,
respectively. The residue after 4M KOH extraction was
hydrolyzed with 2M trifluoroacetic acid (TFA) for 2.5h at
120°C, and after centrifugation, the supernatant was lyophi-
lized and referred to as the TFA fraction.

Cell wall analysis

Tablets for Fourier transform infrared (FTIR) spectroscopy
were prepared in a GrasebySpecac press from small samples
(2 mg) of cell walls mixed with KBr (1:100, w/w). Spectra were
obtained on a Perkin Elmer Spectrum 2000 instrument at a
resolution of 1 cm™". A window between 800 and 1,800 cm™,
which contains information of characteristic polysaccharides,
was selected in order to monitor cell wall structure
modifications. All spectra were normalized and baseline
corrected with Spectrum software (v5.3.1). Then, data were
exported to Microsoft Excel 2010 and all spectra were area-
normalized.

Cellulose was quantified in crude cell walls by the
Updegraff method as described by Encina et al. (2002). Total
sugar quantification of cell wall fractions was performed by
the phenol-sulphuric acid method®® (Dubois et al. 1956) and
results were expressed as glucose equivalents. The uronic acid
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sugars were quantified by the m-hydroxydiphenyl method
described by Blumenkrantz and Asboe-Hansen (1973) using
galacturonic acid as reference standard.

For the analysis of neutral sugars, freeze-dried cell wall
fractions were hydrolyzed with 2 M TFA at 121b °C for 1 h. Myo-
inositol was used as an internal standard. The resulting
monosaccharides were converted to alditol acetates as
described previously ¥7(Albersheim et al. 1967) and analyzed
by gas chromatography (GC) on a SP-2380 capillary column
(3om x o0.25mm id; Supelco) using a Perkin Elmer
Autosystem.

Ferulate and p-coumarate monomers and ester-
bound diferulates were extracted at room temperature
from 50 mg of the alcohol-insoluble residues (AIR) using 2M
NaOH for 4h and analyzed by high performance liquid
chromatography (HPLC) based on a method previously
described by Santiago et al. (2006). Retention time and UV
spectrum of 5,5'-DFA were compared with freshly prepared
external standard solutions of 5,5-DFA, kindly provided by
Dr. John Ralph’s group (Department of Biochemistry,
University of Wisconsin, Madison, USA). The UV absorption
spectra of other DFAs were compared with previously
published spectra (Waldron et al. 1996) and absorbance at
325nm was used for quantification. Total ester-linked-
DFAs concentration was calculated as the sum of three
isomers of DFA identified and quantified by this analytical
procedure: 8,5'-DFA, 8-0-4'-DFA, and 5,5'-DFA. The 8,5'-
DFA concentration was calculated as the sum of the 8,5'-non-
cyclic (or open)DFA and 8,5-cyclic (or benzofuran)-
DFA because the non-cyclic form is most likely formed during
alkaline hydrolysis from the native cyclic form (Ralph et al.
1994b).

Lignin-like material was quantified by the Klason gravi-
metric method with minor modifications. Cell wall extracts
were hydrolyzed with 72% (w/v) sulfuric acid for 1h at 30°C.
Then, the sulfuric acid concentration was diluted to 2.5% (w/v)
with water and further incubated at 115 °C for 1 h. The residues
were filtrated through Durapore polyvinylidene fluoride
(PVDF) filters (Millipore®, 0.45 um), dried and weighed.

Thioacidolysis of cell walls, which solubilizes the B-O-
4lignin core, and GC-MS analyses were performed (Novo-
Uzal et al. 2009) using a Thermo Finnigan®? Trace GC gas
chromatograph, a Thermo Finnigan Polaris Q mass spectrom-
eter, and a DB-XLB, J&W (60 m x 0.25 mm I.D.) column.

Histochemical staining of cinnamyl-aldehydes

Intact filtered maize cells were incubated with 1% (w/v)
phloroglucinol in 70% (v/v) ethanol for 5min. Then, the
phloroglucinol solution was removed and the cells were
further incubated with an 18% (w/v) HCl solution. Stained cells
were observed under Nikon SMZ1500 magnifier and photo-
graphed using a Nikon Digital Camera DXM1200F.

Relative gene expression analysis

DCB-habituated cells (SH1 and SH6) were collected during
their respective exponential growth phases and a set of SNH
cells were collected at the same time for comparison. In the
case of short-term DCB treatments, SNH+DCB cells and a set
of SNH cells were collected on the third day of culture. Total
RNA was extracted from homogenized cells of all lines
following the procedures established for Trizol reagent
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(Invitrogen'®). The purity and integrity of the extracted
RNA was evaluated spectrophotometrically using a Nanodrop
1000 and running the RNA in 1% agarose gels. RNA (2 ng) was
reverse-transcribed with Super Script Il First strand retro-
transcriptase (Invitrogen) using oligo (dT),, as primer. The
synthesized cDNA was used to perform the gene expression
analyses by standard and quantitative PCR methods.

Semiquantitative expression analysis by RT-PCR was
performed for jasmonic (JA) and salicylic acid (SA) signaling
pathway genes: 12-oxophytodienoatereductase (ZmOPRY1,
AY921638; ZmOPR2, AY921639 and ZmOPR7, AY921644),
NADPH oxidase (ZmNADPHOX, CK849936), maize protedse
inhibitor (ZmMPI, X78988), pathogenesis related protein 1
(ZmPR1, UB2200) and non-expressor of PR1 (ZmNPR1,
EU95584). Primers can be found in Supplemental Table S1.
The ubiquitin gene was used as a reference gene for this
experiment (ZmUBI, U29159) (Fornalé et al. 2006).

Reverse transcription-PCR agarose gels were stained with
SYBR Safe DNA gel stain (Invitrogen) and gel images acquired
with an Alphaimager HP system (ProteinSimple®™). The
quantification of the bands was performed by using the
Alpha view v3.4.0.0. software (ProteinSimple). Band intensity
was expressed as relative intensity units. For each individual
gene, the band intensity was normalized in relation to
ubiquitin and then, the normalized intensity ratios for
SNH+DCB/SNH; SH1/SNH and SH6/SNH were calculated.

Relative gene expression was determined by gRT-
PCR using specific primers for the following genes: ferulate
5-hydroxylase = [ZmF5H1  (AC210173.4) and  ZmFs5H2
(GRMZM2G100158)], cinnamoyl-CoA  reductase [ZmCCR1
(GRMZM2G131205) and ZmCCR2 (GRMZM2G131836)] and
cinnamyl  alcohol  dehydrogenase  [ZmCAD1  (Y13733;
GRMZM5G844562), ZmCAD2 (GRMZM2G118610), ZmCAD3
(GRMZM2G046070), ZmCAD4 (GRMZM2G700188), ZmCADs5
(GRMZM2G443445), ZmCAD6 (GRMZM2G090980) and
ZmCAD7 (GRMZM167613)] as described by Guillaumie et al.
(2007). Folylpolyglutamate synthase (ZmFPGS;
GRMZM2G393334) and the Ubiquitin carrier protein (ZmUBCP;
GRMZM2G102471) genes were used as reference genes
(Manoli et al. 2012). Primers can be found in Supplemental
Table S1.

The gPCR was carried out in a StepOnePlus platform
(Applied Biosystems2™) using Power SYBR green PCR master
mix (Applied Biosystems), 2 wL of each cDNA concentration
(50 and 100 ng L") and a mix of both primers at 10 uM. All
samples were run in triplicate with the following temperature
profile: initial denaturation at 95 °C for 10 min, followed by 40
cycles of 95°C for 10s and 60°C for 1min (annealing and
elongation). The relative gene expression was calculated by
‘8-8’ method (Livak and Schmittgen 2001) implemented in the
StepOne Software v2.2.2. A no-template negative control and
a melting curve were performed in each sample set to control
the primer dimers and contaminants in the reactions.

CAD enzyme activity assay

CAD enzyme activity was measured by following the method
described by Chabannes et al. (2001) modified by Fornalé et al.
(2012). Fresh cells were homogenized under liquid nitrogen
with a mortar and pestle until a fine powder was obtained, and
5 mL of extraction buffer (100 mM Tris-HCl pH 7.5, 2% (w/v) PEG
6000, 5mM DTT and 2% (w/v) PPVP) were added. The
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suspension was centrifuged at 10,000 g for 10 min at 4°C and
the supernatant was collected. The centrifugation process
was repeated until the supernatant was clear.

CAD activity assays were carried out by measuring the
absorbance increment at 400 nm when coniferyl alcohol was
oxidized to coniferyl aldehyde. The reactions were performed
in 96-well plates containing 140 pL of 140 mM Tris-HCl pH 8.8,
20 L of 1mM coniferyl alcohol, 20 wL of 200 uM NADP' and
20 pL of sample. The mixtures were mixed and incubated at
30°C for 10 min, and the reactions were measured over the
following 10 min in a plate reader Synergy HT (Bio-Teck2"3) at
30 °C. Reaction and sample blanks were routinely used.

Apoplastic H,0, content determination

Apoplastic H,0, content was determined with the xylenol
orange method as described by Bindschedler et al. (2001). For
the reactions, 150 L of culture media was mixed with 1 mL of
reaction mixture (125 wM xylenol orange, 100 mM D-sorbitol,
25 uM FeSO,, 25puM (NH,),SO, and 25uM H,SO,), and
absorbance (560nm) was measured after 4omin of
incubation.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online
version of this article.

Figure S1. Cell wall fractionation Total sugars in (A) CDTA, (B)
Kl, (C) KII and (D) TFA cell wall fraction obtained from SNH,
SNH + DCB, SH1 and SH6 cell lines. For maize cell line
annotation see Figure 1 legend. Data represents the means
values = s.d. of 3 technical replicates. Asterisks indicate values
that are significantly different from SNH after a Student’s t-
test (P< 0.05).

Table S1. Primers used in RT-PCR and RT-qPCR experiments
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