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a b s t r a c t

A statistical analysis of functional data, obtained as reflectance values measured using
a hyperspectral sensor, was used to determine water content in vine leaves. Our study
was conducted using a sample of 80 vine leaves whose water content was determined
by calculating the weight difference between leaves before and after drying in an
oven. Two regression models, one linear and the other non-linear, were evaluated
and compared: functional linear regression and regression with functional radial basis
functions. Compared to traditionalmethods based on calculating indices that only consider
reflectance values in specific wavelengths, the functional approach enables a specific
bandwidth or the entire electromagnetic spectrum recorded by the sensor to be taken
into account; in other words, the functional approach enables the spectral signature of the
leaves to be used. The optimal parameters for each model were determined using a cross-
validation procedure and the validity of the approach was tested on a test set drawn from
the initial sample. The results obtained demonstrate that water content can be predicted
for vine leaves on the basis of their spectral signature, allowing for a certainmargin of error.
This error was smaller for the non-linear model compared to the linear model.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

For a vine to produce grapes that, in turn, result in a good quality wine, the level of humidity in the leaves needs to
be controlled [1]. The most reliable and accurate way to determine humidity is by taking the leaves to a laboratory and
calculating weight differences between wet and dry leaves. This method is time consuming, however, and also subject to
measurement and sampling errors, especially when data are extrapolated to the whole vine or vineyard. Leaf water content
is related to the amount of solar energy reflected by the leaf in specific electromagnetic spectral bands. Consequently, an
alternative way of determining humidity – much faster although not as precise as the laboratory method – is to use the
spectral signature of the leaves to associate solar energy with water content. Reflectance, especially in the NIR and MIR
wavelengths [2–4], depends on the amount of water stored in leaf cells. For wavelengths sensitive to water absorption (760,
970, 1450, 1940 and 2950 nm), leaf reflectance decreases as water content increases [3,5–7]. Recent years have witnessed
the development of hyperspectral sensors that are capable of recording reflectance values for very narrow electromagnetic
spectral bands. Using such reflectance data, some authors have attempted to measure leaf water content and also other
parameters such as water stress and chlorophyll content. Their analyses are generally limited, however, to the construction
of indices as algebraic expressions of reflectance values for specific wavelengths [8–10]. In other words, the analyses fail to
use all the information contained in the spectral curve.
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In hyperspectral remote sensing,measurements of spectral reflectance are often best thought of as functions. Reflectance
is a function of wavelengths and is referred to as the spectral signature. Functional data analysis is therefore a suitable
approach to analysing this data [11,12]. Furthermore, considering data in terms of curves means that we can take into
account not only reflectance values but also other important parameters, such as function derivatives [13].
In this article we evaluate the application of two functional data analysis techniques to the estimation of vine leaf water

content, namely functional linear regression [11] and the non-linear functional radial basis functions [14].
Some of the application fields of the functional data analysis include environmental research [15,16], medical research

[17,18], sensors [19] and industrial methods [20,21].
The input was data referring to the energy reflected by the leaves in the region of the electromagnetic spectrum located

between 700 and 1300 nm, which is the wavelength interval used by other authors for similar problems. An analysis of
variance (ANOVA) study of the sample data confirmed this as the optimal region for study.
The remainder of this article is structured as follows: Section 2 provides a basic description of the techniques used;

Section 3 describes the results obtained from the application of the techniques to differently sized test samples and discusses
the advantages and limitations of each approach. Finally we draw on the findings to provide some conclusions.

2. Methodology

2.1. Smoothing

In the functional model [16,21], in most of the applications we do not see the functions xi, i = 1, . . . , n but only their
values xi(tj) in a set of np points tj ∈ R, j = 1, . . . , np. For the sake of simplicity, we will assume these to be common to all
the functions xi, i = 1, . . . , n. These observations may, moreover, be subject to noise, and in this case they take the form:
zij = xi(tj)+ εij, where we assume that εij is random noise with zero mean, i = 1, . . . , n, j = 1, . . . , np.
Therefore, the functional focus first requires the sample functions to be registered, and this requires estimation of each

function xi ∈ X ⊂ F , i = 1, . . . , n. One approach is to assume that F = span{φ1, . . . , φnb} with {φk} set of basic functions
[11]. For our research we chose a family of B-splines as the set of basic functions, given their good local behaviour. If, for the
sake of simplicity, we represent as x any of the functions xi, i = 1, . . . , n in the sample, we have:

x(t) =
nb∑
k=1

ckφk (t) . (1)

A simple smoother [11] is obtained by minimizing the least squares criterion:

min
x∈F

np∑
j=1

{
zj − x

(
tj
)}2

.

However, using this criterion (resubstitution error or empirical risk) may lead sufficiently complex models to overfit to the
data (noise or possible measurement errors), negatively affecting their generalization capacity regarding new data not used
in the learning process.
It is therefore necessary to control the complexity of the model by using a regularization focus based on the regularized

empirical risk criterion [22,23]:

min
x∈F

np∑
j=1

{
zj − x

(
tj
)}2
+ λΓ (x) (2)

where zj = x(tj)+εj is the result of observing x at the point tj,Γ is an operator that penalizes the complexity of the solution,
and λ is a regularization parameter that regulates the intensity of this penalization. In our case, we have used the operator
Γ (x) =

∫
T

{
D2x(t)

}2 dt where T = [tmin, tmax] and D2 is the second-order differential operator.
Bearing in mind the expansion (1), the above problem (2) may be written as:
min

c

{
(z−8c)T (z−8c)+ λcTRc

}
where z = (z1, . . . , znp)T , c = (c1, . . . , cnb)

T ,8 is the np×nb matrix with elementsΦjk = φk(tj) and R is the nb×nb matrix
with elements:

Rkl =
〈
D2φk,D2φl

〉
L2(T )
=

∫
T

D2φk(t)D2φl(t)dt.

The solution to this problem is given by
c = (8T8+ λR)−18T z

in such a way that the estimated values of x at the observation points are obtained by means of x = Szwhere
S = 8(8T8+ λR)−18T

with x = (x (t1) , . . . , x
(
tnp
)
)T .

The selection of the λ forms part of the model selection problem and is usually performed using crossed validation.
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2.2. Functional linear regression

The linear regression model can be expressed as [24]:
y = α + Xβ+ δ (3)

where X is the matrix of inputs, y is the vector of outputs, α is the translation term, β is the vector of regression coefficients
and δ is the error in the model.
Once smoothing had been implemented, we had a sample {(xi, yi)}ni=1, in which xi are the functional input variables

and yi are the scalar output variables. This enabled a linear regression to be performed taking a functional focus [25]. This
regression can be considered, when considering functional data, as an extension of the multivariable model. In this case, (3)
can be expressed as follows:

y = λ+
∫
I
x(t)γ (t)dt + ε (4)

where λ is a constant that represents the model translation term, x(t) is the vector of functional inputs, γ (t) represents the
functional coefficients of the regression, ε is the error occurring in the approximation process and I is the defining interval
for the functions.
Although there are different approaches to estimating the function γ (t) [25], for this research we used functional

decomposition for finite-dimension spaces [11], which, with a view to reducing the degrees of freedom of the regression,
performs regularization using basis functions, as denoted in (1). Hence, with φ as a vector of basis functions for length nβ
we have:

γ (t) =
nβ∑
k=1

dkφk(t) = φT (t)d.

Length nβ is chosen in such away that the information loss isminimal. Each observed function can be expressed as a function
of other basis functionsψ:

xi(t) =
np∑
k=1

cikψk(t) = cTi ψ(t) H⇒ x(t) = Cψ(t)

where C is the matrix of coefficients of the functional input variables x(t)with regard to the chosen basis functionsψ.
Therefore, the prediction ŷ can be expressed as follows:

ŷ = λ+ CJφψd
where Jφψ is the matrix expressed as follows:

Jφψ =
∫
ψ(s)φT (s)ds.

If Fourier functions are used, the matrix Jφψ results in identity, as the Fourier basis functions form an orthonormal base for
the functional space. Introducing the notation ς = (λ, d1, . . . , dnβ ), Z = [1, CJφψ ] the prediction ŷ can be expressed as
follows:

ŷ = Zς.
The vector of coefficients ς is given by applying the minimum squared error (MSE) criterion in the following equation:

ZT Ẑς = ZTy.

2.3. Functional radial basis functions networks (FRBF)

Functional radial basis function networks for regression are an adaptation of the interpolation approach to problems that
takes account of noise in the data [26].
A generalized linear regression model is obtained in which the regression variables are non-linear transformations of

the input variables. A number of authors have independently proposed an analogous network using no pre-fixed transfer
functions in the hidden layer; instead they are made dependent on a variable-window parameter [27].
In general, the radial basis function architecture takes the form [28]:

ŷ(x) =
n∑
i=1

ciΨi(x)+ c0 (5)

where Ψi(x) = f (‖x−wi‖) is a radial transfer function wi are the centres of each node and c = {c1, . . . , cn} are the
coefficients of the linear transformation of the network output layer.
Using a Gaussian transfer function results in:

Ψi(x) ∝ exp
{
−
1
σ
‖x−wi‖26i

}
= exp

{
−
1
σ
(x−wi)T6−1i (x−wi)

}
(6)
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wherewi are the chosen centres, generally a subset of the sample, σ is the scaling factor, determined using a cross-validation
process and 6i is a symmetric positive semi-definite matrix.
Of interest is the particular case in which σ = 1 and 6i = I, corresponding to the Euclidean distance and to a spherical

transfer function [14].
When considering functional data, the transfer function (6) [14] results:

Ψi(x(t)) ∝ exp

{
−
1
σ

(∫
εi(t)(x(t)− wi(t))2dt

)1/2}
(7)

where εi(t) is the functional version of the matrix 6i when this matrix is diagonal. The function εi(t) can be any function,
although it seems logical to choose one of the same complexity as the functions x(t), and, more specifically, in the sense as
its second derivative.
A typical approximation is to use the expression (1) to express a function as a linear combination of selected basis

functions. Considering εi(t) = 1, therefore, the expression (7) results:

Ψi(x(t)) ∝ exp
{
−
1
σ
((a− bi)TH(a− bi))1/2

}
(8)

where x(t) = aTφ (t), wi(t) = bTi φ (t) and H =
∫
φ (t)T φ (t) dt . The functional radial basis function is therefore reduced

to a vectorial radial basis function, bearing in mind the expansion in basis functions and the matrix H.
The training algorithm is simply a feedforward algorithm, rather than a backpropagation algorithm, as used bymultilayer

perceptron networks. Hence, the output ŷ of a radial basis function network, in general, is influenced by a non-linear
transformation originating in the hidden layer through a radial function and a linear transformation originating in the output
layer through a continuous linear function.

3. Application and results

3.1. Data collection

The vineyard block selected for this study was located in the Carneros Region of Napa Valley (California). The coordinate
boundaries are (ellipsoid WGS84): SW (38.247104 °N, 122.366210 °W) and NE (38.247982 °N, 122.361995 °W). The
vineyard was planted in 1991 and it is composed of a uniform planting of 9321 vines (3.63 ha) of a single cultivar (Vitis
vinifera L., cv. Pinot Noir cv UC2A).
Leaf reflectance of vine leaves were acquired just after collecting the leaves in the field. The measurements were

conducted using a Li-Cor Inc. model 1800-12S External Integrating Sphere (Li-Cor, Inc., Lincoln, NE, USA), coupled with
a field spectrometer Analytical Spectral Devices Inc. model FieldSpec Pro ASD (Analytical Spectral Devices, Inc., Boulder, CO,
USA), which detects reflectance in the 350–2500 nm spectral region [10].

3.2. Estimating the model parameters

A p-fold cross-validation process was used to estimate the optimal parameters for the regression models. The efficacy of
each model was then checked using a test set of a size representative of the sample size. The criterion used was the MSE
[29,30]:

MSE =
1
n

n∑
k=1

(̂
yk − yk

)2
. (9)

TheMSE provides information, expressed in the problemunits, on the deviation produced by the regression. Nonetheless,
relative error (RE) is used to obtain information that is independent of the problem units. The mean RE value [31,32], was
calculated using the following expression:

RE =
1
n

n∑
k=1

| ŷk − yk|
|yk|

. (10)

Completion of the data capture phase resulted in a sample {(xi, yi)}80i=1, with xi(tj), j = 1, . . . , 2000 as the reflectance
values obtained using the hyperspectral sensor and yi as the water values per surface unit for each leaf.
For each point tj, j = 1, . . . , 2000, corresponding to the recording of functions, an ANOVA study [33–35] was

implemented so as to obtain the F functions and p-value for the definition domain for each recorded function xi (ANOVA
functional). As can be observed in Fig. 1, (left), the central band (700 to 1300 nm) has a p-value of more than 5%, indicating
the consistency of the sample. Fig. 1 (right) also shows the F-test distribution, which is lower than the statistic tabulated in
the same region. Given these results, the wavelength interval to be analysed was reduced and the band falling between 700
and 1300 nm was chosen as being of greater scientific interest [5].
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Fig. 1. P-value distribution (left) and F-test distribution (right) obtained in the ANOVA study of the sample data.
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Fig. 2. Smoothing process for an observation. MSE = 2× 10−7 .

Table 1
Results for different test sample sizes using the central band of the sample.

Technique Test set size (%) MSE RE (%)

Linear regression 5 2× 10−6 9
10 6× 10−6 17

Functional radial basis functions 5 2.6× 10−7 3
10 4× 10−7 4

Smoothing, as described above, was performed on the final sample chosen. Fig. 2 shows discrete values and the adjusted
function (represented by circles and a line, respectively) for these points for a specific observation. The resulting MSE was
around 10−7.
Obtained in this way, {(xi, yi)}80i=1where xi is a functional input and yi is a scalar output. A 10-fold cross-validation process

was implemented for the models in order to obtain the following optimal parameters:

• Number of basis functions: Error remained constant from 100 basis functions, so 100 was chosen as the optimal number
of Fourier basis functions needed to implement the smoothing process.
• Scaling factor: The value of σ was calculated as 1.5.

3.3. Error calculations

Error calculations for eachmodel were performedwith test sets representing 5% and 10% of the full sample. This enabled
us to determine what influence, if any, sample size had on model results.
Table 1 shows the different values for the error criteria, namely MSE and RE, for the 5% and 10% test samples.
As can be observed, the error corresponding to the radial basis function model is considerably smaller than that for the

linear model and is also less sensitive to training sample size.
Fig. 3 shows the differences between estimated and real points (represented by circles and crosses, respectively) for the

linear regression model (left) and the radial basis functions model (right).
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Fig. 3. Comparison of real points (crosses) and estimated points (circles) for the linear regression model (left) and the radial basis functions model (right).

4. Conclusions

Our research examined the feasibility of using functional regression analysis applied to reflectance data captured by a
hyperspectral sensor to estimate vine leafwater content per surface unit. The practical interest of our study is thatmeasuring
leaf reflectance is faster than measuring water content by analysing weight differences. In addition, the fact that leaves do
not have to be collected for analysis in a laboratory means that sampling can be more extensive.
The functional focus of the problemmeans that – unlike other approaches based on the calculation of indices for specific

wavelength values – the entire wavelength spectrum within a given range can be taken into account. Our method enables
full advantage to be taken of the capacity of hyperspectral sensors to capture data for bandwidths so narrow that spectral
signatures can be represented as curves rather than as vectors of reflectance values.
Our analysis was performed for the central wavelength interval of 700 to 1300 nm — the same interval used by other

authors for similar problems. This choicewas further reinforced by the fact that anANOVA studydetermined thiswavelength
interval to be the interval to which the data were best adapted.
Of the twomodels studied, the non-linear model based on functional radial basis functions produces considerably better

results than the functional linear regression model. This outcome might indicate the existence of a complex dependency
relationship between reflectance and vine leaf water content per surface unit. It might also explain the poor results obtained
by some methods based on indices.
The results obtained also indicate that the non-linear model is less influenced by the sample size. Future research will

be based on analysing larger data samples and including new functional techniques, such as functional regression models
with penalties.
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