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Abstract

Attention mechanisms can be used both for re-
ducing the amount of perceptual information
to be processed and for restricting all available
actions to only those useful for a given sce-
nario. Information reduction improves perfor-
mance and action restriction allows for a more
precise interaction with our environment. In
this paper we present the design of an atten-
tion control mechanism based on a saliency
map and its implementation in the SPL's Nao
robot. The results obtained are analysed and
future works derived from that analysis are
presented.

Index terms � RoboCup, attention, saliency,
map, humanoid

1 Introduction

Attention is a natural tool which allows ani-
mals to locate relevant objects or areas in a
given scene, discarding the rest of elements
present and thus reducing the amount of infor-
mation to deal with [2, 4]. The areas marked
as conspicuous and the objects they contain
restrict all our possible actions to those which
can be speci�cally applied to them, discarding
other distracting elements [15, 17].

Vision and control systems in Robotics are
usually implemented in an impulse-analysis-
response fashion. Given a visual impulse, the
analysis subsystem generates a �world model�
which is then used by the response module to
generate an action. In this case, vision is just a
step previous to planning. However, attention
can be used to further relate these two sys-

tems: control system can establish the kind of
objects that should be looked for (top-down,
control modulates attention) and attended lo-
cations restrict what can be done in that mo-
ment (bottom-up, attention modulates con-
trol) [3].
The latest attention models are mostly

bioinspired and try to reproduce the way pri-
mates' and humans' attention works [6, 8, 19].
Color contrast, intensity di�erence, orienta-
tion and motion are just some of the key ele-
ments considered by these models.
In this paper we present a bioinspired at-

tention model mainly based on Itti et al. re-
search [8, 9, 10] which falls under the bottom-
up attention category. It has been developed
according to the Standard Platform League
(SPL) regulations and is intended to be tested
during future Robocup1 events in 2011.
For a better performance and adaptation

to this environment, our model does not use
all the maps the original utilises. Input im-
age size is also reduced by means of a virtual
fovea mask, further releasing computational
resources. The use of this attention system
will also allow us to participate in some of the
latest proposed challenges, like, for instance,
the �any ball� challenge, with better results
than classic �lter and segmentation algorithms
provide.
The rest of the paper is organised as fol-

lows. In the second section, some of the most
notable attention models are enumerated. In
the third section, the attention model is ex-
plained, both the principles and the software
structure are detailed. In the forth section,

1http://www.robocup.org/
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the attention algorithms used are described.
In the �fth section, experiments used for the
model validation are summarised. Finally, in
the last section, the results obtained are dis-
cussed and also the future works envisioned
are enumerated.

2 Attention models

Animals, and humans speci�cally, can change
their focus of attention either by moving their
�xation point across the visual scene or by fo-
cusing on a given area of the current visual
�eld. The former is known as �overt attention�
and the latter, which is the one we mainly de-
scribe in this article, as �covert attention� [23].
Covert changes are much faster (up to �ve
times) than overt ones, which makes this early
attention an important tool to decide whether
it is suitable or not to change the current �x-
ation point (move our eyes or even the head).
Several attention models have been pro-

posed over the years, mainly from a psycho-
logical and neurological point of view [12, 14].
Natural attention is the starting point of all of
them. Since a detailed analysis transcends the
scope of this paper, a list of those more related
to this work is given:

• Classic Attention model by Koch and Ull-
man [13]. Several feature maps are ex-
tracted from the input image and then
used to build a saliency map. A WTS
(winner-takes-all) process will then select
the more relevant areas in this map and
direct attention to them. It is the base
of most of the other models explained in
here.

• Wolfe's Guided Search model [22]. Based
on Koch and Ullman model, it starts with
the computation of basic features, such as
color and orientation, which are then used
to build the so called feature maps. These
maps are �nally merged in an activation
map which will be used for guiding the at-
tention to the most relevant areas (those
with higher values in the map).

• Saliency Map models. Itti et al. [8, 9,
10, 11] developed a model closely related

to Koch and Ullman studies. This model
builds up a saliency map to guide atten-
tion using color, intensity, orientation and
movement maps which are extracted from
the input images.

All these models are often called �Feature-
Based Attention Models�. Their main objec-
tive is identifying the more conspicuous areas
in the current scene. There are several other
approaches created to model attention, such
as �Connectionist Attention Models� [5, 7, 16],
which are oriented to create a reference frame
for speci�c objects or some of their environ-
mental interaction features (for instance, spe-
ci�c movement patterns).

The model described in this paper is an
adaptation to the Robocup SPL environment
of Itti's proposal. While being conceptually
simple, it o�ers great results while not con-
suming a high amount of resources. To further
prioritise performance, several of its elements
have been simpli�ed: some of its maps are dis-
pensed while the use of a fovea mask reduces
original images size. The model will be further
reviewed in the next section.

3 Model

Our model is based on Itti et al. saliency map
attention model [8, 9, 10, 11]. At any given
time, the maximum registered in the saliency
de�nes the most important region from an at-
tentive point of view.

To build up the saliency map in our model,
two maps are used: an intensity map and a
color map. The other two maps of the origi-
nal model (orientation and movement) are dis-
pensed since we do not �nd them necessary for
our environment.

The maps assign high values to those areas
which stand out in the magnitude they me-
assure: intensity map will assign high values
to those areas the intensity (light) of which
changes a lot in relation to their surround,
while color maps will do the same for the ones
with a high color contrast.

The maps are obtained using the original
camera image. To reduce the amount of pixels



to be computed, and thus improving perfor-
mance, a virtual fovea mask which simulates
the human eye progressive resolution decre-
ment is used. The further a region is from the
center of the image, the greater the amount
of masked pixels will be (masked pixels will
not be analysed). Section 4.1 shows a more
detailed description of this fovea mask.

To avoid revisiting regions which have been
recently analysed, an inhibition mask can be
applied to the last visited locations, both lo-
cally for the image and globally for the camera
angle: after checking a given area, it is masked
so it can not be revisited as soon as the anal-
ysis process �nishes.

Figure 1 shows an example of this atten-
tion model. The top image is the original im-
age with a green rectangle around the most
conspicuous region after applying the saliency
map. The bottom image is the result of con-
volving the original image with the saliency
map, which darkens the less interesting areas
while leaving unchanged the most interesting
ones.

Figure 1: Saliency map model

4 Implementation

4.1 Fovea

The fovea is a small depression in the retina
(see Fig. 2). It grants the maximum resolution
of the whole �eld of view and despite being

only 1% of the retinal area, more than 50% of
visual information processed comes from it. In
the rest of the retina, the resolution is inversely
proportional to the distance to the fovea. It
allows sharp vision and tasks dependant on
it such as lecture or driving. The term fovea
is often used in Robotics to specify that the
center of the image is not treated the same
way as the periphery.

Figure 2: Human eye fovea

Multi resolution sensors (as the fovea, be it
real or virtual) are not necessary for the at-
tention system to work. However, there are
a couple of reasons (biological and computa-
tional) which make interesting to use them:

• The amount of sensor information is re-
duced in comparison to using the whole
�eld of view at maximun resolution.

• High resolution and wide �eld of view can
be combined as a consequence of the lat-
ter.

• Peripheral vision gives only contextual in-
formation, allowing for a not so exhaus-
tive process in these areas.

All these advantages can be applied to a
robotic vision system, from a hardware or soft-
ware approach [18, 20]. Hardware solutions
are not suitable for us due to our robot being
standard, so an algorithmic solution has been
chosen.
Our solution is based on C. J. Westelius

work [21], but instead of modifying the origi-
nal image to create the foveal e�ect, we use a
mask to grant access only to certain of its pix-
els. This mask allows us to simulate the lower
resolution of peripheral areas without slowing
down the system with unnecessary �lter and
subsampling operations.
It is possible to con�gure the amount and

size of the multi resolution areas. By default,



we work with three areas: fovea (full resolu-
tion, 40% of the image), parafovea (1:2 reduc-
tion, 40% of the image) and perifovea (1:4 re-
duction, 20% of the image). Figure 3 shows
the result (right) of applying the mask (cen-
ter) to the original image (left).

Figure 3: Fovea mask

4.2 Maps

The input of the model are 640x480 pixels
static RGB color images (Fig. 4 shows the
input image which will be used as an example
during the explanation of the map construc-
tion process). After the previously explained
fovea mask has been applied, these images are
used to build multiscale pyramids [1] for ev-
ery map used in the model. Each pyramid has
9 levels and a resolution reduction factor of
1 : 2n for each of them. Level 0 means then
no reduction (1:1, original image), while max-
imum reduction happens at level 8 (1:256).
The speci�c image resolution for each level is
then the following:

level 0: 640x480

level 1: 320x240

level 2: 160x120

level 3: 80x60

level 4: 40x30

level 5: 20x15

level 6: 10x8

level 7: 5x4

level 8: 3x2

Figure 4: Original input image

Intensity maps

The �rst step of the model consists of creat-
ing a nine level intensity pyramid which repre-
sents the �intensity� (luminosity) of each im-
age pixel. Using the original image, a intensity
matrix MI is obtained by combination of the
R, G and B channels value:

mI(i, j) = mR(i,j)+mG(i,j)+mB(i,j)
3

The intensity pyramid is then created us-
ing MI , with MI(n) being the intensity matrix
corresponding to the nth level of the pyramid.
Using the pyramid, six intensity maps are ob-
tained by across-scale di�erence, 	, which is
obtained by interpolation of the maps to the
�ner scale and point-by-point subtraction:

MI(2,5) = |MI(2) 	MI(5)|

MI(2,6) = |MI(2) 	MI(6)|

MI(3,6) = |MI(3) 	MI(6)|

MI(3,7) = |MI(3) 	MI(7)|

MI(4,7) = |MI(4) 	MI(7)|

MI(4,8) = |MI(4) 	MI(8)|

This across-scale di�erence between maps
allows for detecting locations at center (areas
at scale 2,3,4) which stand out from their sur-
round (scale 5,6,7,8), the same way it happens
in human retina [10]. Using several scales for
center and surround, instead of just one for
each of them, yields truly multiscale feature



extraction [10]. The �nnest scale is n = 2 and
not n = 0 to reduce noise, excessive detail, and
the amount of pixels to be computed (160x120
at scale 2 instead of 640x480 at scale 0), im-
proving both performance and robustness.
Finally, the intensity map I, representing

those conspicuous locations from an intensity
point of view, is generated combining all the
previous maps through across-scale addition,
⊕, which consists of reduction of each map to
scale n = 4 (40x30 resolution) and point-by-
point addition:

I = ⊕MI(m,n)

Figure 5 shows the intensity map I for the
image at Fig. 4.

Figure 5: Intensity map

Color maps

Four pyramids representing �color� of each
image pixel are created using the normalised
R, G and B channels and a yellow channel Y
(obtained using the three previous ones): RGB
color space channels include intensity informa-
tion, thus, in order to make the result indepen-
dent to environmental light, they have to be
normalised by intensity. To do so, we applied
the same formulae used in [8]
The four color pyramids are used to gen-

erate a set of 12 color maps, six for dif-
ference between red and green components,
MRG(m,n), and six for blue and yellow di�er-
ence, MBY (m,n) , in a similar fashion to the
intensity maps.

MRG(2,5) = |(MR(2) −MG(2))	 (MR(5) −
MG(5))|

MRG(2,6) = |(MR(2) −MG(2))	 (MR(6) −
MG(6))|

MRG(3,6) = |(MR(3) −MG(3))	 (MR(6) −
MG(6))|

MRG(3,7) = |(MR(3) −MG(3))	 (MR(7) −
MG(7))|

MRG(4,7) = |(MR(4) −MG(4))	 (MR(7) −
MG(7))|

MRG(4,8) = |(MR(4) −MG(4))	 (MR(8) −
MG(8))|

MBY (m,n) are obtained in a similar way to
MRG(m,n) but using the Blue and Yellow com-
ponents instead.
Finally, a color map C, representing those

conspicuous locations from a color contrast
point of view, is generated combining all the
previous maps:

C = ⊕[RGI(m,n) + BYI(m,n)]

Figure 6 shows the color map C for the im-
age at Fig. 4.

Figure 6: Color map

Orientation Maps

Te original model builds up a set of orien-
tation maps which are merged in a �nal orien-
tation map O which represents the location of
those elements which stand out from an orien-
tation point of view in comparison to the rest
of the objects present in the image.
Such maps have not yet been implemented

in the current version, mainly due to the fact
that they are not so important for a controlled



environment like ours (Robocup SPL) in which
colour and intensity are already very conspic-
uous by themselves.
Normalisation

Before obtaining the �nal saliency maps, all
maps have to be normalised.
The Color and Intensity maps obtained are

normalised to the same static range [0..M ] in
order to compare them. Modality dependant
di�erences would also have to be removed.
However, since we do not compute orientation
maps, this step is not necessary: a 5% inten-
sity di�erence between two pixels can not be
a priori compared to a 0.2 rad orientation dif-
ference, but color and intensity di�erences can
be compared without further modi�cation.
A mechanism to promote maps with a small

number of strong peaks of activity (conspicu-
ous locations) is also applied. It consists of
�nding the map's global maximum (M) and
computing the average of all its other local
maxima (m), globally multiplying the map
by (M −m)2. The biggest advantage of this
method is its simplicity and speed, while the
major drawback is that if a map has two im-
portant locations it will only promote the most
conspicuous one, hiding the other (humans
would probably attend to both of them in-
stad).
In [10], a more complex and e�cient method

for normalisation based on DoG (Di�erence of
Gaussians) �lters is proposed, but it has not
yet been implemented.
Saliency map

Once the color and intensity maps have be-
ing obtained and normalised, they are com-
bined in the �nal saliency map S which will
guide attention to the most relevant location
in the �eld of view:

S = I+C
2

Fig. 7 shows the 3D (left) and 2D (right)
saliency map S for the image at Fig. 4.
The saliency map S is then applied to the

original image as obtained by the robot cam-
era, promoting the most relevant locations and
hiding the rest. In Fig. 8 this process is illus-
trated: left image is the original coloured im-
age. Central image shows the results of apply-

Figure 7: Saliency map

ing the saliency map in Fig. 7 to the original
image (the darker the area, the less salient it
is). Right image shows the regions with higher
saliency across the whole map (green rectan-
gles). Please note that the system proposed
only tell us �where� to look at (area) and not
�what� (object) to look for; the fact that the
ball and the keep are in those areas is a conse-
quence of being the most notorious regions of
the image from a color and intensity point of
view.

Figure 8: Saliency map applied to the original im-
age

5 Experiments

To test the e�ectiveness of our approach, the
�any ball� Robocup challenge has been cho-
sen. For this challenge, the robot is placed in
the game �eld along with a couple of random
coloured and multi-sized balls. The robot has
then a couple of minutes to score the biggest
amount of goals possible. Classic color �lter
algorithms used for image segmentation are
not usefull in this scenario, since not only ball



color is unknown, but they can also have the
same color as the ground (green).

Figure 9: Any ball challenge input image

To simulate this scenario for our system we
have given the robot some pictures of the game
�eld containing a random number of di�erent
color balls (see Fig. 9).
The model proposed always �nds the most

salient region in the image, and as long as that
region is not dealt with (or inhibited), it will
not �nd any other region. This means that
regions chosen as most salient which do not
contain any ball must be masked (inhibited),
so that others containing a ball can be chosen
as focus.

Figure 10: Most salient region of the input image

Once a region containing a ball is chosen
(see Fig. 10), robot should approach to it and
try to score a goal by kicking it. This part of
the experiment has not been implemented yet,
but it can be assumed that the ball will end up
further from the robot than it was when cho-
sen as focus. To simulate that, once a region
containing a ball is chosen by the model, it is
assumed that the robot could kick it and that
speci�c ball is removed from the next input
image for the robot.
With the originally most salient ball no

longer present in the �eld of view (see Fig.
11), the saliency map changes and a new most
salient region is chosen (see Fig. 12). The pre-
viously explained process is now repeated: if

Figure 11: Any ball challenge second input image

the new region contains a ball, it is chosen as
focus and kicked, otherwise, it is inhibited and
the second most salient region is checked, re-
peating the process until �nding a region con-
taining a ball or not �nding any at all.

Figure 12: Most salient regions of the second input
image

The results obtained are very promising,
with a 100% success rate for the images used.
Even the regions containing small balls with
almost the same color of the ground are cho-
sen in the last iterations of the algorithm (see
Fig. 13). It can be easily understood that the
color map (top left image at Fig. 14) gives
no useful information in this case, since the
whole �eld of view is almost of the same color
(except for the lines). However, the intensity
map (top right image at Fig. 14) shows strong
peaks at those areas containing either shades,
which should be minimal except for the one
belonging to the ball (due to it being the only
object in the �eld apart from the robot), or
di�erent light re�ection patterns, as it hap-
pens with the region containing the ball since
the ball is made of a di�erent material from
the ground's. The �nal saliency map obtained
once again chooses the region containing the
ball as the most salient one (see bottom left
and bottom right images at Fig. 14).



Figure 13: Input image containing a ball of the
same color of the ground

Figure 14: Color, intensity and saliency map and
most salient regions of an input image containing
a ball of the same color of the ground

6 Discussion and further work

In this paper we have presented an attention
control model based on a saliency map which
mainly di�ers from the original by Itti [10] in
two aspects: the saliency map is obtained us-
ing only intensity and color information, dis-
pensing orientation and movement data, and
input images' size is reduced by using a fovea
mask. These modi�cations improve the model
performance and allow for a better adaptation
to the Robocup SPL environment.

The model has proved to be useful for the
�any ball� challenge, with better results than
classic �lter and segmentation algorithms,
which do not provide results robust enough
when trying to identify balls of similar color
to the �eld.

The main drawback of our proposal is the
time it consumes, which makes the model not
usable for real time game play. However,
the system remains suitable for competition
when combined with classic color �lter algo-

rithms, applying the saliency calculation only
to certain images or situations (�nding areas
in the �eld containing interesting objects, for
instance a ball in the proposed challenge) and
using the classic color �lter approach for the
rest of the tasks (object recognition and sub-
sequent tracking).

There are mainly two topics which would
need to be addressed in the near future:
a more e�ective normalisation operator and
time consumption optimisation.

The simple normalisation operator used
tends to promote only one activity peak in the
intermediate maps, which makes the most con-
spicuous area hide the rest even if there is a
second one very close to it (and thus also very
important from a saliency point of view). This
leads to occasional problems. For instance,
when both the ball and the yellow keep are
visible, specially with partial ball occlusions,
the yellow net may hide the ball in the �nal
saliency map. In the �any ball� challenge ex-
periment here explained, it can be seen that,
for the same reason, some of the regions con-
taining balls are not found until second itera-
tion (compare Fig. 10 to Fig. 12) when the
previously most salient region (the one con-
taining the yellow ball) has been removed. Itti
et al. already solved this issue by using DoG
�lters instead [10], which makes the system
work better in these cases.

As previously stated, time consumed by the
maps generation algorithm is too high. One of
the main advantages of attention is the great
reduction in the amount of information to pro-
cess, specially since processing a stream of
video in limited hardware as a robot is a high
time-consuming task. However, the whole pro-
cess is taking around 200 ms, which is an ex-
cessive amount of time to make it worthwhile
in this sense. An optimisation of the code
could make the system much more suitable for
full time use.
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