
Different robotics platforms for different teaching needs

Vicente Matellán
vmo@gsyc.escet.urjc.es

tel: 916 647 472
Universidad Rey Juan Carlos

José M. Cañas
jmplaza@gsyc.escet.urjc.es

tel: 916 647 468
Universidad Rey Juan Carlos

Rafaela González-Careaga
rafaela@gsyc.escet.urjc.es

tel: 916 647 400
Universidad Rey Juan Carlos

Abstract

When facing the problem of teaching the basis of robot
control programming to computer science students,
apart from the syllabus of the course, some other re-
quirements have to be taken into account. For in-
stance, which are the most appropriate robotic plat-
forms, and which are the best programming tools
for teaching it. In this paper we describe the plat-
forms and programming environments chosen for dif-
ferent senior and graduate robotic courses at Rey Juan
Carlos University, focusing on the reasons under our
choices. We also point out the practical assignments
demanded on the courses. Finally, we will present the
results along four years, the feedback from our stu-
dents, and the lessons we have learned.

Keywords: Teaching, mobile robots

1 Introduction

We are currently teaching robotic courses at two differ-
ent levels, undergraduated and graduated level. The
main goal of this paper is the description of the teach-
ing experiences gathered along four years, including
the choice of robotic platforms and programming en-
vironments suited for the courses, and the typical as-
signments we demand from our students.

We teach two different robotic courses, both named
Robótica. One to undergraduate senior students at
third year of computer engineer degree, and another
to graduate students, at first year of PhD. program in
computer science. In both cases, the subjects are in-
tegrated into computer-engineering programs, which
means that their orientation is more focused on the
programming issues related to mobile robots, than in
the automation or robot construction problems. Sur-
prisingly, after four years of experience, the syllabus
of both courses has become very close, however the
robotic platforms used are very different.

In the design of both course syllabus we decided to
follow a constructionistic approach [9], where students
not only have to learn the basic concepts of robot con-
trol, but also to really build and control real robots.
We claim that playing with robots is the best way to
learn real robotics, and to realize robotic problems and
capabilities. In addition it keeps alumni motivated, as
the number of student who choose our course shows.

Next sections describe the different platforms used.
First, the platforms used by undergraduate students
are presented, as well as the assignments that students
have to do. Then, in section 3 the robots used in re-
search activities are described. Finally, some conclu-
sions are noted and the further improvements we are
considering are introduced.

2 Undergraduate platforms:
Mindstorms and EyeBots

In fact, we have to distinguish two cases among under-
graduate students, the first ones are regular students
who attend the Robótica course; the second one are
senior students who choose to works on their Final
Studies Project, FSP hereafter (Proyecto Fin de Car-
rera in Spanish) in our group.

2.1 The Robótica course

The target for the regular course is to provide the
very first introduction to robotics. This includes the
presentation of sensors, actuators, and their differ-
ent configurations; some useful processing algorithms
of the raw sensor data, and the basic control tech-
niques. Also the principles of the intelligent control
architectures proposed are described (reactive, behav-
iors based, symbolic, hybrid, etc.). Finally commer-
cially available robots and their applications, as well
as the most relevant people in the robotics history are
introduced.

1



Figure 1: Eyebot and LEGO Mindstorms robots used for undergraduated students

The platform chosen for the practical assignments of
the Robótica course is the LEGO Mindstorms1, that
is displayed in right side of figure 1. The main rea-
sons are its flexibility and being a completely end-
user product, all in a convenient price. To build a
robot using the LEGO kit does not require any sol-
dering, and the building blocks are intuitive and well
known for all the students. The Mindstorms are sold
as complete kits, which comprise more than 700 LEGO
pieces. Each kit includes two motors, two contact sen-
sors, one light sensor, and the processing brick, called
RCX, made up of an Hitachi H8/300 microprocessor
with 32Kbytes of RAM, three output ports to connect
motors, and three input ports where sensors can be
attached. A graphic software environment for devel-
opers, and the equipment for downloading programs
into the robot are also included in the box.

In the software side, there are different tools
available for programming the LEGO Mindstorms
robots [7]. The first one is the child-oriented graphic
language provided by the manufacturer with the kit.
This is a very intuitive tool based on visual program-
ming, but quite limited. The more extended alterna-
tives are NQC and BrickOS. NQC [3] stands for “Not
Quite C”, and it is a simple language with a C-like syn-
tax that can be used to program LEGO’s RCX brick.
It is the simplest option to the drag and drop icon pro-
gramming tool included with the regular kit. It uses
the native operating system provided by LEGO, and
adds built-on-top programming capabilities.

BrickOS is the alternative chosen for our course.
BrickOS is the current name of the better known
LegOS, an open-source embedded operating system
designed for the Mindstorms brick, mainly designed
by Markus Noga [10]. This means that the original
operating system has to be removed. Compared to
the original LEGO operating system, BrickOS offers
vastly superior performance and flexibility. It offers an
API that supports dynamic loading of programs and

1http://www.legomindstorms.com

modules, full infrared packet networking, preemptive
multitasking, dynamic memory management, drivers
for all RCX subsystems, 16 MHz native mode speed,
access to the 32k RAM, etc. The development envi-
ronment we offer to the students comprises a BrickOS
running in the Lego robot and a personal computer un-
der GNU/Linux. The robot programs are written in C
language using any editor, compiled and debugged in
the computer. Actually we use a cross-compiler avail-
able for GNU/Linux machines, which fully supports all
C capabilities like pointers, data structures etc. Once
the executable programs are generated they are down-
loaded to the Mindstorms, where the BrickOS makes
them run.

The students of the Robótica undergraduate course
were grouped into couples which received a complete
Mindstorms kit, and each group received an additional
light sensor, and a rotation sensor in order to allow
them to develop more sophisticated behaviors (to im-
plement odometry calculi, for instance). Currently,
the robotic teaching lab contains 25 Mindstorms kits
which allow 50 students in the course. The practical
assignments include building the robots and program-
ming them. Actually the mechanical design of the
robot has to be decided by the students accordingly
to the behaviors they have to program.

Two different tasks have to be solved by the stu-
dents, although they can be seen as a single one, be-
cause the first one is just a subset of the second one.
In the former the robot has to travel from an starting
point to a destination goal inside a maze, and come
back again to the initial location. The maze, shown
in figure 2, is given in advance, so they can implement
some kind of path-following in the robot program. In
the second task the robot has to collect two different
cans placed inside the previous maze. The exact loca-
tion of one can is given in advance, but the location
of the second one is completely unknown, forcing the
robot to search for it and detect it. The idea here
was to motivate students to use general architectures,
instead of local solutions.

2 / 7



Figure 2: Practical assignments: maze and can collector

For instance, the ones who tried to pre-compile the
trajectory in the maze for the known can, were in gen-
eral less efficient searching the second one. Addition-
ally, the cans can be white or black ones at random.
In the case of black ones, the robot has to carry them
to a destination location A. For white ones, it has to
move them to another location B. So the robot has
to distinguish between black and white cans, carrying
each type to a different point in the maze. The guid-
ing idea for these assingments was to make students
face the sensor noise problems, and make them use the
concepts presented in the theory classes like reactive
local navigation, map building and use, etc.

The textbook that we currently recommend in the-
ory part of the course is the Ronald C. Arkin one [2].
For practical assignments the construction of a LEGO-
based robot requires basic notions of mechanics, but
giving the students small manuals, as the official Con-
structopedia included in the kits, or the one by Fred
Martin2, has proved to be enough.

2.2 The Final Studies Projects

Students working on their FSP usually affront more
complicate problems, which require more perceptive
capabilities and more processing power than the ones
LEGO brick offers. Mindstorms main drawback is its
poor sensorization: available sensors, like infrared or
encoders, provide few and noisy data. We decided to
center most of the FSP works around a single topic:
building a robotic soccer team according to the F-180
of the RoboCup [6]. Our idea is to promote collabora-
tion among students by giving them a common prob-
lem, a higher objective where their works are inte-
grated. So, a student working, for instance, in an ad-
hoc networking protocol to communicate robots may
feel herself part of the same group than the students
working in image analysis, or the ones working in the
control of a single robot, or with the ones working in
the cooperative architecture.

We explored several platforms for this purpose, like

2http://constructopedia.media.mit.edu/

Kephera3, Tritt4 and EyeBot5. Prices were very dif-
ferent and finally we chose the EyeBot robot [4], due to
its processing power and because it was the only one
providing a camera, which bursts possibilities. This
robot, shown in left side of figure 1, is equipped with
three infrared sensors, two shaft encoders and a 82x62
pixels color camera, giving 4 fps. It also has two DC
motors, two servomotors and it is equipped with a
Motorola 68332 microprocessor, and 1Mb. of RAM
memory. In addition, EyeBots are supplied with a
radio communication module. All those devices are
managed by the RoBios operating system, provided
by the manufacturer, which offers a programming API
to the robot devices.

FSPs are carried out in the robotic research lab.
Currently we have 6 EyeBot robots especially config-
ured for the RoboCup. They have a kicker, and appear
in one of two configurations: with a servo for panning
the camera, or that servo for tilting the camera. All
the robots are used by all the students, that is, robots
are not assigned to any particular student. This way
they have to ensure that their programs are not over-
fitted to the characteristics of a singular platform.

Some of the FSP recently finished develop a follow
wall and follow ball behaviors, an adhoc communi-
cations protocol, and a teleoperator for the EyeBot
robot. FSPs currently in progress are the following:

• Soccer behaviors based on vision, like go-to-point.

• Self localization from local vision.

• Reliable communications library.

3 Graduate platforms: The Pi-
oneer and the Aibo

With graduate students the aim of the course is more
research oriented, as expected for PhD candidates.
The course contents lie around autonomous naviga-
tion and robot behavior generation. Besides demand-
ing the read lot of papers on the field, we offer two

3http://www.k-team.com/
4http://www.microbotica.es
5http://www.ee.uwa.edu.au/ braunl/eyebot

3 / 7



current state-of-the-art hardware platforms for experi-
ments: a pioneer robot from ActivMedia, and an Aibo,
the Sony robotic dog.

The idea of choosing these robots was to use the
most standard platforms available. This way our re-
search works can be validated by other groups own-
ing the same robot, because they can check the re-
sults we would claimed, and vice versa. Several topics
were considered when deciding which were the most
appropriate platforms. First, we had to choose the
size of the robot, then we had to decide its sensor
equipment. In the 90’s, the successors of the famous
Xavier [11] populated most research robotic centers.
The most widely used platforms were the B21 robot
from Real World Interface (now the research division
of iRobot Inc.), and the Nomad, from Nomadic tech-
nologies. However, these robots’ sizes are considered
too large today. The same functionality can be got
in smaller robots, with the advantage of being easier
to carry and handle. This is the case of the Pioneer
robot manufactured by ActivMedia that we chose.

The sensorization is another major issue when se-
lecting a robot. For instance, the cheapest technology
are the infrared sensors. However, these sensors are
the least accurate, because they are very sensitive to
lightening conditions. Another alternative is the use
of sonar sensors, which are less sensitive to lightening
conditions and provide more information. Neverthe-
less they are very noisy and uncertain at corners, re-
flecting surfaces, holes, etc. Another option are the
laser sensors, which are very accurate, and less depen-
dent on environmental conditions. Their high price is
their main drawback. The last sensor usually consid-
ered in mobile robots are cameras, they may provide
much more information than others, but they also de-
mand lot of processing power and good algorithms to
extract it.

Our Pioneer robot, displayed in left part of figure
3, is equipped with a ring of sixteen sonars, eight
frontal and another eight rear, it carries a laptop un-
der GNU/Linux where the control programs run. The
platform also carries a small webcam which is attached
to the laptop through USB port. The processing of the
images got by the camera is done in the laptop. The
platform itself contains also a microprocessor, devoted
to the low level calculi like collecting encoder and sonar
data, and closing PIDs feedback control loops.

The software environment available for program-
ming the Pioneer robot are the Saphira[8] and ARIA[1]
suites. Both provide a client server approach to access
robot devices from C and C++ programs. They also
offer multitasking and networking interfaces. We have
chosen ARIA because is licensed as free software under
GNU GPL license.

Works currently in progress using the Pioneer robot
are:

• Development of a generic architecture to build

robot controllers. This architecture is inspired in
biological ideas and based in the dynamic con-
struction of hierarchies of schemas [5].

• Implementation of various reactive behaviors for
robot navigation.

• Development of localization and navigation algo-
rithms using information from wireless communi-
cation network.

The second robot that is available to graduate stu-
dents in their research works is the Aibo robot shown
in right side of figure 3. This is the newest member
of our robotic family. The reasons for starting to use
this robot is that, as in the Pioneer case, this robot has
become a major commercial success. Actually it is a
bestseller, and it can be considered the first robot re-
ally sold at large scale. Its programming environment
was opened last summer, which helped us to make our
mind about acquiring a unit in order to evaluate its
feasibility as a research tool. The major goals with it
are to start working on legged robots, and to study
the robot-human interaction problems. Besides, we
are considering its possible use in the RoboCup envi-
ronment, where Aibo robots have their own category.

The robot itself is controlled by a 384Mhz. RISC
processor, has 64Mb of memory, temperature, in-
frared, acceleration sensors, a color camera, and 20
degrees of freedom. The programming environment is
based on the OPEN-R operating system6 whose API
was opened for public domain last summer.

4 Conclusions and future lines

This paper has presented the environments we have
chosen to teach robotics at the Universidad Rey Juan
Carlos. We have briefly shown the methodology that
we employed in teaching this subject to computer sci-
ence students at different levels, describing the tools,
both hardware and software, that we use. Additional
information about the courses, such as the detailed
contents, slides, etc. can be found in the web pages of
the course7.

We are really proud of the results of the polls made
both by the university itself and by ourselves. The
numerical results shown by the official poll place this
course among the top ones from the point of view of
the students. Another clear indicator of the quality of
the course is the fact that this is an elective course, and
the last two years (only has been offered three times)
the number of students applications has been higher
than the available seats. The only objection made by
the students is the high amount of time employed to
test and debug the practical assignments due to poor
performance of the LEGO sensors.

6http://www.aibo.com/openr
7http://gsyc.escet.urjc.es/docencia/asignaturas/robotica

4 / 7



Figure 3: Pioneer and Aibo robots at the Rey Juan Carlos University

Concerning future plans, at the undergraduate level
we are considering to use another free operating sys-
tem available for the LEGO platform. This one is a
Java(TM) based operating system. The main reason is
the major activity in this project, as well as the added
value of using Java as programming language by the
students. For the FSP students, we are thinking in
working with the same robots that are currently used
by the PhD candidates.

References

[1] ActivMedia. Aria reference manual. Technical report,
ActivMedia Robotics, 2002.

[2] Ronald C. Arkin. Behavior based robotics. MIT Press,
1998.

[3] Dave Baum. Dave Baum’s Definitive Guide to LEGO
Mindstorms. Apress, USA, 1999.

[4] Thomas Braünl and Birgit Graf. Autonomous mobile
robots with onboard vision and local intelligence. In
Proceedings of Second IEEE Workshop on Perception
for Mobile Agents, 1999.

[5] José M. Cañas and Vicente Matellán. Dynamic
schema hierarchies for an autonomous robot. In
Miguel Toro Francisco J. Garijo, José C. Riquelme,
editor, Advances in Artificial Intelligence, Iberamia
2002, volume LNAI-2527, pages 903–912. Springer
Verlag, 2002.

[6] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, It-
suki Noda, and Eiichi Osawa. Robocup: The robot
world cup initiative. In Proceedings of the IJCAI-95
Workshop on Entertainment and AI/Life, pages 19–
24, 1995.

[7] Jonathan B. Knudsend. The Unofficial Guide to
LEGO MINDSTORMS Robots. O’Reilly & Associates
USA, 1999.

[8] Kurt Konolige and Karen L. Myers. The Saphira ar-
chitecture for autonomous mobile robots. In David
Kortenkamp, R. Peter Bonasso, and Robin Murphy,
editors, Artificial Intelligence and Mobile Robots: case
studies of successful robot systems, pages 211–242.

MIT Press, AAAI Press, 1998. ISBN: 0-262-61137-
6.

[9] F. Martin. Ideal and real systems: A study of no-
tions of control in undergraduates who design robots.
In Y. Kafi and M. Resnick, editors, Constructionism
in Practice: Rethinking the Roles of Technology in
Learning. MIT Press, 1994.

[10] Markus L. Noga. Legos: Open-source embed-
ded operating system for the lego mindstorms.
http://www.noga.de/legOS/.

[11] R. Simmons, J. Fernández, R. Goodwin, S. Koenig,
and J. O’Sullivan. Lessons learned from Xavier. IEEE
Robotics and Automation Magazine, 7(2):33–39, June
2000.

5 / 7


	Introduction
	Undergraduate platforms: Mindstorms and EyeBots
	The Robótica course
	The Final Studies Projects

	Graduate platforms: The Pioneer and the Aibo
	Conclusions and future lines

