
X WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2009, CÁCERES 113

Designing a minimal reactive goalie for the
RoboCup SPL

Juan F. Garcı́a, Francisco J. Rodrı́guez, Camino Fernández, and Vicente Matellán
Departamento de Ingenierı́a Mecánica, Informática y Aeroespacial

Escuela de Ingenierı́as Industrial e Informática, Universidad de León, 24071 León
{jfgars, fjrodl, camino.fernandez, vicente.matellan}@unileon.es

Abstract—This paper presents the basic design and imple-
mentation of a goalkeeper made according to the regulations
of the two-legged Standard Platform League of the RoboCup
Federation. The paper describes the perceptive schemas created
using the architecture of the TeamChaos-URJC team as well as
the action schemes designed to create a minimal reactive goalie.
This player was tested in the 2009 German Open international
competition. The results obtained there are analyzed and the
future works derived from that analysis are presented.

Index Terms—RoboCup, reactive, attention, vision, humanoid
schema

I. INTRODUCTION

ROBOCUP (Robotic soccer WorldCup) is an international
research and education initiative, which has put forward

a standard problem to promote the research on artificial intel-
ligence and intelligent robotics. For this purpose, RoboCup
Federation1 has chosen soccer as a basic domain, and is
organizing a robotic soccer World Cup in different categories,
leagues and Academic Conferences since 1997.

The work described in this paper has been developed
according to the Standard Platform League (SPL) regulations
and tested during the German Open 20092 in April 2009. In
this league all teams use the same hardware platform, the Nao
robot (see Fig. 1). This robots are manufactured by Aldebaran
Robotics, so the focus of this competition is on the software
controlling the robot.

Nao robot is a 21 degrees of freedom humanoid, whose
height is 57 cm and its weight is around 4.5 Kg. It has two 30
fps video cameras located in the forehead and in the mouth,
each one with a maximum resolution of 640x480, but they
cannot be used simultaneously. The switch between cameras
takes too long and the field of view is scarcely overlaped so
they are not capable of stereo vision.

All control is made onboard using a x86 AMD Geode chip
at 500 MHz, 256 MB of SDRAM memory and a standard
1 Gb in flash memory that can be upgraded. It also has
WiFi (802.11g) and Ethernet connections. Concerning the
sensors, apart from the cameras, it has 2 gyroscopes and 3
accelerometers, 2 bumper sensors in the feet, and 2 ultrasonic
sensors in the chest.

Nao operating system is a Linux Embedded version. It
can be programmed using a propietary SDK called NaoQi

1http://www.robocup.org/
2http://www.robocup-german-open.de/en

Fig. 1. Nao robot (figure copyrighted by Aldebaran Robotics)

that supplies bindings for C, C++, Ruby, and Urbi. It is also
compatible with the robot simulator Webots by Cyberbotics3.

The rest of the paper is organized as follows, in the second
section goalkeeper restriction are enumerated. In the third
section the architecture used to build the software is explained,
both the principles and the software structure are detailed. In
the forth section the perception algorithms used are described,
and the attention mechanisms are sketched. Finally, in the last
section, the results obtained in the RoboCup German Open are
analyzed and also the future works envisioned are enumerated.

II. GOALKEEPER RESTRICTIONS

Using this robot, we needed to implement a goalkeeper in
a short period of time since the platform is new and barely a
year has passed since migration from AIBO. Of course, the
main task of the goalie is of course to prevent the opponent
team from scoring. To do this, the goalie has to look for
the ball and try to place itself between its goal and the ball.
If the ball is close enough, the goalie has to kick it taking
care of not doing it towards our goal. In our experience with
the previous platform of the SPL, the AIBO [11], there is
a critical restriction for this behavior: the robot should not
leave the penalty area. If the robot goes far of its goal, the
chances of the opponent team to score are very high. This

3http://www.cyberbotics.com/products/webots

114 X WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2009, CÁCERES

restriction, combined with the lack of time to port our previous
localization code ([14], [15]) to the new platform, forced us
to take some design decisions in order to simplify the whole
process:

1) Our goalie will use a set of movements limited to
moving right and left, like a table soccer player.

2) It will only use indirect odometry to solve self-
localisation, that is, will use information about the
movement actions taken.

3) The robot is independent and will be a reactive player.
4) We will implement some kind of attention mechanism

to filter only the ball and the goal net of the opponent
for our goalie to stay aligned to our goal.

5) We want to implement it according to the software
architecture of our team (TeamChaos).

Taking into account that Nao Standard League is quite new,
the literature is not centered in a special role player but in
the Nao players like a team ([3],[4]). For a quickly approach
to other Nao goalkeepers, we follow [2] that explains basic
schemas to be assigned to differents players and [1] that makes
a brief explanation about it.

III. ARCHITECTURE

Building software to create autonomous behavior in robots
is a complex task that cannot be restarted from scratch for
every robot and problem. A conceptual architecture has to be
used, and this architecture has to be reflected in a software
toolkit. Many different architectures have been proposed in
the literature to organize the software of automous robots [6].
In this work, we have decided that we will use the architecture
implemented in TeamChaos-URJC4.

This architecture is based on the JDE architecture [7].
Basically, the behavior of a robot is generated by JDE and
is a hierarchy of reactive behaviors that are sensitive to goal
modulation too (schemas). This organization lets the systems
react quickly to external estimuli due to low level control
loops. High level schemas can select the estimuli to which
the low level schemas should react, using the modulation
parameters and biasing this way the behavior to goal-oriented
movements. Detailed information about JDE, and projects
using it, can be found in the web page of the project:
http:/jde.gsyc.es.

Though inspired in JDE, the current code of the TeamChaos
does not use the JDE software development suite. It uses
a simplified version where all the schemas inherit from the
abstract class Controller. All the schemas will have to
implement these three methods:

• Activate: represents the initialization. This method is
used to create the basic mechanisms of the controller.
Depending on the level, we can use methods of the lower
level, which again will call methods in the lower level till
we reach the NaoQi methods.

4TeamChaos is a joint effort of the Rey Juan Carlos Univ., Univ. de Murcia,
Univ., Rovira i Virgili, and the Univ. of León. We compete together in
RoboCup but we do it with different configurations in local and regional
events.

Fig. 2. Hierarchy of controllers implementing the goalie behavior

• DeActivate: used when finishing the work of the
class. It also has to call the DeActivate methods of
the lower classes to orderly finish, that is, erasing states
created by higher classes, and the movements sequences
generated, cleaning them as well.

• Step: every time an event is generated, the step
method has to be invoked in the controller of its level.
There are two main steps, one of them related to the
scanner controller and the other one connected to the walk
controller. Both are independent tasks and it is the data
produced in the scanner controller the one which generate
a new state in the walk controller.

The architecture of schemas we have designed for imple-
menting the goalie can be seen in figure 2. The top level
GoalKeeper Controller (GKC), will coordinate the movement
of the head when tracking the ball, and the movement of the
robot right or left to try to intercept it.

The lower level of figure 2 (Naoqi Layer) is the software
API provided by the manufacturer. NaoQi is based on a client-
server architecture, where NaoQi itself acts as a server. The
modules plug into NaoQi either as a library or as a broker,
with the latter communicating over IP with NaoQi. Running
a module as a broker, thus, has some IP-related overhead, but
also allows the module to be run on a remote machine, which
is very useful for debugging.

As we have previusly stated, we decided to implement
our software over this level, which let us use the hardware
in a semi-transparent way, that is, we can send high level
movement commands without taking care of implementing a
low level waking generator engine.

“Layer 3” in figure 2 is the control of the low level parame-
ters needed to deal with the Naoqi API. It receives values from
the upper level, and translates errors and exceptions generated
in Naoqi to the upper controller. The main goal of this layer is
to let our code be independent of Naoqi API. In the future, if
we would like to change, for instance, the walking generator
from Naoqi to ours, we just need to change this level.

In “Layer 2” the first controllers, that is, schemas that

GARCÍA ET AL.: DESIGNING A MINIMAL GOAL-KEEPER 115

will work by themselves, generating the movement of the
robot and obtaining and processing images from the camera.
These controllers, according to our architecture philosophy,
are autonomous, that is, they can deal with errors and they
adapt to the current situation while working on its goal.

Finally, in “Layer 1”, the coordination between system
vision, the ball tracking system and the robot movement is
made. This is the highest level and it also has to take care of
the initialization of the system, the communication with the
game controller, and the finalization of the system.

We have to remember that the big difference between
the low level layer (Naoqi) and the top layers is the event
subscription. The communications between the naoqi layer
and layer three are executed using the primitive functions that
Aldebaran provides. All the interchanged information in the
other layers is carried out modifiying the appropiate variables.

IV. PERCEPTION MECHANISMS

Processing a stream of video in limited hardware as a robot
is a high time-consuming task. In particular, in robotic soccer
we need to process images on-board at frame rate, that is, at
25 Hz. In order to achieve it, we have decided to implement
some kind of visual attention [5]. Basically, the main idea is
that not all areas in a given visual scene are relevant to the
task at hand. Therefore by restricting attention to the relevant
parts of the scene, the agent can greatly increase its visual
processing speed. This intuition is corroborated by work in
cognitive science confirming that human vision processing
takes advantage of selective attention [13].

In robotic vision, selective attention can take two main
forms. One is “gaze control”, in which a robot moves its
camera so that its field of view is faced towards the important
information [10]. That approach is analogous to human eye
saccading, but does not address the question of how to process
each image, an often time-consuming process.

The other approach to selective attention involves process-
ing only the areas of the image that are likely to have relevant
features. Because of the large amount of data in every image,
processing each image entirely is difficult to achieve at frame
rate, and if possible, it severely limits the amount of time
the robot can spend taking care of other issues as localization,
trajectory generation, planning, etc.. By restricting its attention
to the parts of the image that are most likely to contain
the important information, the robot can speed up its image
processing. This raises the challenge of identifying the useful
areas of the image.

We will take both approaches: we will first move the camera
looking for an image which includes orange pixels and then
we will process only the orange blobs in it, discarding any
other information, to determine if they verify all conditions to
be considered a ball.

Next subsections analyze each controller and the ball per-
ception mechanics.

A. Head Controller

The first type of attention is implemented in our goalie
by the Head Controller. Its mission is to seek for and

continiously track the ball. Actions associated to this controller
are basically two: movement controlling , and image analysis.

Fig. 3. Field view

We have implemented four types of scanning: high (t1),
medium (t2), low (t3) and very low (t4). All of them but the
latter one use the upper camera. The four types use different
values of the pitch (HeadPitch (HP) and HeadYaw (HY). In
t1 the HP is π

7
radians up, in t2 0, in t3 and t4

π
7

radians
down, using the upper camera for t3 and the lower camera for
t4 . The controller modifies HY to get a continuous movement
left to right. We will not be using t1 for the release version
since we do not need to look for any object which is so high
above the horizon, so we will be working with t2, t3 and t4.
The scaned area for each of them is represented in Fig. 3: the
area closer to the robot corresponds to t4, the second closer
to t3 and the last one to t4. Pitch angles and minimum and
maximum distance covered for each scan type are represented
in Tab. I.

The type of scanning is chosen by the GKC by activating
the Scanner Controller with the adequate parameters.
It is also GKC which switches between them if the ball is not
located.

Fig. 4. Scanner state automata

In Fig. 4 we represent the state automata for Scanner
Controller: upon activation from the GKC, a scan type is
selected. By default, the chosen one will be Medium Scan. The
automata will remain in this state looking for the ball until it

116 X WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2009, CÁCERES

SCANNER MODE CAMERA PITCH ANGLE (rad) MinDISTANCE (m) MaxDISTANCE (m)
Medium upper 0 1.63 ∞

Low upper π
7

0.51 3.00
Very Low lower π

7
0.03 0.58

TABLE I
HEAD SCANNING TYPES

is found or until the GKC changes the scan type, whatever
happens first. After the whole amplitude of the field of view
for the current scan type has been checked unsuccessfully the
scan type is changed. If the ball was found, the autamata will
enter in tracking state, in which it will remain until the ball is
lost, which will restart the scan routine.

The goal of the scanning process is to obtain images of
different areas of the field. These images have to be analyzed.
There are several “interesting things” we have to look for in
the image:

• Ball
• Beacons
• Goals
• Players
The number and type of the items we are looking for

represent the second type of attention this controller has to
deal with. The most important one for a reactive goalie is the
ball. As we are designing a reactive goalie we are not using
a self-localizing method based on perception, so we do not
need to look for other things. In the second version we will
use the opposite goal to get aligned, or the field lines of the
goal area to estimate the position.

B. Ball Perception

The perception of the ball is based on color segmentation
and shape analysis. We can suppose that the only orange pixels
will be the ones belonging to the ball. Obviously, this will be
in the ideal world, because in the real one there are many noisy
points that can look orange, even if the calibration is good.
We could add some other restrictions (i.e. an artificial horizon
to filter false positives), but previously we need to eliminate
the isolated points (that we consider noise).

Basically, for every orange pixel found in the image
(image[i, j]), we check how many orange pixels are around,
and we set an arbitrary percentage threshold to consider it as
an isolate point. If the percentage is lower than the threshold,
that pixels is not segmented:

if OPC
PC < minP then erase

where:
PC: is the number of pixels
OPC : is the number of orange pixels counted
minP : is the threshold
Once we have filtered the isolated points, we can check if

the orange pixels look like a circumference, and thus discard
orange objects which are nor round shaped (see Fig. 7). It
will be done in two consecutive steps: During first step we
will calculate the radius of the smallest circle which includes
all orange pixels. Then we will analyze the shape, evaluating

the percentage of orange points in the circle and, if it is above
a given threshold, we will assume we have found the ball.

CALCULATE CENTROID

SET INITIAL RADIUS r

SET IMAGE MATRIX M

CHECK ALL PIXEL M(i,j)

M(i,j) BELONGS TO
CIRCUMFERENCE?

STOP SEARCH

START SEARCH

M(i,j) IS ORANGE?

INCREMENT r

YES

NO

YES

SET RADIUS r

NO

Fig. 5. Step one: circle’s radius calculation

Step one: circle’s radius calculation.
First, orange points centroid is calculated and an initial

radius value is set (Fig. 5). Then, a circumference of the given
radius centered at the centroid and its circumscribed image
submatrix are set. All the submatrix pixels which belong to
the circumference are analyzed until an orange one is found
and hence the radius value is increased. The whole process will
be repeated until an iteration where no orange pixel appears
is reached.

Step two: shape analysis.
Pixels counter (PC) and orange pixels counter (OPC) are

set (Fig. 6). Then, a circle of the previously obtained radius
centered at the centroid and its circumscribed image submatrix
are set. All the submatrix pixels which belong to the circle
are analyzed in order to check if they are orange. For every

GARCÍA ET AL.: DESIGNING A MINIMAL GOAL-KEEPER 117

pixel checked PC is increased, so is OPC in case the given
pixel is orange. Once the whole circle has been computed,
the proportion of orange points is calculated: OPC/PC. If
the result is above a given threshold, the object inside the
submatrix is round shaped and can be considered the ball.

SET INITIAL OPC & PC

SET IMAGE MATRIX M

CHECK PIXEL M(i,j)

M(i,j) BELONGS
TO CIRCLE WITH

 RADIUS r?

FINISH

M(i,j) IS ORANGE?

INCREMENT PC

YES

NO

YES

NO

START SEARCH

INCREMENT OPC

ALL PIXEL M(i,j)
COMPUTE?

NO

NO

CALCULATE PROPORTION

RESULT > THRESHOLD?

YES

YES

IS NOT A BALLIS A BALL

Fig. 6. Step two: shape analysis

Please note that during radius r calculation we are working
with circumferences’ points while during shape analysis we
are working with the circle of radius r. First impression could
be that percentage of orange points should be computed at the
same time we are looking for the radius value while in first
step and that second step is not neccesary. However, that is
not possible because we are working with and integer indexed
matrix: (i, j) matrix elements, which correspond with image
pixels, are integer values instead of reals, and thus most of
them will not verify the circumference equation. A possible
solution to this problen is the one we have chosen: first we
get the radius value, r, and then we get the orange pixels
proportion using the circle of radius r instead of working with
each isolated circumference.

Once the ball has been found in the current image (see Fig.
8), we estimate its distance to the robot based on the height
of the ball divided by the image height (ρ). We have not used
any interpolation, we have just consider four different cases
with empirical data:

1) ifρ ≥ 30% then distance ≤ 0.40m
2) if30% > ρ ≥ 15% then 0.40m < distance < 1.00m

Fig. 7. Orange object discarded since it is not round shaped

Fig. 8. Ball found

3) if15% > ρ ≥ 5% then 1.00m < distance < 3.00m
4) if5% > ρ then distance < 1m

The information about the estimated distance to the ball,
and the orientation to it, is obtained by inverse kinematics
when the tracking controller has centered it. This information
will be used by the other controllers, in particular, the GKC,
to move the robot: the GKC is subscribed to all information
relative to the ball (orientation and distance), so that any time
one of these parameters changes a control method inside GKC
is called. The Scanner Controller keeps updating all
this information, and the GCK will take the decision to move
or stay in the current position based upon those paremeters
values. In the GKC section we explain the movement decision
a little further.

C. Walk Controller

The Walk Controller basically moves the robot lat-
erally. The number of steps is calculated according to the
distance and orientation to the ball. The maximum number
of steps (MaxSteps) is given by the size of the step (stepD),
and the distance to goal post:

MaxSteps = stepD∗103

2stepD∗102−2

D. GoalKeeper Controller

This is the top level controller that manages the beginning
and the end of the automata. This controller will analyze
the data obtained by the Scanner Controller, basically
the position of the ball, and according to it, it will set the
parameters of the Walk Controller, see Fig. 9. This
decision will be based in the angle to the ball (θball), and
it is a discrete and proportional response:

118 X WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2009, CÁCERES

Fig. 9. Ranges for the movement decision

• If 0 < |θball| < π
18

rad the goalie is centered: do not
move.

• If 10 < |θball| < π
6
rad the ball is slightly to one side of

the goalie: one lateral step.
• If 30 < |θball| < π

3
rad the goalie is really misplaced:

two lateral steps.
The movement will be right or left according to the orien-

tation of the ball.

V. EXPERIMENTS, RESULTS AND FURTHER WORK

This goalie was tested in the 2009 edition of the RoboCup
German Open, unofficially considered the European champi-
onship, held in Hannover (Germany) from the 20th to the 24th
of April 2009. The goalie was part of the TeamChaos-URJC,
one of the two teams from the TeamChaos consortium that
entered the competition. We compete as different teams in
local competitions in order to test different algorithms, and
compete as a unified team in the official RoboCup WorldCup.

The results of the team in Hannover were not satisfactory.
Score of the preliminary phase is summarized in table III. We
did not qualify for the semifinals (the other team TeamChaos-
UMU got it with the same results: 2 points, -2 goals differ-
ence). As it can be seen in table III, we only received two
goals, one of them while the goalkeeper was inactive due to an
internal Game Controller’s listener error, so the major problem
was that we were not able to score any. But this is a simple
analysis. In fact, we were not scored more goals because other
teams strikers were also very limited.

The performance of the goalie was poor. It was extremely
slow. As shown by table II, it was able to detect the ball in less
than 2400ms if a good color calibration had been made, given
the ball was in the visual field of the current scan type, and in
case it was not changing scan type would consume less than
400ms. Nevertheless, a more elaborated vision technique for
tracking could be used, thus, when the ball is lost, information
on the last known position could be useful to detect it again.
The biggest trouble, however, is that it takes a huge amount
of time for the keeper to move, almost 6 seconds per step,
as a result of using Naoqi primitives. We have to consider
developing our locomotion method.

For the 2009 RoboCup, to be held in Austria in June 2009,
two main works have been envisioned:

1) Refactoring the vision system: we plan to eliminate
the overheads detected and use faster algorithms. For
instance, we will use a modified version of the visual
sonar proposed by the CMU team [8].

2) Incorporate stationary actions for intercepting the ball,
that is, reactions of the player that do not move its
position, but one leg, one foot, or one hand to try to
intercept the ball.

We need also to include a self-localisation system, probably
we will try to adapt the method [14] developed for the previous
league (the one using the Aibo robots), combined with the
detection of the field lines of the goal area that has already
been implemented in our team [12] for the Aibos.

ACKNOWLEDGMENT

We want to express our gratitude and acknowledgment to
all members of our team, in particular to the members of the
robotics group of the Rey Juan Carlos university for their
support, help, and inspiration of the ideas described in this
paper.

The authors would also like to thank the Spanish Ministry
of Innovation for its support to this project under the grant
DPI2007-66556-C03-01(COCOGROM project).

GARCÍA ET AL.: DESIGNING A MINIMAL GOAL-KEEPER 119

ACTION TIME (ms)
Cover all bases 2340

Change angle level (medium - low) 380
Change angle level (low - medium) 380

Stand up after ball seen 2032
Step 5670

TABLE II
EXPERIMENTAL RESULTS

Humboldt Dortmund TeamChaos-URJC HTWK L3M GA GR GD Pts Rank
Nao Team Humboldt X 0:0 0:0 1:2 0:0 1 2 -1 3 3
Nao Devils Dortmund 0:0 X 1:0 0:0 1:0 2 0 2 8 2

TeamChaos-URJC 0:0 0:1 X 0:1 0:0 0 2 -2 2 4
Nao-Team HTWK 2:1 0:0 1:0 X 3:0 6 1 5 10 1

Les 3 Mousquetaires 0:0 0:1 0:0 0:3 X 0 4 -4 2 5

TABLE III
GERMAN OPEN 2009: ROUND ROBIN POOL A

REFERENCES

[1] Andreas Panakos et al Kouretes 2008, Nao Team Report Robocup 2008
[2] J. Ruiz-del-Solar, P. Guerrero, R. Palma-Amestoy, M. Arenas,R. Dodds,

R. Marchant, L. A. Herrera UChile Kiltros 2008 Team Description Paper.
Robocup 2008

[3] Todd Hester, Michael Quinlan and Peter Stone UT Austin Villa 2008:
Standing On Two Legs. Technical Report UT-AI-TR-08-8

[4] Aaron Tay, Exploration of Nao and its Locomotive Abilities Exploration
of Nao and its Locomotive Abilities,2008

[5] Daniel Stronger and Peter Stone. Selective Visual Attention for Object
Detection on a Legged Robot, in Gerhard Lakemeyer, Elizabeth Sklar,
Domenico Sorenti, and Tomoichi Takahashi, editors, RoboCup-2006,
Springer Verlag, 2007.

[6] José Marı́a Cañas y Vicente Matellán. From Bio-inspired vs. Psycho-
inspired to Etho-inspired robots. Robotics and Autonomous Systems.
Vol.55, Num. 12, pp. 841-850. DOI:10.1016/j.robot.2007.07.010

[7] J.M.Cañas, J. Ruı́z-Ayúcar, C. Agüero, F. Martı́n. JDE-neoc: component
oriented software architecture for robotics. . Journal of Physical Agents,
Volume 1, Number 1, pp 1-6, 2007.

[8] Scott Lenser and Manuela Veloso. Visual sonar: Fast obstacle avoidance
using monocular vision. In Proceedings of IROS, pp. 391-406, October
2003.

[9] James Bruce, Tucker Balch, and Manuela Veloso. Fast and inexpensive
color image segmentation for interactive robots. In Proceedings of IROS,
Japan, October 2000.

[10] L. Itti, C. Koch, and E. Niebur, A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, no. 11, pp. 1254 - 1259, Nov 1998.

[11] H. Martı́nez, V. Matellan, M. Cazorla, A. Saffiotti, D. Herrero, F. Martin,
B. Bonev, K. LeBlanc. Robotics soccer with Aibos. In Proceedings of
WAF 2005 (Workshop de Agentes Fı́sicos) Granada (Spain). ppp 69 - 71

[12] David Herrero Pérez, Humberto Martı́nez Barberá. Robust and Efficient
Field Features Detection for Localization. RoboCup 2006

[13] Pilar Bachiller, Pablo Bustos and Luis J. Manso. Attentional Selection
for Action in Mobile Robots. I-Tech, pp. 472, October 2008.

[14] Francisco Martı́n, Vicente Matellán, José Marı́a Cañas y Pablo Barrera.
Localization of legged robots based on fuzzy logic and a population of
extended kalman filters. Robotics and Autonomous Systems. Vol.55, Num.
12, pp. 870-880.doi:10.1016/j.robot.2007.09.006

[15] Renato Samperio, Housheng Hu, Francisco Martı́n, Vicente Matellán.
A hybrid approach to fast and accurate localisation for legged robots .
Robotica International, Cambridge Journals. Vol. 26, Num. 06, pp. 817-
830. DOI:10.1017/S0263574708004414.

