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Edge detection technology aims to identify and extract the boundary information of image
pixel mutation, which is a research hotspot in the field of computer vision. This technology
has been widely used in image segmentation, target detection, and other high-level image
processing technologies. In recent years, considering the problems of thick image edge
contour, inaccurate positioning, and poor detection accuracy, researchers have proposed
a variety of edge detection algorithms based on deep learning, such as multi-scale feature
fusion, codec, network reconstruction, and so on. This paper dedicates to making a
comprehensive analysis and special research on the edge detection algorithms. Firstly, by
classifying the multi-level structure of traditional edge detection algorithms, the theory and
method of each algorithm are introduced. Secondly, through focusing on the edge
detection algorithm based on deep learning, the technical difficulties, advantages of
methods, and backbone network selection of each algorithm are analysed. Then,
through the experiments on the BSDS500 and NYUD dataset, the performance of
each algorithm is further evaluated. It can be seen that the performance of the current
edge detection algorithms is close to or even beyond the human visual level. At present,
there are a few comprehensive review articles on image edge detection. This paper
dedicates to making a comprehensive analysis of edge detection technology and aims to
offer reference and guidance for the relevant personnel to follow up easily the current
developments of edge detection and to make further improvements and innovations.
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INTRODUCTION

Images are always an important source of information for exploring and perceiving the world and
representation of the world. In practical applications of image processing, one of the main basic
features of an image is its edges, whose information is often used in higher-level image processing
techniques. Therefore, edge detection and extraction techniques have become the basis of many
image processing-related technologies and have become an important research topic in the current
digital image processing discipline.

Owing to the importance of image edges, image edge detection has been receiving a lot of
attention from researchers since the time it was proposed, and Figure 1 illustrates the development of
edge detection algorithms. The earliest edge detection operator was the Robert (Ziou and Tabbone,
1998) operator proposed by Lawrence Roberts in 1963, which is also known as the cross-differential
algorithm as the simplest operator, and its underlying principle is to locate the image contour with
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the help of a local difference operator. It was followed in 1970 by
the Prewitt operator (Shrivakshan and Chandrasekar, 2012),
which is often applied to high noise, pixel-value fading images.
Then came the Sobel operator (Marr and Hildreth, 1980), which
introduced the idea of weights, and the Laplacian operator (Xin
Wang, 2007), which used second-order differentiation, in the
1980s. Later the optimal Canny operator (Canny, 1986) was
proposed in 1986, which continuously optimized the image
contour information by filtering, enhancement, and detection
steps, and became one of the best operators for detection in the
field of edge detection at that time. After that, with the continuous
development of deep learning, various methods based on CNN to
achieve edge detection have emerged. In 2015 Bertasius et al.
changed the traditional bottom-up idea of edge detection and
proposed a top-down multi-scale divergent deep network
DeepEdge (Bertasius et al., 2015a) for edge detection. In the
same year, Xie et al. developed the holistic nested edge detection
algorithm HED (Xie and Tu, 2015), which solved the problem of
holistic image-based training and prediction and multi-scale
multi-level feature learning. In 2017 Liu et al. proposed an
accurate edge detector RCF (Liu et al., 2017) using richer
convolutional features. In 2019 Deng et al. proposed a novel
end-to-end edge detection system DSCD (Deng and Liu, 2020),
which effectively utilizes multi-scale and multi-level features to
produce high-quality object edge output. In 2021 Su et al.
designed PiDiNet (Su et al., 2021), a simple, lightweight, and
efficient edge detection architecture.

With the development of technology, the recognition
performance of edge detection networks has gradually
improved, and the accuracy rate has increased. However, at
the same time, the depth of the network has been deepened,
leading to problems such as oversized parameters, training
difficulties, and model complexity. In this paper, we will
analyze and classify the classical and latest edge detection
models in terms of model structure, technical difficulties,
method advantages, and backbone networks from two
categories based on traditional methods and deep learning
methods. Then we will introduce the backbone networks
(AlexNet, VGG16, ResNet), evaluation metrics (ODS, OIS,
FPS, PR curve), and datasets (BSDS500, NYUD, PASCAL-
VOC, PASCAL-Context, MultiCue, BIPED), which are closely
related to edge detection. Finally, the methods mentioned in
this paper are briefly summarized, and the problems found and
the future directions of edge detection focus are briefly
described.

RELATED WORK

Before that, some researchers have already summarized the edge
detection algorithms. Starting from the type of edge, Davis,
(1975) described in detail the traditional edge detection
algorithms based on linear, nonlinear as well as those using
planning and prior knowledge from the aspects of formula
derivation to algorithm advantages, and described what
troubles different noises will cause to the edge detection
algorithm. Marr and Hildreth, (1980) divided the theory of
edge detection into two parts, namely the change of object
scale and the illumination intensity on the object surface,
which has a good application and proof of the edge detection
method based on Laplace transform. Torre and Poggio, (1986)
introduced methods of edge detection through the explanation of
filters and derivatives and also summarized the advantages as well
as the disadvantages of traditional edge detection algorithms such
as DOB, canny and others. Duan et al. (2005) and Maini and
Aggarwal, (2009) analyzed and visually compared the most
commonly used edge detection techniques based on gradient
change and Laplace. Oskoei and Hu, (2010) and Amer and
Abushaala, (2015) analyzed and summarized the edge
detection algorithms based on traditional methods,
classification methods, wavelet transform methods and
machine learning methods.

Therefore, previous survey articles on edge detection are
mostly based on the research and generalization on traditional
algorithms, which rarely involve the knowledge of deep learning
and convolutional neural network. At the same time, because
these papers appeared earlier, some current edge detection
algorithms are seldom summarized. Combined with the
contribution of previous work, this paper reorganizes and
combs the edge detection algorithms system and makes a
unified evaluation of the representative edge detection
algorithms in recent years from traditional methods to deep
learning methods.

TRADITIONAL METHODS

Traditional image edge detection methods have been proposed
earlier and developed for a longer period of time. Therefore,
traditional image edge detection methods are more mature,
simple but efficient. However, scholars are still working
tirelessly on the road of refining traditional image edge

FIGURE 1 | Development of edge detection algorithms based on traditional and deep learning methods.
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detection methods, trying to make up for the shortcomings of
previous algorithms and further improve their performance. In
this paper, the traditional edge detectionmethods are divided into
four types: Gradient change-based, Gaussian difference-based,
multi-scale feature-based, and structured learning-based.

Edge Detection Method Based on Gradient
Change
In conventional based algorithms, image edge refers to the abrupt
change between adjacent pixel values of an image, where the
difference between two pixel values is manifested significantly
(Rong et al., 2014). Thus, image edge detection is to detect and
generate image edge gradient by using edge detection operator
combined with differential technology through gray mutation
between pixels (Arbeláez et al., 2010). The commonly used
classical edge detection operators can be divided into first-
order and second-order operators: the first-order difference-
based operators are mainly Sobel, Prewitt, and Robert; the
second-order difference-based operators are mainly Laplace,
LOG, and the optimal Canny operator.

The Robert operator proposed by Lawrence Roberts in 1963
(Ziou and Tabbone, 1998) has a small template and is susceptible
to noise interference, so it is ineffective in generating image
contours with high noise and flat edges, which represent as
inaccurate positioning of contours and coarse extracted
contour lines. Then in 1970, the Prewitt operator (Shrivakshan
and Chandrasekar, 2012) with the size of 3 × 3 was proposed,
which generates the image contour by calculating the difference
of pixel gray value and its image contour generation effect in the
vertical and horizontal directions is better than that of Robert
operator. The Sobel operator (Marr and Hildreth, 1980) proposed
in 1983 combined Gaussian smoothing and first-order difference
derivation, and sharpened the output image by introducing
weight information. The subsequent Laplace operator (Xin
Wang, 2007) used second-order differentiation to extract edge
contour information, which is more suitable for noise-free
images. The Canny operator proposed in 1986 (Canny, 1986)
provides further improvement and refinement of the effect of the
previous operator, which is less susceptible to noise interference
and can detect the weak edges of the image well.

Edge Detection Method Based on Gaussian
Difference
Difference of Gaussian (DoG) is an algorithm for blurred image
enhancement (Fu et al., 2018), and it is equivalent to a band-pass
filter that removes all other frequency information except those
frequencies that are retained in the original image.

FDoG (2007): Kang et al. (2007) improved the new edge
detection method FDoG based on Gaussian difference and Binary
Threshold. The traditional DoG adopts isotropic filter, and the
direction information of the edge is not considered in Gaussian
convolution (Winnemöller et al., 2006). The FDoG algorithm, on
the other hand, integrates the directional information of the local
structure of the image when applying the DoG filter. When the
boundary tangent stream is constructed from the input image, the

image edge information is obtained by calculating the Gaussian
difference based on the stream. This algorithm only calculates the
Gaussian difference in the normal direction of the edge gradient
direction, thus well suppresses the noise and false edges.

XDoG (2011): Since DoG can obtain more aesthetically
pleasing edges and lines without post-processing in edge
detection (Kyprianidis and Döllner, 2008), the DoG operator
has been used in a variety of applications ranging from computer
vision to style rendering.Winnemöller, (2011) improved the DoG
algorithm and proposed an edge detection algorithm XDoG
which can realize the transformation of image advanced style.
Algorithm XDoG adjusts the intensity of the cut-off effect of
Gaussian difference filtering by introducing a new constant, so as
to achieve the effect of image style transformation (Gooch et al.,
2004) in edge detection. At the same time, XDoG transforms the
threshold bisection function of Gaussian difference into a
continuous slope function. Actually, the output of the
algorithm is the weighted average of Gaussian blur results and
Gaussian difference results, which finally realizes image edge
detection with more complex styles and better effects.

Edge Detection Method Based on
Multi-Scale Features
The most challenging problem in edge detection is the scale
variance of the target. In edge detection, objects always have
different shapes and sizes, and there may even be some extremely
small, extremely large or shaped objects, which brings great
difficulties to the accurate identification and accurate
positioning of object edges.

gPb (2011): High quality image segmentation increasingly
depends on image edge detection. Arbeláez et al. (2010) simplified
the problem of image segmentation into the problem of edge
detection, and designed a high-performance edge detection
algorithm gPb. The edge detector combines multiple local cues
such as multi-scale local brightness, color, and texture into a
powerful global structure based on spectral clustering (Arbelaez
et al., 2009). By applying directional gradient operator to each
position in the image, the local information of the image is
calculated, and the incidence matrix of similarity between
pixels is established. Then the feature vector of the encoded
image edge information can be solved by using the incidence
matrix, and combine this feature vector with image local
information to obtain the global edge detection result.
Compared with other global methods based on similarity
information, the algorithm results have been greatly improved.

SGD (2012): Ren et al. (Xiaofeng and Bo, 2012) combined
automatic sparse coding with directional gradient and designed
an image edge detection algorithm SGD based on Sparse Code
Gradients (SCG) unsupervised learning. The algorithm uses
K-SVD (Aharon et al., 2006) for dictionary training and
orthogonal matching tracking algorithm (Pati et al., 1993) for
local neighborhood oriented sparse coding calculation. Before
using linear SVM classification, the local information of the image
is processed by multi-scale pooling and power transform. Finally,
after smoothing and non-maximum suppression, the image edge
result graph is generated. Sparse coding can effectively learn the
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local contrast of the image, and the edge detection performance is
obviously better than the coding results of manually designed
features.

Edge Detection Method Based on
Structured Learning
The early edge detection algorithms consider that the input
and output are always in the form of vector, but the actual
problems may be more complex, and the input or output may
be in the form of sequence and tree. The structured learning
methods have better representation ability for high-
dimensional data, and can capture the detailed information
of the image at the same time.

Sketch Tokens (2013): Lim et al. (2013) applied the idea of
Sketch Tokens to the field of image edge detection, and
proposed a new edge detection method based on
intermediate feature representation of supervised learning
and local edge detection (Sketch Tokens). This method
extracts the contour from the manually marked sketch edge
map to generate a diversified and representative sketch token
class (Arbeláez et al., 2010). Then, the sketch token class is
grouped by K-means algorithm, which is divided into straight
lines to more complex structures. After that, the features of
pixels in natural images are extracted, and the classifier is
trained by random forest algorithm (Criminisi et al., 2012)
using two classes of features, channel index, and self-similarity
(Shechtman and Irani, 2007), to determine whether each point
of an image pixel belongs to a certain sketch token
(i.e., whether it is an edge). Finally, the image edge
detection results are output by non-maximal value
suppression. This method speeds up the inference of
random forest by generating a contour dictionary as the
edge features of pixels, which results in good performance
in both top-down and bottom-up tasks.

SE (2015): Dollár and Zitnick, (2014) proposed a
generalized structured learning algorithm (SE) for edge
detection, which transforms the edge detection problem
into predicting local segmentation masks given a block of
input images. This algorithm uses a random forest structure
to capture the structured information inherent to the image
edge pixels (Kontschieder et al., 2011), then uses structured
labels to determine the splitting function for each branch in the
tree. However, since training random forests using structured
labels faces the challenge that the structured output space is
high-dimensional or complex, and the information gain of
structured labels is not clearly defined. Dollár et al. then
robustly mapped structured labels to a discrete space where
standard information gain measures can be evaluated and each
tree predicts an edge pixel label, followed by a random forest to
aggregate the final image edge detection results by combining
the outputs of multiple trees. The output is also enhanced by
introducing sharpening (SH) and multiscale detection (MS)
(Ren, 2008) modules.

OEF (2015): Hallman and Fowlkes, (2015) proposed an
algorithm for learning boundary detection based on random
forest classifier (Oriented Edge Forests, OEF) by studying the

success of random decision forest in edge detection (Dollár
and Zitnick, 2013). This algorithm trains a random forest
classifier to learn the mapping relationship between image
pixels and label set, and applies the robustness of random
decision forest to detect straight line boundaries in different
positions and directions in the image. Although the algorithm
ignores some curve boundaries and connection points, it still
has great edge detection advantages for most small images that
contains large and smooth objects. Compared with the
structured forest algorithm, the training time of the
algorithm is greatly shortened while the training memory
remains is small.

SemiContour (2016): Inspired by Structured Random
Forests (SRF) (Kontschieder et al., 2011), Zhang et al.
(2016) first tried to apply Semi Supervised Learning (SSL)
to image edge detection. Compared with standard Random
Forests (RF), SRF has the advantages of fast prediction of high-
dimensional data, robustness to label noise (Liu et al., 2013)
and good support for arbitrary size output, making SRF a good
candidate for SSL. At the same time, it is found that sparse
representation technology (Maire et al., 2014) has a strong
ability to capture the contour structure of the image.
Therefore, by embedding the fast sparse coding algorithm
and the construction of low dimensional subspace into the
training of the whole SRF, Zhang et al. Designed an image edge
detection network (SemiContour) based on semi supervised
learning. The network can use very limited training data (three
label data) to obtain competitive detection results.

Based on the traditional edge detection algorithm, the
implementation is simple and fast, but there are also
disadvantages such as thicker generated contour lines,
incomplete and discontinuous image contours. Therefore,
further refinement of the generated edges is needed to
complete the final image edge generation. As shown in
Tables 1, 2, through the performance test of the traditional
edge detection algorithm in the BSDS500 and NYUD dataset, it
is found that traditional edge detection algorithms perform to
some extent below the level of human vision. The Optimal
Dataset Scale (ODS) and Optimal Image Scale (OIS) in the
table are evaluation indicators for the performance of the edge
detection algorithms, and the exact meaning will be described
in subsection 5.

DEEP LEARNING METHODS

With the integration and development of artificial intelligence
and machine learning algorithms in recent years, various
image edge detection algorithms are emerging in the field of
digital image processing. However, because of the influence of
many factors such as localization accuracy, edge detection
accuracy, noise sensitivity, as well as the different accuracy
of detection algorithms, image edge detection methods are
continuously being improved to meet the people’s needs. In
this paper, edge detection methods for deep learning are
classified into three types: Codec-based, network
reconstruction-based, and multi-scale feature fusion-based.
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Edge Detection Method Based on Codec
Since convolutional networks reduce the size of an image after
multiple convolutions and pooling, the final output does not
correspond to every pixel in the original image. Therefore,
codec was introduced, as they can accept input images of any
size and produce output images of the same size. The function
of encoder network is to produce feature images with semantic
information, while the function of the decoder network is to
map the low-resolution feature image output by the encoder
network back to the size of the input image for pixel by pixel
classification.

CEDN (2016): Inspired by the success of full convolution
network and deconvolution network (Noh et al., 2015) in the field
of semantic segmentation, Yang et al. (2016) developed a full
convolution codec network CEDN for edge detection, which is
shown in Figure 2. Such a CEDN network can operate on any
image size. The network uses VGG16 network to initialize the
encoder. At the same time, in order to realize the dense prediction
of image size, the decoder is constructed by alternating anti-
pooling layer and convolution layer, in which the anti-pooling
layer uses the maximum pooling to enlarge the feature map.
When training, they fixed the encoder parameters and only
optimize decoder parameters, which maintains the encoder’s
generalization ability, and the decoder network can be easily
combined with other tasks through learning.

CASENet (2017): Yu et al. (2017) proposed an end-to-end
multi label learning framework CASENet in order to solve the
problem of semantic edge detection and classification under

the framework of full convolution network. The network
includes deep semantic edge learning architecture and jump
connection structure improved based on ResNet (He et al.,
2016), in which category edge activation is shared in the top
convolution layer and fused with the same underlying feature
set. At the same time, a multi-label loss function is proposed to
supervise fusion activation. The network shows improvement
over some popular existing architectures in edge detection and
segmentation. Nested architecture and full convolution
network are used to retain better low-level edge
information, suppress non-edge pixels, and provide detailed
edge location and structure information.

RINDNet (2021): Pu et al. (2021) first proposed RINDNet,
which is an edge detector that can detect four types of edges
simultaneously. Edges can be classified according to different
physical properties: Reflectance Edge (RE), Illumination Edge
(IE), Normal Edge (NE), and Depth Edge (DE). RINDNet is
able to extract efficiently the shared information between
different edges, while flexibly modeling the differences
between them. RINDNet first extracts general features and
spatial cues from the backbone network of all edges, then four
independent decoders, namely RE-Decoder, IE-Decoder, NE-
Decoder and DE-Decoder, are used to explore the edge
effective features with high-level features as input. After
that, these features and spatial information are fused for
predicting the initial results. Finally, the attention map is
obtained by the Attention Module (AM) to aggregate with
the initial results to generate the final prediction.

TABLE 1 | Performance comparison of conventional edge detection based algorithms on the BSDS500 dataset.

Canny FDoG XDoG gPb SCG Sketch
tokens

SE OEF SemiContour

ODS↑ 0.60 0.63 0.65 0.71 0.72 0.73 0.75 0.76 0.74
OIS↑ 0.63 0.65 0.66 0.74 0.74 0.75 0.77 0.79 0.77

TABLE 2 | Performance comparison of conventional edge detection based algorithms on the NYUD dataset.

Canny FDoG XDoG gPb SCG Sketch
tokens

SE OEF SemiContour

ODS↑ 0.47 0.49 0.50 0.53 0.62 0.63 0.65 0.69 0.68
OIS↑ 0.46 0.50 0.51 0.54 0.63 0.63 0.67 0.69 0.70

FIGURE 2 | Architecture of CEDN.
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Edge Detection Method Based on Network
Reconstruction
With the rapid development of deep learning, various network
modules based on deep learning have emerged one after
another. Different modules show different advantages for
tasks, so the combination of modules with different
advantages through network reconstruction has become an
important way to improve the results quality of computer
vision tasks.

N4-Fields (2014): Ganin and Lempitsky, (2014) proposed a
new architecture N4 -Fields based on a simple combination of
convolutional neural networks and nearest neighbor search in
order to address the problem that ideal image transformations
are too difficult to train for neural networks. In this
architecture, convolutional Neural Networks and Nearest
Neighbor search are applied sequentially pixel by pixel of
an image. Pixels are transformed by CNN to low-
dimensional vectors as output, followed by a nearest
neighbor search to retrieve annotated pixels with similar
CNN activations, and then by averaging overlapping regions
to output a transformation of the image. Using nearest
neighbor search at the top layer of the neural network can
significantly improve the results and address the underfitting
effect during neural network training. Thus this architecture
yields better generalizability and edge detection quality than
single-stage architectures that include CNNs alone or perform
nearest neighbor search only on hand-crafted features.

COB (2016): Maninis et al. (2016) proposed an edge
detection algorithm COB with convolution-oriented
boundary structure, which is shown in Figure 3. The
algorithm is a general CNN architecture, which allows end-
to-end learning of multi-scale directional contour, and
combines such information to build a multi-scale oriented
contour detector. Different from previous work, COB uses the
duality between contour detection and hierarchical
segmentation structure (Pont-Tuset et al., 2016), obtains
multi-scale information in a single transmission of the
whole image network, and combines pixel by pixel
classification with contour direction estimation. At the same
time, a novel sparse boundary representation is proposed in
hierarchical segmentation. Through the introduction of
Ultrametric Contour Map (UCM) (Arbeláez et al., 2010)

and Oriented Watershed Transform (OWT), the
performance of edge detection algorithm is significantly
improved, and it can be extended to unknown categories
and datasets.

AMH-Net (2017): Xu et al. (2018) proposed a new attention
guided multi-scale convolutional neural network AMH-Net for
edge detection. The network mainly includes two main
components: A hierarchical architecture for generating richer
and complementary multi-scale feature representations, and a
new Attention Gated Conditional Random Fields (AG-CRF)
model for robust feature refinement and fusion. Hierarchical
networks can learn more multi-scale features than traditional
CNN, while AG-CRF seamlessly integrates the attention
mechanism (Mnih et al., 2014) into a two-level CNN model in
the form of gate (Minka and Gates, 2009) for multi-scale learning.
At the same time, AG-CRF model further enhances its ability to
represent image edges by using the information obtained from
other scales. Finally, the attention mechanism will further
improve the quality of multi-scale information representation,
so as to improve the overall performance of the model.

Edge Detection Method Based on
Multi-Scale Feature Fusion
Convolutional neural networks extract features of the target by
layer-by-layer abstraction, in which an important concept is
perceptual field. The higher layer network has a larger
perceptual field and a strong ability to characterize semantic
information while the lower layer network has a smaller
perceptual field but a strong ability to characterize
geometric detail information. Therefore, fusing features of
different scales is an important means to improve the edge
detection performance.

DeepEdge (2015): based on the close relationship between
object recognition and edge detection tasks, Bertasius et al.
(2015a) changed the traditional bottom-up notion of edge
detection and proposed DeepEdge, a top-down multiscale
bifurcated deep network for edge detection. The network
reuses the computational features of the first five
convolutional layers of the KNet network (Krizhevsky et al.,
2012), which consists of five convolutional layers and a
bifurcated fully connected subnetwork to form a multiscale

FIGURE 3 | Architecture of COB.
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deep network. The image edge information is learned directly
from the original pixels through this end-to-end convolutional
architecture. Of two branches, one of them learns to predict the
edge likelihood (with a classification goal), while the other branch
is trained to predict the proportion of human-labeled image edges
that are consistent (using regression criteria). DeepEdge can
operate on multiple scales simultaneously, resulting in a
significant increase in contour detection accuracy by
combining local and global information of the image.

HED (2015): To address the problem of holistic image-based
training, prediction, multi-scale and multi-level feature learning
(Yuille and Poggio, 1986), Xie and Tu, (2015) developed the
holistic nested edge detection algorithm HED. by utilizing fully
convolutional neural networks and deeply supervised (Lee et al.,
2015) network learning models, HED can automatically learn
rich hierarchical representations to perform image-to-image
prediction. “Holistic” refers to the fact that HED trains and
predicts edges in an end-to-end manner despite the absence of
an explicitly structured output; “Nested” emphasizes the
inherited and progressively refined edge maps generated as
side outputs. This algorithm shows good edge detection results
in performing image-to-image learning by combining multi-scale
and multi-level visual response techniques.

HFL (2015): Inspired by the object-level reasoning used by us
humans in determining whether a particular pixel belongs to an
image edge (Kourtzi and Kanwisher, 2001), Bertasius et al.
(2015b) proposed HFL, a network for predicting image edges
by using a pre-trained object classification network and object-
level features. The network can be viewed as a high to low
approach, where high-level object features provide low-level
edge detection process provides information. The final edge
probability map is generated sequentially through prediction-
related steps of using SE to extract high recall candidate edge
points, up-sampling the original image to a larger dimension,
deep feature interpolation (Long et al., 2015), and fusing fully
connected layers. HFL uses object-level information to predict
edges, which is more consistent with human reasoning. This
network is accurate and efficient for a variety of datasets, as well as
for several advanced vision tasks.

RDS (2016): Liu and Lew, (2016) proposed the use of Relaxed
Deep Supervision (RDS) in convolutional neural networks for
edge detection. The network was constructed with hierarchical
supervised signals and additional relaxed labels to take into
account of the diversity of deep neural networks. The relaxed
labels are first captured from simple yet effective off-the-shelf
detectors such as Canny or SE (Dollár and Zitnick, 2014) and
then are merged with general truth maps to generate RDS.
Finally, RDS is employed to finely guide and fine-tune the
middle layer of the edge network. The RDS contains positive
labels (edges), negative labels (non-edges), and additional relaxed
labels, where these loose labels can be considered as some false
positives (false edges) that are difficult to classify. It is shown that
RDS can use a “delay strategy” to handle false edge information
and achieve better edge detection performance.

RCF (2017): Many current deep learning-based image contour
generation algorithms, that utilize only the last layer of the
convolutional network, are missing detailed information at the

shallow level of the image, and also lead to the problem of non-
convergence of the contour generation model as well as gradient
disappearance. Therefore, Liu et al. (2017) proposed an accurate
edge detector RCF using richer convolutional features, which is
shown in Figure 4. The network is designed as a fully
convolutional network with a VGG16 backbone, removing the
fully connected layer and the fifth pooling layer. RCF
accomplishes image contour generation by fusing the layer-
level features of all convolutional layers, and in this structure,
all the weight parameters are done by automatic learning. Since
the convolutional layers in the original VGG16 network have
different perceptual field sizes, the network learns multi-scale
information of the image that contributes to contour generation.
RCF makes full use of the FPN idea to combine the high-level and
underlying feature map for edge detection (Dai et al., 2016).

LPCB (2018): In order to solve the problem of thick edge in
image prediction, Deng et al. (2018) improved the HED network
and obtained a LPCB network. This network takes VGG16 model
as the backbone and uses the end-to-end full convolution
network of bottom-up/top-down Architecture (Pinheiro et al.,
2016) to predict image edges. A new loss function based on image
similarity is also introduced, which performs accurate, fast, and
convenient image-to-edge prediction, and is also very effective for
classifying unbalanced data. The network automatically learns
image rich layer features, resolves ambiguities in prediction, and
obtains clear prediction results without post-processing.
Compared to the original network, LPBC network uses fewer
parameters yet demonstrates better edge detection performance
benefits.

FIGURE 4 | Architecture of RCF.
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RCN (2019): Kelm et al. (2019) designed the
RefineContourNet (RCN) network based on the RefineNet
(Lin et al., 2017) multi-path refinement network. This network
prioritizes the efficient use of the high-level abstraction
capabilities of the modern classification network ResNet for
object edge detection, which starts with a tensor with the
highest level of features and combines them with a tensor of
lower abstraction levels features layer by layer until it reaches the
lowest level. Fusing high-level, mid-level, and low-level features in
a specific order is more effective for edge detection than using a
simple jump-join architecture. Residual Convolution Unit
(RCU), Multi-Resolution Fusion (MRF), and Chained Residual
Pooling (CRP) modules are also introduced to enhance the
visualization of edge detection.

VCF (2019): Based on the fast feature embedding
convolutional architecture (Caffe) and the Visual Geometry
Group (VGG16) template, Qu et al. (2019) proposed a new
accurate edge detector VCF. Firstly, image features are
detected using the Visual Cross Fusion (VCF) network, and
then, a custom hierarchical weighted cross-entropy loss
function is proposed to maximize the use of the image pixel
set and rationalize the organization of contested pixels. Finally,
the cross-network fusion layer is used to refine the edge features
of the image. the VCF model extracts the features of multi-level
hierarchy by two methods, parametric downscaling and cross-
fusion of the fully connected layer, respectively, to achieve end-to-
end image edge detection. The improvement consists of three
main components: the gradual reduction of the feature dimension
of the small convolutional kernel, the custom loss function, and
the cross-fusion structure.

BDCN (2019): In order to extract edge contours using multi-
scale information of images, He et al. (2019) proposed a network
structure BDCN using a bidirectional cascade, where the output
of each layer is supervised by a contour label of a specific scale that
is learned through the network itself. ID Blocks are the basic
components of this network, and each ID Block is learned by a
bidirectional cascade structure to generate different supervision
strategies, while the output of two edge predictions is passed
separately to the shallow and high-level structures of the network.
To enhance the features output from each layer, a Scale
Enhancement Module (SEM) similar to the ASPP structure is
again used to generate multi-scale features, which consists of
multiple parallel convolutions with different expansion rates,
effectively increasing the perceptual field of the network
neurons (Chen et al., 2017), and finally outputting the result
of multiple multi-scale feature fusion.

DexiNed (2020): Inspired by HED and Xception (Chollet,
2017) networks, Soria et al. (Poma et al., 2020) proposed
DexiNed, a deep learning-based edge detector. This network
can be used for any edge detection task to generate thin edge
maps visible to the human eye without prior training or fine-
tuning process. DexiNed can be regarded as two sub-networks:
Extremely dense initial network (Dexi) and Up-sampling Block
(UB). This network consists of a total of six encoders, and each
main block outputs the corresponding feature mapping for
generating intermediate edge maps using the up-sampling
block. All edge mappings generated by the up-sampling block

will be connected at the end of the network to provide filters for
learning and to produce fused edge mappings. One of the key
components of edge refinement is UB, which consists mainly of
convolutional and deconvolutional layers.

DSCD (2020): Deng and Liu, (2020) proposed a novel end-to-
end edge detection system, DSCD, which effectively utilizes
multi-scale and multi-level features to produce high-quality
object edge output (Deng et al., 2018). First, to address
localization and sharpness, a novel loss function based on the
structural similarity of two images is proposed to effectively
minimize the distance between predicted and true values. The
system uses a VGG16 (Simonyan and Zisserman, 2014) network
as an encoder to extract multi-scale andmulti-level features, and a
super-convolutional module is constructed on top of the encoder
to directly abstract the high-level features and avoid overfitting
problems. Finally, the decoder is used to fuse the high-level
features and restore them to the original image size.
Compared with conventional codec networks, this system is
able to classify better background texture and noisy pixels,
generate clear and accurate image edges, and also excel in
crowd counting.

PiDiNet (2021): It is important to develop lightweight
architectures and achieve a better trade-off between accuracy
and efficiency of edge detection (Howard et al., 2017). Su et al.
(2021) have designed a simple, lightweight and efficient edge
detection architecture called Pixel Difference Network (PiDiNet)
to address these issues. PiDiNet adopts a novel pixel difference
convolution (PDC) to integrate the traditional edge detection
operator into the popular convolution operation in modern
CNN, which enhances the performance of edge detection task.
PDC can easily capture image gradient information conducive to
edge detection, while retaining the powerful learning ability of
deep CNN to extract information with semantic significance.
Also, PDC does not rely on the edge information of the manual
detector, but directly integrates the gradient information
extraction process into the convolution operation, which has
better robustness and edge detection accuracy. Thus, PiDiNet
network can still realize edge detection efficiently, robustly, and
accurately when it occupies low memory.

The rapid development of deep learning is driving the
development process of many tasks including image
classification, target detection, and semantic segmentation.
Nowadays, image edge detection using CNNs has become a
new trend due to their extremely strong learning and
characterization capabilities. As shown in Tables 3, 4,
experiments on the BSDS500 and NYUD dataset were able to
conclude that the performance of deep learning-based edge
detection algorithms has surpassed that of human vision.

BACKBONE NETWORK

Backbone networks are the basic feature extractors for edge
detection tasks, and a powerful backbone network can extract
richer image features. Most current deep learning-based edge
detection models use AlexNet, VGG16, and ResNet as backbone
networks.
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AlexNet Network
AlexNet (2012): Alex et al. (Krizhevsky et al., 2012) proposed the
AlexNet network at the ImageNet competition in 2012. The
network won the ImageNet LSVRC that year. The accuracy
rate was much higher than the second place, which was
another highlight of deep learning. AlexNet network contains
8 learning layers—5 convolutional layers and 3 fully connected
layers, containing 60 million parameters and 650,000 neurons.
Relu activation functions, data augmentation, Dropout and
cascading pooling operations were also introduced to prevent
overfitting and improve the overall generalizability of the model.
The authors found that the depth of the model seems to play an
important role in the performance of the neural network, a
finding that also inspired the later structural design of the
VGG and ResNet networks. The edge detection algorithms
AMH-Net and N4 -Fields networks based on network
reconstruction then use the AlexNet network as the base network.

VGG16 Network
VGG16 (2014): Simonyan and Zisserman, (2014) designed the
deep convolutional network VGG16 consisting of 13
convolutional layers and 3 fully connected layers in order to
investigate the accuracy of convolutional network depth in large-
scale image recognition. Simonyan et al. found that using a very
small 3 × 3 convolutional filter to push the neural network depth
to 16–19 weight layers can significantly improve the VGGmodel.
It utilizes a deeper network structure combined with smaller
convolutional kernels and pooling kernels, allowing it to obtain
more image features while effectively controlling the parameter
size of the model, avoiding a large amount of computation and
complex structure while achieving advanced performance. In
addition, the VGG model has good generalizability and can be
well generalized to other image processing fields. So, the model is
now the most popular backbone network for deep learning-based
image edge detection algorithms.

ResNet Network
ResNet (2016): Although the depth of the network is crucial to
the performance of the model, it is empirically believed that deep
networks extract more complex feature structures. It has been
found experimentally that as the depth of the network increases,
the gradient disappears or explodes, leading to saturation or even
a decrease in network accuracy. He et al. (2016) designed a deep
residual network (Deep Residual Network (ResNet). The authors
identified the “Degradation” of the deep model and proposed the
solution of “Shortcut Connection”. ResNet, through the
introduction of residual learning, has greatly eliminated the
problem of difficulty in training neural networks due to
excessive depth, making the depth of the network exceed 100
layers for the first time, and can even exceed 1,000 layers. The
design of the edge detection models COB and AMH-Net is based
on some of the ideas of ResNet.

EVALUATION INDICATORS

Optimal Dataset Scale (ODS) and Optimal Image Scale (OIS) are
the most widely used and representative evaluation metrics in
assessing image contour generation results, in addition to the
Frames Per Second (FPS) and Precision-Recall (PR) curves that
are often used. The F in ODS-F and OIS-F represents the F value,
which is the summed average of the Precision (P) and Recall (R),
and is expressed as

F − Score � (1 + β2) · Precision · Recall
β2 · Precision + Recall

(1)

So, by adjusting the value of β, the degree of significance of
precision and recall can be controlled. Especially, if β � 1,

F − Score � 2Precision · Recall
Precision + Recall

(2)

TABLE 3 | Performance comparison of deep learning-based edge detection algorithms on the BSDS500 dataset.

N4-fields DeepEdge HED HFL CEDN RDS COB CASENet RCF

ODS↑ 0.75 0.76 0.78 0.77 0.78 0.79 0.79 0.79 0.80
OIS↑ 0.77 0.78 0.80 0.79 0.79 0.81 0.80 0.81 0.82

— AMH-Net LPCB VCF RCN BDCN DexiNed DSCD PiDiNet RINDNet

ODS↑ 0.79 0.81 0.81 0.82 0.82 0.83 0.82 0.83 0.83
OIS↑ 0.83 0.83 0.82 0.83 0.84 0.84 0.85 0.85 0.84

TABLE 4 | Performance comparison of deep learning-based edge detection algorithms on the NYUD dataset.

N4-fields DeepEdge HED HFL CEDN RDS COB CASENet RCF

ODS↑ 0.61 0.68 0.74 0.73 0.75 0.65 0.76 0.77 0.75
OIS↑ 0.63 0.69 0.76 0.74 0.76 0.74 0.75 0.76 0.77

— AMH-Net LPCB VCF RCN BDCN DexiNed DSCD PiDiNet RINDNet

ODS↑ 0.77 0.76 0.78 0.77 0.77 0.78 0.80 0.79 0.80
OIS↑ 0.78 0.77 0.78 0.79 0.77 0.77 0.79 0.80 0.80
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then according to Eq. 2, precision rate and recall rate are
considered equally important and both have the same weight.
If β � 0,

F − Score � Precision (3)
else if β � ∞,

F − Score � Recall (4)
According to Eqs 1, 3, 4, if β< 1, then precision rate P is more

important; else if β> 1, then recall rate R is more important
(unless P = R, Eq. 7). Besides,

F − Score � Precision(1 + β2) (5)
while Recall> > β2Precision. On the contrary,

F − Score � Recall
1 + β2

β2
(6)

while β2Precision> >Recall. Interestingly enough,
when Precision � Recall,

F − Score � Precision � Recall (7)
which indicates that F − Score is independent of β. ODS and OIS
indicate different ways of setting the threshold β.

ODS: Fixed contour threshold is also known as global best,
dataset fixed scale, and optimal on the detection metric dataset
scale, which simply means that the same threshold is set for all
images, i.e., a fixed threshold β is selected and applied to all
images so that the F-score on the whole dataset is maximized.

OIS: Single image optimal threshold is also called optimal on
single image, optimal threshold for each image, optimal on the
image scale, which simply means that on each image a different
threshold β is selected that maximizes the F-score of that image.

FPS: Frames per second, i.e., how many images can be
detected by the target network per second and how often the
images are refreshed. It is used to evaluate the speed of target
detection, the shorter is the time the faster is the detection speed.

P-R: PR curve is a curve drawn with two variables, precision
and recall, where precision is the vertical coordinate and recall is
the horizontal coordinate, and is widely used in the field of
information extraction to indicate the proportion of positive
samples that are actually positive. It is a descending ranking of
the prediction results of the network according to the numerical
magnitude of the confidence level, followed by the prediction of
the samples in the order of the ranking, and finally the current
precision and recall are calculated.

RELATED DATASETS

BSDS500
The Berkeley Segmentation Dataset (BSDS500) was proposed for
image segmentation and object contour detection, by the Berkeley
computer vision group. The dataset contains a total of 500
images, including 200 training images and 200 test images,
and the remaining 100 validation images; the true values of

the dataset are saved in. mat files, divided into segmentation
and boundaries. Each image is labeled by five people, so there are
corresponding five “true” values. BSDS500 is now the most used
dataset in the field of edge detection.

NYUD
The NYUD dataset is derived from an ECCV 2012 paper (Indoor
Segmentation and Support Inference from RGBD Images)
(Silberman et al., 2012), where most existing work ignores
physical interactions or applies only to neat rooms and
hallways. Instead, this dataset is proposed to parse typical,
messy, physically interacting indoor scenes and recover the
support relationships. the NYUD dataset consists of 1,449
pairs of densely labeled RGB and depth images, containing
381 training images, 414 validation images and 654 test
images, each of 640 × 480 size.

PASCAL-VOC
PASCAL VOC (Everingham et al., 2015) provides a standardized
and excellent dataset for image recognition and classification, and
an image recognition challenge was held every year from 2005 to
2012. The main objective of this challenge is to recognize objects
in real scenes in a number of categories, and the objects mainly
consist of 20 classes. The most widely used datasets are VOC 2017
and VOC 2012. VOC 2007 contains a total of 9,963 labeled
images, consisting of training, testing, and validation, with a total
of 24,640 labeled objects; the training and validation sets of VOC
2012 contain all the data from the challenge between 2007 and
2011, with a total of 11,540 images and 27,450 labeled objects. The
test set contains data from 2008 to 2011. The VOC 2012 training
and validation sets for the segmentation task have 2,913 images
and 6,929 labeled objects.

PASCAL-Context
The PASCAL-Context (Mottaghi et al., 2014) dataset consists of
two parts: the VOC 2010 semantic segmentation dataset and the
Context annotation. A total of 10,103 images are included,
including 4,998 images in the training set and 5,105 images in
the validation set, and a total of 540 categories are annotated,
which are divided into three major categories: Objects, materials,
and mixtures. Although there are many kinds of objects
annotated in PASCAL-Context, there are only 59 commonly
used categories, so this sub-category is mostly applied in practical
applications for research and experiments.

MultiCue
The MultiCue dataset consists of short binocular videos for edge
detection by learning psychophysics. One of the videos consists of
100 frames of images of natural scenes captured by a challenging
stereo camera.

BIPED
The BIPED dataset comes from a WACV 2020 article DexiNed,
which proposes this dataset with very fine and complete edge
information labeling based on the previous datasets that have
more or less incomplete edge information, making it difficult to
train the model and other problems.
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CONCLUSION

In this paper, we have organised the edge detection algorithms
based on traditional learning and deep learning in detail, and have
summarized the advantages and structure of each method. We
also found that deep learning is more andmore widely used in the
field of edge detection; while improving the detection accuracy, it
sacrifices the complexity of an algorithm, network, and training.
Therefore, future developments of edge detection should pay
more attention to the lightweight, mobility, and interpretability of
the model. In addition, due to the time-consuming and high cost
of manually labeling images, the edge detectionmodel should also
develop in the direction of weak supervision and no supervision.
The future focus can be shown as follows:

1) Multi-scale fusion of information: Both high-level and low-
level information are crucial components for an image itself.
Therefore, reasonable fusion of multi-scale information of
images can significantly improve the visualization and
accuracy of edge detection. Parallel multi-branch fusion
structure or serial jump connection fusion structure can
be used.

2) Lightweight networks: In view of the current problems of
complex model structures and training difficulties, we should
further reduce the parameters and complexity of the models
so that they can run adequately on a variety of devices and
resources. Lightweight networks can be mainly divided into
two major categories: Lightweight network structure design
and model compression, while model compression can be
specifically divided into quantization, pruning, distillation,
low-rank decomposition, etc.

3) Explainability: Nowadays, most models are designed based on
empirical judgment, and the designers cannot explain the
specific principles, which also leads to some models having
good or bad test results, and the uncertainty inside the
network makes the deep learning models not widely and
easily applied for better living. The interpretability of the
model is to explain the specific reasons why the network is
good through our theoretical knowledge and experimental
reasoning, rather than just our subjective assumptions.

4) Weakly supervised and unsupervised: Due to the high cost of
data labeling and the inability to obtain all truth data labels for

many domain tasks, the use of weakly supervised or
unsupervised learning becomes a good choice, which can
achieve the desired goal by using a small number of data
labels. The development of weakly supervised and
unsupervised algorithms is important to reduce the cost of
labeling and increase the flexibility of the network.

5) Video edge detection: With the development of unmanned
vehicles, human pose estimation, etc., video segmentation is
getting more and more attention. In all of these, edge contour
is one of the most basic features of images, so for video real-
time edge detection, more attention should also be paid to
developing computationally more efficient algorithms on
multiple types of devices.
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