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Abstract

This thesis is concerned with two topics that are of interest for the theory

of aperiodic order. In the first part, the similar sublattices and coincidence

site lattices of the root lattice A4 are analysed by means of the quaternion

algebra H(Q(
√

5)). Dirichlet series generating functions are derived, which

count the number of similar sublattices, respectively coincidence site lattices,

of each index.

In the second part, several strategies to derive upper and lower bounds

for the entropy of certain sets of powerfree words are presented. In par-

ticular, Kolpakov’s arguments [49] for the derivation of lower bounds for

the entropy of powerfree words are generalised. For several explicit sets we

derive very good upper and lower bounds for their entropy. Notably, Kol-

pakov’s lower bounds for the entropy of ternary squarefree, binary cubefree

and ternary minimally repetitive words are confirmed exactly.
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Introduction

Root lattices and words play an important role in the theory of aperiodic

order, which is concerned with systems that display order without period-

icity, see [7] for a general introduction to the field. This thesis is split into

two parts; Part I is about a particular root lattice, the root lattice A4, while

Part II deals with powerfree words.

Consider a general lattice Γ in the Euclidean space Rd and let σ be a

similarity of Rd, i.e. a non-zero linear map of Rd with 〈σ(u), σ(v)〉 = c〈u, v〉

for all u, v ∈ Rd, where c > 0 and 〈.|.〉 denotes the standard Euclidean

scalar product. If σ(Γ ) ⊂ Γ , then the sublattice σ(Γ ) is called a similar

sublattice (SSL) of Γ . Every lattice Γ possesses trivial SSLs of the form

mΓ , where m ∈ N. Lattices with a rich point symmetry structure, like

root lattices, have many non-trivial SSLs in addition. Several lattices have

already been investigated with respect to their SSLs, compare [11, 12, 23,

14] and references given there. In [23], the possible indices of SSLs for

many root lattices, including the root lattice A4, were derived. However,

the question how many different SSLs of each index exist, has remained

open for the root lattice A4. In Part I we answer this question by deriving

a Dirichlet series generating function for the number of SSLs of each index;

compare also [9].

The classification of SSLs of a lattice Γ is closely related to that of its

coincidence site lattices; see for example [35]. A finite-index sublattice of

Γ of the form Γ ∩ RΓ , where R is an orthogonal map of Rd, is called a

coincidence site lattice (CSL) of Γ . CSLs are used in crystallography in

the description and understanding of grain boundaries, compare [3] and

references given there. For many lattices in dimension d ≤ 4, except for the

1



2 INTRODUCTION

root lattice A4, the arithmetic function which counts the number of CSLs of

each index has been derived; see for instance [71, 3, 88, 13, 15]. In Part I

we derive this arithmetic function and the corresponding Dirichlet series for

the root lattice A4; compare also [8, 40, 41].

Generally, the root lattice A4 is of particular interest, because it forms

the natural setting, in the sense of a minimal embedding, for the description

of the Penrose tiling as a cut and project set, see for example [10]. The

Penrose tiling is a classical example for an aperiodic tiling. Some of the

various other applications of the root lattice A4 are described in [23].

Several attempts have been made to get further insight into the theory

of classifying SSLs and CSLs for a general lattice or module in Rd, see

[92, 91, 34, 42] and references given there for recent publications. However,

results for general lattices or modules remain sparse. Another generalisation

is the analysis of multiple CSLs, i.e. finite-index sublattices of a lattice Γ

which have the form Γ ∩R1Γ ∩ . . .∩RmΓ where R1, . . . , Rm are isometries,

see [6, 88, 89].

Substitution sequences often provide interesting models for aperiodic

systems in one dimension. For example, the famous Thue-Morse morphism

(0.1) % :
0 7→ 01

1 7→ 10
,

which was first defined by Thue [84, 83] at the beginning of the 20th century

and later rediscovered by Morse [61], generates, via iteration on the initial

word 0, the infinite word

0110100110010110100101100110100110010110011010010110100110010110 . . . .

This word clearly shows some kind of order, but already Thue proved that

it is cubefree [84], which means that it does not contain any subword of the

form 03 = 000, 13 = 111, (01)3 = 010101, (10)3 = 101010 and so on. Its
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cubefreeness is a consequence of the fact that the morphism % maps cubefree

words to cubefree words. A morphism with this property is called cubefree.

In general, the iteration of a powerfree morphism is a convenient way to

produce infinite powerfree words. However, systems produced in this way

have zero combinatorial entropy (see Definition 4.12). A natural generalisa-

tion to an interesting set with positive entropy is provided by the set of all

powerfree words.

The investigation of powerfree words is one particular aspect of combina-

torics on words. The book series [55, 56, 57] gives a comprehensive overview

of the field. Since its initiation by Thue, it has attracted considerable inter-

est particularly in the past decades [16, 25, 18, 19, 44, 51, 36, 26, 76, 17],

and continues to do so, see [75, 64, 77, 49, 65, 66] for some recent work.

Beyond the field of combinatorics on words and aperiodic order, substitu-

tion sequences, such as the Thue-Morse sequence, have been investigated for

instance in the context of symbolic dynamics [72, 33, 1].

Part II is about the combinatorial entropy of the set of powerfree words.

Due to the fact that every subword of a powerfree word is again powerfree,

the entropy of powerfree words exists as a limit. It is a measure for the

exponential growth rate of the number of powerfree words of length n. So

far neither an explicit expression for the entropy of powerfree words nor an

easy way to compute it numerically is known. Nevertheless, there are several

strategies to derive upper and lower bounds for this limit. Upper bounds

can be obtained, for example, by the enumeration of all powerfree words

up to a certain length. Until recently, all methods to achieve lower bounds

relied on powerfree morphisms. However, the lower bounds obtained in this

way are not particularly good, since they are considerably smaller than the

upper bounds, which are close to numerical estimates of the entropy. A com-

pletely different approach, introduced recently by Kolpakov [49], provides

surprisingly good lower bounds for the entropy. Here, several methods to



4 INTRODUCTION

derive upper and lower bounds including Kolpakov’s are explained in detail

and applied to a number of examples.

The thesis is organised as follows. Chapter 1 introduces the general

notation and terminology of Part I. The A4 root lattice is presented in a

realisation ensuring that it is contained in a particular maximal order of the

quaternion algebra H(Q(
√

5)) called the icosian ring. Its powerful arithmetic

structure is presented and used to analyse its relation to the root lattice A4.

We proceed with the introduction of primitivity for icosians as well as for

sublattices of A4. Finally, we provide some tools concerning the relation of

the factorisation in the icosian ring and Z[τ ].

Chapter 2 analyses the SSLs of the root lattice A4 while Chapter 3

deals with its CSLs. In both chapters we derive a Dirichlet series generating

function which gives the number of SSLs, respectively CSLs, of each index.

In Chapter 2 we establish a parametrisation of primitive SSLs by primitive

icosians. This provides the basis of the derivation of the Dirichlet series for

the SSLs as well as the CSLs in Chapter 3.

In the first chapter of Part II, Chapter 4, we introduce the basic notation

and definitions for powerfree words and morphisms. We proceed with a

summary of relevant results for the characterisation of integer powerfree

morphisms. In particular, we are interested in the question how to test a

specified morphism for powerfreeness. We conclude with a section about the

combinatorial entropy of powerfree words. After giving the definition, we

introduce the explicit sets whose entropy is analysed in the course of this

thesis. We continue with a review on how powerfree morphisms lead to lower

bounds for the entropy. Two methods to derive upper bounds are introduced.

The first is based on the enumeration of powerfree words of length n while

the second, more efficient method relies on the central definition of open

words and a matrix ∆m, based on all open words of length m, whose Perron

eigenvalue provides an upper bound for the entropy.
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What it means for a word to be open is better understood in the context

of symbolic dynamics. This leads to Chapter 5 in which powerfree words and

their entropy are considered from the point of view of symbolic dynamics.

Moreover, we introduce the topological entropy of a continuous map on a

compact topological Hausdorff space and show that for powerfree words, as

for any shift space, the combinatorial and topological entropy coincide.

In Chapter 6 we give a detailed explanation of Kolpakov’s method to de-

rive lower bounds for the entropy of powerfree words, see [49] for a sketch of

the application of his method to three examples. We generalise his method,

which starts with the Perron-Frobenius eigenvalue of the matrix ∆m and

leads, via several inductive steps, to an estimate of the number of certain

power containing words. This estimation results in a procedure to calculate

lower bounds for the entropy of powerfree words.

It turns out that for the examples we have analysed, very good upper and

lower bounds for the entropy are achieved with the methods based on the

matrix ∆m. This matrix seems to be the central object in the investigation

of the entropy of powerfree words.

We conclude with Chapter 7 where we review and apply the introduced

methods to the two classical cases of ternary squarefree and binary cube-

free words. For these cases we confirm Kolpakov’s results from [49] exactly.

However, for ternary minimally repetitive words our results are slightly dif-

ferent although our lower bound is the same. Moreover, we apply the best

methods to three new cases and obtain very good upper and lower bounds

for the entropy in two of the three cases. In the third we only get an upper

bound while the lower bound requires a computational effort that is beyond

our current computational capacities.





Part I

The Root Lattice A4





CHAPTER 1

Basics and Preparations

This chapter introduces the general notation and terminology of the

first part of this thesis. We present a particular realisation of the A4 root

lattice in four dimensions which is motivated by the observation that it is

contained in the so-called icosian ring. The powerful arithmetic structure

of the icosian ring within the quaternion algebra over the real algebraic

number field Q(
√

5) is presented and the tools required in Chapter 2 and

3 are provided. We conclude with a detailed analysis of the relation of the

icosian ring and the root lattice A4.

1.1. Generalities

1.1.1. Notation. The symbols Z,Q,R and C denote the integer, ra-

tional, real and complex numbers, respectively. Natural numbers are always

considered to be positive, i.e. N = {1, 2, 3, . . .} . If we include 0 we write

N0 := N∪{0}. Moreover, we set R+ := {α ∈ R | α > 0}. The d-dimensional

Euclidean space is referred to as Rd. The Euclidean inner product of two

vectors x, y ∈ Rd is denoted by

〈x|y〉 = xty =
d∑
i=1

xiyi.

The symbol ⊂ is understood to include equality of sets. The cardinality of

a set S is denoted by |S|.

For algebraic objects, e.g. groups, modules, rings, ideals, we follow the

definitions in [53]. Let S ⊂ Rd and R be a subring of R, then 〈S〉R stands

for the R-hull of S. As usual, R× denotes the group of units of a given ring

R with unit. For every Abelian group G we define G• := G\{0}. The direct

sum of two Abelian groups G1 and G2 is denoted by G1 ⊕G2.

9



10 1. BASICS AND PREPARATIONS

The general linear, the orthogonal and the special orthogonal group of

Rd are referred to as GL(d), O(d) and SO(d) respectively. Occasionally, the

corresponding groups are considered for subrings of R, which will be clearly

specified.

1.1.2. Lattices. A free Z-module Γ ⊂ Rn of rank d whose R-span is

isomorphic to Rd is called a d-dimensional Euclidean lattice or lattice for

short. Clearly, Γ ⊂ Rn is a lattice if and only if, there are d R-linearly

independent vectors b1, . . . , bd ∈ Rn, such that

(1.1) Γ = 〈b1, . . . , bd〉Z =
{∑d

i=1mibi | mi ∈ Z
}
.

The set {b1, . . . , bd} is called a basis of Γ . It is uniquely determined up to

a matrix Z ∈ GL(d,Z). A matrix BΓ whose column vectors form a basis of

Γ is called a basis matrix of Γ and GΓ := Bt
ΓBΓ is referred to as a Gram

matrix of Γ .

Most of the time, we consider d-dimensional lattices in Rd. So if it is

not clearly specified otherwise, a lattice Γ stands for a d-dimensional lattice

in Rd. The dual lattice of Γ ⊂ Rd is defined as

(1.2) Γ ∗ := {x ∈ Rd | 〈x|y〉 ∈ Z for all y ∈ Γ} .

Note that BΓ ∗ = (B−1
Γ )t.

A lattice Γ is called rational if 〈u|v〉 ∈ Q for u, v ∈ Γ . If Λ ⊂ Γ is a

subgroup of finite subgroup index in Γ it is called a sublattice of Γ . The

index [Γ : Λ] is defined as the number of cosets of Λ in Γ . Let us recall a

helpful result from [21], which reveals the geometric meaning of the index,

as the quotient of the volumes of the fundamental domains.

Lemma 1.1. Let Γ ⊂ Rd be a lattice with basis matrix BΓ . Λ is a

sublattice of Γ if and only if there exists an invertible integer matrix Z such

that BΓZ is a basis matrix for Λ. The corresponding index is [Γ : Λ] =

|det(Z)|.



1.2. SETTING IN FOUR DIMENSIONS 11

1.1.3. Modules. For some parts of our analysis the concept of a lattice

has to be generalised to free S-modules Γ ⊂ Rn of rank d, where S is the

ring of integers of a real algebraic number field K of degree r. In other

words, such a module is given by

(1.3) Γ = 〈b1, . . . , bd〉S :=
{∑d

i=1mibi | mi ∈ S
}

where b1, . . . , bd ∈ Rn are linearly independent over R. Note that S is also a

free Z-module of rank r and thus Γ can be seen as a free Z-module of rank

rd. Basis and Gram matrices are defined analogously to the lattice case. A

lattice in Rn can be interpreted as such an S-module with K = Q and thus

S = Z.

Every Z-module is an Abelian group. Frequently, we will apply the

following well known result about Abelian groups.

Lemma 1.2. Let Γ1 be an Abelian group and let Γ2 be a subgroup of Γ1

with [Γ1 : Γ2] = n. Then, nΓ1 is a subgroup of Γ2.

Proof. Obviously, nΓ1 is an Abelian group. For every g ∈ Γ1, g + Γ2

is an element of the finite factor group Γ1/Γ2 and generates a finite cyclic

subgroup. Its order divides n by Lagrange’s Theorem, see for example [53,

Ch. 1, Proposition 2.2]. Consequently, n(g + Γ2) = Γ2, which means that

ng ∈ Γ2. �

1.2. Setting in Four Dimensions

1.2.1. The Root Lattice A4. The root lattice A4 is usually defined

as

(1.4)
A4 : = {(x1, . . . , x5) ∈ Z5 | x1 + . . .+ x5 = 0}

= 〈e1 − e2, e2 − e3, e3 − e4, e4 − e5〉Z,

where ei denote the standard Euclidean basis vectors in R5. Clearly, the

lattice A4 lies in a 4-dimensional hyper-plane of R5, see for example [24]. Its

Dynkin diagram is given in Figure 1.1. Following [22] we prefer a description
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e2 − e3

e3 − e4
e4 − e5

e1 − e2

Figure 1.1. Standard basis representation of the root lat-
tice A4.

of the root lattice A4 in R4, since this enables us to use the arithmetic of

the quaternion algebra H(Q(
√

5 )); see [48] for a detailed introduction to

Hamilton’s quaternions. Let τ = (1 +
√

5)/2 be the golden ratio, then the

lattice

L :=
〈
(1, 0, 0, 0), 1

2(−1, 1, 1, 1), (0,−1, 0, 0), 1
2(0, 1, τ−1,−τ)

〉
Z(1.5)

is the root lattice A4 relative to the inner product 2〈x|y〉. The Gram matrix

of L reads

(1.6) GL = 1
2



2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2


,

which shows that L is a scaled copy of the root lattice A4 in its standard

representation with the basis from Figure 1.1. Note that with the lattice

bases from (1.5) and Figure 1.1 the Gram matrices have the relation

(1.7) GA4 = 1
2GL.

1.2.2. Quaternions and the Quadratic Number field K. For brevity

from now on we use the notation

(1.8) K := Q(
√

5 ) = {a+ b
√

5 | a, b ∈ Q},

which is a real quadratic number field, see [38] for a detailed analysis. The

quaternion algebra H(K) is explicitly given as H(K) = K ⊕ iK ⊕ jK ⊕ kK,
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where the generating elements satisfy Hamilton’s relations

i2 = j2 = k2 = ĳk = −1.

Since H(K) and K4 are isomorphic as K-vector spaces we identify the

quaternion a+ ib+jc+kd with the row vector (a, b, c, d). H(K) is equipped

with a conjugation . which is the unique map that fixes the elements of the

centre of the algebra K and reverses the sign on its complement. If we write

q = (a, b, c, d) = a+ ib+ jc+ kd, this means

(1.9) q = (a,−b,−c,−d).

Note that for p, q ∈ H(K), we have pq = q p.

The reduced norm and trace of q = (q1, q2, q3, q4) ∈ H(K) are defined by

(1.10) nr(q) := qq =
4∑
i=1

q2i = qq and tr(q) := q + q = 2q1

where we canonically identify an element α ∈ K with the quaternion

(α, 0, 0, 0). For any q ∈ H(K), |q| denotes its Euclidean length, which need

not be an element of K. Nevertheless, one has |rs| = |r||s| for arbitrary

r, s ∈ H(K). Due to the geometric meaning, we use the notations |q|2 and

nr(q) in parallel. Obviously, the inverse of q ∈ H(K)• is given by

q−1 = 1
nr(q)

q.

Note that for p, q ∈ H(K) the identity

(1.11) nr(p+ q) = nr(p) + nr(q) + tr(pq),

holds, which shows that nr is a quadratic form on the vector space H(K).

Moreover, we have nr(pq) = nr(p) nr(q), i.e. nr is multiplicative, and tr(pq) =

tr(qp).
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An element q ∈ H(K) is called integral when both nr(q) and tr(q) are

elements of

(1.12) Z[τ ] := {m+ nτ | m,n ∈ Z},

which is the ring of integers of the quadratic field K, see [38] for a detailed

analysis. Here, we only recall the properties which are needed later.

The algebraic conjugation in K, as determined by the map
√

5 7→ −
√

5,

is denoted by ′. For α = a+ bτ ∈ K we define its absolute norm as well as

its trace as

N(α) := |αα′| = |(a+ bτ)(a+ bτ ′)| = |a2 + ab− b2|(1.13)

Tr(α) := α+ α′ = 2a+ b.(1.14)

Clearly, α ∈ Z[τ ] implies N(α) ∈ N. Moreover, the absolute norm is

multiplicative, i.e. for α, β ∈ K we have N(αβ) = N(α) N(β). The units

of Z[τ ] are

(1.15) Z[τ ]× := {α ∈ Z[τ ] | N(α) = 1} = {±τn | n ∈ Z} ;

see [38, Theorem 257]. An element α ∈ Z[τ ] is called an associate of

β ∈ Z[τ ], if αβ−1 ∈ Z[τ ]×. Since K is a Euclidean field, see [38, Theorem

247], the ring Z[τ ] is a principal ideal domain. Hence every ideal a in Z[τ ]

has the form a = αZ[τ ] for some α ∈ Z[τ ]. If αZ[τ ] is a non-zero ideal, its

index, i.e. the number of cosets of αZ[τ ] in Z[τ ], is given by

[Z[τ ] : αZ[τ ]] = N(α) = |αα′|,

compare [34, Theorem 2.7]. The Dirichlet series generating function for the

number of non-zero ideals of a given index is the Dedekind zeta function of

the algebraic number field K, see [87]. It reads

ζK(s) =
∑

a⊂Z[τ ]

1
[Z[τ ] : a]s

=
∞∑
m=1

aK(m)
ms

,
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where a runs through the non-zero ideals of Z[τ ] and aK(m) denotes the

number of ideals of index m. The prime numbers of Z[τ ] are characterised

as follows, see [38, Theorem 257].

Theorem 1.3. Let π = (m+ nτ) ∈ Z[τ ], such that N(π) = p is a prime

number of Z. Then, the associates of the following elements are the prime

numbers of Z[τ ]:

(1)
√

5

(2) p, if p ≡ ±2 mod 5

(3) (m + nτ) and (m + nτ ′) with (m + nτ)(m + nτ ′) = p, if p ≡ ±1

mod 5.

�

The prime numbers of the first, second and third type, are called ram-

ified, inert and splitting primes, respectively. They lead to the following

explicit expression of the zeta function

(1.16)
ζK(s) = 1

1− 5−s
∏

p≡±1(5)

1
(1− p−s)2

∏
p≡±2(5)

1
1− p−2s

= 1 + 1
4s + 1

5s + 1
9s + 2

11s + 1
16s + 2

19s + 1
20s + 1

25s + 2
29s + . . . ,

see [12] for further details including asymptotic properties.

1.2.3. Orders and Ideals. We call a finitely generated Z[τ ]-module

I ⊂ H(K) with 〈I〉K = H(K), a full Z[τ ]-module (in H(K)). Note that in

[85, 13] these modules are called ‘ideals’. Here, the term ‘full Z[τ ]-module’

is used instead, in order to avoid confusion with ideals from ring theory.

An order is a full Z[τ ]-module that is also a subring of H(K) containing

1. It is called maximal when it is not contained in any larger order which is

not H(K), see for example [85, Chap. 1, Sec. 4] and [74] for details.

Clearly, if q ∈ H(K) is integral then so is q . However, the set of all

integral quaternions fails to be a ring due to the fact that quaternion mul-

tiplication is non-commutative, see for example [85, 79]. Hence instead
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of considering all integral quaternions, orders of integral quaternions are

considered. From [13, Fact 3] we recall

Lemma 1.4. All elements of an arbitrary order O ⊂ H(K) are integral.

Moreover, one has O = O and O ∩K = Z[τ ]. �

Obviously,

(1.17) L := 〈1, i, j, k〉Z[τ ] ∼= Z[τ ]4

is an order, as is qLq−1 for every q ∈ H(K)•, but it is not maximal since

appending the integral quaternion 1
2(1, 1, 1, 1) generates a larger order.

Let O be an order. A left Z[τ ]-module of O is a full Z[τ ]-module I with

qI ⊂ I for every q ∈ O. It is called principal if there is a q ∈ H(K) such

that I = Oq. Note that every left ideal of O is a left Z[τ ]-module of O.

Right Z[τ ]-modules of O and principal right Z[τ ]-module of O are defined

accordingly. From now on we speak of one-sided Z[τ ]-modules, if we mean

either left or right Z[τ ]-modules.

The class number of O is the number of equivalence classes of left Z[τ ]-

modules of O under the following equivalence relation: Let I and J be two

left Z[τ ]-modules of O. They are equivalent, if there is an a ∈ H(K)•, such

that J = Ia.

Since the conjugation of H(K) maps right multiplication to left multi-

plication and O to itself, interchanging the roles of ‘left’ and ‘right’ results

in the same value of the class number.

From [13, Fact 5] we know that all maximal orders of H(K) have

the same class number, which is known as the class number of H(K).

Moreover, if the class number is 1, all maximal orders are mutual images

of one another under inner automorphisms, i.e. under maps of the form

f : H(K) → H(K), x 7→ axa−1 for a ∈ H(K)•. In [85, p. 156] and in [79,

Ap. A.3] we find that the class number of H(K) is 1. Hence, all one-sided

Z[τ ]-modules of a maximal order O are equivalent.
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This means that for every left ideal I of a maximal order O there is

a q ∈ O• such that I = Oq, since O itself is obviously a left ideal of O.

Of course these arguments work for right ideals analogously. Hence every

one-sided ideal of O is principal.

1.2.4. Z[τ ]-Indices. Following [13] we denote the determinant of an

endomorphisms ϕ of the K-vector space H(K) by detK(ϕ). It is an element

ofK and can be calculated using anyK-basis of H(K), as it is not dependent

on the particular choice of the basis.

If J ⊂ I are full Z[τ ]-modules in H(K), we define the K-index of J in

I as

(1.18) [I : J ]K := detK(ϕ),

where ϕ is a linear map that takes a Z[τ ]-basis of I to a Z[τ ]-basis of J .

The K-index is well-defined up to units of Z[τ ], as changing the bases of I

and J multiplies it by an element of Z[τ ]×. Since J ⊂ I, we know that

detK(ϕ) ∈ Z[τ ]. By considering the inverse of ϕ it is clear that I = J if and

only if [I : J ]K ∈ Z[τ ]×. If I1 ⊂ I2 ⊂ I3 are full Z[τ ]-modules in H(K),

then

[I3 : I1]K = [I3 : I2]K [I2 : I1]K ,

i.e. the K-index is multiplicative. The following lemma is analogous to the

lattice case, see Lemma 1.2, and its claim is obvious with the definition of

the K-index in (1.18).

Lemma 1.5. Let I be a full Z[τ ]-module in H(K) with basis matrix BI .

Then, J is a full Z[τ ]-submodule of I if and only if there exists a non-

singular matrix Z with Z[τ ]-entries such that BIZ = BJ is a basis matrix

for J . The corresponding index is then [I : J ]K = det(Z). �

In complete analogy to the lattice case, compare [3, Lemma 2.2], this

description of full Z[τ ]-submodules leads to
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Lemma 1.6. Let J ⊂ I be full Z[τ ]-modules in H(K) with [I : J ]K = α.

Then, αI ⊂ J is a full Z[τ ]-module of index α3.

Proof. By Lemma 1.5 there is a matrix Z with Z[τ ]-entries such that

BIZ = BJ and [I : J ]K = det(Z) = α. The standard formula for the

inverse matrix implies that αZ−1 is a non-singular matrix with Z[τ ]-entries.

So again by Lemma 1.5, αBJZ−1 = αBI which implies that αI is a full

Z[τ ]-submodule of J whose index is det(αZ−1) = α4 1
det(Z) = α3. �

From [13, Fact 8] we recall the following lemma, which describes the

relationship between the K-index and the usual coset-counting index.

Lemma 1.7. Let I,J be two full Z[τ ]-modules in H(K) with J ⊂ I.

Then,

[I : J ] = N([I : J ]K).

�

We conclude this subsection with two lemmas that simplify the calcu-

lation of certain indices. The first can either be found in [13, Section 5,

Lemma 1] or its claim is deduced by means of straightforward calculations

with the basis matrices according to Lemma 1.5.

Lemma 1.8. For any order O in H(K) and any q ∈ O•, one has

[O : qO]K = [O : Oq]K = nr(q)2 = |q|4.

Lemma 1.9. Let O be an order in H(K) and let J ⊂ O be a full Z[τ ]-

module of H(K). For a, b ∈ O• one has

[O : aJ b] = N(nr(a)2 nr(b)2)[O : J ].

Proof. Obviously, we have aJ b ⊂ aOb ⊂ aO ⊂ O and

[aOb : aJ b] = [O : J ].
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Moreover, a combination of Lemma 1.8 and 1.7 gives [aO : aOb] = [O : Ob] =

N(nr(b)2) and [O : aO] = N(nr(a)2). Hence due to the multiplicativity of

the index we have

[O : aJ b] = [O : aO][aO : aOb][aOb : aJ b] = N(nr(a)2) N(nr(b)2)[O : J ].

�

1.2.5. The Icosian Ring. In this subsection we introduce a particular

maximal order of H(K), the icosian ring, and summarise its properties as

far as they are required in Chapter 2 and 3; for more details including its

connection to the root system of typeH4 see for example [60, 59, 22, 12, 24]

and references given there.

Following [24, Ch. 8, Sec. 2.1] we define the icosian group I as the

multiplicative group of order 120 consisting of the quaternions

(1.19) (±1, 0, 0, 0) , 1
2(±1,±1,±1,±1) , 1

2(±τ ′,±τ, 0,±1)

and all their even coordinate permutations. The icosian ring I is defined

as I := 〈I〉Z, and has rank 8 as a Z-module. At the same time, I is a

Z[τ ]-module of rank 4, and can alternatively be written as

(1.20) I :=
〈
(1, 0, 0, 0), (0, 1, 0, 0), 1

2(1, 1, 1, 1), 1
2(1−τ, τ, 0, 1)

〉
Z[τ ]

.

The elements of I are called icosians.

From [60] we recall that the icosian group I is characterised as follows

within I:

(1.21) I =
{
q ∈ I | |q|2 = 1

}
.

Recall that ′ stands for the algebraic conjugation in K. A straightforward

calculation with the basis matrix resulting from (1.20) reveals that I 6= I′

and that I as well as I′ are maximal orders of H(K), in fact they are the

only maximal orders that contain L of (1.17); compare for example [13]. By
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means of Lemmas 1.5 and 1.7 we see that

[I : L] = 16 = [I′ : L].

Moreover, with (1.20) it is clear that 2I ⊂ L.

Note that (1 + i)I = I′(1 + i), so that (1 + i)I is a one-sided, but not a

two-sided ideal in I. This relation also shows that I and I′ are related by an

inner automorphism of H(K).

Considering Lemma 1.4 with respect to I as maximal order, it is obvious

that q ∈ I with nr(q) ∈ Z[τ ]× implies that q−1 = q
nr(q) ∈ I. Conversely, if

q ∈ I×, we know that nr(q) and nr(q−1) = nr(q)−1 ∈ Z[τ ], i.e. nr(q) ∈ Z[τ ]×.

With (1.15) this leads to

I× = {q ∈ I | N(|q|2) = 1} = {±τnq | n ∈ Z and q ∈ I} ∼= Z[τ ]× × I.

(1.22)

The Dirichlet series generating function for the number of non-zero one-

sided-ideals contained in I of a given index reads

(1.23)
ζI(s) =

∑
I⊂I

1
[I : I]s

=
∞∑
m=1

aI(m)
m2s = ζK(2s)ζK(2s− 1)

= 1 + 5
16s + 6

25s + 10
81s + 24

121s + 21
256s + 40

361s + 30
400s + 31

625s + . . .

where I runs through the non-zero one-sided ideals of I, see [12] for its

derivation and further details including asymptotic properties. The arith-

metic function aI(m) is multiplicative, and hence completely specified by its

values at prime powers. These are given by

(1.24) aI(pr) =



5r+1−1
4 , if p = 5,

∑r

`=0(`+1)(r−`+1)p`, for primes p ≡ ±1 (5),

1−pr+2

1−p2 , for primes p ≡ ±2 (5) and r even,

0, for primes p ≡ ±2 (5) and r odd.
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Note that by Lemma 1.9, we know that

(1.25) [I : qI] = N(nr(q))2 = [I : Iq].

Hence the possible indices, here the denominators, are the squares of integers

that are representable by the quadratic form x+ xy − y2.

The Dirichlet series generating function, which counts the number of

non-zero two-sided-ideals of I, is of an even easier form. It reads ζI.I(s) =

ζK(4s), see [13, Eq. (19)] . Now, we easily conclude that the two-sided

ideals in I are of a very convenient type.

Lemma 1.10. The two-sided ideals in I have the form αI with α ∈ Z[τ ]•.

Proof. Of course, for every α ∈ Z[τ ] the ideal αI = Iα is two-sided,

and [I : αI] = N(α)4 by Lemma 1.9. Since ζI.I(s) = ζK(4s) this means that

these are already all two-sided ideals in I. �

Lemma 1.11. For every α ∈ Z[τ ], there is an icosian q with α = nr(q) =

qq. Moreover, if α ∈ Z[τ ]×, then q and q are associated.

Proof. Since the reduced norm nr is multiplicative it is sufficient to

show the following for the first claim: For every prime number π ∈ Z[τ ],

there is an icosian q ∈ I with π = nr(q) = qq .

If we assume that there is no icosian q with nr(q) = ±
√

5, this implies,

due to [I : Iq] = N(±
√

5)2, compare (1.25), that aI(5) = 0, which contradicts

(1.24). Thus there is an icosian q with nr(q) = ±
√

5. Similarly, for p ∈ Z

with p ≡ ±2 mod 5 there is an icosian q with nr(q) = p, since [I : Iq] = p4

and aI(p2) > 0. For the remaining case of the splitting prime p ∈ Z with

p ≡ ±1 mod 5 and p = ππ′ note that there exists an icosian q with either

nr(q) = π or nr(q) = π′, as aI(p) > 0. If nr(q) = π then nr(q̃) = π′ or vice

versa. This gives the first claim.

For the second claim note that if nr(q) = α ∈ Z[τ ]×, we know that

q(q)−1 = 1
nr(q)q

2 ∈ I and considering (1.22) this means that q(q)−1 ∈ I×.

This shows that q and q are associated. �
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If we substitute in the proof of Lemma 1.11 the arithmetic functions aI

by the arithmetic function which counts the number of ideals in I, generated

by a primitive icosian, see (2.8) below, we get

Corollary 1.12. For every α ∈ Z[τ ], there is a primitive icosian p

with α = nr(p) = pp. Moreover, p and p are not associated if and only if

α /∈ Z[τ ]×.

Proof. It only remains to show the second statement. Note that p and

p are associated if and only if p(p)−1 = 1
nr(p)p

2 ∈ I, which is equivalent to

nr(p) ∈ Z[τ ]×, due to the primitivity of p2. �

One can use the quadratic form defined by tr(xy) = 2〈x|y〉 to define the

dual of a full Z[τ ]-module I ⊂ H(K) as

(1.26) I∗ = {x ∈ H(K) | tr(xy) ∈ Z[τ ] for all y ∈ I} .

With this definition, one has the following important property of the icosian

ring, compare [60] for details.

Lemma 1.13. The icosian ring is self-dual, i.e. one has I∗ = I.

1.3. Characterisation and Factorisation

Our choice of the realisation of the root lattice A4 in form of the lattice

L from (1.5) is particularly motivated by the observation that L ⊂ I. In this

section this inclusion is analysed in more detail.

1.3.1. The Module L[τ ]. The given basis of the lattice L in (1.5)

generates the full Z[τ ]-module

(1.27) L[τ ] :=
〈
(1, 0, 0, 0), 1

2(−1, 1, 1, 1), (0,−1, 0, 0), 1
2(0, 1, τ−1,−τ)

〉
Z[τ ]

which is a submodule of I. A straightforward calculation with Lemmas 1.5

and 1.7 reveals that

(1.28) [I : L[τ ]] = 5.
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Since L is a rational lattice and τL obviously not, we have L∩ τL = {0}, so

that

(1.29) L[τ ] = L⊕ τL.

1.3.2. The Twist Map. The detailed arithmetic structure of I is the

key to the characterisation of the similar sublattices and coincidence site

lattices for L in Chapter 2 and 3. Another important object is the following

map, called the twist map, which is an involution of the second kind for

H(K); see [47] for details. If q = (a, b, c, d), it is defined by the mapping

(1.30) q 7→ q̃ := (a′, b′, d′, c′) .

The relevance of this rather strange looking map, with its combination of a

permutation of two coordinates with algebraic conjugation of all coordinates,

was noticed in [39] as a result of explicit calculations. It has the following

important properties.

Lemma 1.14. The twist map .̃ of (1.30) is a Q-linear and K-semi-linear

involutory algebra anti-automorphism, i.e. for arbitrary p, q ∈ H(K) and

α ∈ K, it satisfies:

(a) p̃+ q = p̃+ q̃ and α̃p = α′ p̃,

(b) p̃q = q̃ p̃ and ˜̃p = p,

(c) p̃ = p̃ and thus, for p 6= 0, also (p̃)−1 = p̃−1.

It maps K, the centre of the algebra H(K), onto itself, but fixes only the

elements of Q within K. Moreover, Ĩ = I and Ĩ′ = I′.

Proof. Most of these properties are immediate from the definition, and

(b) can be proved by checking the action of the twist map on the basis

quaternions 1, i, j, k. The statements on K, I and I′ follow easily from the

definition in (1.20). �
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Seen as a vector space over Q, H(K) has dimension 8 and can be split

into a direct sum, H(K) = V+ ⊕ V−, where

V± := {x ∈ H(K) | x̃ = ±x}

are the eigenspaces under the twist map, with V+ ∩ V− = {0} and V− =
√

5V+. Note that L ⊂ V+, so the four basis vectors of L from (1.5) form a

Q-basis of V+. This observation combined with the nature of I as a maximal

order in H(K) suggests that Lmight actually be the Z-module of fixed points

of the twist map inside I.

Proposition 1.15. The lattice L can be characterised in I as follows:

(i) L = {x ∈ I | x̃ = x} = I ∩ V+

(ii) L = {x+ x̃ | x ∈ I} = ϕ+(I), where the Q-linear map

ϕ+ :H(K)→ H(K), is defined by ϕ+(x) = x+ x̃.

Proof. Note that the basis vectors of L in (1.5) are fixed under the

twist map, so x̃ = x is clear for all x ∈ L. We also know from Lemma 1.14

that Ĩ = I. To prove our claim, we have to show that no element of I \ L

is fixed under the twist map. Recall from (1.28) that [I : L[τ ]] = 5, so that

I/L[τ ] ' C5. Consequently, the twist map, which is an involution, induces

an automorphism on the cyclic group C5. The order of this automorphism

must divide 2. With the involved basis matrices BI and BL[τ ] it is easily

checked that,

0 6= v = j− k ∈ I \ L[τ ].

Since ṽ = −v, the induced automorphism on C5 cannot be the identity. This

leaves only inversion (i.e. k 7→ −k mod 5), which has no fixed point in C5

other than 0, so that all fixed points of the twist map inside I must lie in

L[τ ]. It is easy to see that a quaternion of the form x+ τy with x, y ∈ L is

fixed if and only if y = 0, which completes the argument.
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The characterisation (i) implies that x+ x̃ ∈ L for every x ∈ I. On the

other hand, observing that τ ′ = 1− τ , any x ∈ L permits the decomposition

x = (τ + τ ′)x = τ x+ τ ′x̃ = τx+ τ̃x .

Since x is an element of the Z[τ ]-module I, we know that τx ∈ I and the

claim follows. �

For our further analysis it is convenient to have several ways of charac-

terising the submodule L[τ ] within the icosian ring I.

Proposition 1.16. The submodule L[τ ] of I can be characterised as

follows:

(1.31) L[τ ] =
{
x ∈ I | (x− x̃) ∈

√
5 I
}

=
{
x ∈ I | 5 divides |x− x̃|2

}
Proof. Every quaternion x ∈ L[τ ] can be written as x = a + τb with

a, b ∈ L; see (1.29). Using a = ã and b = b̃, we see that for all q ∈ L[τ ]

x− x̃ = a+ τb− a− (1− τ)b = (2τ − 1)b ∈ (2τ − 1)L ⊂ (2τ − 1)I =
√

5 I.

On the other hand a straightforward calculation with the involved basis

matrices reveals that every x ∈ I can be written as x = q + ku, where

q ∈ L[τ ], u = 1
2(1− τ, τ, 0, 1) and 0 ≤ k ≤ 4. Clearly,

u− ũ = 1
2(1− 2τ, 2τ − 1,−1, 1) /∈

√
5 I

and hence x− x̃ = (q− q̃) + k(u− ũ) ∈
√

5 I implies that k = 0. This means

that x ∈ L[τ ], which proves the first equality of (1.31). To prove the second

equality observe that

|x− x̃|2 = |q − q̃|2 + k(q − q̃)(u− ũ) + k(u− ũ)(q − q̃) + k2|u− ũ|2

= |q − q̃|2 + tr(k(q − q̃)(u− ũ)) + 12k2.



26 1. BASICS AND PREPARATIONS

By the first equality (1.31) it is clear that
√

5 divides |q − q̃|2 and

tr(k(q − q̃)(u− ũ)). Hence only if k = 0, i.e. x ∈ L[τ ], |x − x̃|2 is divisible

by 5.

To show the remaining inclusion for the second equality of (1.31) let

x ∈ L[τ ] and let q ∈ I such that x− x̃ =
√

5q. This implies that |x− x̃|2 =

5|q|2, i.e. 5 divides |x− x̃|2. �

An immediate consequence of the previous proposition is

Corollary 1.17. One has
√

5 I = (2τ − 1)I ⊂ L[τ ]. �

1.3.3. Primitivity. A sublattice Λ of L is called L-primitive when

αΛ ⊂ L, with α ∈ Q, implies α ∈ Z. Similarly, an element p ∈ I is called

I-primitive when αp ∈ I, this time with α ∈ K, is only possible with α ∈ Z[τ ].

For brevity, we simply use the term ‘primitive’ in both cases, whenever the

meaning is clear from the context.

Note that an icosian p is primitive if and only if all Z[τ ]-divisors of p are

units. Due to the fact that I is a unique factorisation domain, this means

that if p is primitive pn is a primitive icosian, too.

Depending on the context let lcm stand for the lowest common multiple

in Z or in Z[τ ]. More precisely, for α, β ∈ Z[τ ] we define, analogously to the

integer case, lcm(α, β) ∈ Z[τ ] such that

lcm(α, β)Z[τ ] = αZ[τ ] ∩ βZ[τ ].

Note that lcm(a, b) is defined uniquely up to elements of Z[τ ]×.

The I-content of q ∈ I is defined as

(1.32) contI(q) := lcm{α ∈ Z[τ ]• | q ∈ αI}

and analogously the L-content of a sublattice Λ of L as

(1.33) contL(Λ) := lcm{m ∈ N | Λ ⊂ mL}.
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Lemma 1.18. An icosian q ∈ I is primitive if and only if

contI(q) ∈ Z[τ ]×.

Proof. Let α ∈ Z[τ ]• with 1
αq ∈ I. If q ∈ I is primitive this implies that

α ∈ Z[τ ]× and hence contI(q) ∈ Z[τ ]×. Conversely, let α ∈ K with αq ∈ I

and α = β
γ where β, γ ∈ Z[τ ] are relatively prime. Note that also 1

γ q ∈ I and

thus we know that γ divides contI(q) ∈ Z[τ ]× which means that γ ∈ Z[τ ]×

and hence α ∈ Z[τ ]. �

Lemma 1.19. A sublattice Λ of L is L-primitive if and only if

contL(Λ) = 1.

Proof. This is proved analogously to Lemma 1.18. �

Clearly, for all q ∈ I the icosian 1
contI(q)

q is I-primitive and for every

sublattice Λ ⊂ L the sublattice 1
contL(Λ)Λ is L-primitive. Consequently,

every icosian q can be written as q = αp where α ∈ Z[τ ] and p ∈ I is

primitive. Similarly, every sublattice Λ ⊂ L can be decomposed in Λ = mΓ

where m ∈ N and Γ ⊂ L is L-primitive. Note that Λ ⊂ L is L-primitive if

and only if

gcd{(zij) | 1 ≤ i, j ≤ d} = 1

for an integer matrix Z = (zij) with BΛ = BLZ.

Lemma 1.20. Let αI ⊂ I be a two-sided ideal which contains a primitive

icosian p. Then, α ∈ Z[τ ]×, i.e. αI = I.

Proof. By Lemma 1.10 we know that every two-sided ideal of I has the

form αI with α ∈ Z[τ ]. If p ∈ αI there is an icosian q ∈ I such that p = αq.

Therefore 1
αp = q ∈ I and the primitivity of p implies that α ∈ Z[τ ]×. �

1.3.4. Factorisation. An icosian p ∈ I, which is not a unit, is called

prime, if p = ab for a, b ∈ I implies that a ∈ I× or b ∈ I×. Obviously,

all associates of a prime icosian are prime, too. Moreover, it is clear that



28 1. BASICS AND PREPARATIONS

every prime icosian is primitive. A direct consequence of Corollary 1.12

is that primes in Z[τ ], considered as elements of I, cannot be prime in I.

Furthermore, we have the following characterisation of primes in I.

Lemma 1.21. An icosian p is prime in I if and only if |p|2 is prime in

Z[τ ].

Proof. If p is not prime in I it is immediately clear that |p|2 cannot

be a prime in Z[τ ]. Conversely, if |p|2 is not a prime in Z[τ ], for example

|p|2 = αβ, where α and β are primes in Z[τ ], then we know by Lemma 1.11

that there are a, b ∈ I such that |a|2 = α, |b|2 = β and p = ab, hence p is not

prime in I. �

The following definition and theorem are an adaption of [38, Section 20.8].

We say that a, b ∈ I have a greatest left (right) common divisor

d = glcd(a, b) (d = grcd(a, b)),

if (i) d is a left (right) divisor of a and b and (ii) every common left (right)

divisor of a and b is a left (right) divisor of d.

Theorem 1.22. For any two icosians a, b ∈ I• there is a glcd(a, b) and

a grcd(a, b) in I. They are uniquely defined up to multiplication by a unit

factor from the right or left, respectively, as the generators of the ideals

glcd(a, b)I = aI + bI and I grcd(a, b) = Ia+ Ib.

Proof. The set S = aI+bI is clearly a right ideal in I. Since every right

ideal in I is principal there is an icosian d such that S = d I. As d ∈ S, there

are q`, p` ∈ I, such that d = aq` + bp`. Because a, b ∈ S, d is a common left-

hand divisor of a and b. In fact, any common left-hand divisor of a and b is

a left-hand divisor of any element of S including d. Hence d = glcd(a, b) and

as generator of the right ideal S, the icosian glcd(a, b) is uniquely defined

up to a right-hand unit factor.

The claim about grcd(a, b) is proved analogously. �
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Theorem 1.23. Let p ∈ I be primitive and let |p|2 = π1 . . . πn be the

prime factorisation of |p|2 in Z[τ ], with an arbitrary but fixed order of fac-

tors. Then, there are prime icosians p1 . . . pn, which are unique up to ele-

ments of I×, such that

p = p1 . . . pn and |pi|2 = πi.

Proof. Let p1 = glcd(π1, p), i.e. let there be r1, s1 ∈ I such that p =

p1r1 and π1 = p1s1. Hence π2
1 = |p1|2|s1|2 and since π1 is a prime in Z[τ ] we

infer that |p1|2 is an associate of 1, π1 or π2
1 in Z[τ ].

By Theorem 1.22 we know that there are u, v ∈ I such that p1 = π1u+pv.

Hence |p1|2 = π2
1|u|2 + |p|2|v|2 + π1 tr(pvu), which reveals that π1 divides

|p1|2. With (1.22) we conclude that |p1|2 cannot be an associate of 1. Sup-

pose that |p1|2 is an associate of π2
1. This implies that |s1|2 ∈ Z[τ ]× and

hence s1 ∈ I×, making π1 and p1 associates, which is impossible since p1

is primitive as a divisor of p. So we have |p1|2 = π1 and p = p1r1 where

|r1|2 = π2, . . . , πn. Moreover, by Lemma 1.21 we know that p1 is a prime

icosian.

Repeating the argument with r1, we produce iteratively the factorisa-

tions

r1 = p2r2, r2 = p3r3, . . . , rn−1 = pn−1rn−1, rn = pn

where |pi|2 = πi. This factorisation is unique up to elements of I×, since the

greatest left common divisor of two icosians is by Theorem 1.22 well-defined

up to a right unit factor. �

Corollary 1.24. Let α, β ∈ Z[τ ] such that gcd(α, β) = 1 in Z[τ ]. Then,

we have glcd(α, β) = 1 = grcd(α, β) in I.

Proof. Let g` = glcd(α, β) and gr = grcd(α, β). There are ur, u`, vr, v` ∈

I, such that α = urgr = g`u` and β = vrgr = g`v`. We see that |gr|2 and

|g`|2 divide gcd(|α|2, |β|2) = gcd(α2, β2) = 1. Hence |gr|2, |g`|2 ∈ Z[τ ]× and

gr, g` ∈ I×, compare (1.22). �
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Corollary 1.25. If p ∈ I is primitive and α ∈ Z[τ ], then

| glcd(p, α)|2 = gcd(|p|2, α) = | grcd(p, α)|2.

Proof. Denote γ = gcd(|p|2, α) and let |p|2 = π1 . . . πm be the prime

factorisation of |p|2 in Z[τ ], such that γ = π1 . . . π` for some ` ≤ m. By

Theorem 1.23 there are prime icosians p1, . . . , pm ∈ I such that p = p1 . . . pm

and |pi|2 = πi for i = 1, . . . ,m, i.e. γ = p1 . . . p`p` . . . p1 . Since p is primitive,

p1 . . . p`p` cannot be a divisor of p, as this would mean that |p`|2 ∈ Z[τ ]

divides p. Hence, glcd(p, γ) = p1 . . . p` and | glcd(p, γ)|2 = γ. Since glcd(p, α)

divides γ and p by definition, we infer that glcd(p, α) divides glcd(γ, p).

Conversely, glcd(γ, p) divides γ and thus α as well as p, such that glcd(γ, p) =

glcd(p, α). Hence | glcd(p, α)|2 = γ = gcd(|p|2, α).

Let |p|2 = ϕ1 . . . ϕm be the prime factorisation of |p|2 in Z[τ ], such that

γ = ϕm−`+1 . . . ϕm.

Of course, ϕm−`+1 . . . ϕm = π1 . . . π`. By Theorem 1.23 there are prime

icosians q1, . . . , qm ∈ I, which do not necessarily coincide with p1, . . . pm,

such that p = q1 . . . qm and |qi|2 = ϕi for i = 1, . . . ,m. Hence γ =

qm . . . qm−`+1qm−`+1 . . . qm. Since p is primitive, qm−`+1qm−`+1 . . . qm can-

not be a divisor of p, as this would mean that |qm−`+1|2 ∈ Z[τ ] divides p.

This implies that, grcd(p, γ) = qm−`+1 . . . qm and | grcd(p, γ)|2 = γ. Since

grcd(p, α) divides γ and p by definition, we infer that grcd(p, α) divides

grcd(γ, p). Conversely, grcd(γ, p) divides γ and thus α as well as p, such

that grcd(γ, p) = grcd(p, α). Hence | grcd(p, α)|2 = γ = gcd(|p|2, α). �

For later use we state the following lemmas.

Lemma 1.26. Let a, b ∈ I and γ, δ ∈ Z[τ ], such that gcd(γ, δ) = 1. We

have

(glcd(a, γ)I) ∩ (glcd(a, δ)I) = glcd(a, γδ)I.
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Proof. With Theorem 1.22, we see immediately that

glcd(a, γδ)I = aI + γδI ⊂ (aI + γI)∩ (aI + δI) = (glcd(a, γ)I)∩ (glcd(a, δ)I).

Conversely, let q ∈ (aI + γI) ∩ (aI + δI). So there are qi ∈ I for 1 ≤ i ≤ 6,

such that

q = glcd(a, γ)q1 = aq2 + δq3 = aq4 + γq5 = glcd(a, δ)q6

Here, we see that glcd(a, γ) is a left divisor of q3, since it does not divide δ,

as glcd(γ, δ) = gcd(γ, δ) = 1, and it is a left-divisor of a by definition. So

there are icosians aγ , q̂3, q7 ∈ I such that a = glcd(a, γ)aγ , q3 = glcd(a, γ)q̂3

and (aγq2 + δq̂3) = glcd(aγ , δ)q7. This implies that

q = glcd(a, γ)aγq2 + δ glcd(a, γ)q̂3 = glcd(a, γ)(aγq2 + δq̂3)

= glcd(a, γ) glcd(aγ , δ)q7 = glcd(a, γδ)q7,

which means that q ∈ glcd(a, γδ)I. �

Lemma 1.27. For p, q ∈ I and g := glcd(p, q), we have g̃ = grcd(p̃, q̃).

Proof. Obviously, p = gr and q = gs for r, s ∈ I. Hence p̃ = r̃ g̃ and

q̃ = s̃ g̃, so g̃ divides grcd(p̃, q̃) =: h, i.e. we can write h = tg̃, where t ∈ I.

Now, we see that p = ˜̃p = ũh = h̃ũ and q = ˜̃q = ṽh = h̃ṽ, where u, v ∈ I,

which implies that h̃ = gt̃ divides g and hence h̃ = g. �





CHAPTER 2

Similar Sublattices

In this chapter the problem of counting similar sublattices of a general

lattice Γ ⊂ Rd is introduced. For the root lattice A4 this problem is solved

by constructing an index preserving bĳection between its primitive similar

sublattices and the primitive right ideals of the icosian ring. The result is

expressed in terms of a Dirichlet series generating function, which gives the

number of different similar sublattices of each index. We conclude with a

review of the corresponding results for the root lattices Ad with d ≤ 3. The

content of this chapter was published in [9].

2.1. Generalities

2.1.1. Similarities. A similarity σ is a non-zero linear map of Rd such

that

〈σ(u), σ(v)〉 = c〈u, v〉,

for a constant c ∈ R+ and u, v ∈ Rd. An alternative characterisation is the

following.

Lemma 2.1. A linear map σ of Rd is a similarity if and only if it is of

the form σ = αR for α ∈ R• and R ∈ O(d).

Proof. Let σ be a linear map of Rd. If for a constant c ∈ R+ and all

u, v ∈ Rd 〈σ(u), σ(v)〉 = c〈u, v〉, this is equivalent to 〈 1√
c
σ(u), 1√

c
σ(v)〉 =

〈u, v〉. This is again equivalent to 1√
c
σ ∈ O(d), which means that there exits

a matrix R ∈ O(d) such that σ(u) =
√
cRu for all u ∈ Rd. As c > 0 we set

√
c = α ∈ R and we are done. �

33
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The set of isometries that occur in similarities that map the lattice

Γ ⊂ Rd into itself is defined as

(2.1) OS(Γ ) := {R ∈ O(d) | αRΓ ⊂ Γ for some α ∈ R+} .

Moreover, we define SOS(Γ ) as the subset of rotations in OS(Γ ).

Lemma 2.2. If Γ ⊂ Rd is a lattice, the sets OS(Γ ) and SOS(Γ ) are

subgroups of O(d).

Proof. Obviously it is sufficient to show that OS(Γ ) is a subgroup of

O(d). If R1, R2 ∈ OS(Γ ), with αi ∈ R such that αiRiΓ ⊂ Γ for i = 1, 2,

then α1α2R1R2Γ = α1R1(α2R2Γ ) ⊂ α1R1Γ ⊂ Γ and so R1R2 ∈ OS(Γ ).

Moreover, αRΓ ⊂ Γ , with R ∈ OS(Γ ) and α ∈ R, implies that Γ ⊂
1
αR
−1Γ . With Lemma 1.1 we see that there is an integer matrix Z such

that

|det(Z)| = [ 1
αR
−1Γ : Γ ] = [Γ : αRΓ ] =: m.

By Lemma 1.2 , this means that m
αR
−1Γ ⊂ Γ , which shows that also R−1

is an element of OS(Γ ). �

Lemma 2.3. Let Γ2 be a sublattice of Γ1 ⊂ Rd. Then, OS(Γ1) = OS(Γ2).

Proof. Let m := [Γ1 : Γ2], α ∈ R, and R ∈ OS(Γ1) such that αRΓ1 ⊂

Γ1. With Lemma 1.2 this implies that mαRΓ2 ⊂ mαRΓ1 ⊂ mΓ1 ⊂ Γ2 and

hence R ∈ OS(Γ2).

Conversely, we conclude with α ∈ R+ and R ∈ OS(Γ2) such that αRΓ2 ⊂

Γ2, that mαRΓ1 ⊂ αRΓ2 ⊂ Γ2 ⊂ Γ1 and so R ∈ OS(Γ1). �

Two lattices in Γ and Λ in Rd are called similar if there is a similarity σ,

such that σ(Γ ) = Λ. A straightforward calculation with the corresponding

basis matrices gives the following
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Lemma 2.4. Two lattices Γ and Λ in Rd are similar if and only if their

Gram matrices satisfy the relation

GΛ = αZGΓZ
t,

where α ∈ R+ and Z is an invertible integer matrix. �

2.1.2. Similar Sublattices. A sublattice Λ ⊂ Γ is referred to as a

similar sublattice (SSL) of Γ , if there is a similarity σ of Γ such that Λ =

σ(Γ ). For a given lattice Γ ⊂ Rd one is interested in its similar sublattices

(SSLs), the possible indices of its SSLs and the number of distinct SSLs of

each index.

We define the arithmetic function fΓ (m) as the number of distinct SSLs

of index m. Clearly, fΓ (1) = 1. Note that, fΓ is not always multiplicative.

For example in [14] we find several planar lattices with non-multiplicative

arithmetic function fΓ . However, in many relevant cases, and in all cases

that will appear below, fΓ (m) is multiplicative, which implies that the cor-

responding Dirichlet series generating function,

(2.2) DΓ (s) :=
∞∑
m=1

fΓ (m)
ms

,

possesses an Euler product expansion, compare [2, Ch.11].

Every lattice Γ ⊂ Rd possesses trivial SSLs, i.e. SSLs of the form mΓ

where m ∈ N. Note that mΓ has index md in Γ . If there are no non-trivial

SSLs, the generating function thus simply reads

(2.3) DΓ (s) = ζ(ds) ,

where ζ(s) is Riemann’s zeta function [2, Ch.11]. If there are non-trivial

SSLs, each of them can again be scaled by an arbitrary natural number, so

that

(2.4) DΓ (s) = ζ(ds)Dpr
Γ (s) ,
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where Dpr
Γ (s) is the Dirichlet series generating function for the primitive

SSLs of Γ . It is the aim of this chapter to derive this Dirichlet series for the

root lattice A4.

Let us first summarise some general properties of the generating func-

tions in this context. A simple conjugation argument based on Lemma 2.4,

see for example [39, 24], shows that if Γ and Λ are similar lattices in Rd,

one has DΓ (s) = DΛ(s). Moreover, we have the following.

Theorem 2.5. If Γ is a lattice in Rd, one has DΓ (s) = DΓ ∗(s).

Proof. If σ is any similarity in Rd, one has

σΓ ⊂ Γ ⇐⇒ σtΓ ∗ ⊂ Γ ∗,

which, in view of (1.2), is immediate from the relation 〈x|σy〉 = 〈σtx|y〉; see

for example [53, p. 524]. Observing that det(σ) = det(σt), one thus obtains

an index preserving bĳection between the SSLs of Γ and those of Γ ∗, whence

we have fΓ (m) = fΓ ∗(m) for all m ∈ N. This gives DΓ (s) = DΓ ∗(s). �

Although the arithmetic function fΓ is not multiplicative in general, one

can show that it is super-multiplicative, which we recall from [39].

Theorem 2.6. The arithmetic function fΓ (m) of a lattice Γ ⊂ Rd is

super-multiplicative, i.e. for coprime m,n ∈ N one has

fΓ (mn) ≥ fΓ (m)fΓ (n).

Proof. Let Γ1 and Γ2 be SSLs of Γ of index m, and for i ∈ {1, 2}, let

Λi be an SSL of Γi of index n. This can be illustrated as follows:

Γ
m

~~~~
~~

~~
~~ m

  @
@@

@@
@@

@

Γ1

n

��

Γ2

n

��
Λ1 Λ2
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where← has to be interpreted as ⊂ and the letter next to the arrows denote

the corresponding index. Since the Dirichlet series of similar lattices coincide

we have fΓ (m) = fΓ1(m) = fΓ2(m) for all m ∈ N. So we have to show that

Λ1 6= Λ2 if Γ1 6= Γ2 or equivalently that Λ1 = Λ2 implies Γ1 = Γ2. Let

Λ1 = Λ2 =: Λ and consider the following diagram:

Γ

r
��

Γ1 + Γ2
k1

{{wwwwwwwww k2

##G
GGGGGGGG

Γ1

`1 ##G
GGGGGGGG

Γ2

`2{{wwwwwwwww

Γ1 ∩ Γ2

s

��
Λ

As [Γ1 : Λ] = [Γ2 : Λ] = n we know that n
s = `1 = `2 =: `. Moreover,

m
r = k1 = k2 := k, since [Γ : Γ1] = [Γ : Γ2] = m. The second isomorphism

theorem for groups, see for example [53, p. 17], implies that Γ2/(Γ1∩Γ2) '

(Γ1 + Γ2)/Γ1 and hence k = `. This means that k divides m as well as n,

which are coprime by assumption. This requires that k = [Γ1 : (Γ1+Γ2)] = 1

and thus Γ1 = Γ2. �

2.2. Results for A4

2.2.1. Similarities in 4-space.

Theorem 2.7. All similarities in R4 ' H(R) can be written as either

x 7→ pxq (orientation preserving case) or as x 7→ pxq (orientation reversing

case), with non-zero quaternions p, q ∈ H(R). The determinants of the

linear maps defined this way are ±|p|4|q|4. Conversely, all maps of the form

x 7→ pxq and x 7→ pxq are similarities.



38 2. SIMILAR SUBLATTICES

Proof. By Lemma 2.1 we know that every similarity σ of R4 has the

form σ = αR where α ∈ R+ and R ∈ O(4). Hence the statement of this

theorem follows from the parametrisation of O(4) by pairs of quaternions,

see [48, 3, 12] for details. �

Sometimes it is convenient to refer to the standard matrix representation

of the linear map x 7→ pxq, which is defined via

(2.5) M(p, q)xt := (pxq)t.

Recall that we denote quaternions as row vectors, so that xt is a column

vector. Moreover, note that on the right hand side of (2.5) we mean quater-

nion multiplication whereas on the left hand side we mean matrix-vector

multiplication. Further details can be found in [48, 3, 12].

2.2.2. Similar Sublattices via Quaternions and Icosians. We want

to analyse the SSLs of the root lattice A4. As outlined in Section 1.2.1 the

lattice L, from (1.5), is a scaled copy of A4, so we can equivalently analyse

the SSLs of the lattice L.

Lemma 2.8. All SSLs of the lattice L, as defined in (1.5), are images of

L under orientation preserving maps of the form x 7→ pxq, with p, q ∈ H(K)•

and K = Q(
√

5 ).

Proof. It is easy to check computationally that L = L, i.e. L is in-

variant under quaternion conjugation as defined in (1.9). Hence we need

not consider orientation reversing similarities. By Theorem 2.7, all SSLs are

thus images of L under maps x 7→ pxq with p, q ∈ H(R)•.

As defined in (2.5) consider the matrix M(p, q), which corresponds to

the map x 7→ pxq. There are certain linear combinations of the matrix

entries inM(p, q) which show that all products piqj must be in the quadratic

field K = Q(
√

5 ); see [3] for more details. This leaves the choice to take

p, q ∈ H(K)•. �
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We intend to find a subset of the set of maps from Lemma 2.8 whose

cardinality is as small as possible while reaching all SSLs. The first steps

are provided by the following observations.

Lemma 2.9. If p ∈ I, pLp̃ is an SSL of L.

Proof. By Theorem 2.7, pLp̃ is similar to L, so it remains to be shown

that pLp̃ ⊂ L. Observe that by Lemma 1.16 p ∈ I implies p̃ ∈ I, so that

pLp̃ ⊂ I is clear. If x is any point of L, we have x̃ = x by Proposition 1.15.

Using the properties of the twist map from Lemma 1.14, one gets

(pxp̃ )̃ = ˜̃p x̃ p̃ = pxp̃ .

Consequently, again by Proposition 1.15, pxp̃ ∈ L, and hence pLp̃ ⊂ L, as

claimed. �

Proposition 2.10. If pLq ⊂ L with p, q ∈ H(K)•, there is an α ∈ Q

such that

q = α p̃ .

Proof. If p, q ∈ H(K)•, the inclusion pLq ⊂ L implies, by Proposi-

tion 1.15 and Lemma 1.14, that pxq = p̃xq = q̃xp̃ for all x ∈ L, hence also

(q̃)−1px = xp̃q−1 = (p̃q−1)̃ x. Since 1 ∈ L, this implies (p̃q−1)̃ = p̃q−1,

and we get

xp̃q−1 = p̃q−1x ,

still for all x ∈ L. Noting that 〈L〉K = H(K), the previous equation implies

that p̃q−1 must be central, i.e., an element of K. Consequently, q = αp̃ for

some α ∈ K.

Since p ∈ H(K), we can choose some 0 6= β ∈ Z[τ ] such that w = βp ∈

I. Observing that (βp)̃ = β′ p̃, one sees that αpxp̃ = α
N(β) wxw̃, where

0 6= N(β) ∈ Z. As wLw̃ ⊂ L by Lemma 2.9, and since L ∩ τL = {0}, the

original relation pLq ⊂ L now implies α
N(β) ∈ Q, hence also α ∈ Q. �
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Lemma 2.11. All SSLs of the lattice L are images of L under maps of

the form x 7→ αpxp̃ with p ∈ I primitive and α ∈ Q.

Proof. By Lemma 2.8 and Proposition 2.10, we know that maps of the

form x 7→ βqxq̃ with q ∈ H(K) and β ∈ Q suffice to reach all SSLs of L.

Since all coordinates of q are in K = Q(
√

5 ), there is a natural number m

such that p := mq ∈ L, with L as in (1.17). Then, with α := β/m2, one

has αpxp̃ = βqxq̃ which means that the maps x 7→ αpxp̃ and x 7→ βqxq̃ are

equal. Since α ∈ Q, p and p̃ are elements of L ⊂ I.

If p is primitive in I, we are done. If not, we know that with c =

contI(p), from (1.32), p/c is a primitive element of I. Simultaneously, we

have (p/c)˜ = p̃/c′. Since c ∈ Z[τ ], we know that cc′ ∈ Z, so that this factor

can be absorbed into α. �

At this stage, we recollect an important property of the icosian ring from

[12].

Theorem 2.12. Let p, q ∈ H(K)• be such that pIq ⊂ I. If p or q is a

primitive icosian, the other one must be in I as well.

Proof. This follows from [12, Proposition 1 and Remark 1], where this

is shown for any maximal order of class number one. In particular, it applies

to I. �

As a result of independent interest, we note the following.

Theorem 2.13. The linear map % defined by x 7→ αpxp̃ has trace

αN(tr(p)) and determinant α4 N
(
|p|4

)
, and its characteristic polynomial

reads

X4 − trace(%)X3 +AX2 −BX + det(%)

where A = α2(Tr
(
(tr(p))2(nr(p))′

)
− 2 N(nr(p))

)
and B = α3 N

(
tr(p) nr(p)

)
.

Proof. This is a straightforward calculation with the standard matrix

representation from (2.5) for the linear map %, taking into account that
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nr(p̃) = (nr(p))′ and expressing the coefficients in terms of traces and norms.

�

As Lemma 2.11 suggests we analyse now how an SSL of L of the form

pLp̃ with an I-primitive icosian p relates to the L-primitive sublattices of L.

Proposition 2.14. If p ∈ I is I-primitive, pLp̃ is an L-primitive sub-

lattice of the lattice L.

Proof. By Lemma 2.9, we know that pLp̃ ⊂ L. Thus by Lemma 1.19

we have to show that 1
mpLp̃ ⊂ L implies m = 1.

Note that 1
m pLp̃ ⊂ L implies 1

m pL[τ ]p̃ ⊂ L[τ ]. From (1.28) and

Lemma 1.2, we know that 5I ⊂ L[τ ], which means that

5
m pIp̃ ⊂ 1

m pL[τ ]p̃ ⊂ L[τ ] ⊂ I .

Since p is I-primitive by assumption, then so is p̃ . By Theorem 2.12, this

forces 5/m to be an element of Z[τ ]. With m ∈ N, this only leaves m = 1

or m = 5.

Observe next that 2L[τ ] ⊂ L. On the other hand, it is easily checked

by means of the involved basis matrices that
√

5L ⊂ L[τ ]. Together with

2I ⊂ L, this gives

4
√

5
m pIp̃ ⊂ 2

√
5

m pLp̃ ⊂ 2
m pL[τ ]p̃ ⊂ 2L[τ ] ⊂ L ⊂ I .

By Theorem 2.12 again, we see that 4
√

5
m ∈ Z[τ ], which (with m ∈ N) is only

possible for m|4. In combination with the previous restriction, this implies

m = 1. �

The combination of Lemma 2.11 and Proposition 2.14, clarifies the re-

lation of L-primitive SSLs and I-primitive icosians.

Corollary 2.15. The L-primitive SSLs of L are precisely the ones of

the form pLp̃ with p an I-primitive icosian.
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Proof. After Proposition 2.14, it remains to show that every primitive

SSL M of L is of the form pLp̃ for some primitive p ∈ I. By Lemma 2.11,

M = αpLp̃ with α ∈ Q and p ∈ I primitive. By Proposition 2.14, pLp̃ is

already a primitive sublattice, so α = ±1. �

Moreover, this leads to

Corollary 2.16. Every SSL of the lattice L has the form mpLp̃, where

m ∈ N and p ∈ I is primitive.

The next step is to find a suitable bĳection that permits us to count the

primitive SSLs of L of a given index.

Lemma 2.17. For p ∈ I, one has pLp̃ = L if and only if p ∈ I×.

Proof. We have pLp̃ ⊂ L for all p ∈ I by Lemma 2.9. An application

of Lemma 1.1 and Theorem 2.13 reveals that the corresponding index is

given by | det(M(p, p̃)| = N(|p|4), where M(p, p̃) is the standard matrix

representation from (2.5). Hence the equality L = pLp̃ is equivalent to

N
(
|p|4

)
= 1 which, in turn, is equivalent to p ∈ I×, see (1.22). �

We need one further result to construct a bĳective correspondence be-

tween primitive SSLs of L and certain right ideals of I, which will then solve

our problem.

Lemma 2.18. For primitive r, s ∈ I, one has rI = sI if and only if

rLr̃ = sLs̃.

Proof. Since r, s ∈ I, it is clear that rI = sI ⇒ I = r−1sI ⇒

r−1s ∈ I. Similarly, s−1r ∈ I, so r−1s ∈ I×. Lemma 2.17 now implies

r−1sL(r−1s)̃ = L, which gives rLr̃ = sLs̃.

Conversely, suppose that rLr̃ = sLs̃, which gives yLỹ = L with y :=

r−1s. Choose α ∈ K so that αy is a primitive element of I, which is always

possible. Then,

αyLα̃y = αα′yLỹ = αα′L
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is a primitive sublattice of L by Proposition 2.14, whence αα′ = ±1 and

αyLα̃y = L. This implies ε := αy = αr−1s ∈ I× by Lemma 2.17. Then,

r = rεε−1 = αsε−1 ∈ αI,

so that α′r ∈ I due to αα′ = ±1, where α′ ∈ K by construction. Since r ∈ I

is primitive as well, such a relation is only possible with α ∈ Z[τ ], in view

of the properties of the I-content of r. Consequently, αα′ = ±1 now gives

α ∈ Z[τ ]×, so that y is an element of I. Lemma 2.17 now implies y ∈ I×,

whence yI = I, and finally sI = rI. �

In view of our discussion so far, we call a right ideal of I primitive if it

is of the form pI for some primitive p ∈ I.

Proposition 2.19. There is a bĳective correspondence between the prim-

itive right ideals of I and the primitive SSLs of L, defined by pI 7→ pLp̃.

Furthermore, one has the index formula

[I : pI] = N
(
nr(p)2

)
= N

(
|p|4

)
= [L : pLp̃ ].

Proof. It is clear from Lemma 2.18 that the map is well-defined and

injective, while Corollary 2.15 implies its surjectivity. The index relation

follows from (1.25) and Theorem 2.13. �

2.2.3. Counting Similar Sublattices. Before we finally solve our

original problem by deriving the Dirichlet series generating function DL

from (2.2), we recall from [12, Eq. (32)] that the Dirichlet series generating

function for the number of non-zero primitive right ideals of I reads

(2.6) ζpr
I (s) = ζI(s)

ζK(4s)
= ζK(2s) ζK(2s− 1)

ζK(4s)
.

Inserting the Euler product of ζK , see (1.16), one finds the expansion

(2.7) ζpr
I (s) = 1 + 5−2s

1− 51−2s

∏
p≡±1(5)

(
1 + p−2s

1− p1−2s

)2 ∏
p≡±2(5)

1 + p−4s

1− p2−4s .
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Theorem 2.20. The number of SSLs of a given index is the same for

the lattices L and A4. There is an index preserving bĳection between the

primitive SSLs of A4 and the primitive right ideals of I. When f(m) denotes

the number of SSLs of index m2 and fpr(m) the number of primitive ones,

the corresponding Dirichlet series generating functions read

DA4(s) :=
∞∑
m=1

f(m)
m2s = ζ(4s) ζpr

I (s)

and

Dpr
A4

(s) :=
∞∑
m=1

fpr(m)
m2s = ζpr

I (s)

where ζ(s) denotes Riemann’s zeta function and ζpr
I (s) is defined in (2.6).

Furthermore, the possible indices are the squares of non-zero integers of

the form x2 + xy − y2 = N(x + yτ). All possible indices are realised. In

particular, each possible index is also realised by a primitive SSL.

Proof. Since the Gram matrices of L and A4 only differ by a factor,

see (1.7), Lemma 2.4 implies that the lattices are similar and thus their

Dirichlet series coincide which gives the first claim.

By Proposition 2.19 there is an index preserving bĳection between the

primitive SSLs of L and the primitive right ideals of I, which implies that

ζpr
I (s) = Dpr

L (s). As already mentioned in Section 2.1.2, a general SSL can

be seen as an integer multiple of a primitive SSL, so we have according to

(2.4) that

DL(s) = ζ(4s)Dpr
L (s) .

The index characterisation either follows from [23] or from the index

formula in Proposition 2.19. By Lemma 1.11 we know that for every α ∈ Z[τ ]

there is a q ∈ I such that α = nr(q). Thus every possible index is realised.

Since fpr(m) vanishes precisely when f(m) does (see below for an explicit

formula), the last claim is clear. �
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Inserting the Euler products of ζ(s) and ζpr
I (s), one finds the expansion

of the Dirichlet series DA4(s) as an Euler product,

DA4(s) = 1
(1−5−2s)(1−51−2s)

∏
p≡±1 (5)

1+p−2s

1−p−2s
1

(1−p1−2s)2

∏
p≡±2 (5)

1+p−4s

1−p−4s
1

1−p2−4s .

Consequently, the arithmetic function f(m) (and also fpr(m)) is multiplica-

tive, i.e., f(mn) = f(m) f(n) form,n coprime, with f(1) = 1. The functions

f and fpr are thus completely specified by their values at prime powers.

The geometric series
∑∞
n=0 x

n = 1
1−x with |x| < 1, the resulting identity

1+x
1−x = 1 + 2

∑∞
n=1 x

n and the sums

∑n
k=0 x

k = 1−xn+1

1−x ,
∑n
k=1 nx

n−1 = 1−(n+1)xn+nxn+1

(1−x)2

lead together with the Cauchy product for series to the following values of

f and fpr at prime power pr:

f(pr) =



5r+1−1
4 , if p = 5,

2 (1−pr+1)−(r+1)(1−p2)pr
(1−p)2 , for primes p ≡ ±1 (5),

2−pr−pr+2

1−p2 , for primes p ≡ ±2 (5) and r even,

0, for primes p ≡ ±2 (5) and r odd,

(2.8)

fpr(pr) =



6 · 5r−1, if p = 5,

(r + 1)pr + 2rpr−1 + (r − 1)pr−2, for p ≡ ±1 (5),

pr + pr−2, for p ≡ ±2 (5) and r even,

0, for p ≡ ±2 (5) and r odd.

The first few terms of the Dirichlet series thus read

DA4(s) = 1 + 6
42s + 6

52s + 11
92s + 24

112s + 26
162s + 40

192s + 36
202s + 31

252s + 60
292s + . . .

Dpr
A4

(s) = 1 + 5
42s + 6

52s + 10
92s + 24

112s + 20
162s + 40

192s + 30
202s + 30

252s + 60
292s + . . .
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where the denominators are the squares of the integers previously identified

in [23], see also [78, entry A031363]. A comparison of DA4(s) and D
pr
A4

(s) =

ζpr
I (s), reveals the origin of the various contributions. In particular, the six

SSLs of index 42 = 16 result from the five generators of primitive ideals of

I of index 16 together with the SSL 2A4. No such extra solution exists for

index 52 = 25, while index 92 = 81 emerges also from the SSL 3A4.

Due to our definition with f(m) being the number of SSLs of A4 of index

m2, the Dirichlet series generating function of the arithmetic function f is

DA4(s/2), which has nice analytic properties. For their derivation we need

the Dirichlet character

(2.9) χ(n) :=



0, n ≡ 0 (5) ,

1, n ≡ ±1 (5) ,

−1, n ≡ ±2 (5) ,

see [2, Section 6.8] for details. Note that the corresponding L-series,

L(s, χ) :=
∞∑
m=1

χ(m)m−s,

defines an entire function on the complex plane. As ζK = ζ(s)L(s, χ), see

[87, Chapter 11, Eq. (10)], we have

(2.10) DA4(s/2) = ζK(s) ζK(s− 1)
L(2s, χ)

= ζ(s) ζ(s− 1)L(s, χ)L(s− 1, χ)
L(2s, χ)

.

In particular, DA4(s/2) is analytic on the half-plane {σ > 2}, where we write

s = σ + it as usual, due to the fact that L(s, χ) is analytic everywhere and

ζ(s) is analytic except for a simple pole at s = 1 with residue 1, compare [2,

Theorem 12.5]. ThereforeDA4(s/2) is analytic on the line {σ = 2}, except at

s = 2, where we have a simple pole as the right-most singularity ofDA4(s/2).

Consequently, one can derive the asymptotic growth of f(m) from it, see

[12, Appendix] for details. Since the value of the arithmetic function f(m)
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fluctuates heavily, this is done via the corresponding summatory function

F (x) :=
∑
m≤x

f(m) ∼ %
x2

2
, as x→∞,

where the growth constant is given by % = ress=2DA4(s/2) = ζK(2)L(1,χ)
L(4,χ) =

ζK(2)L(1,χ)ζ(4)
ζK(4) . All the values involved here can be found in [12] and result

in

% = 1
2
√

5 log(τ) ≈ 0.538 011.

The corresponding calculations for the asymptotic behaviour of fpr(m) are

analogous and lead to

%pr = ress=2D
pr
A4

(s/2) = ζK(2)L(1, χ)
ζK(4)

= ζK(2)L(1, χ)
ζ(4)L(4, χ)

= 90
π4 % ≈ 0.497089.

2.3. Related Results

From previously published results, one can read off or easily derive the

generating functions for the root lattices Ad with d ≤ 3.

Theorem 2.21. The Dirichlet series generating functions for the number

of SSLs of the root lattices Ad with d ≤ 3 are DA1
(s) = ζ(s), DA2

(s) = ζQ(ξ3),

with ξ3 = e2πi/3 and ζQ(ξ3)(s) the Dedekind zeta function of the cyclotomic

field Q(ξ3), and DA3
(s) = ζ(3s)Φcub(3s), where

Φcub(s) = 1− 21−s

1 + 2−s
ζ(s) ζ(s− 1)

ζ(2s)

is the generating function of the related cubic coincidence site lattice problem

derived in [3, 13].

Proof. A1 is a scaled version of the integer lattice Z, whence DA1(s) =

DZ(s) = ζ(s). The triangular lattice A2 is a scaled version of the ring of

Eisenstein integers in Q(ξ3), so that this generating function follows from [5,

Proposition 1]. It can also be written as a product of two Dirichlet series,

DA2(s) = ζ(2s)
ζQ(ξ3)(s)
ζ(2s)

,
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one for the scaling by integers and the other for the primitive SSLs.

For the primitive cubic lattice Z3, the SSL generating function was pre-

viously identified as ζ(3s)Φcub(3s) in [11, Theorem 5.1]. Noting that A3 is a

version of the face-centred cubic lattice, compare [24], one has to check that

the cubic lattices share the same SSL statistics. This is a straight-forward

calculation with their basis matrices and the integrality conditions for sim-

ilarity transforms, similar to the one outlined in [11, Section 5], using the

Cayley parametrisation of matrices in SO(3,Q) from [3], see also [39] for

details. �

Clearly, by Theorem 2.5, one then also has the relation

(2.11) DA3
(s) = DA∗3(s) = DZ3(s) .

Other completely worked out examples include the square lattice Z2,

with DZ2(s) = ζQ(i)(s), see [11], and the cubic lattices in d = 4, see [12].

Also, various Z-modules of rank r > d in dimensions d ≤ 4 are solved in

[11, 12, 5]. Common to all these examples is the rather explicit use of

methods from algebraic number theory or quaternions in conjunction with

suitable parametrisations of the rotations involved. In higher dimensions,

results are sparse, compare [23] and references given there, and we are not

aware of any complete solution in terms of generating functions at present.



CHAPTER 3

Coincidence Site Lattices

In this chapter the problem of counting the coincidence site modules of

a free Z-module Γ ⊂ Rd is introduced. For the root lattice A4 this problem

is solved in several steps. First, we use the parametrisation of the similarity

rotations by a primitive icosian to characterise the coincidence rotations.

Then, we derive a formula for its coincidence index depending only on the

icosian which defines the rotation. This requires a detour to the coincidence

site modules of the icosian ring. At this point the number of coincidence

rotations of the root lattice A4 of each index could be derived. However,

non-equivalent rotations may lead to the same coincidence site lattice. The

argumentation up to this point was published in a summarised form in [8,

40]. We continue our analysis and derive conditions on the parameterising

icosians when they lead to the same coincidence site lattice. Finally, the

number of coincidence rotations as well as coincidence site lattices of each

index is expressed in form of a Dirichlet series generating function. This is

published in a summarised form in [41]. We conclude with a review of the

corresponding results for the root lattices Ad with d ≤ 3.

3.1. Generalities

3.1.1. Coincidence Site Modules and Lattices. Two Z-modules

(additive groups) Γ,Λ ⊂ Rd are called commensurate, denoted by Γ ∼ Λ, if

Γ ∩ Λ has finite subgroup index in Γ as well as Λ. From [42] we recall

Lemma 3.1. Let Γ,Λ ⊂ Rd be free Z-modules of finite rank r. Then the

following assertions are equivalent:

(i) Γ ∼ Λ.

49
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(ii) Γ ∩ Λ contains a free Z-module of rank r.

(iii) Γ ∩ Λ is a free Z-module of rank r. �

Moreover, commensurateness of free Z-modules in Rd of the same finite rank

is an equivalence relation, see [34, 42].

An element R ∈ O(d) is called a coincidence isometry of a free Z-module

Γ ⊂ Rd of finite rank, if Γ and RΓ are commensurate. The intersection

Γ ∩ RΓ is then called the coincidence site module (CSM) for the isometry

R. If Γ is a lattice it is also called coincidence site lattice (CSL) for the

isometry R. The index of the submodule Γ ∩RΓ in Γ is denoted by

Σ(R) = ΣΓ (R) = [Γ : (Γ ∩RΓ )] ,

and is referred to as coincidence index for the isometry R. The set of all

coincidence isometries is defined as

(3.1) OC(Γ ) := {R ∈ O(d) | Γ ∼ RΓ}

and forms a subgroup of O(d); see [42, 34]. The subgroup SOC(Γ ) consists

of all rotations within OC(Γ ). From [42, Example 2.7] or [34, Corollary 3.9]

we infer that

(3.2) OC(I) = OC(L[τ ]) = OC(L) = O(d,K).

When a a free Z-module Γ ⊂ Rd of finite rank is given, the set Σ(OC(Γ ))

is called the simple coincidence spectrum. It may or may not possess an

algebraic structure. In nice situations, Σ(OC(Γ )) is a multiplicative monoid

within N. On top of the spectrum, one is interested in the number g(m)

of different CSMs of a given index m. This arithmetic function is often

encapsulated into a Dirichlet series generating function,

(3.3) ΦΓ (s) :=
∞∑
m=1

gΓ (m)
ms

,
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which is a natural approach because it permits an Euler product decompo-

sition when g is multiplicative. In order to derive this generating function it

is often helpful to count the coincidence rotations of Γ of index m first. Let

k denote the order of the rotation symmetry group of Γ , i.e. the subgroup

of SOC(Γ ) which consists of all rotations with coincidence index Σ = 1.

Obviously, the number of coincidence rotations come in multiples of k. If

k grot(m) denotes the number of coincidence rotations with coincidence index

m, we define the corresponding generating function as

(3.4) Φ rot
Γ (s) :=

∞∑
m=1

grot
Γ (m)
ms

.

Note that 0 ≤ g(m) ≤ grot(m) and that g(m) 6= 0 if and only if grot(m) 6= 0.

In this chapter we focus on the analysis of the CSLs of the root lattice

A4 in form of the lattice L from (1.5). The results of this analysis are en-

capsulated into the Dirichlet series Φ rot
L (s) and ΦL(s), which turn out to

possess nice Euler product expansions. Moreover, we extract their asymp-

totic properties for m→∞, see [12] and references therein for details in

this context.

3.1.2. Coincidence Indices. For later use, we derive and state some

factorisation properties for coincidence indices.

Lemma 3.2. Let Γ ⊂ Rd be a free Z-module of rank r ≥ d and let Λ be a

submodule of Γ of index [Γ : Λ] = m. Then, OC(Γ ) = OC(Λ) and for any

isometry R out of this group, one has

(3.5) ΣΓ | mΣΛ and ΣΛ | mΣΓ .

Proof. If R ∈ OC(Λ), we know that Λ ∩RΛ has finite index in Λ and

hence also in Γ . As Λ∩RΛ ⊂ Γ ∩RΓ ⊂ Γ , we infer that OC(Λ) ⊂ OC(Γ ).

Conversely, by Lemma 1.2, we know that mΓ ⊂ Λ and hence by the same

arguments we get OC(mΓ ) ⊂ OC(Λ). Since OC(mΓ ) = OC(Γ ) the two

groups must be equal.
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Let Γ =
⋃m
j=1(tj + Λ) be the coset decomposition of Γ with respect to

Λ. Obviously, Γ ∩RΓ =
⋃m
j,k=1(tj + Λ) ∩ (Rtk +RΛ). If the set

Sjk(R) := (tj + Λ) ∩ (Rtk +RΛ)

is not empty let tjk(R) ∈ Sjk(R), i.e. tjk(R) = tj +x = Rtk+y where x ∈ Λ

and y ∈ RΛ. Let u ∈ Λ ∩RΛ, hence

tjk(R) + u = tj + x+ u = Rtk + y + u ∈ Sjk(R),

which implies that tjk(R)+Λ∩RΛ ⊂ Sjk(R). Let t′jk(R) = tj+x′ = Rtk+y′

be any element in Sjk(R). Since tjk(R)− t′jk(R) = x−x′ = y−y′ ∈ Λ∩RΛ,

we immediately see that

Sjk(R) = tjk(R) + Λ ∩RΛ.

Let I ⊂ {1, . . . ,m} × {1, . . . ,m} be the set of pairs (j, k) such that Sjk(R)

is not empty. Then

Γ ∩RΓ =
⋃

(j,k)∈I
tjk(R) + Λ ∩RΛ

is a coset decomposition of Γ ∩RΓ with respect to Λ ∩RΛ. Thus

ΣΓ = [Γ : (Γ ∩RΓ )] = [Γ : Λ][Λ : (Λ ∩RΛ)]
[(Γ ∩RΓ ) : (Λ ∩RΛ)]

= mΣΛ

|I|
,

which proves the first claim of (3.5). Since I has a natural group structure, it

is isomorphic to a subgroup of (Γ/Λ)× (Γ/Λ). By Lagrange’s Theorem, see

for example [53, Ch. 1, Proposition 2.2], |I| dividesm2. HencemΣΓ = m2ΣΛ
|I|

implies that ΣΛ divides mΣΓ . �

Now, we return to the analysis of lattices Γ ⊂ Rd and recall some results

from [90] which are needed for the derivation of the Dirichlet series.
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Theorem 3.3. Let Γ ⊂ Rd be a lattice and let R1, R2 ∈ OC(Γ ), such

that Σ(R1) and Σ(R2) are relatively prime. Then,

Σ(R1R2) = Σ(R1)Σ(R2).

�

Corollary 3.4. Let Γ ⊂ Rd be a lattice and let R1, R2 ∈ OC(Γ ), such

that Σ(R1) and Σ(R2) are relatively prime. Then,

Γ ∩R1R2Γ = Γ ∩R1Γ ∩R1R2Γ = (Γ ∩R1Γ ) ∩R1(Γ ∩R2Γ ).

�

This corollary is rather technical but it plays an important role, since it

relates the CSL of R1R2 with some kind of multiple CSL and hence provides

the basis for a decomposition of CSLs.

Lemma 3.5. Let Γ be a lattice and let R1, R2 ∈ OC(Γ ), such that m :=

Σ(R1) and n := Σ(R2) are relatively prime. Then

nΓ ∩(Γ∩R1R2Γ ) = n(Γ∩R1Γ ) mR1Γ∩(Γ ∩R1R2Γ ) = mR1(Γ ∩R2Γ ).

�

This lemma is very important since it tells us how to recover the CSLs

of R1 and R2 from the CSL of R1R2.

3.1.3. Similarity and Coincidence Isometries. We consider now

the relation of similarity and coincidence isometries for a lattice Γ ⊂ Rd as

far as it is needed later. A general analysis, which shows in particular that

SOC(Γ) is a normal subgroup of SOS(Γ), can be found in [35].

Lemma 3.6. If R is a coincidence isometry for the lattice Γ ⊂ Rd, there

exists some α ∈ R+ so that αRΓ ⊂ Γ . In other words, OC(Γ ) is a subgroup

of OS(Γ ).
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Proof. If R ∈ OC(Γ ), then Σ(R) = [Γ : (Γ∩RΓ )] = [RΓ : (Γ∩RΓ )] =

n ∈ N. By Lemma 1.2 this implies that nRΓ ⊂ (Γ ∩ RΓ ) ⊂ Γ and we can

choose α = n. �

Define the denominator of a matrix R ∈ OS(Γ ) relative to the lattice Γ

as

(3.6) denΓ (R) = min{α ∈ R+ | αRΓ ⊂ Γ} .

Clearly, as R is an isometry, one always has denΓ (R) ≥ 1, and from

denΓ (R)RΓ ⊂ Γ one concludes that
(
denΓ (R)

)d must be an integer. Con-

sequently, denΓ (R) is an algebraic integer of degree ≤ d. Moreover, we have

the following

Lemma 3.7. For a lattice Γ ⊂ Rd let R ∈ OS(Γ) as defined in (2.1).

Then,

{α ∈ R+ | αRΓ ⊂ Γ} = denΓ (R) N .

Proof. If α ∈ R+, such that αRΓ ⊂ Γ , it follows by (3.6) that

α ≥ denΓ (R). Hence we can write α = n denΓ (R) + r, where n ∈ N is

maximal and

0 ≤ r < denΓ (R). Since αRΓ and n denΓ (R)RΓ are sublattices of Γ , we

conclude that rRΓ ⊂ Γ which is only possible if r = 0.

The converse inclusion is clear since for any n ∈ N we know that

n denΓ (R)Γ ⊂ denΓ (R)Γ ⊂ Γ.

�

Lemma 3.8. Let Γ ⊂ Rd be a lattice, with groups OS(Γ ) and OC(Γ ) as

defined in (2.1) and (3.1) respectively. With the denominator from (3.6),

one has

OC(Γ ) = {R ∈ OS(Γ ) | denΓ (R) ∈ N}.
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Proof. If denΓ (R) ∈ N, one has denΓ (R)RΓ ⊂ (Γ ∩ RΓ ). Conse-

quently, the lattices Γ and RΓ are commensurate, so that the inclusion

{R ∈ OS(Γ ) | denΓ (R) ∈ N} ⊂ OC(Γ )

is clear.

Conversely, if R ∈ OC(Γ ), Γ and RΓ are commensurate by definition.

In particular, one has Σ(R)RΓ ⊂ Γ ∩ RΓ ⊂ Γ , so that Σ(R) ∈ denΓ (R)N

by Lemma 3.7. As Σ(R) ∈ N, this is only possible if denΓ (R) ∈ Q. Since

we also know that
(
denΓ (R)

)d ∈ N, we conclude that denΓ (R) ∈ N and the

claim follows. �

Lemma 3.9. Let Γ ⊂ Rd be a lattice. If R1, R2 ∈ OC(Γ ) generate the

same CSL, i.e. Γ ∩R1Γ = Γ ∩R2Γ , then Σ(R1) = Σ(R2) and den(R−1
1 ) =

den(R−1
2 ).

Proof. The statement about the coincidence indices is clear. For the

statement about the denominator note that den(R−1
1 )Γ ⊂ R1Γ. Since

den(R−1) ∈ N it follows that den(R−1
1 )Γ ⊂ Γ∩R1Γ = Γ∩R2Γ ⊂ R2Γ. Thus

den(R−1
1 )R−1

2 Γ ⊂ Γ, which shows that den(R−1
1 ) is a multiple of den(R−1

2 ).

By symmetry in R1 and R2, den(R−1
2 ) is a multiple of den(R−1

1 ) and so

den(R−1
1 ) = den(R−1

2 ). �

3.2. Results for A4

We want to start now our analysis of the CSLs of the root lattice A4.

Due to the fact that the lattice L, as defined in (1.5), is a scaled copy of

the root lattice A4 we can equivalently analyse the CSLs of L. Since L = L,

any orientation reversing operation can be obtained from an orientation

preserving one after applying conjugation first, so we restrict ourselves to

rotations only. By Lemmas 3.6 and 3.8, we know how SOC(L) and SOS(L)

are related in general. Recall from Corollary 2.16 that all SSLs of L are of

the form mpLp̃ with m ∈ N and p ∈ I primitive. For a given SSL of L, now
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written as mpLp̃, the corresponding similarity rotation is then given by the

map x 7→ 1
|pp̃| pxp̃, which is also referred to as

(3.7) R(p)x := 1
|pp̃|

pxp̃.

We denote the denominator of R(p) by den(p). Obviously, p is only unique

up to a factor α ∈ Z[τ ]×, hence many different p result in the same rotation

R(p). However, all similarity rotations of L can be characterised as

SOS(L) = {R(p) | p ∈ I is primitive } .

Among them we have to identify the SOC(L) elements, which is possible as

follows.

Proposition 3.10. Let 0 6= q ∈ I be an arbitrary icosian. Then, the

lattices 1
|qq̃ | qLq̃ and L are commensurate if and only if |qq̃| ∈ N. If q is

primitive, then den(q) = |qq̃|.

Proof. If q is primitive, we know by Proposition 2.14 that qLq̃ is an

L-primitive sublattice of L, hence den(q) = |qq̃|, which is a positive integer

by Lemma 3.8. When q = αp with 0 6= α ∈ Z[τ ], one has |qq̃| = N(α)|pp̃|

with N(α) ∈ N and the claim follows from the primitive case, since R(p) =

R(q). �

Let us call an icosian q ∈ I admissible when |qq̃| ∈ N. As nr(q̃) = nr(q)′,

the admissibility of q implies that N
(
nr(q)

)
= |qq̃|2 is a square in N. An

immediate consequence of the previous proposition is that

(3.8) SOC(L) = {R(p) | p ∈ I is primitive and admissible } .

Let us summarise what all this means for the CSLs of L.

Theorem 3.11. The CSLs of L are precisely the lattices of the form

L ∩ 1
|pp̃| pLp̃



3.2. RESULTS FOR A4 57

with p ∈ I primitive and admissible.

This is the first step to connect certain primitive right ideals pI of the

icosian ring with the CSLs of L. Before we continue in this direction, note

the following lemma which is needed later.

Lemma 3.12. Let q ∈ I be admissible and let

|q|2 = πr1
1 . . . πrmm

be its prime factorisation in Z[τ ]. Then, the exponent ri of every prime πi

which is either a ramified prime or a splitting prime occurring in the prime

factorisation of |q|2 but not in that of |q̃|2, is even.

Proof. Since |q̃|2 = nr(q)′ = (π′1)r1 . . . (π′m)rm , the condition that

|qq̃| = nr(qq̃)
1
2 = |π1π

′
1|
r1
2 . . . |πmπ′m|

rm
2

is an integer, implies the claim. �

Let us consider now the relation of right ideals of I and CSLs of L.

Lemma 3.13. Let r, s ∈ I be primitive and admissible quaternions, with

rI = sI. Then, one has L ∩ rLr̃
|rr̃| = L ∩ sLs̃

|ss̃| .

Proof. When rI = sI, one has s = rε for some ε ∈ I×; see (1.22).

Since, by Lemma 2.17, we then know that εLε̃ = L, one has rLr̃ = sLs̃ in

this case. As |εε̃ |2 = N(nr(ε)) = 1, one also finds |ss̃| = |rr̃|. Consequently,
rLr̃
|rr̃| = sLs̃

|ss̃| , and the CSLs of L defined by r and s are equal. �

The converse statement to Lemma 3.13 is not true, as the equality of two

CSLs does not imply the corresponding rotations to be symmetry related.

An example is provided by r = (τ, 2τ, 0, 0) and s = (τ2, τ, τ, 1), which define

the same CSL, though s−1r is not a unit in I. The CSL is spanned by the

basis {(1, 2, 0, 0), (2,−1, 0, 0), (3
2 ,

1
2 ,

1
2 ,

1
2), (−1, 1

2 ,
τ−1
2 ,− τ

2 )}. However, when
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two primitive quaternions r, s ∈ I define rotations that are related by a rota-

tion symmetry of L, one has rI = sI as a direct consequence of Lemma 2.17.

Although the primitive elements of I are important in this context, we

need a variant for our further discussion. Let p ∈ I be primitive and admissi-

ble. Since Z[τ ] is a Dedekind domain, one has the relation (xZ[τ ])−1 = 1
xZ[τ ]

for any principal fractional ideal with nonzero x ∈ K, see [52, 62] for details.

Then, the fractional ideal

(
nr(p)Z[τ ] ∩ nr(p̃ )Z[τ ]

)2(|pp̃|2Z[τ ]
)−1 = (lcm(nr(p), nr(p̃ )))2

|pp̃|2
Z[τ ]

= βpZ[τ ]βp̃Z[τ ]

is a square as well, where βp := lcm(nr(p),nr(p̃ ))/ nr(p) ∈ Z[τ ] is well-

defined up to units of Z[τ ], as Z[τ ] is a principal ideal domain. Clearly,

βpZ[τ ] and βp̃Z[τ ] are coprime by construction. Since their product is a

square in Z[τ ], we have βpZ[τ ] =
(
αpZ[τ ]

)2 for some αp ∈ Z[τ ]. Explicitly,

we may choose

(3.9) αp =
√

lcm(nr(p),nr(p̃ ))
nr(p)

=
√

lcm(nr(p),nr(p)′)
nr(p)

∈ Z[τ ] ,

where we assume a suitable standardisation for the lcm of two elements of

Z[τ ]. Again, αp is only defined up to units of Z[τ ], therefore we implicitly

work with the principal ideal αpZ[τ ] here. Moreover, we have the relation

αp̃ = α̃p = α ′p. Note that due to its definition αp is not divisible by any

inert or ramified prime of Z[τ ].

Let us call the icosian αpp the extension of the primitive admissible

element p ∈ I, and (αpp, α ′pp̃ ) the corresponding extension pair. In view of

the form of the rotation x 7→ 1
|pp̃| pxp̃, it is actually rather natural to replace

p and p̃ by certain Z[τ ]-multiples, pα := αpp and p̃α = αp̃ p̃, such that nr(pα)

and nr(p̃α) have the same prime divisors in Z[τ ]. Note that the definition

of the extension pair is unique up to units of Z[τ ], and that one has the
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relation

(3.10) nr(pα) = lcm
(
nr(p),nr(p̃ )

)
= nr(p̃α) = |pα p̃α| ∈ N ,

which will be crucial later on. The introduction of the extension pair restores

some kind of symmetry of the expressions in relation to the two quaternions

involved. Clearly, since the extra factors are central, this modification does

not change the rotation, so that

(3.11) pxp̃

|pp̃|
= pαxp̃α
|pαp̃α |

holds for all quaternions x.

Lemma 3.14. For q ∈ I and γ ∈ K, one has q ∈ γI if and only if

{tr(qy) | y ∈ I} ⊂ γZ[τ ].

Proof. The statement is clear for γ = 0, so assume γ 6= 0. If q ∈ I,

one has qy ∈ I and hence tr(qy) ∈ Z[τ ] for all y ∈ I. Thus 1
γ q ∈ I implies

1
γ tr(qy) ∈ Z[τ ]. Conversely, tr(qy) ∈ Z[τ ] for all y ∈ 1

γ I means q ∈
( 1
γ I
)∗ =

γI∗ = γI, by Lemma 1.13, which implies the claim. �

Lemma 3.15. If p ∈ I is primitive, there is a quaternion z ∈ I with

tr(pz) = 1. When, in addition, p is also admissible, there exists a quaternion

z ∈ I such that tr(pα z) + tr(p̃αz ) = 1, where pα denotes the extension of p.

Proof. When p ∈ I, one has gcd{tr(px)Z[τ ] | x ∈ I} = γZ[τ ] with

γ ∈ Z[τ ]. If γ was not a unit in Z[τ ], Lemma 3.14 would imply that p ∈ γI,

which would contradict the primitivity of p. Hence γ is a unit and so γZ[τ ] =

Z[τ ]. Since Z[τ ] is noetherian, there are finitely many icosians xi ∈ I, say `

of them, such that

gcd{tr(pxi)Z[τ ] | 1 ≤ i ≤ `} = tr(px1)Z[τ ] + . . .+ tr(px`)Z[τ ] = Z[τ ] .
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This implies the existence of numbers βi ∈ Z[τ ] for 1 ≤ i ≤ `, such that

∑̀
i=1

βi tr(pxi) = tr(pz) = 1,

where z :=
∑`
i=1 βixi.

For the second claim, assume that p is also admissible and denote its

extension by pα. Let z ∈ I be the icosian from the first part of the proof, so

that tr(pz) = 1. Since pα = αpp with αp ∈ Z[τ ], this implies tr(pαz) = αp

and thus also

α ′p = α̃p = tr
(
p̃αz

)
= tr

(
z̃ p̃α

)
.

Since the ideals αpZ[τ ] and α ′pZ[τ ] are relatively prime by construction, we

have αpZ[τ ] + α ′pZ[τ ] = Z[τ ] and thus the existence of β, δ ∈ Z[τ ] with

βαp + δα ′p = 1. The icosians x = βz and y = δ ′z then satisfy tr(pαx) +

tr(ỹ p̃α) = 1 as well as tr(x̃ p̃α) + tr(pαy) = 1, where the second identity

follows from the first via (tr(uv))̃ = tr( ṽ ũ ).

Finally, observe that tr(uv) ∈ K for all u, v ∈ H(K), so that one also has

the relation (tr(uv))′ = tr(ṽ ũ). Consequently, defining z = τ x + (1 − τ)y

with the x, y from above, z is an icosian that satisfies

tr(pα z)+tr(z̃ p̃α) = τ
(
tr(pαx)+tr(ỹ p̃α)

)
+(1−τ)

(
tr(pαy)+tr(x̃ p̃α)

)
= 1 ,

which establishes the second claim. �

Our further discussion requires the definition of the following sublattice

of L

(3.12) L(q) = {qx+ x̃q̃ | x ∈ I} = ϕ+(qI),

where q ∈ I. This sublattice is a generalisation of the lattice in Proposi-

tion 1.15. Note that, due to Ĩ = I, one has L(q) = L̃(q).



3.2. RESULTS FOR A4 61

Theorem 3.16. Let p ∈ I be primitive and admissible, and let pα = αpp

be its extension. Then, the CSL defined by p is given by

L ∩ 1
|pp̃|

pLp̃ = L(pα) ,

with L(pα) defined as in (3.12).

Proof. To show the claim, we establish two inclusions, where we use

the fact that p and pα define the same rotation; compare (3.11).

First, since L(pα) ⊂ L is clear, we need to show that |pαp̃α|L(pα) ⊂

pαLp̃α. If x ∈ L(pα), there is some y ∈ I with x = pαy+ ỹ p̃α. Consequently,

observing the norm relations from (3.10), we find

|pαp̃α|x = pαy p̃αp̃α+pαpα ỹ p̃α = pα (y p̃α+ pαỹ) p̃α ∈ pαL(pα)p̃α ⊂ pαLp̃α ,

which gives the first inclusion.

Conversely, let x ∈ L ∩ 1
|pp̃| pLp̃, i.e. there is some y ∈ L so that x =

p y p̃
|pp̃| = pαy p̃α

|pα p̃α|
. Moreover, by Lemma 3.15 there exists an icosian z such that

tr(pαz) + tr(z̃ p̃α) = 1. Observing x = x̃ and the norm relations in (3.10),

one finds

x = tr(pαz)x+ x̃ tr(z̃ p̃α) = (pαz + z pα)x+ x̃(z̃ p̃α + p̃αz̃ )

= pα(zx+ ỹ z̃ ) + (x̃z̃ + zy)p̃α ,

which shows that x ∈ L(pα). �

Corollary 3.17. Let p ∈ I be admissible and primitive and let pα = αpp

be its extension. Then, another representation of the CSL defined by p is

L(pα) = (pαI + Ip̃α) ∩ L.

Proof. Clearly, L(pα) ⊂ pαI + Ip̃α and L(pα) ⊂ L, i.e.

L(pα) ⊂ (pαI + Ip̃α) ∩ L.
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If q = pαx+ yp̃α ∈ (pαI + Ip̃α) ∩ L, then q = q̃ and

q = pαx+ yp̃α = τ(pαx+ yp̃α) + (1− τ)(pαỹ + x̃p̃α) = pαz + z̃ p̃α,

where z = τx+ (1− τ)ỹ ∈ I. This shows that q ∈ L(pα). �

Now we have explicitly identified the CSLs of L. For calculating their

indices we need to analyse the corresponding indices of the coincidence sub-

modules of I and L[τ ].

3.3. Coincidence Site Modules of L[τ ] and I

Lemma 3.18. Let p ∈ I be primitive and admissible, then

L[τ ] ∩ 1
|pp̃| pL[τ ]p̃ = L(p)⊕ τL(p) and ΣL[τ ](p) = Σ2

L(p).

Proof. Since the lattice L is rational and the lattice τL is not, the

coincidence rotations of L do not mix vectors form L and τL, so we have

L[τ ] ∩ 1
|pp̃|

pL[τ ]p̃ = (L⊕ τL) ∩ ( 1
|pp̃|

pLp̃⊕ τ

|pp̃|
pLp̃)

= (L ∩ 1
|pp̃|

pLp̃)⊕ (τL ∩ τ

|pp̃|
pLp̃)

= L(p)⊕ τL(p).

A straightforward calculation with explicit cosets implies that

ΣL[τ ](p) = [L⊕ τL : L(p)⊕ τL(p)] = [L : L(p)]2 = Σ2
L(p).

�

With (3.2) this implies that

(3.13) SOC(L) ⊂ OC(L[τ ]) = OC(I).

Therefore, we continue our analysis of SOC(L) by analysing OC(I).
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Let (p, q) ∈ I× I. The corresponding rotation x 7→ 1
|pq|pxq is also referred

to as

(3.14) R(p, q)x := 1
|pq|

pxq.

A pair (p, q) ∈ I×I is called primitive, if p and q are primitive, and it is called

admissible, if |pq| ∈ Z[τ ]. For a primitive admissible pair (p, q) ∈ I × I we

obviously have that |pq|R(p, q)I = pIq ⊂ I ∩R(p, q)I, and hence Lemma 3.1

implies that R(p, q) is a coincidence isometry of I. We denote its coincidence

index by ΣI(p, q). The denominator of

R ∈ OS(I) := {R ∈ O(4) | αRI ⊂ I for some α ∈ R+}

is defined as denI(R) ∈ R+, such that [I : denI(R)RI] ≤ [I : αRI] for all

α ∈ R+ with αRI ⊂ I. Note that analogously to Lemma 3.7 we have

{α ∈ R+ | αRI ⊂ I} = denI(R)Z[τ ]

and hence denI(R) is defined uniquely up to units of Z[τ ]. For a primitive

and admissible pair (p, q) ∈ I× I we obviously have

(3.15) denI(R(p, q)) = |pq|.

In analogy to (3.9),we define for an admissible pair of icosians (p, q) ∈ I× I

(3.16) αp :=
√

lcm(nr(p),nr(q))
nr(p)

, αq :=
√

lcm(nr(p),nr(q))
nr(q)

∈ Z[τ ] .

Note that α2
p divides nr(q) and α2

q divides nr(p). The extended pair is defined

as (pα, qα) := (αpp, αqq). By definition it is clear that

(3.17) nr(pα) = lcm
(
nr(p),nr(q)

)
= nr(qα) = |pαqα| = αpαq|pq| ∈ Z[τ ]

as well as

(3.18) αq|q|2 = αp|pq| and αp|p|2 = αq|pq|.
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Since the additional factors are central, the pair (p, q) and its extension

(pα, qα) define the same rotation, i.e.

(3.19) R(p, q)x = pxq

|pq|
= pαxqα
|pαqα |

holds for all quaternions x.

Lemma 3.19. Let (p, q) be a primitive admissible pair of icosians and

(pα, qα) its extension. Then there exist icosians u, v ∈ I such that tr(pαu)+

tr(vqα) = 1.

Proof. Note that tr(vq) = tr(qv) so that the claim can be proved

analogously to Lemma 3.15. �

Theorem 3.20. Let (pα, qα) be the extension of a primitive admissible

pair of icosians (p, q). Then

I ∩ 1
|pq| pIq = pαI + Iqα.

Proof. By (3.19) we can equivalently show that I∩ 1
|pαqα| pαIqα = pαI+

Iqα. To show this equality, we establish two inclusions.

Since pα, qα ∈ I it is clear that pαI + Iqα ⊂ I . So we only need to show

that |pαqα|(pαI + Iqα) ⊂ pαIqα. If x ∈ pαI + Iqα, there are some r, s ∈ I such

that x = pαr + sqα. With (3.17) this implies that

|pαqα|x = pαr nr(qα) + nr(pα)sqα = pαrqαqα + pαpαsqα = pα(rqα + pαs)qα.

Due to the fact that I = I, this means that |pαqα|x ∈ pαIqα and we have

proved the first inclusion.

The converse inclusion relies on Lemma 3.19. Let u, v ∈ I be the icosians

such that tr(pαu) + tr(vqα) = 1. If x ∈ I∩ 1
|pαqα| pαIqα, there is a y ∈ I such

that x = pαyqα
|pαqα| . Thus

x = tr(pαu)x+ x tr(vqα)

= pαux+ upαx+ xvqα + xqαv
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= pαux+ uyqα + xvqα + pαyv

= pα(ux+ yv) + (uy + xv)qα,

which shows that x ∈ pαI + Iqα. �

Corollary 3.21. Let p ∈ I be primitive and admissible, and let pα =

αpp be its extension. Then

I ∩ 1
|pp̃|

pIp̃ = pαI + Ip̃α.

Corollary 3.22. Let (pα, qα) be the extension of a primitive admissible

pair of icosians (p, q). Then

I ∩ 1
|pq| pIq = p`I + Iqr,

where p` = glcd(pα, |pq|) and qr = grcd(qα, |pq|).

Proof. Obviously, pp I qq ⊂ pIq, so it is clear that |pq|I ⊂ I ∩ 1
|pq| pIq.

The application of Theorem 3.20 gives

I ∩ 1
|pq| pIq = I ∩ 1

|pq| pIq + |pq|I = pαI + Iqα + |pq|I = p`I + Iqr.

�

Theorem 3.23. Let p ∈ I be primitive and admissible, then

ΣI(p, p̃) = ΣL[τ ](p, p̃).

Proof. In this proof p ∈ I is arbitrary but fixed, so we write ΣI =

ΣI(p, p̃) and ΣL[τ ] = ΣL[τ ](p, p̃) as well as R = R(p, p̃) for better readability.

Recall from (1.28) that L[τ ] is a submodule of index 5 in I. Since

R ∈ SOC(L) ⊂ OC(L[τ ]) = OC(I),

compare (3.13), Lemma 3.2 implies that

(3.20) ΣI = 5ΣL[τ ], 5ΣI = ΣL[τ ] or ΣI = ΣL[τ ].
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We will show that the first and the second relation are impossible, thus

proving the third.

Assume that ΣI = 5ΣL[τ ]. Since

ΣI = [I : (I ∩ 1
|pp̃|pIp̃)] = 5ΣL[τ ] = [I : L[τ ]] [L[τ ] : (L[τ ] ∩ 1

|pp̃|pL[τ ]p̃)]

and L[τ ] ∩ 1
|pp̃|pL[τ ]p̃ ⊂ I ∩ 1

|pp̃|pIp̃ the assumption is equivalent to

L[τ ] ∩ 1
|pp̃|pL[τ ]p̃ = I ∩ 1

|pp̃|pI p̃ = pαI + I p̃α.

Hence pαI ⊂ L[τ ] and Ip̃α ⊂ L[τ ]. By Corollary 1.17 we know that
√

5I ⊂

L[τ ]. Let q := glcd(pα,
√

5), i.e. qI ⊂ L[τ ]. Since we know by Lemma 1.27

that q̃ = grcd(p̃α,−
√

5), we infer that Iq̃ ⊂ L[τ ]. Proposition 1.16 tells us

that for r ∈ I, we have qr − r̃ q̃ ∈
√

5I, which implies that r̃ q̃ = q(r − s), for

s ∈ I, and hence Iq̃ ⊂ qI. As [I : qI] = N(nr(q)2) = [I : Iq̃], see Lemma 1.9,

it follows that qI = Iq̃. Due to its definition αp is not divisible by
√

5, i.e.

gcd(αp,
√

5) = 1, which implies by Corollary 1.24 that q = glcd(pα,
√

5) =

glcd(p,
√

5) ∈ I \ Z[τ ]. As qI = Iq̃ is a two-sided ideal this contradicts

Lemma 1.10.

Now, suppose that 5ΣI = ΣL[τ ] or equivalently 25ΣI = 5ΣL[τ ]. Hence

(3.21) [(I ∩RI) : (L[τ ] ∩RL[τ ])] = [I : L[τ ][L[τ ] : (L[τ ] ∩RL[τ ])]
[I : (I ∩RI)]

= 25.

For x ∈ L[τ ] we have

|Rx− R̃x|2 = |pxp̃
|pp̃|
− (̃pxp̃)
|pp̃|

|2 = 1
|pp̃|2 |p(x− x̃)p̃|

2 = |x− x̃|2,

which implies by Proposition 1.16 that I ∩ 1
|pp̃|pL[τ ]p̃ ⊂ L[τ ] and hence

I ∩ 1
|pp̃|pL[τ ]p̃ = L[τ ] ∩ 1

|pp̃|pL[τ ]p̃.
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If we consider the coset decomposition of L[τ ] in I, where x0 = y0 = 0 and

xi, yj ∈ I for 1 ≤ i ≤ 4, i.e.

I ∩ 1
|pp̃|pIp̃ =

4⋃
i,j=0

(xi + L[τ ]) ∩ 1
|pp̃|p(yj + L[τ ])p̃,

it is clear that there cannot be 25 distinct cosets of L[τ ] ∩ RL[τ ] in I ∩ RI,

since (xi+L[τ ])∩ 1
|pp̃|pL[τ ]p̃ = ∅, if i 6= 0. This contradicts (3.21) and hence

the second case of (3.20) is ruled out, too. �

Lemma 3.24. Let (p, q) be a primitive admissible pair of icosians and

(pα, qα) its extension. Then,

| glcd(p, |pq|)|2 = 1
αp
|pq| = αq gcd(|p|2, |q|2) and

| grcd(q, |pq|)|2 = 1
αq
|pq| = αp gcd(|p|2, |q|2).

Proof. Recall that gcd(|p|2), |q|2) lcm(|p|2, |q|2) = |pq|2. Hence consid-

ering the definitions of αp and αq in (3.16) it is clear that |pq| = αpαq gcd(|p|2, |q|2).

So in each of the two cases the second of the two equalities is clear.

Moreover, αp, αq are by definition relatively prime. With Corollary 1.25

and (3.18), we conclude that

| glcd(p, |pq|)|2 = gcd(|p|2, |pq|) = gcd(αq|p|2, αp|pq|)

= gcd(αq|p|2, αq|q|2) = αq gcd(|p|2, |q|2) and

| grcd(q, |pq|)|2 = gcd(|q|2, |pq|) = gcd(αp|q|2, αq|pq|)

= gcd(αp|q|2, αp|p|2) = αp gcd(|q|2, |p|2).

�

Proposition 3.25. Let (p, q) be a primitive admissible pair of icosians

and (pα, qα) its extension pair. Then,

ΣI(R(p, q))ΣI(R(p, q)) = N(nr(pα)2) = N(nr(qα)2).
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Proof. By Theorem 3.20 it is clear that

pαI ⊂ pαI + Iqα = I ∩ 1
|pq| pIq ⊂ I.

and by Lemma 1.9 we know that [I : pαI] = N(nr(pα)2). Moreover,

[(pαI+Iqα) : pαI] = [(I+p−1
α Iqα) : I] = [(I+ pα

|pαqα|
Iqα) : I] = [(I+R(pα, qα)I) : I]

and, the first isomorphism theorem, see for example [53, p. 17], implies that

[(I +R(pα, qα)I) : I] = [R(pα, qα)I : (R(pα, qα)I ∩ I)]

= [I : (I ∩R(pα, qα)I)] = ΣI(R(pα, qα)).

So we have

N(nr(pα)2) = [I : (pαI+Iqα)][(pαI+Iqα) : pαI] = ΣI(R(pα, qα))ΣI(R(pα, qα))

and N(nr(pα)2) = N(nr(qα)2) see (3.17).

�

Proposition 3.26. Let (p, q) be a primitive admissible pair of icosians

and (pα, qα) its extension. Define gp, gq, hp, hq, kp, kq, rp, rq ∈ I, such that

(3.22)

gp = glcd(p, αq) = glcd(pα, αq), gq = grcd(q, αp) = grcd(qα, αp),

p = gphp, q = hqgq,

kp = glcd(hp, |hq|2), kq = grcd(hq, |hp|2)

p = gpkprp and q = rqkqgq.

Then,

gcd(|hp|2, |hq|2) = gcd(|p|2, |q|2) = |kp|2 = |kq|2,

and

gpkp = glcd(p, |pq|), kqgq = grcd(q, |pq|).
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Moreover, gp, gq, kp, kq, rp and rq are, up to units, uniquely identified as

the factors

p = gpkprp and q = rqkqgq

such that |gp|2 = |rp|2 = αq, |gq|2 = |rq|2 = αp and |kp|2 = |kq|2 =

gcd(|p|2, |q|2).

Proof. Note that by Corollary 1.25 we have |gp|2 = αq and |gq|2 =

αp. Since αp and αq are relatively prime by definition this implies that

gcd(|p|2, |q|2)| = gcd(|hp|2, |hq|2) =: g. Moreover, Corollary 1.25 reveals

that | glcd(hp, g)|2 = g = | grcd(hq, g)|2 and |kp|2 = | glcd(hp, |hq|2)|2 = g =

| grcd(hq, |hp|2)|2 = |kq|2. This proves the first claim.

Considering the definitions of the involved icosians, we see immediately

that gpkp divides p and gp|hq|2. Since gp divides αq, it follows with (3.18)

that gpkp divides αq|hq|2 = αq
αp
|q|2 = |pq|. Thus gpkp divides glcd(p, |pq|). By

Lemma 3.24 we have

| glcd(p, |pq|)|2 = αq gcd(|p|2, |q|2) = |gp|2|kp|2,

which implies that gpkp = glcd(p, |pq|). Similarly, we see that kqgq divides

q and |hp|2gq. Since gq divides αp, it follows with (3.18) that kqgq divides

αp|hp|2 = αp
αq
|p|2 = |pq|. Thus kqgq divides grcd(q, |pq|). By Lemma 3.24 we

have

| grcd(q, |pq|)|2 = αp gcd(|p|2, |q|2) = |kq|2|gq|2,

which implies that kqgq = grcd(q, |pq|). Thus we have proved the second

claim.

To prove the third claim, recall from (3.16) that |p|2 = α2
q gcd(|p|2, |q|2)

and |q|2 = α2
p gcd(|p|2, |q|2). This implies that |rp|2 = αq and |rq|2 = αp.

Hence the icosians defined in (3.22) fulfil the third part of the claim. More-

over, as divisors of primitive icosians, with a fixed order of the elements

in the prime factorisation of their norm, they are, up to units, uniquely

identified by their norm. This completes the proof. �
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Proposition 3.27. Let p, q ∈ I be primitive and let α ∈ Z[τ ] such that

αIq ⊂ pI. Then, nr(p) divides α. Moreover, if β ∈ Z[τ ] denotes the element

with minimal norm N(β) such that βIq ⊂ pI, then β = nr(p), up to units of

Z[τ ].

Proof. If p and q are units of I, the claim is clear. So assume that

either p or q is not a unit of I. Iq * pI, since otherwise Lemma 1.20 implies

that I = IqI ⊂ pI which means that p and q are units of I.

Since Z[τ ] is a Euclidean domain there are γ, % ∈ Z[τ ] such that α =

γβ + % and 0 ≤ N(%) < N(β). Consequently, (α − γβ)Iq = %Iq ⊂ pI, which

implies that % = 0 due to the definition of β. Hence β is a divisor of α. In

particular, β divides nr(p), as obviously nr(p)Iq ⊂ pI.

Assume that β is a proper divisor of nr(p). This implies by Theorem 1.23

that g := glcd(β, p) is a proper left divisor of β and p. So there are hp, hβ ∈ I,

which are not units in I, such that p = ghp, β = ghβ and hpI + hβI = I.

Hence hβIq ⊂ hpI and Iq = (hpIq+hβIq) ⊂ hpI, which implies that IqI ⊂ hpI.

By Lemma 1.20 the two-sided ideal IqI = I and therefore I ⊂ hpI, which

contradicts the fact that hp is not a unit in I. Thus β = nr(p). �

Corollary 3.28. If p, q ∈ I are primitive, then

N(nr(p)) divides [(pI + Iq) : pI],

i.e. there are at least N(nr(p)) cosets of pI in pI + Iq.

Proof. Let β := [(pI + Iq) : pI]K , then by Lemma 1.6 we know that

β(pI + Iq) ⊂ pI and hence βIq ⊂ pI. Consequently, by Proposition 3.27, β

is a multiple of nr(p) and hence we conclude with Lemma 1.7 that N(β) is

a multiple of N(nr(p)). �

Theorem 3.29. Let (p, q) be a primitive admissible pair of icosians and

(pα, qα) its extension. Then,

ΣI(p, q) = N(lcm(|p|2, |q|2)) = N(|pα|2) = N(|qα|2) = N(αpαq|pq|).



3.3. COINCIDENCE SITE MODULES OF L[τ ] AND I 71

Proof. Recall from Theorem 3.20 that ΣI(p, q) = [I : (pαI + Iqα)].

Considering (3.17) we only need to show that ΣI(p, q) = N(nr(pα)). Note

that (p, q) is a primitive admissible pair of icosians, too. If we show that

ΣI(p, q) divides N(nr(pα)),(3.23)

this will imply for the pair (p, q) that ΣI(p, q) divides N(nr(pα)). So there

will be m,n ∈ N such that ΣI(p, q)m = N(nr(pα)) = N(nr(pα)) = ΣI(p, q)n

and Proposition 3.25 will imply that m = n = 1. Hence, it is sufficient to

show (3.23).

If pα and qα are units, the statement (3.23) is clear, due to the charac-

terisation of units in I, see (1.22). So assume that either pα or qα is not a

unit. Since |pα|2 = |qα|2, see (3.17), this means that neither pα nor qα is a

unit of I.

First, suppose that αp = αq = 1. Hence pα and qα are primitive and

Corollary 3.28 implies that N(nr(pα)) divides [(pαI + Iqα) : pαI]. Since by

Lemma 1.9

[I : (pαI + Iqα)][(pαI + Iqα) : pαI] = N(nr(pα))2,

this proves (3.23) and hence [I : (pαI + Iqα)] = N(nr(pα)).

Now, we use Proposition 3.26 and its notation for the reduction of the

general case to the case αp = αq = 1. Note that

pαI + Iqα = pαI + pαIq + pIqα + Iqα

= pαI + pIqα + pαIq + Iqα

= pI(αpI + Iqα) + (αqI + Ipα)Iq

= pIgq + gpIq = gp(hpI + Ihq)gq.

Thus Lemma 1.9 implies that

[I : (pαI + Iqα)] = N(α2
pα

2
q)[I : (hpI + Ihq)].
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Since |hp|2 = |p|2
αq
6= |q|2

αp
= |hq|2, we cannot apply the special case yet.

Therefore we need another representation of the subgroup (hpI+ Ihq). Note

that

(3.24)

hpI + Ihq = hpI + I|hp|2 + |hq|2I + Ihq

= (hpI + |hq|2I) + (Ihq + I|hp|2)

= kpI + Ikq.

where |kp|2 = |kq|2 = gcd(|p|2, |q|2) = |p|2
α2
q

= |q|2
α2
p
. Finally, the application of

the special case gives

[I : (pαI + Iqα)] = N(α2
qα

2
p)[I : (kpI + Ikq)] = N(α2

qα
2
p
|p|2
α2
q
) = N(|pα|2).

�

The proof of Theorem 3.29 implies even more. Equation (3.24) shows

that

pαI + Iqα = gp(kpI + Ikq)gq

depends only on gp, gq, kp and kq. With Proposition 3.26 this leads to fol-

lowing representation of a CSM of I.

Corollary 3.30. Let (p, q) be a primitive admissible pair of icosians.

Decompose p = gpkprp and q = rqkqgq, such that |gp|2 = |rp|2 = αq, |gq|2 =

|rq|2 = αp and |kp|2 = |kq|2 = gcd(|p|2, |q|2). Then

I ∩ pIq
|pq|

= gp(kpI + Ikq)gq.

The following two corollaries give sufficient conditions for the equality

of two CSMs of I.

Corollary 3.31. Let (p1, q1) and (p2, q2) be two primitive admissible

pairs of icosians, such that |p1q1| = |p2q2|, αp1 = αp2 and αq1 = αq2. If

glcd(p1, |p1q1|) = glcd(p2, |p2q2|) and grcd(q1, |q1p1|) = grcd(q2, |q2p2|), then

I ∩ p1Iq1
|p1q1| = I ∩ p2Iq2

|p2q2| .
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Proof. For i ∈ {1, 2} decompose pi = gpikpirpi and qi = rpikpiqpi ,

such that |gpi |2 = |rpi |2 = αqi , |gqi |2 = |rqi |2 = αpi and |kpi |2 = |kqi |2 =

gcd(|pi|2, |qi|2). By Corollary 3.30, we only have to show that

gp1(kp1I + Ikq1)gq1 = gp2(kp2I + Ikq2)gq2 .

By the assumptions and Proposition 3.26

gp1kp1 = glcd(p1, |p1q1|) = glcd(p2, |p2q2|) = gp2kp2 .

Since αq1 = αq2 divides |p1q1| = αp1αq1 gcd(|p1|, |q1|) = |p2q2|, this implies

that gp1 = glcd(p1, αq1) = glcd(p2, αq2) = gp2 .

Similarly, again by assumptions and Proposition 3.26

kq1gq1 = grcd(q1, |p1q1|) = grcd(q2, |p2q2|) = kq2gq2 .

Since αp1 = αp2 divides |p1q1| = αp1αq1 gcd(|p1|, |q1|) = |p2q2|, this implies

that gq1 = grcd(q1, αp1) = grcd(q2, αp2) = gq2 . �

Corollary 3.32. Let (p1, q1) and (p2, q2) be two primitive admissible

pairs of icosians, such that |p1q1| = |p2q2| and lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2).

If glcd(p1, |p1q1|) = glcd(p2, |p2q2|) and grcd(q1, |q1p1|) = grcd(q2, |q2p2|),

then

I ∩ p1Iq1
|p1q1| = I ∩ p2Iq2

|p2q2| .

Proof. Due to the assumptions and the fact that lcm(|pi|2, |qi|2) =
|piqi|2

gcd(|pi|2,|qi|2) for i ∈ {1, 2}, it is clear that gcd(|p1|2, |q1|2) = gcd(|p2|2, |q2|2).

For i = 1, 2 decompose pi = gpikpirpi and qi = rpikpiqpi , such that |gpi |2 =

|rpi |2 = αqi , |gqi |2 = |rqi |2 = αpi and |kpi |2 = |kqi |2 = gcd(|pi|2, |qi|2). By

Proposition 3.26 we know that

gp1kp1 = glcd(p1, |p1q1|) = glcd(p2, |p2q2|) = gp2kp2 .
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which implies that

αq1 gcd(|p1|2, |q1|2) = |gp1 |2|kq1 |2 = |gp2 |2|kp2 |2 = αq2 gcd(|p2|2, |q2|2).

Hence αq1 = αq2 . Completely analogously it follows that αp1 = αp2 and we

can apply Corollary 3.31. �

A first step in proving the converse statement of Corollary 3.32 is

Lemma 3.33. Let (p1, q1) and (p2, q2) be two primitive admissible pairs

of icosians. If

I ∩ p1Iq1
|p1q1| = I ∩ p2Iq2

|p2q2| ,

then |p1q1| = |p2q2| and N(lcm(|p1|2, |q1|2) = N(lcm(|p2|2, |q2|2), i.e. denom-

inator and coincidence index are the same.

Proof. Clearly, |p1q1|I ⊂ I and |p1q1|2I ⊂ p1Iq1. Hence |p1q1|I ⊂ I ∩
p1Iq1
|p1q1| = I∩ p2Iq2

|p2q2| . This implies directly that |p1q1|
|p2q2|p2Iq2 ⊂ p2Iq2

|p2q2| ∩ I, i.e. |p1q1|

is a multiple of denI(R(p2, q2)). As (p2, q2) is also a primitive admissible pair

of icosians, this means that denI(R(p2, q2)) = |p2q2| = |p2q2|. Exchanging

the roles of |p2q2| and |p1q1| gives the claim. By Theorem 3.29 we know that

ΣI(p1, q1) = N(lcm(|p1|2, |q1|2)) = N(lcm(|p2|2, |q2|2)) = ΣI(p1, q1). �

For later use we gather some additional information on the index of

[I : (rI + Is)] for arbitrary r, s ∈ I. We first consider the case where r, s are

both primitive.

Lemma 3.34. If r, s ∈ I are primitive, then

[I : (rI + Is)]K divides gcd(|r|2, |s|2).

Proof. If r and s are units of I, the claim is clear. So assume that

either r or s is not a unit of I. Since rI ⊂ (rI + Is), we know by Lemmas

1.8 that,

[I : (rI + Is)]K [(rI + Is) : rI]K = nr(r)2.
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Moreover, for β = [(rI + Is) : rI]K Lemma 1.6 implies that β(rI + Is) ⊂ rI

and thus βIs ⊂ rI. Consequently, by Proposition 3.27 nr(r) divides β and

hence [I : (rI + Is)]K divides nr(r). Similarly, [I : (rI + Is)]K divides nr(s)

and thus [I : (rI + Is)]K divides gcd(nr(r), nr(s)). �

Lemma 3.35. If r, s ∈ I are primitive and β, γ ∈ Z[τ ] are relatively

prime, then

[I : (βrI + Iγs)] divides N(γ2
rβ

2
s gcd( |r|

2

γr
, |s|

2

βs
)).

where γr := | glcd(r, γ)|2 and βs := | grcd(s, β)|2.

Proof. Define gr := glcd(r, γ) and gs := grcd(s, β) and note that

βrIs+ γrIs = rIs ⊂ βrI + Iγs.

The decomposition r = grkr, s = ksgs leads to

βrI + Iγs = rIβ + rIs+ γIs+ rIs = rI(β + s) + (γ + r)Is

= rIgs + grIs = gr(krI + Iks)gs

With Lemma 1.9 we infer that

[I : (βrI+Iγs)] = N(nr(gr)2) N(nr(gs)2)[I : (krI+Iks)] = N(γ2
rβ

2
s )[I : (krI+Iks)].

Since kr and ks are primitive as factors of primitive icosians, Lemma 3.34

tells us that [I : (βrI + Iγs)] divides N(γ2
rβ

2
s ) N(gcd(|kr|2, |ks|2)). Observing

that |kr|2 = |r|2
γr

and |ks|2 = |s|2
βs

completes the proof. �

If we apply the previous lemma to a primitive admissible pair of icosians

(p, q), where (pα, qα) denotes its extension pair, we get that [I : (pαI + Iqα)]

divides

N(α2
pα

2
q gcd( |p|

2

αq
, |q|

2

αp
)) = N(α2

pα
2
q gcd(|p|2, |q|2)) = N(lcm(|p|2, |q|2)),

which is consistent with Theorem 3.29.
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Now, we have everything we need to prove the converse statement of

Corollary 3.32, and thus we get a necessary and sufficient condition for the

equality of two CSM of I that are parameterised by different pairs of icosians.

Theorem 3.36. Let (p1, q1) and (p2, q2) be two primitive admissible pairs

of icosians. Then,

I ∩ q1Ip1
|p1q1| = I ∩ q2Ip2

|p2q2|

if and only if

|p1q1| = |p2q2|, lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2), glcd(p1, |p1q1|) =

glcd(p2, |p2q2|) and grcd(q1, |q1p1|) = grcd(q2, |q2p2|).

Proof. With Corollary 3.32 and Lemma 3.33 it only remains to show

that I ∩ q1Ip1
|p1q1| = I ∩ q2Ip2

|p2q2| , |p1q1| = |p2q2| and N(lcm(|p1|2, |q1|2)) =

N(lcm(|p2|2, |q2|2)), implies

lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2), glcd(p1, |p1q1|) = glcd(p2, |p2q2|) and

grcd(q1, |q1p1|) = glcd(q2, |q2p2|).

We infer from Corollary 3.22 that

p1`I + Iq1r = I ∩ q1Ip1
|p1q1| = I ∩ q2Ip2

|p2q2| = p2`I + Iq2r,

where pi` = glcd(piα, |p1q1|) = αpi glcd(pi, |p1q1|
αpi

) and qir = grcd(qiα, |p1q1|) =

αqi grcd(pi, |p1q1|
αqi

) for i ∈ {1, 2}. Clearly,

p1`I+ Iq1r = p1`I+ Iq1r+p2`I+ Iq2r = (p1`+p2`)I+ I(q1r+ q2r) = βrI+ Iγs,

where βr := glcd(p1`, p2`) and γs := grcd(q1r, q2r) such that r, s ∈ I are

primitive and β, γ ∈ Z[τ ]. Note that β = gcd(αp1 , αp2), since p1 and p2

are primitive and therefore do not have any divisors in Z[τ ]. Similarly,

γ = gcd(αq1 , αq2). Since αp1 and αq1 are relatively prime, β and γ are
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relatively prime, too. So we have

r = glcd(glcd(p1,
|p1q1|
αp1

), glcd(p2,
|p1q1|
αp2

)) and

s = grcd(grcd(q1, |p1q1|
αq1

), grcd(q2, |p1q1|
αq2

)).

In this representation it is clear that r divides glcd(p1,
|p1q1|
αp1

) and s divides

grcd(q1, |p1q1|
αq1

). By (3.18) we know that |p1q1|
αp1

divides |p1|2 and |p1q1|
αq1

divides

|q1|2. Hence we infer with Corollary 1.25 that |r|2 divides | glcd(p1,
|p1q1|
αp1

)|2 =
|p1q1|
αp1

and |s|2 divides | grcd(q1, |p1q1|
αq1

)|2 = |p1q1|
αq1

. This means that

(3.25) β|r|2 and γ|s|2 divide |p1q1|.

Thus gcd(|r|2, |s|2) divides gcd( |p1q1|
β , |p1q1|

γ ) = |p1q1|
βγ and

(3.26) βγ gcd(|r|2, |s|2) divides |p1q1|.

An application of Lemma 3.35 reveals that

[I : (βrI + Iγs)] divides N(γ2
rβ

2
s gcd( |r|

2

γr
, |s|

2

βs
)),

where γr = | glcd(r, γ)|2 = gcd(|r|2, γ) and βs = | grcd(s, β)|2 = gcd(|s|2, β)

by Corollary 1.25. Since γr divides γ, βs divides β and gcd( |r|
2

γr
, |s|

2

βs
) divides

gcd(|r|2, |s|2) it follows with (3.26) that β2
sγ

2
r gcd( |r|

2

γr
, |s|

2

βs
) divides βsγr|p1q1|.

Therefore we know that [I : (βrI + Iγs)] divides N(βsγr|p1q1|).

By Theorem 3.29 we infer that [I : (βrI + Iγs)] = [I : (p1`I + Iq1r)] =

N(αp1αq1 |p1q1|), which implies that N(αp1αq1) divides N(βsγr). Since

gcd(αp1 , αq1) = 1 = gcd(βs, γr), we conclude that N(αp1) divides N(βs) and

N(αq1) divides N(γr). If we take into account that βs divides αp1 and γr

divides αq1 , we see that necessarily

βs = β = αp1 = αp2 and γr = γ = αq1 = αq2 .

This implies directly that

lcm(|p1|2, |q1|2) = αp1αq1 |p1q1| = αp2αq2 |p2q2| = lcm(|p2|2, |q2|2).
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Another application of Lemma 3.35 tells us that

[I : (βrI + Iγs)] = N(αp1αq1 |p1q1|) divides N(α2
p1α

2
q1 gcd( |r|

2

αq1
, |s|

2

αp1
)),

which implies that N( |p1q1|
αp1αq1

) divides N(gcd( |r|
2

αq1
, |s|

2

αp1
)) and in particular

N
(
|p1q1|
αp1

)
divides N

(
|r|2

)
and N

(
|p1q1|
αq1

)
divides N

(
|s|2

)
.

With (3.25) and Lemma 3.24 this shows that

|r|2 = |p1q1|
αp1

= | glcd(p1, |p1q1|)|2 and |s|2 = |p1q1|
αq1

= | grcd(q1, |p1q1|)|2.

Hence r = glcd(p1, |p1q1|) = glcd(p2, |p2q2|) and s = grcd(q1, |p1q1|)

= grcd(q2, |p2q2|), which completes the proof. �

3.4. Counting Coincidence Site Lattices of A4

In this section we continue our analysis of the CSLs of the lattice L.

Recall from Theorem 3.11 that the CSLs of L are precisely the lattices of the

form L∩R(p)L, where p is a primitive and admissible icosian. The results of

the previous section lead to the following formula for its coincidence index.

Theorem 3.37. Let p ∈ I be primitive and admissible, then

ΣL(p) = nr(pα) = lcm(nr(p), nr(p)′) .

Proof. By Lemma 3.18 we know that Σ2
L(p) = ΣL[τ ](p). Moreover,

Theorem 3.23 tells us that ΣL[τ ](p) = ΣI(p). Theorem 3.29 implies that

ΣI(p) = ΣI(R(p, p̃)) = N(lcm(nr(p),nr(p̃)) = N(lcm(nr(p), nr(p)′)) and by

(3.10), we know that nr(pα) = lcm(nr(p), nr(p)′) is always an element of N.

Hence ΣI(p) = nr(pα)2 and we conclude that ΣL(p) = nr(pα). �

In analogy to Theorem 3.36 we want to find necessary and sufficient con-

ditions for the equality of two CSLs of L that result from different rotations.

The following lemma gives a first necessary condition.
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Lemma 3.38. If R1, R2 ∈ SOC(L) such that L ∩ R1L = L ∩ R2L, then

Σ(R1) = Σ(R2) and den(R1) = den(R2).

Proof. Lemma 3.9 implies that

Σ(R1) = Σ(R2) and den(R−1
1 ) = den(R−1

2 ).

For i ∈ {1, 2} let pi ∈ I be primitive, admissible and such that Ri = Ri(pi).

As R−1
i = R(pi), it is clear that den(R1) = |p1p̃1| = den(R−1

1 ) = den(R−1
2 ) =

|p2p̃2| = den(R2). �

Recall from Proposition 1.15 the Q-linear map ϕ+ : H(K) −→ H(K),

defined by ϕ+(x) = x+ x̃, and note that not only ϕ+(I) = L but that

(3.27) ϕ+(pαI) = L(pα) = L ∩ 1
|pp̃|pLp̃ = (pαI + Ip̃α) ∩ L,

see Theorem 3.16 and Corollary 3.17. So two CSLs of L are certainly equal

if the corresponding CSMs of I are equal. Thus the following lemma is just

an application of Theorem 3.36. We only need to observe with Lemma 1.27

that glcd(p1, |p1p̃1|) = glcd(p2, |p2p̃2|) implies

grcd(p̃1, |p1p̃1|) = (glcd(p1, |p1p̃1|))̃ = (glcd(p2, |p2p̃2|))̃ = grcd(p̃2, |p2p̃2|),

and that |p1|2 = |p2|2 implies lcm(|p1|2, |p̃1|2) = lcm(|p2|2, |p̃2|2), as well as,

|p1p̃1| = |p2p̃2| with Lemma 3.24.

Lemma 3.39. Let p1, p2 ∈ I be primitive and admissible, such that

|p1|2 = |p2|2 and glcd(p1, |p1p̃1|) = glcd(p2, |p2p̃2|).

Then, one has L ∩ 1
|p1p̃1|

p1Lp̃1 = L ∩ 1
|p2p̃2|

p2Lp̃2.

It turns out that the converse is not true. However, by considering

certain cases separately, we can derive necessary and sufficient conditions

on the parameterising icosians so that they generate the same CSL of L.
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Theorem 3.40. Let p1, p2 ∈ I be primitive, admissible and such that

|p1|2 or |p2|2 is not divisible by 5. Then, one has

L ∩ 1
|p1p̃1|

p1Lp̃1 = L ∩ 1
|p2p̃2|

p2Lp̃2

if and only if

|p1|2 = |p2|2 and glcd(p1, |p1p̃1|) = glcd(p2, |p2p̃2|).

Proof. Considering Lemma 3.39 and (3.27), it only remains to show

that

L(p1α) = ϕ+(p1αI) = ϕ+(p2αI) = L(p2α)

implies |p1|2 = |p2|2 and glcd(p1, |p1p̃1|) = glcd(p2, |p2p̃2|). If we deduce that

p1αI + Ip̃1α = p2αI + Ip̃2α,

this is delivered by an application of Theorem 3.36, since |p1p̃1| = |p2p̃2| and

glcd(p1, |p1p̃1|) = glcd(p2, |p2p̃2|), implies with Lemma 3.24 that 1
αp1
|p1p̃1| =

1
αp2
|p2p̃2| and hence α2

p1 = α2
p2 = lcm(|p1|2,|p̃1|2)

|p1|2 = lcm(|p2|2,|p̃2|2)
|p2|2 , which reveals

with lcm(|p1|2, |p̃1|2) = lcm(|p2|2, |p̃2|2) that |p1|2 = |p2|2.

With Lemma 3.18 and (3.27) it is clear that

L(p1α) + τL(p1α) = ϕ+(p1αI) + τϕ+(p1αI)

= ϕ+(p1αI) ∩ ϕ+(p2αI) + τ(ϕ+(p1αI) ∩ ϕ+(p2αI))

⊂ (p1αI + Ip̃1α) ∩ (p2αI + Ip̃2α)

⊂ p1αI + Ip̃1α ⊂ I

Considering [I : L[τ ]] = 5, compare (1.28), and Theorem 3.23 we see that

(3.28)

[I : L(p1α) + τL(p1α)] = 5ΣL[τ ](p1) = 5ΣL[τ ](p2) = 5ΣI(p1) = 5ΣI(p2)

and hence ΣI(p1) = ΣI(p2) = N(lcm(|p1|2, |p̃1|2) = N(lcm(|p2|2, |p̃2|2) by

Theorem 3.29. Without loss of generality let |p1|2 be not divisible by 5. By
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Lemma 3.12 this implies that |p1|2 and |p̃1|2 are not divisible by
√

5 and

hence N(lcm(|p1|2, |p̃1|2) = ΣI(p1) = ΣI(p2) is not divisible by 5.

Note that [I : (p1αI + Ip̃1α)∩ (p2αI + Ip̃2α)] must be a multiple of ΣI(p1)

and a divisor of 5ΣI(p1), i.e. it is either ΣI(p1) or 5ΣI(p1). Assume that

[I : (p1αI + Ip̃1α) ∩ (p2αI + Ip̃2α)] = 5ΣI(p1).

This implies with the first isomorphism theorem, see for example [53] that

(3.29)
[(p1αI + Ip̃1α) : (p1αI + Ip̃1α) ∩ (p2αI + Ip̃2α)]

= [(p1αI + Ip̃1α) + (p2αI + Ip̃2α) : (p2αI + Ip̃2α)] = 5.

Moreover,

[I : (p1αI + Ip̃1α) + (p2αI + Ip̃2α)] = ΣI(p2)
5

which contradicts the fact that ΣI(p2) = ΣI(p1) is not divisible by 5.

So we have necessarily

[I : (p1αI + Ip̃1α) ∩ (p2αI + Ip̃2α)] = ΣI(p1)

and therefore

(p1αI + Ip̃1α) = (p1αI + Ip̃1α) ∩ (p2αI + Ip̃2α) = (p2αI + Ip̃2α).

�

Lemma 3.41. Let p1, p2 ∈ I be primitive, admissible and such that |p1|2

or |p2|2 is a power of 5. Then,

L ∩ 1
|p1p̃1|

p1Lp̃1 = L ∩ 1
|p2p̃2|

p2Lp̃2

if and only if

|p1|2 = |p2|2 and glcd(p1,
|p1p̃1|√

5 ) = glcd(p2,
|p2p̃2|√

5 ).
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Proof. Let L ∩ 1
|p1p̃1|

p1Lp̃1 = L ∩ 1
|p2p̃2|

p2Lp̃2. If |p1|2 = 5m for some

m ∈ N, then |p̃1|2 = 5m. With Lemma 3.38 and Theorem 3.37 we see that

ΣL(p1) = lcm(|p1|2, |p̃1|2) = |p1|2 = 5m = ΣL(p2) = lcm(|p2|2, |p̃2|2) = |p2|2.

Hence αp1 = 1 = αp2 , i.e. p1 = p1α, p2 = p2α and |p1p̃1| = |p1|2, |p2p̃2| =

|p2|2. We proceed now as in the proof of Theorem 3.40 and find that

(3.30) [I : (p1I + Ip̃1) ∩ (p2I + Ip̃2)] = ΣI(p1) or = 5ΣI(p1).

In the first case, we follow the argumentation in the proof of Theorem 3.40

and conclude that glcd(p1, |p1p̃1|) = glcd(p2, |p2p̃2|) and hence

glcd(p1,
|p1p̃1|√

5 ) = glcd(p2,
|p2p̃2|√

5 ).

In the second case we find, see (3.29), that

[(p1I + Ip̃1) + (p2I + Ip̃2) : (p2I + Ip̃2)] = 5

If g = glcd(p1, p2) we have gI+Ig̃ = (p1I+Ip̃1)+(p2I+Ip̃2) and since g ∈ I and

|g|2 = (
√

5)`, for some ` ∈ N, we have |gg̃| = (
√

5)
`
2 (
√

5)
`
2 = (

√
5)` ∈ Z[τ ].

Hence (g, g̃) is Z[τ ]-admissible. Note that g and g̃ are, as factors of prim-

itive icosians, primitive themselves. Moreover, αg = αg̃ = 1 so that ac-

cording to Theorem 3.29 [I : gI + Ig̃] = N(|g|2), i.e. N(|p2|2) = N(|g|2)5.

Since |g|2
√

5 divides |p2|2, this implies that up to units of Z[τ ] we have

|p2|2 =
√

5|g|2 and hence glcd(p2, |g|2) = glcd(p2,
|p2|2√

5 ). Symmetrically, we

infer that glcd(p1, |g|2) = glcd(p1,
|p1|2√

5 ).

Conversely, let |p1|2 = |p2|2 = (
√

5)r, for r ∈ 2N, and glcd(p1,
|p1p̃1|√

5 ) =

glcd(p2,
|p2p̃2|√

5 ). Then either p1 = p2 and the proof is complete, or p1 6= p2,

i.e. p1 and p2 have at most r− 1 prime icosians as factors in common. Note

that, in this case

g := glcd(p1, p2) = glcd(p1,
|p2|2√

5 ) = glcd(p1,
|p1p̃1|√

5 ) = glcd(p1,
|p2p̃2|√

5 ),
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since |p1p̃1| = ((
√

5)r(−
√

5)r)
1
2 = (

√
5)r = |p1|2 = |p2|2. We deduce that p1

and p2 have at least r − 1 prime factors in common. Hence |g|2 = |p1|2√
5 =

|gg̃| = (
√

5)r−1 is not an integer, i.e. g is not admissible for L.

Define g1 = glcd(p1,
|p1|2

5 ), which is the greatest admissible divisor of g.

Of course |g1|2 = |p1|2
5 , by Corollary 1.25. So we have with (3.27)

ϕ+(p1I) ⊂ ϕ+(p1I) + ϕ+(p2I) = ϕ+(gI) ⊂ ϕ+(g1I)

and [ϕ+(g1I) : ϕ+(p1I)] = [L:ϕ+(p1I)]
[L:ϕ+(g1I)] = |p1|2

|g1|2 = 5; see Theorem 3.37. Hence

either ϕ+(p1I) = ϕ+(p1I) + ϕ+(p2I) – in this case the proof is complete

– or ϕ+(gI) = ϕ+(g1I). We finish the proof by showing that the latter is

impossible.

Assume the latter is the case, i.e.[ϕ+(gI) : ϕ+(p1I)] = 5. By Lemma 3.18

and Theorem 3.37 we see that

[L[τ ] : ϕ+(g1I) + τϕ+(g1I)] = [L[τ ] : L(g1) + τL(g1)] = nr(g1)2 = nr(p1)2

25

and [I : ϕ+(g1I) + τϕ+(g1I)] = [I : L[τ ]]ΣL[τ ](g1) = 5 nr(g1)2 = nr(p1)2

5 . Fur-

thermore, ϕ+(g1I)+τϕ+(g1I) = ϕ+(gI)+τϕ+(gI) ⊂ gI+Ig̃ and [I : gI+Ig̃] =

N(|g|2) = nr(p1)2

5 . Hence gI + Ig̃ = ϕ+(g1I) + τϕ+(g1I) ⊂ L[τ ].

By Corollary 1.17 we know that
√

5I ⊂ L[τ ]. Let q := glcd(g,
√

5),

i.e. qI ⊂ L[τ ]. Since we know by Lemma 1.27 that q̃ = grcd(g̃,−
√

5),

we infer that Iq̃ ⊂ L[τ ]. Proposition 1.16 tells us that for r ∈ I, we have

qr− r̃ q̃ ∈
√

5I, which implies that r̃ q̃ = q(r− s) for s ∈ I and hence Iq̃ ⊂ qI.

As [I : qI] = N(nr(q)2) = [I : Iq̃], see Lemma 1.9, it follows that qI = Iq̃. As

a divisor of g, the icosian q is primitive. This leads to a contradiction with

Lemma 1.20. �

A combination of Theorem 3.40 and Lemma 3.41 leads to the following

necessary and sufficient condition on the parameterising icosians for the

remaining case.
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Theorem 3.42. Let p1, p2 ∈ I be primitive, admissible and such that

|p1|2 and |p2|2 are divisible by 5. Then

L ∩ 1
|p1p̃1|

p1Lp̃1 = L ∩ 1
|p2p̃2|

p2Lp̃2

if and only if

|p1|2 = |p2|2 and glcd(p1,
|p1p̃1|√

5 ) = glcd(p2,
|p2p̃2|√

5 ).

Proof. Since p1 and p2 are admissible, we know by Lemma 3.12 that

in the prime factorisation of |p1|2 and |p2|2 every ramified prime number

as well as every prime number that does not occur in gcd(|pi|2, |p̃i|2), for

i = 1, 2 respectively, has an even exponent. Here, we need to order the

prime factors of |p1|2 and |p2|2. As this is done for p1 and p2 in exactly the

same way, we set i = 1, 2. A particular ordering of the prime factors of |pi|2

with maximal exponents is

(3.31) |pi|2 = (
√

5)2riαsi1i1 . . . α
simi
imi

α
tmi+1
i(mi+1) . . . α

tni
ini
αsi1i1 . . . α

simi
imi

,

where αi1, . . . , αimi are splitting primes which do not divide gcd(|pi|2, |p̃i|2),

and the remaining primes are denoted by αi(mi+1), . . . , αini . Define si =

si1 + . . . + simi and ti = tmi+1 + . . . + tni . While leaving the prime factors

of (3.31) in exactly the same order we rename them as

|pi|2 = (
√

5)2riβi1 . . . βi(2si+ti).

By Theorem 1.23 there are prime icosians ui1, . . . , ui2ri , vi1, . . . , vi2ri ,

ai1, . . . , ai(2si+ti) and bi1, . . . , bi(2si+ti) such that

(3.32)
pi = ui1 . . . ui2riai1 . . . ai(2si+ti), where |uij |

2 =
√

5 and |aij |2 = βij ,

= bi1 . . . bi(2si+ti)vi1 . . . vi2ri , where |bij |
2 = βij and |vij |2 =

√
5.

To simplify this notation we define ai = ai1 . . . ai(2si+ti), bi = bi1 . . . bi(2si+ti),

ui = ui1 . . . ui2ri and vi = vi1 . . . vi2ri . Hence |ui|2 = (
√

5)2ri = |vi|2 and
√

5
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does not divide |ai|2 = |bi|2. Note that

(3.33)

|aiãi| = αsi1i1 . . . α
simi
imi

α
tmi+1
i(mi+1) . . . α

tni
ini

(α′)si1i1 . . . (α′)simiimi
= |bib̃i|

= ai1 . . . ai(si+ti)ai1 . . . ai(si+ti)(α
′)si1i1 . . . (α′)simiimi

= bi1 . . . bi(si+ti)bi1 . . . bi(si+ti)(α
′)si1i1 . . . (α′)simiimi

,

which reveals that glcd(ai, |aiãi|) = ai1 . . . ai(si+ti) and glcd(bi, |bib̃i|) =

bi1 . . . bi(si+ti). Similarly, glcd(ui, |uiũi|√
5 ) = ui1 . . . ui(2ri−1) and glcd(vi, |viṽi|√

5 ) =

vi1 . . . vi(2ri−1) since

|uiũi| = |viṽi| = (
√

5)2ri = ui1 . . . ui(2ri)ui1 . . . ui(2ri)

= vi1 . . . vi(2ri)vi1 . . . vi(2ri).

Since |aiãi| = |bib̃i| and |uiũi| = |viṽi| are clearly integers, ai, bi, ui and vi

are admissible and as divisors of primitive icosians themselves primitive.

If L∩ 1
|q1p̃1|

p1Lp̃1 = L∩ 1
|p2p̃2|

p2Lp̃2, Lemma 3.38 tells us that den(p1) =

den(p2) and Σ(p1) = Σ(p2), hence by Proposition 3.10 we see that |p1p̃1| =

|p2p̃2| = (
√

5)2r1 |a1ã1| = (
√

5)2r2 |a2ã2|, which implies that r1 = r2 =: r and

|a1ã1| = |a2ã2|. With Theorem 3.37 we conclude that

lcm(|p1|2, |p̃1|2) = lcm(|p2|2, |p̃2|2) = (
√

5)r lcm(|a1|2, |ã1|2)

= (
√

5)r lcm(|a2|2, |ã2|2)

and furthermore Σ(a1) = Σ(a2) = Σ(b1) = Σ(b2) =: m, as well as, Σ(u1) =

Σ(u2) = Σ(v1) = Σ(v2) = (
√

5)r. Since m and (
√

5)r are relatively prime,

we conclude with Lemma 3.5 that

m(L ∩ 1
|u1ũ1|

u1Lũ1) = mL ∩ (L ∩ 1
|p1p̃1|

p1Lp̃1)

= mL ∩ (L ∩ 1
|p2p̃2|

p2Lp̃2) = m(L ∩ 1
|u2ũ2|

u2Lũ2)

as well as

(
√

5)r(L ∩ 1
|b1b̃1|

b1Lb̃1) = (
√

5)rL ∩ (L ∩ 1
|p1p̃1|

p1Lp̃1)
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= (
√

5)rL ∩ (L ∩ 1
|p2p̃2|

p2Lp̃2) = (
√

5)r(L ∩ 1
|b2b̃2|

b2Lb̃2).

Now, the application Lemma 3.41 and Theorem 3.40 reveals that glcd(u1,
|u1ũ1|√

5 ) =

glcd(u2,
|u2ũ2|√

5 ), |b1|2 = |b2|2 and glcd(b1, |b1b̃1|) = glcd(b2, |b2b̃2|), which im-

plies |p1|2 = |b1|2(
√

5)r = |b2|2(
√

5)r = |p2|2. Furthermore, we conclude

that

glcd(p1, (
√

5)2r−1) = glcd(p2, (
√

5)2r−1) and glcd(p1, |b1b̃1|) = glcd(p2, |b1b̃1|).

As gcd((
√

5)2r−1, |b1b̃1|) = 1 we infer with Lemma 1.26 that

glcd(p1,
|p1p̃1|√

5 )I = glcd(p1, |b1b̃1|(
√

5)2r−1)I

= glcd(p1, |b1b̃1|)I ∩ glcd(p1, (
√

5)2r−1)I

= glcd(p2, |b1b̃1|)I ∩ glcd(p2, (
√

5)2r−1)I

= glcd(p2, |b1b̃1|(
√

5)2r−1)I

= glcd(p2,
|p2p̃1|√

5 )I.

Conversely, if |p1|2 = |p2|2 and glcd(p1,
|p1p̃1|√

5 ) = glcd(p2,
|p2p̃2|√

5 ), we con-

clude again with Theorem 1.23 that glcd(u1,
|u1ũ1|√

5 ) = glcd(u2,
|u2ũ2|√

5 ) and

glcd(b1, |b1b̃1|) = glcd(b2, |b2b̃2|). Hence by Lemma 3.41 and Theorem 3.40

we know that

(3.34)

L ∩ 1
|u1ũ1|

u1Lũ1 = L ∩ 1
|u2ũ1|

u2Lũ2 and L ∩ 1
|b1b̃1|

b1Lb̃1 = L ∩ 1
|b2b̃2|

b2Lb̃2.

Obviously, lcm(|p1|2, |p̃1|2) = lcm(|p2|2, |p̃2|2) = (
√

5)r lcm(|a1|2, |ã1|2) =

(
√

5)r lcm(|a2|2, |ã2|2). Hence Theorem 3.37 implies that Σ(a1) = Σ(a2) =

Σ(b1) = Σ(b2) =: m, as well as, Σ(u1) = Σ(u2) = Σ(v1) = Σ(v2) = (
√

5)r.

Since m and (
√

5)r are relatively prime, we conclude with Corollary 3.4, for



3.4. COUNTING COINCIDENCE SITE LATTICES OF A4 87

i = 1, 2 the following:

L ∩R(pi)L = L ∩R(bi)L ∩R(bi)R(vi)L = (L ∩R(bi)L) ∩R(bi)(L ∩R(vi)L)

= L ∩R(ui)L ∩R(ui)R(ai)L = (L ∩R(ui)L) ∩R(ui)(L ∩R(ai)L)

⊂ (L ∩R(bi)L) ∩ (L ∩R(ui)L)

The index of (L∩R(bi)L)∩ (L∩R(ui)L) in L, is on the one hand a divisor

of Σ(pi) = m(
√

5)r = Σ(bi)Σ(ui), and on the other hand a multiple of Σ(bi)

and Σ(ui), which are relatively prime. So we know that

[L : (L ∩R(bi)L) ∩ (L ∩R(ui)L)] = Σ(pi)

and hence (L ∩ R(bi)L) ∩ (L ∩ R(ui)L) = L ∩ R(pi)L. Now, we see with

(3.34) that L ∩R(p1)L = L ∩R(p2)L. �

3.4.1. Generating Functions. For the derivation of the generating

functions Φ rot
L (s) and ΦL(s) from (3.3) and (3.4) we need the following

Proposition 3.43. Let fpr
K (α) be the number of primitive right ideals

in I with K-index α2 ∈ Z[τ ]. Then, the arithmetic function fpr
K (α) is multi-

plicative and given by

fpr
K (α) =



1, if α = 1,

6 · 5r−1, if α =
√

5r,

(p2 + 1)p2r−2, if α = pr and p ≡ ±2 (5),

(p+ 1)pr−1, if α = πr, p = ππ′ and p ≡ ±1 (5).

Proof. By Lemma 1.8 we know that [I : qI]K = |q|4. Hence the mul-

tiplicativity of fpr
K is inherited from the unique factorisation in I and, as

for every multiplicative function, fpr
K (1) = 1. Furthermore, we know by

Lemma 1.7 that for every right ideal qI

[I : qI] = N([I : qI]K) = N(|q|4).
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Since
√

5 is a ramified prime in Z[τ ], this means that every primitive right

ideal qI with coset-counting index [I : qI] = N(|q|4) = 52r, has a K-index of

[I : qI]K = |q|4 =
√

52r. Hence fpr
K (
√

5r) = fpr(5r) = 6 · 5r−1, as defined in

(2.8), which gives the number of primitive right ideals in I of coset-counting

index 52r.

Similarly, every primitive right ideal qI with coset-counting index [I : qI] =

N(|q|4) = p2r, where p ≡ ±2 (5), has a K-index of [I : qI]K = |q|4 = pr,

since p is an inert prime of Z[τ ]. Note that r is even, as already N(|q|2) = pr

is a square in N. So we have in this case fpr
K (p

r
2 ) = fpr(pr) or equivalently,

with arbitrary r ∈ N, fpr
K (pr) = fpr(p2r) = p2r + p2r−2 .

The remaining case with p ≡ ±1(5), where p splits as p = ππ′, has to

be treated differently. Observe, from the expansion of ζpr
I (s) as an Euler

product in (2.7), that

1 + p−2s

1− p1−2s = 1 +
∑
r≥1

(pr + pr−1)p−2rs,

happens to be the generating function for the primitive right ideals qI of

p-power index such that |q|4 is a power of π. Those with |q|4 a power of π′

produce the same Euler factor. Hence we infer that fpr
K (πr) = pr+pr−1. �

We start with the derivation of Φ rot
L (s) from (3.4). Recall from (3.8) that

every coincidence rotation of the lattice L is parameterised by a primitive

admissible icosian q. By Theorem 3.37 its index is Σ(q) = lcm(nr(q), nr(q̃)).

Note that an icosian q with nr(q) = 1 is necessarily admissible and primitive.

Moreover, 1 = nr(q) = nr(q̃) = lcm(nr(q), nr(q̃)) = Σ(q), so there are 120 =

|I|, see (1.21), rotations in SOC(L) with coincidence index 1. Therefore, let

120grot(m) be the number of coincidence rotations of the lattice L of index

m.

Clearly, we have grot(1) = 1. For m = 5r we realise that

(3.35) Σ(q) = lcm(nr(q),nr(q̃)) =
√

52r = 5r = |q|2 = |q̃|2 = |qq̃|
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and nr(q)2 = [I : qI]K . Hence grot(5r) = fpr
K (5r) = 6 · 5r−1. Similarly, for

m = pr with p ≡ ±2 mod 5 we observe that Σ(q) = pr = nr(q) = nr(q̃) =

|qq̃| and hence grot(pr) = fpr
K (pr) = p2r + p2r+2.

For the remaining case m = pr with p ≡ ±1 mod 5, where p splits

as p = ππ′ in Z[τ ], the derivation is slightly more complicated, because

one has to keep track of how the algebraically conjugate primes of Z[τ ]

are distributed in nr(q) and nr(q̃). Note that there are s, t ∈ N such that

nr(q) = πs(π′)t and

(3.36) Σ(q) = lcm(nr(q), nr(q̃)) = lcm(nr(q),nr(q)′) = pmax(s,t) = pr.

Moreover, q is admissible if and only if s+ t is even. In order to determine

grot(pr) we have to sum up the number of all primitive quaternions q with

nr(q) = πs(π′)t, such that s+ t is even. This gives with Proposition 3.43:

grot(pr) = fpr
K (πr)fpr

K (π′r) +
b r2c∑
`=1

fpr
K (πr)fpr

K (π′(r−2`)) +
b r2c∑
`=1

fpr
K (πr−2`)fpr

K (π′r)

= (p+ 1)2p2r−2 + 2(p+ 1)pr−1
b r2c∑
`=1

fpr
K (πr−2`)

For odd r we have

grot(pr) = (p+ 1)2p2r−2 + 2(p+ 1)pr−1

r−1
2∑
`=1

(p+ 1)pr−2`−1

= (p+ 1)2p2r−2 + 2(p+ 1)2pr−1 (pr−1 − 1)
p2 − 1

= (p+ 1)
(p− 1)

pr−1(pr+1 + pr−1 − 2).

The calculation for even r is slightly different but leads to the same result:

grot(pr) = (p+ 1)2p2r−2 + 2(p+ 1)pr−1
(r/2)−1∑
`=1

(p+ 1)pr−2`−1 + 2(p+ 1)pr−1

= (p+ 1)2p2r−2 + 2(p+ 1)2pr−1 (pr−1 − p)
p2 − 1

+ 2(p+ 1)pr−1

= (p+ 1)
(p− 1)

pr−1(pr+1 + pr−1 − 2).
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In summary grot is thus given by

(3.37) grot(pr) =



6 · 52r−1, if p = 5 ,

p+1
p−1 p

r−1(pr+1 + pr−1 − 2), if p ≡ ±1 (5) ,

(p2 + 1)p2r−2, if p ≡ ±2 (5) .

Note that grot is multiplicative due to Theorem 1.23 together with the

multiplicativity of the coincidence index; see Theorem 3.3. Hence (3.37)

fixes grot(m) for all m ∈ N, and this completes the derivation of Φ rot
L (s) =∑∞

m=1
grot(m)
ms .

Based on (3.37) we calculate now g(m), the number of CSLs of L of index

m, and hence derive ΦL(s). We have to keep in mind that non-equivalent

coincidence rotations may lead to the same CSL.

We start again with the case m = 5r. By Lemma 3.41 two primitive

admissible icosians q1 and q2 with Σ(q1) = Σ(q2) = |q1|2 = |q2|2 = 5r,

compare (3.35), generate the same CSL if and only if glcd(q1, |q1q̃1|√
5 ) =

glcd(q2, |q2q̃2|√
5 ) = glcd(q1, 5(r− 1

2 )) = glcd(q2, 5(r− 1
2 )) or equivalently if and

only if q1 and q2 differ at most in their rightmost prime factor. Thus the

CSL is uniquely determined by the first 2r − 1 prime factors of q1 and q2

of norm
√

5. Since primitive icosians with Σ(q) = |q|2 = |qq̃| = 5r are

necessarily admissible this means that g(5r) = fpr
K (
√

5(2r−1)) = 6 · 52r−2.

Form = pr with p ≡ ±2 mod 5 Theorem 3.40 implies that two primitive

admissible icosians q1 and q2 with Σ(q1) = Σ(q2) = |q1|2 = |q2|2 = pr

generate the same CSL if and only if glcd(q1, |q1q̃1|) = glcd(q2, |q2q̃2|). Since

|q1q̃1| = |q1|2 = |q2|2 = |q2q̃2| the latter just means that there is a u ∈ I×

such that q1 = q2u. Hence g(pr) = fpf
K (pr) = (p2 + 1)p2r−2.

Again the remaining case m = pr with p ≡ ±1 mod 5, where p splits as

p = ππ′ in Z[τ ], is slightly more complicated. By Theorem 3.40 two primitive

admissible quaternions q1 and q2 with Σ(q1) = Σ(q2) = pr generate the same

CSL if and only if |q1|2 = |q2|2 and glcd(q1, |q1q̃1|) = glcd(q2, |q2q̃2|). Let

s, t ∈ N such that |q1|2 = |q2|2 = πs(π′)t, compare (3.36), and recall that the
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admissibility requires s+ t to be even. With this notation we have |q1q̃1| =

p
s+t

2 = |q2q̃2|. Obviously, the condition that glcd(q1, p
s+t

2 ) = glcd(q2, p
s+t

2 ) is

equivalent to glcd(q1, π
s+t

2 ) = glcd(q2, π
s+t

2 ) and glcd(q1, π′
s+t

2 ) = glcd(q2, π′
s+t

2 ).

This means that in the prime decomposition of q1 and q2 the first s+t
2 prime

factors from the left of norm π and π′, respectively, must be the same whereas

the rest may differ. In other words the CSL is uniquely determined by the

first s+t2 prime factors of norm π and π′. Since at least one of the inequalities

s ≤ s+t
2 and t ≤ s+t

2 holds, this gives with Proposition 3.43:

g(pr) = fpr
K (πr)2 + 2

br/2c∑
`=1

fpr
K (πr−`)fpr

K (πr−2`)

= (p+ 1)2p2r−2 + 2(p+ 1)
br/2c∑
`=1

pr−`−1fpr
K (πr−2`).

If r is odd we get:

g(pr) = (p+ 1)2p2r−2 + 2(p+ 1)2
(r−1)/2∑
`=1

p2r−3`−2

= (p+ 1)2p2r−2 + 2(p+ 1)2 p
(2r−2) − p

(r−1)
2

p3 − 1

= (p+ 1)2

p3 − 1

(
p2r+1 + p2r+2 − 2p

(r−1)
2

)
If r is even we get:

g(pr) = (p+ 1)2p2r−2 + 2(p+ 1)2
(r−2)/2∑
`=1

p2r−3`−2 + 2(p+ 1)pr/2−1

= (p+ 1)2p2r−2 + 2(p+ 1)2 p
(2r−2) − p

(r+2)
2

p3 − 1
+ 2(p+ 1)pr/2−1

= (p+ 1)2

p3 − 1

(
p2r+1 + p2r+2 − 2pr/2−1 (p2 + 1)

p+ 1

)
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In summary g is thus given by

(3.38)

g(pr) =



6 · 52r−2, if p = 5 ,

(p+1)2

p3−1

(
p2r+1 + p2r+2 − 2p

(r−1)
2

)
if r is odd, p ≡ ±1 (5) ,

(p+1)2

p3−1

(
p2r+1 + p2r+2 − 2pr/2−1 (p2+1)

p+1

)
, if r is even, p ≡ ±1 (5) ,

(p2 + 1)p2r−2, if p ≡ ±2 (5) .

Again g is multiplicative due to the unique factorisation in I together with

the multiplicativity of the coincidence index, see Theorem 3.3. Hence (3.38)

defines g(m) for all m ∈ N, and this completes the derivation of ΦL(s) =∑∞
m=1

g(m)
ms .

The explicit expressions of the multiplicative arithmetic functions grot

and g, from (3.37) and (3.38) respectively, lead by straightforward calcula-

tions involving geometric series to the following Euler product expansions

of the corresponding Dirichlet series generating functions. As the lattices

L and A4 are isomorphic they clearly coincide. Note that the following

theorem was already stated without proof in [15].

Theorem 3.44. Let 120grot(m) be the number of coincidence rotations

of A4 of index m and 120g(m) be the number of CSLs of A4 of index m.

Then, grot(m) and g(m) are multiplicative arithmetic functions, with Dirich-

let series generating functions

Φ rot
A4 (s) =

∞∑
m=1

grot(m)
ms

= ζK(s− 1)
1 + 5−s

ζ(s) ζ(s− 2)
ζ(2s) ζ(2s− 2)

= 1 + 51−s

1− 52−s

∏
p≡±1 (5)

(1 + p−s) (1 + p1−s)
(1− p1−s) (1− p2−s)

∏
p≡±2 (5)

1 + p−s

1− p2−s

= 1 + 5
2s

+ 10
3s

+ 20
4s

+ 30
5s

+ 50
6s

+ 50
7s

+ 80
8s

+ 90
9s

+ 150
10s

+ 144
11s

+ . . .
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and

ΦA4(s) =
∞∑
m=1

g(m)
ms

= 1 + 6·5−s
1−52−s

∏
p≡±1 (5)

(1+p−s+2p1−s+2p−2s+p1−2s+p1−3s)
(1−p2−s)(1−p1−2s)

∏
p≡±2 (5)

1+p−s
1−p2−s

= 1 + 5
2s

+ 10
3s

+ 20
4s

+ 6
5s

+ 50
6s

+ 50
7s

+ 80
8s

+ 90
9s

+ 30
10s

+ 144
11s

+ . . .

where ζ(s) is Riemann’s zeta function and ζK(s) denotes the Dedekind zeta

function of the quadratic field K = Q(
√

5 ), see (1.16). �

Observe that grot(m) ≥ g(m) > 0 for all m ∈ N. Since each element

of OC(A4) can be written as a product of a rotation with a reflection that

maps A4 onto itself we have

Corollary 3.45. The coincidence spectrum of the root lattice A4 is

Σ(OC(A4)) = Σ(SOC(A4)) = N.

�

We conclude this chapter with the analysis of the analytic properties of

Φ rot
A4

(s). Recall from (2.9) the primitive Dirichlet character χ and its L-series

L(s, χ) =
∑∞
m=1 χ(m)m−s, which is an entire function on the complex plane.

Note that ζK(s) = ζ(s)L(s, χ), see [87, Chapter 11, Eq. (10)] for details.

This means that the Dirichlet series Φrot
A4

is related to zeta functions with

well-defined analytic behaviour, namely

Φ rot
A4 (s) = ζ(s− 1)L(s− 1, χ)

1 + 5−s
ζ(s) ζ(s− 2)
ζ(2s) ζ(2s− 2)

.

Hence we can easily derive its analytic properties. Φ rot
A4

(s) is analytic in the

open right half-plane {s = σ + it | σ > 3}, and has a simple pole at s = 3,

due to the fact that L(s, χ) is analytic everywhere and ζ(s) is analytic except

for a simple pole at s = 1 with residue 1, compare [2, Theorem 12.5]. The



94 3. COINCIDENCE SITE LATTICES

corresponding residue is given by

(3.39) % := ress=3 Φ
rot
A4 (s) = 125

126
ζK(2) ζ(3)
ζ(4) ζ(6)

= 450
√

5
π6 ζ(3) ≈ 1.258 124 ,

which is based on the special values

ζ(4) = π4

90
, ζ(6) = π6

945
, ζK(2) = 2π4

75
√

5
,

together with ζ(3) ≈ 1.202 057, compare [12] and [2, Theorem 12.17]. The

value of ζ(3) is known to be irrational, but has to be calculated numerically.

With this information one can derive the asymptotic growth of grot(m)

according to [12, Appendix]. Since the value of the arithmetic function

grot(m) fluctuates heavily, this is done via the corresponding summatory

function. One obtains, as x→∞, that

G(x) :=
∑
m≤x

grot(m) ∼ %
x3

3
≈ 0.419 375x3.

Clearly, this is also an upper bound for the asymptotic behaviour of g(m)

which counts the CSLs of A4. We have not found a way to write the cor-

responding Dirichlet series ΦA4 as a product of functions with well defined

analytic behaviour. Hence its analytic properties and the asymptotic be-

haviour of g(m) remain to be be analysed.

3.5. Related Results

In one dimension, the CSL problem becomes trivial, so that Φ(s) ≡ 1

in this case. In two dimensions, a rather general approach to lattices and

modules is possible via classic algebraic number theory, see for example

[71, 6]. For the root lattice A2, the CSL generating function reads

(3.40) ΦA2(s) = Φ rot
A2 (s) =

∏
p≡1 (3)

1 + p−s

1− p−s
= 1

1 + 3−s
ζQ(ξ3)(s)
ζ(2s)

,

where ξ3 = e2πi/3. Here, the equality of ΦA2(s) and Φ rot
A2

(s) is a consequence

of the commutativity of SOC(A2). The simple coincidence spectrum of
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this lattice is the multiplicative monoid of integers that is generated by the

rational primes p ≡ 1 mod 3.

In three dimensions, various examples are derived [3] and were proved by

quaternionic methods [13] similar to the ones used here. Among these cases

is the root lattice A3, which happens to be the face centred cubic lattice in

3-space, with generating function

(3.41) ΦA3(s) = Φ rot
A3 (s) =

∏
p 6=2

1 + p−s

1− p1−s = 1− 21−s

1 + 2−s
ζ(s) ζ(s− 1)

ζ(2s)
.

The equality of the two Dirichlet series to the left is non-trivial, and was

proved in [13] with an argument involving Eichler orders. The same formula

also applies to the other cubic lattices in 3-space [3]. The simple coincidence

spectrum is thus the set of odd integers, which is again a monoid.

Several of these results are also included by now in [78]. In 4-space,

various other lattices and modules of interest exist, for which some results

are given in [3, 88]. Beyond dimension 4, very little is known [92, 91, 42],

though it should be possible to derive the simple coincidence spectra for

certain classes of lattices.





Part II

Entropy of Powerfree Words





CHAPTER 4

Powerfree Words

The second part of this thesis considers words over finite alphabets that

avoid certain repetitions in their sequence of letters. Another way to say

this is that we consider powerfree words over finite alphabets. In particular,

we will derive upper and lower bounds for the entropy of certain sets of

powerfree words over finite alphabets.

This chapter, which is based on [37], introduces a new notation and ter-

minology that is almost complementary to the one used in Part I. Moreover,

the characterisation of certain classes of powerfree morphisms is reviewed

and used to develop methods for the derivation of lower bounds for the en-

tropy of certain sets of words. Furthermore, two methods to derive upper

bounds for the entropy are described. In order to give the reader an idea

to what kind of sets these methods will be applied to, the sets which are

explicitly considered in Chapter 7, are already introduced here.

4.1. Notation and Definitions

4.1.1. Words. We define an alphabet A as a finite non-empty set of

symbols called letters. For definiteness, we consider `-letter alphabets

A` := {0, 1, . . . , `− 1} .

Finite or infinite sequences of elements from A are called words. The empty

word is denoted by ε while w = w1 . . . wn, with wi ∈ A, stands for a finite

word over A of length |w| = n. The length of the empty word is |ε| := 0.

Note that we continue to use the notation |S| for the cardinality of a set S

as it will be clear from the context what is meant. A subword or factor of

a word w = w1 . . . wn is defined as w[i : j] := wi . . . wj , where 1 ≤ i ≤ j ≤ n.

99



100 4. POWERFREE WORDS

If i = j, we write w[i] = wi. For 1 ≤ i ≤ n the factor w[1 : i] is called a

prefix and the factor w[i : n] is called a suffix of w.

The set of all finite words, the operation of concatenation of words and

ε form the free monoid A∗. For any subset S ⊂ A∗ and any word v ∈ A∗

we define

S(n) := {w ∈ S | |w| = n}(4.1)

S(v) := {w ∈ S | v is a suffix of w}(4.2)

Fact(S) := {v ∈ A∗ | v occurs as a factor of some w ∈ S} .(4.3)

4.1.2. Morphisms. Let A and B be alphabets. A map % : A∗ → B∗

is called a morphism if

%(uv) = %(u)%(v) for all u, v ∈ A∗.

Obviously, a morphism % is completely determined by %(a) for a ∈ A and

satisfies %(ε) = ε. It is called n-uniform or just uniform, if |%(a)| = n for all

a ∈ A.

A permutation of letters on an alphabet A` is a bĳective 1-uniform

morphism

% : A` → A`. Two words u, v ∈ A∗` are called isomorphic, if there exists a

permutation of letters % such that %(u) = v.

4.1.3. Powerfreeness. An integer p ∈ N is called a period of

w = w1 . . . wn ∈ A∗, if wi = wi+p for all i ∈ {1, . . . , n− p} .

The minimal period of w is denoted by per(w) and the ratio |w|
per(w) is called

the exponent of w.

For a word w we define w0 := ε, w1 := w and, for an integer k > 1, the

power wk as the concatenation of k occurrences of the word w. If w 6= ε,
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wk is called a k-power. Moreover, if per(wk) = |w|, i.e. wk does not contain

any shorter k-powers as factors, the exponent of wk is |wk|
per(w) = k.

We say that a word u contains a k-power if at least one of its factors

is a k-power. If u does not contain any k-power, it is called k-powerfree

and we say that it avoids k-powers. By definition, the empty word ε is k-

powerfree for all k. 2-powerfree and 3-powerfree words are called squarefree

and cubefree, respectively.

Let A be an alphabet. We denote the set of k-powerfree words over A

by

(4.4) F (k)(A) ⊂ A∗.

Let α ∈ Q with α > 1. A non-empty word w ∈ A∗ is called an α-power

if there is a word u ∈ A∗ which has a prefix v such that

w = ukv and k + |v|
|u|

= α.

If per(w) = |u|, i.e. if w does not contain any shorter k-powers as factors,

the exponent of w is |w|
per(w) = α. For example 0123012 is a 7

4 -power of period

4.

For α ∈ R we say that a word w is α+-powerfree (α-powerfree) if it

contains no β-power for any rational β > α (β ≥ α). 2+-powerfree words

are also called overlapfree, since they avoid factors of the form auaua, where

a ∈ A and u ∈ A∗. The set of all α+-powerfree words over A is denoted by

(4.5) F (>α)(A) ⊂ A∗.

Note that we have the following proper inclusions

F (α)(A) ⊂ F (>α)(A) ⊂ F (α+1)(A).
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Since powerfreeness only depends on the structure of a word and not

on the actual letters, it suffices to consider equivalence classes up to permu-

tations of letters. For many cases, including the examples we consider in

Chapter 7, the equivalence classes can be represented by words with certain

sufficiently long prefixes. For example, for F = F (2)(A3), the set of equiv-

alence classes F ′(m) can be represented by all ternary squarefree words of

length m which start with 01. For w ∈ F , where F stands for F (k)(A) or

F (>α)(A), we denote by w′ its equivalence class and define

(4.6) F ′(m) := {w′ | w ∈ F(m)}.

4.2. Characterisation of Integer Powerfree Morphisms

A morphism % : A∗ → B∗, where A and B are alphabets, is called k-

powerfree, if it maps k-powerfree words to k-powerfree words, i.e. if %(u) is

k-powerfree for every k-powerfree word u ∈ A∗.We express this symbolically

as

%(F (k)(A)) ⊂ F (k)(B).

A set T ⊂ A∗ is a test-set for the k-powerfreeness of (uniform) mor-

phisms on A, if for every (uniform) morphism % : A → B the following

holds: % is k-powerfree if and only if %(T ) ⊂ F (k)(B).

4.2.1. Squarefree Morphisms. A sufficient (but in general not nec-

essary) condition for the squarefreeness of a morphism is known since 1979.

Theorem 4.1 (Bean et al. [16]). A morphism % : A∗ → B∗ is squarefree

if

(i) %(w) is squarefree for every squarefree word w ∈ A∗ of length

|w| ≤ 3;

(ii) a = b whenever a, b ∈ A and %(a) is a factor of %(b).

�
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If the morphism % is uniform, this condition is in fact also necessary,

because in this case %(a) being a factor of %(b) implies that %(a) = %(b). If

a, b ∈ A exist with a 6= b and %(a) = %(b), then clearly % is not squarefree

since %(ab) = %(a)%(b) is a square. This gives the following corollary.

Corollary 4.2. A uniform morphism % : A∗ → B∗ is squarefree if

and only if %(w) is squarefree for every squarefree word w ∈ A∗ of length

|w| ≤ 3. �

This corollary corresponds to Brandenburg’s Theorem 2 [18] which only

demands that %(w) is squarefree for every squarefree word w ∈ A∗ of length

exactly 3. A short calculation reveals that this condition is equivalent to (i),

because every squarefree word of length smaller than 3 occurs as a factor of

a squarefree word of length 3.

For the next characterisation, we need the notion of a pre-square with

respect to a morphism %. Let A be an alphabet, w ∈ A∗ a squarefree word

and % : A∗ → B∗ a morphism. A factor u 6= ε of %(w) = αuβ is called a

pre-square with respect to %, if there exists a word v ∈ A∗ satisfying: wv is

squarefree and u is a prefix of β%(v) or vw is squarefree and u is a suffix of

%(v)α. Obviously, if u is a pre-square, then either %(wv) or %(vw) contains

u2 as a factor.

Theorem 4.3 (Crochemore [25]). A morphism % : A∗ → B∗ is square-

free

if and only if

(i) %(w) is squarefree for every squarefree word w ∈ A∗ of length

|w| ≤ 3;

(ii) for any a ∈ A, %(a) does not have any internal pre-squares.

�

It follows that, for a ternary alphabet A3, a finite test-set exists, as

specified in the following corollary. However, the subsequent theorem shows
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that, as soon as we consider an alphabet with |A| > 3, no such finite test-

sets exist, so the situation becomes more complex when considering larger

alphabets.

Corollary 4.4 (Crochemore [25]). A morphism % : A∗3 → B∗ is square-

free if and only if %(w) is squarefree for every squarefree word w ∈ A∗3 of

length |w| ≤ 5. �

Theorem 4.5 (Crochemore [25]). Let |A| > 3. For any integer n,

there exists a morphism % : A∗ → B∗ which is not squarefree, but maps all

squarefree words of length up to n on squarefree words. �

4.2.2. Cubefree and k-powerfree Morphisms. We now move on

to characterisations of cubefree and k-powerfree morphisms for k > 3. We

start with a recent result on binary cubefree morphisms.

Theorem 4.6 (Richomme, Wlazinski [76]). A set T ⊂ A∗2 = {0, 1}∗ is

a test-set for cubefree morphisms from A∗2 to B∗ with |B| ≥ 2 if and only if

T is cubefree and Fact(T ) ⊃ Tmin, where

Tmin := {0110110, 1001001, 010110, 101001, 011010, 100101, 00110,

11001, 01100, 10011, 01010, 10101}.

�

Obviously, the set Tmin itself is a test-set for cubefree binary morphisms.

Another test-set is the set of cubefree words of length 7, as each word of Tmin

appears as a factor of this set. There are even single words which contain

all the elements of Tmin as factors. For instance, the cubefree word

001101011011001001010011

is one of the 56 words of length 24 which are test-sets for cubefree morphisms

on A2. The length of this word is optimal: no cube-free word of length 23

contains all the words of Tmin as factors.
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The following sufficient characterisation of k-powerfree morphisms gen-

eralises Theorem 4.1 to integer powers k > 2.

Theorem 4.7 (Bean et al. [16]). Let % : A∗ → B∗ be a morphism for

alphabets A and B and let k > 2. Then % is k-powerfree if

(i) %(w) is k-powerfree whenever w ∈ A∗ is k-powerfree and |w| ≤ k + 1;

(ii) a = b whenever a, b ∈ A with %(a) a factor of %(b);

(iii) the equality x%(a)y = %(b)%(c), with a, b, c ∈ A and x, y ∈ B∗,

implies that either x = ε, a = b or y = ε, a = c.

�

As in the squarefree case above, a uniform morphism % for which (i) holds

also meets (ii), because uniformity implies that %(a) = %(b). If a 6= b, the

word ak−1b is k-powerfree but %(ak−1b) = %(a)k is a k-power, which produces

a contradiction. The condition (iii) means that, for all letters a ∈ A, the

images %(a) do not occur as an inner factors of %(bc) for any b, c ∈ A. In

general, this is not a necessary condition for uniform morphisms; an example

is given by the Thue-Morse morphism % of (0.1). For instance, %(00) =

0101 = 0%(1)1, which violates condition (iii) in Theorem 4.7. Nevertheless,

the Thue-Morse morphism is cubefree, even overlapfree, see [84, 55].

Alphabets with |B| < 2 only provide trivial results, because the only

k-powerfree morphism from A∗ to {ε}∗ is the empty morphism ε, and for

|B| = 1 the only additional morphism is the map for |A| = 1 that maps

the single element in A to the single letter in B. From now on, we consider

alphabets with |B| ≥ 2. First, we deal with the case |A| ≥ 3.

Theorem 4.8 (Richomme, Wlazinski [76]). Given two alphabets A and

B such that |A| ≥ 3 and |B| ≥ 3, and given any integer k ≥ 3, there is no

finite test-set for k-powerfree morphisms from A∗ to B∗. �

This again is a negative result, which shows that the general situation

is difficult to handle. In general, no finite set of words suffices to verify
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the k-powerfreeness of a morphism. The situation improves if we restrict

ourselves to uniform morphisms, and look for test-sets for this restricted

class of morphisms only.

The existence of finite test-sets of uniform morphisms was recently es-

tablished by Richomme and Wlazinski [77]. Let |A| ≥ 2 and k ≥ 3 be an

integer. Define

T (k)(A) := U (k)(A) ∪
(
F (k)(A) ∩ V(k)(A)

)
where U (k)(A) is the set of k-powerfree words over A of length at most

k + 1, and V(k)(A) is the set of words over A that can be written in the

form

a0w1a1w2 . . . ak−1wkak

with letters a0, a1, . . . , ak ∈ A and words w1, w2 . . . wk ∈ A∗, which contain

every letter of A at most once and satisfy
∣∣|wi| − |wj |∣∣ ≤ 1. Obviously, this

set is finite and comprises words with a maximum length of

max
{
|w|

∣∣ w ∈ T (k)(A)
}
≤ k

(
|A|) + 1

)
+ 1.

Theorem 4.9 (Richomme, Wlazinski [77]). Let |A| ≥ 2 and k ≥ 3 be an

integer. The finite set T (k)(A) is a test-set for k-powerfreeness of uniform

morphisms on A∗. �

Due to the upper bound on the maximum length of words in T (k)(A),

the following corollary is immediate.

Corollary 4.10 (Richomme, Wlazinski [77]). A uniform morphism %

on A∗ is k-powerfree for an integer power k ≥ 3 if and only if %(w) is

k-powerfree for all k-powerfree words w of length at most k
(
|A|+1

)
+1. �

Although this result provides an explicit test-set for k-powerfreeness, it

is of limited practical use, simply because the test-set becomes large very

quickly. Already for A = A4 and k = 3, the set T (3)(A4) has 26247020

elements. For comparison, the set of cubefree words in four letters of length
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16, as required in Corollary 4.10, has 1939267560 elements, so is still much

larger.

Finally, let us quote the following result of Keränen [45], which char-

acterises k-powerfree binary morphisms and indicates that the test-set of

Theorem 4.9 is far from optimal. Note that a word w ∈ A∗ is called primi-

tive, if w = vk, with v ∈ A∗ and k ∈ N, implies that k = 1, meaning that w

is not a proper power of another word v.

Theorem 4.11 (Keränen [45]). Let % : A∗2 → B∗ be a uniform morphism

with %(0) 6= %(1) and primitive words %(0), %(1) and %(01). For every word

w ∈ F (k)(A2), %(w) is k-powerfree if and only if %(v) is k-powerfree for

every subword v of w with

|v| ≤


4 for 3 ≤ k ≤ 6;

2
3(k + 1) for k ≥ 7.

4.3. Combinatorial Entropy

Let A be an alphabet. A subset S ⊂ A∗ is called factorial if for any

word w ∈ S all factors of w are also contained in S. Define for a factorial set

S ⊂ A∗ the number of words of length n occurring in S by cS(n) := |S(n)|.

This number gives some idea of the complexity of S: the larger the number

of words of length n, the more diverse and complicated the set. That is why

cS : N→ N is called the complexity function of S. As S is factorial we infer

that

(4.7) cS(m+ n) ≤ cS(m)cS(n).

Definition 4.12. The combinatorial entropy of an infinite factorial set

S ⊂ A∗ is defined by

h(S) = lim
n→∞

1
n log cS(n).
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The inequality (4.7) ensures that this limit exists, see for example [4, Lemma 1].

This is also known as Fekete’s Lemma, see [81, Lemma 1.2.1], which says in

addition that h(S) = infn∈N
1
n log cS(n). We note the following:

(i) If S ⊂ A∗ with |A| = ` , then 1 ≤ cS(n) ≤ `n for all n which

implies 0 ≤ h(S) ≤ log(`).

(ii) If S = A∗ with |A| = `, then cS(n) = `n and h(S) = log(`).

4.3.1. Explicit Cases. Explicitly, we intend to derive upper and lower

bounds for the entropies of the following sets, which are obviously factorial.

The numerical results are presented in the corresponding sections of Chap-

ter 7.

7.1 F (3)(A2) - Cubefree words over A2 = {0, 1}

7.2 F (2)(A3) - Squarefree words over A3 = {0, 1, 2}

7.3 F (> 7
4 )(A3) - (7

4)+-powerfree words over A3

7.4 F (> 7
3 )(A2) - (7

3)+-powerfree words over A2

7.5 F (2)(A4) - Squarefree words over A4 = {0, 1, 2, 3}

7.6 F (> 7
5 )(A4) - (7

5)+-powerfree words over A4

As already mentioned the Cases 7.1 and 7.2 are the two classical cases. The

Case 7.5 is included to complete the picture.

Dejean [30] and later Brandenburg [18] introduced a repetition threshold

RT(`), defined as the smallest number α ∈ R such that there exists an infinite

word over A` that is α+-powerfree. Dejean proved that every sufficiently

long word over A3 contains a 7
4 -power, and that there are infinite words over

A3 which are 7
4
+-powerfree. This implies that RT(3) = 7

4 . Moreover, she

conjectured that

RT(`) =



7
4 , ` = 3,

7
5 , ` = 4,

`
`−1 , otherwise.



4.3. COMBINATORIAL ENTROPY 109

This conjecture was proved for ` = 2 by Thue [84, 55], for ` = 4 by Pansiot

[69], for 5 ≤ ` ≤ 11 by Ollagnier [68], for 12 ≤ ` ≤ 14 by Mohammad-

Noori and Currie [58], for ` ≥ 33 by Carpi [20], for ` ≥ 27 by Currie and

Rampersad [29, 27] and for the remaining cases independently by Currie

and Rampersad [28] as well as Rao [73].

Dejean’s conjecture implies that every infinite or sufficiently long word

over A` contains an α-power with α ≥ RT(`). As RT(`)-powers are unavoid-

able we call words over A` which are RT(`)+-powerfree minimally repetitive.

Obviously, the set of all minimally repetitive words is of particular interest.

Ochem [64] proved the exponential growth of the number of elements of the

set of minimally repetitive words over A3 and A4. This implies that the

corresponding entropies are non-zero and in Case 7.3 and Case 7.6 we try

to compute their lower bounds by means of Kolpakov’s method [49].

Karhumäki and Shallit showed in [43] that for A2 the dividing line be-

tween polynomial and exponential growth is 7
3 . This means that the set of

binary minimally repetitive, i.e. 2+-powerfree, words grows only polynomi-

ally and hence has zero entropy. Therefore, we deal in Case 7.4 with the set

of binary words which are 7
3
+-powerfree. Since 7

3 -powers are unavoidable

for exponential growth, a 7
3
+-powerfree word is also referred to as binary

quasi-minimally repetitive word.

4.3.2. Lower Bounds for the Entropy via Powerfree Morphisms.

For the rest of this chapter, if not specified otherwise, let F stand for an

infinite set of k-powerfree or α+-powerfree words. A word w ∈ F is called

powerfree in both cases and it will be clear from the context what is meant.

Since the set F is obviously factorial, the entropy h(F) exists. Until very re-

cently, all methods used to prove that h(F) is positive and to establish lower

bounds were based on powerfree morphisms. Clearly, a powerfree morphism,

iterated on a single letter, produces powerfree words of increasing length and

suffices to show the existence of infinite powerfree words. For example, the

fact that the Thue-Morse morphism (0.1) is overlapfree and hence cubefree
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shows the existence of overlapfree and cubefree words of arbitrary length in

two letters.

To prove that the entropy is actually positive, one has to show that the

number of powerfree words grows exponentially with their length. Essen-

tially, this is achieved by considering powerfree morphisms from a larger al-

phabet. The following theorem is a generalisation of Brandenburg’s method,

compare [18], and provides a path to produce lower bounds for the entropy

of k-powerfree words.

Theorem 4.13. Let A and B be alphabets with |A| = t|B|, where t > 1 is

an integer. If there exists an r-uniform k-powerfree morphism % : A∗ → B∗,

then

h
(
F (k)(B)

)
≥ log t
r − 1

.

Proof. For this proof define h := h
(
F (k)(B)

)
, c(n) := cF(k)(B)(n) and

s := |B|. Label the elements of A as {a11, . . . , a1t, a21, . . . , a2t, . . . , as1, . . . , ast}

and the elements of B as {b1, . . . , bs}. Define a map ϕ : A∗ → B∗ as

ϕ(aij) := bi for i = 1, . . . , s and j = 1, . . . , t. Hence |ϕ−1(bi)| = t. Ev-

ery k-powerfree word of length m over B has tm different preimages under

ϕ which, by construction, consist only of k-powerfree words. These words

are mapped by %, which is injective due to its k-powerfreeness, to different

k-powerfree words of length mr over B. This implies the inequality

(4.8) c(mr) ≥ tmc(m)

for any m > 0 and means that

(
c(mr)
c(m)

) 1
m

≥ t.

Hence

r
log c(mr)

mr
− log c(m)

m
≥ log t
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for any m > 0. Taking the limit as m→∞ gives

(r − 1)h ≥ log t,

thus establishing the lower bound. �

This result means that, whenever we find a uniform k-powerfree mor-

phism from a sufficiently large alphabet, we have found a lower bound for

the entropy, and in particular we have shown that the entropy is strictly

positive. Clearly, the larger t and the smaller r the better the bound, so

one is particularly interested in uniform k-powerfree morphisms from large

alphabets of minimal length.

Another method due to Brinkhuis [19], which is related to Brandenburg’s

method, can be generalised as follows. Let again B = {b1, . . . , bs} be an

alphabet and t ∈ N. For i ∈ {1, . . . s} let

Ui := {Ui,1, Ui,2, . . . , Ui,t}

with Ui,j ⊂ F (k)(B) ⊂ B∗(r). The set U = {U1, . . .Un} is called an

(k, r, t)-Brinkhuis-set if the r-uniform substitution (in the context of formal

language theory), compare for example [17, Sec. 3.2], % from B∗ to itself

defined by

% : bi 7→ Ui for i = 1, . . . , s

has the property %(F (k)(B)) ⊂ F (k)(B). In other words U is an (k, r, t)-

Brinkhuis-set if the substitution of every letter bi, occurring in a k-powerfree

word, by an element of Ui results in a k-powerfree word over B. The exis-

tence of a (k, r, t)-Brinkhuis-set delivers the lower bound

h(F (k)(B)) ≥ log t
r − 1

because every k-powerfree word of length m is mapped to tm powerfree

words of length rm; compare (4.8).
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The method of Brinkhuis is stronger than the method of Brandenburg.

Not every (k, r, t)-Brinkhuis-set implies a map according to Theorem 4.13,

since we only choose one word out of Ui, see [17, p. 287] for an example.

Conversely, if there exists an r-uniform k-powerfree morphism % : A∗ → B∗

according to Theorem 4.13, then there exists a (k, r, t)-Brinkhuis-set, namely

Ui =
{
%(ai1), . . . , %(ait)

}
for i = 1, . . . , s, with the notation of Theorem 4.13.

Brinkhuis’ method was applied in [36, 82]; see also Sections 7.1 and 7.2

for a summary of bounds obtained for binary cubefree and ternary squarefree

words. These bounds have in common that they are nowhere near the actual

value of the entropy, and while a systematic improvement is possible by

increasing the value of t in Theorem 4.13 (which, however, also means that

one has to consider larger values of r), it will always result in a much smaller

growth rate, because only a subset of words is obtained in this way.

In 2007 Kolpakov introduced a completely different approach [49], which

we will explain and generalise in Chapter 6. The lower bounds derived by

this approach are much better, in fact they are the best known so far.

4.3.3. Upper Bounds for the Entropy. A simple way to provide

upper bounds on the entropy of an infinite factorial set S ⊂ A∗` is based on

the enumeration of the elements of S up to some length. Clearly, the number

of words c(n) := cS(n) is bounded by `n, so the corresponding entropy is

h(S) ≤ log `, as mentioned above. Suppose we know the actual value of c(n)

for some fixed n. Then, due to the factorial nature of the set S,

c(mn) ≤ c(n)m

for any m ≥ 1. Hence

(4.9) h(S) = lim
m→∞

log c(mn)
mn

≤ log c(n)
n

,

which, for any n, yields an upper bound for h. Obviously, the larger the

value of n, the better the bound obtained in this way. In some cases, the
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bound can be slightly improved by considering words that overlap in a couple

of letters; see [4] for an example.

Recall that F stands for an infinite set of k-powerfree or α+-powerfree

words. In this case (4.9) leads to the following approximation of the entropy.

The sets

Sm := Sm(A) = {w ∈ A∗ | every factor of w with length ≤ m is powerfree}

form an outer approximation of F , i.e. Sn ⊂ Sm for every pair m,n ∈ N

with n ≥ m and

(4.10)
∞⋂
m=1
Sm = F .

Note that obviously the sets Sm are factorial and F(n) = Sm(n) for all

n ≤ m.

Lemma 4.14. Let F stand for an infinite set of k-powerfree or α+-

powerfree words and let Sm be an outer approximation of F . Then

lim
m→∞

h(Sm) = h(F).

Proof. We will show that

h(F) ≤ h(Sm) ≤ h(F) + ε

for any ε > 0 and all m > M ∈ N. Since F ⊂ Sm we know that h(F) ≤

h(Sm) for all m ∈ N. By definition

lim
n→∞

1
n log(|F(n)|) = h(F),

so there is an M ≥ 1 such that 1
M log(|F(M)|) < h(F) + ε. For all m ≥M

we know that Sm(M) = F(M) and hence with (4.9)

h(Sm) = lim
n→∞

1
n log(|Sm(n)|) ≤ 1

M log |Sm(M)| = 1
M log |F(M)| < h(F) + ε.

�
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u[2 : n]u[1]

v[n]v[1 : n− 1]v

u

Figure 4.1. v as a descendant of u or u as an ancestor of v.

There are several methods to calculate sharper upper bounds for ternary

squarefree and binary cubefree words, see for example [63, 75, 67, 37],

which could be generalised. However, we prefer to present here a general

method to derive upper bounds for the entropy which, at the same time,

provides the first steps for the derivation of the lower bound in Chapter 6.

We will see in Chapter 7 that, compared to other methods, it delivers upper

bounds which are only slightly greater. The following definitions will be

central.

Definition 4.15. Let n > 1 and u, v ∈ F(n). We call v a descendant

of u and u an ancestor of v if

u[2 : n] = v[1 : n− 1] and uv[n] = u[1]v ∈ F(n+ 1),

see Figure 4.1 for an illustration. Moreover, we call v a quasi-descendant

of u and u a quasi-ancestor of v, if v is isomorphic to some descendant of

u, i.e. there is a permutation of letters % : A∗ → A∗, such that %(v) is a

descendant of u or equivalently u is an ancestor of %(v).

Definition 4.16. A word w ∈ F(n) is called open if the following holds:

(1) w has at least one ancestor and one descendant.

(2) At least one ancestor and one descendant of w is open.

For example the word 020 ∈ F (2)(A3) is open, since we have the follow-

ing line of descendants: 020, 201, 010, 102, 020.

A word which is not open, is called closed in the following sense.

Definition 4.17. A word w ∈ F(n) is called right closed (left closed),

if w has no descendant (ancestor) or all descendants (ancestors) of w are
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right closed (left closed). A word w is called closed if it is right closed or

left closed.

For example the word 0102010 ∈ F (2)(A3) is right and left closed.

Let 3 ≤ m ∈ N and recall from (4.6) that F ′(m) stands for the set of

equivalence classes of powerfree words of length m. Now, we define the set

of open words among them as

(4.11) F ′′(m) :=
{
w ∈ F ′(m) | w is open

}
= {w1, . . . , ws} ,

where we think of this set as ordered lexicographically.

Definition 4.18. Let 3 ≤ m ∈ N. For F ′′(m) = {w1, . . . , ws} from

(4.11) define an s× s-matrix ∆m = (δij), where

δij :=


1, if wi is a quasi-ancestor of wj

0, otherwise
.

As ∆m is a non-negative matrix it possesses a largest eigenvalue λm ≥ 0,

which is called Perron eigenvalue, see for example [54, Lemma 4.4.3].

A non-negative square matrix M is called irreducible, if for each ordered

pair of indices (i, j), there exists some n = n(i, j) > 0 such that (Mn)i,j > 0.

In this thesis we adopt the convention that for any matrix M0 = id and so

the 1 × 1 matrix (0) is irreducible. Furthermore, a non-negative square

matrix M is called primitive, if Mn > 0 for some n > 0, i.e. every entry

of Mn is strictly greater than 0. For example by [54, Definition 4.5.7,

Theorem 4.5.8] we know that a matrix M is primitive if and only if M is

irreducible and aperiodic , i.e. for an index i

gcd {n | (Mn)ii > 0} = 1.

We will show in Chapter 7 that for the examples we look at, the matrix

∆m is primitive since it is irreducible and aperiodic. However, we will see

in Chatper 6 that we actually only need that ∆m is irreducible. Already
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the Perron-Frobenius Theorem for irreducible matrices, see for example [54,

Theorem 4.2.3] or [46, Theorem 1.3.5], tells us what we need. Namely, the

largest eigenvalue λm of ∆m, the Perron eigenvalue, is geometrically as well

as algebraically simple and possesses a strictly positive right eigenvector,

which is unique up to multiplication with a positive factor. Moreover, the

Perron eigenvalue λm > 0 is then the only eigenvalue of ∆m with a non-

negative eigenvector.

We conclude this chapter with the following theorem, which shows how

all these definitions lead to an upper bound for the entropy of powerfree

words. The theorem will be proved in the course of Chapter 5, as it will be

easier to prove it in the context of symbolic dynamics.

Theorem 4.19. Let F be an infinite set of either k-powerfree or α+-

powerfree words. For 3 ≤ m ∈ N, let ∆m be the matrix from Definition

4.18. If we denote the Perron eigenvalue of ∆m by λm, then

log(λm) ≥ h(F).

�



CHAPTER 5

Dynamical Aspects

In this chapter powerfree words are described by means of symbolic dy-

namics. It is shown that the entropy of a powerfree shift space coincides

with the combinatorial entropy of the corresponding set of powerfree words.

Moreover, we define dynamical systems which arise from substitutions. Al-

though these systems are suitable to show that there are infinitely many

powerfree words, we show that their entropy is zero. We conclude with a

section on topological entropy and show explicitly that for shift spaces the

combinatorial and topological entropy coincide.

5.1. Shift Spaces

5.1.1. Definitions. A bi-infinite sequence of letters from an alphabet

A is a map

x : Z→ A, i 7→ xi

and is denoted by x = (xi)i∈Z or x = . . . x−2x−1x0x1x2 . . . , compare [54].

The symbol xi is called the ith coordinate of x. We write a specific sequence

with a dot between the −1st and the 0th coordinate. For example

x = . . . 01.32 . . .

means that x−2 = 0, x−1 = 1, x0 = 3, x1 = 2 and so on. The set of all bi-

infinite sequences of letters from A is called the full A-shift and is denoted

by

AZ = {x = (xi)i∈Z | xi ∈ A for all i ∈ Z} .

Each x ∈ AZ is called a point of the full A-shift. The shift map σ : AZ → AZ

maps a point x to the point y = σ(x) whose ith coordinate is yi = xi+1.

117
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Thus σ shifts every coordinate one place to the left. Of course there is also

the inverse operation σ−1 of shifting one place to the right.

If x ∈ AZ and w is a finite word over A, it is said that w occurs in or is

contained in x if there are indices i and j such that w = x[i : j]. Note that

the empty word ε occurs in every point x, since ε = x[1 : 0]. Let F be a set

of finite words over A, which we will consider as the set of forbidden words.

For any such F , define XF to be the subset of elements of AZ which do not

contain any word of F . A shift space is a subset X of the full shift AZ of

the form X = XF for some set F of forbidden words over A. For a given

shift space XF there may be several different sets describing it. Note that

the empty set ∅ is a shift space, since F can be A∗. We say that a shift

space X is of finite type if there is a finite set F such that X = XF . In any

case, even if F is infinite, it is countable since its elements can be arranged

in a list.

Clearly, shift spaces are shift invariant, meaning that σ(XF ) = XF .

When a shift space X is a subset of a shift space Y , it is called a subshift

of Y . We denote the set of words or blocks of length n which occur in some

point of a shift space X ⊂ AZ as

Bn(X) := {w ∈ A∗ | |w| = n,w occurs in some x ∈ X} .

The set of all words occurring in some point of a shift space X is denoted

by

B(X) :=
∞⋃
n=1
Bn(X)

and is also called the language of X. Obviously, B(X) is factorial and hence

its entropy, compare Definition 4.12, exists.

5.1.2. Powerfree Shift Spaces. For k ∈ N and α ∈ Q we define the

set of words over A which contain at least one k-power respectively one

α+-power as a factor as

(5.1) C(k)(A) := A∗ \ F (k)(A) and C(>α)(A) := A∗ \ F (>α)(A).
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Their corresponding shift spaces XC(k)(A) and XC(>α)(A) consists of all k-

powerfree respectively α+-powerfree elements of AZ. Note that these shift

spaces are of infinite type. To simplify the notation we write from now on

just F , if we mean the sets F (k)(A) and F (>α)(A). Analogously, C stands

for C(k)(A) and C(>α)(A) simultaneously.

Although the shift spaces XC are not of finite type, we can approximate

them by shifts of finite type. Observe that C(m) denotes the set of words

of length m which contain at least one forbidden power as a factor and

that this set is finite. The shift space XC(m) consists of all points from AZ

whose factors of length m are powerfree. Obviously, for m ≥ n, we have

XC(m) ⊂ XC(n) and

(5.2) XC =
∞⋂
m=1

XC(m) = X∪∞m=1C(m).

Note that not necessarily all elements of F occur in points of the corre-

sponding shift spaces. We can characterise them as follows.

Lemma 5.1. Let F and C stand for F (k)(A) and C(k)(A) or F (>α)(A)

and C(>α)(A). A word w ∈ F(m) is open if and only if w ∈ Bm(XC(m+1)).

�

For example, the word 0102010 ∈ F (2)(A3), but it cannot occur as a

factor of a point in XC(2)(m) for m ≥ 8 since it is closed, namely right and

left closed at the same time. Moreover, there are words which are only closed

to one side. For example, the word 01021201021 ∈ F (2)(A3) is left closed

but not right closed, hence it cannot occur as factor of a point in XC(2)(m)

for m ≥ 12.

Note that the shift space XC(m+1) is an m-step shift of finite type, i.e.

its set of forbidden words consists of words of length m + 1 only. XC(m+1)

can be described by the following graph, compare [54, Theorem 2.3.2.]: The

vertices are the elements of Bm(XC(m+1)) = {w1, . . . , wr}. Two vertices u, v

are linked by an edge, if u is an ancestor of v. Let Γm = (γij) be the
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adjacency matrix of this graph, i.e.

γij :=


1, if wi is a ancestor of wj

0, otherwise
,

and let Γ0
m stand for the identity matrix. Note that for n ≥ m

(Γ(n−m)
m )i,j

gives the number of words of length n, occurring in points of XC(m+1), which

have wi as a prefix and wj as a suffix. In other words: (Γ(n−m)
m )i,j counts

the number of paths, as a line of descendants, starting with wi and ending

in wj . Hence we have for n ≥ m that

|Bn(XC(m+1))| =
r∑

i,j=1
(Γ(n−m)
m )i,j .

Recall the definition of the set F ′′(m) = {w1, . . . , ws} from (4.11) and note

that

(Bm(XC(m+1)))′ =
{
w′1, . . . , w

′
r

}
= F ′′(m).

If e(i) for i ∈ {1, . . . , s} denotes the number of words which are represented

by wi ∈ F ′′(m), we have
∑s
i=1 e(i) = r. Moreover, define

emax := max
1≤i≤s

e(i) and emin := min
1≤i≤s

e(i).

Explicitly, for every word w ∈ Bn(XC(m+1)), there are e(i) words in Bn(XC(m+1))

which are the image of w under a permutation of letters. Remember the ma-

trix ∆m from Definition 4.18 and note that in this matrix equivalent words

are summarised so that we have

emin

s∑
i,j=1

(∆(n−m)
m )i,j ≤ |Bn(XC(m+1))| =

r∑
i,j=1

(Γ(n−m)
m )i,j ≤ emax

s∑
i,j=1

(∆(n−m)
m )i,j .

We conclude with [54, Theorem 4.4.4] that

h(XC(m+1)) ≤ lim
n→∞

1
n

log emax + lim
n→∞

1
n

log(
s∑

i,j=1
(∆(n−m)

m )i,j) = log λm



5.1. SHIFT SPACES 121

and similarly log λm ≤ h(XC(m+1)), such that

(5.3) h(XC(m+1)) = log λm.

Now, we are finally in a position to prove Theorem 4.19 on page 116.

Proof. Recall from (4.10) the outer approximation Sm of F . First of

all we show that

(5.4) h(Sm+1) = h(XC(m+1)).

From what we have said so far it is clear that Bn(XC(m+1)) ⊂ Sm+1(n). By

Lemma 5.1 the set Bn(XC(m+1)) only contains open words, in the sense that

every factor of length m of an element of Bn(XC(m+1)) is open. We think

of w ∈ Bn(XC(m+1)) as w[1 : m] followed by the last letter of the n − m

descendants of w[1 : m].

Let w ∈ Sm+1(n)\Bn(XC(m+1)). If w[1 : m] is right and left closed, then

w[1 : m] possess only a finite number of ancestors and descendants. Hence

there is an index N(w[1 : m]) such that w does not occur as a factor in any

word of Sm+1(n) for n > N(w[1 : m]). If w[1 : m] is left closed but not

right closed, then w[1 : m] possess an infinite row of descendants, but only a

finite number of ancestors. Let a(w[1 : m]) be the number of ancestors and

d(w[1 : m]) be the number of the first descendant which is open. This word

exists since there is only a finite number of words in Sm+1(m) = F(m) and

with any repetition in the row of descendants we have found an open word.

So there are a(w[1 : m]) +m+ d(w[1 : m])− 1 starting positions of words of

length n which might not occur in Bn(XC(m+1)). Analogously, if w[1 : m] is

right closed but not left closed , let a(w[1 : m]) be the number of the first an-

cestor which is open and let d(w[1 : m]) be the finite number of descendants.

With C := {w ∈ F(m) | w is either left or right closed but not both} and
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D := {w ∈ F(m) | w is left and right closed} we have

c =
∑
w∈C

a(w[1 : m]) +m+ d(w[1 : m])− 1

and conclude that |Sm+1(n) \Bn(XC(m+1))| ≤ c for all n > N := max
w∈D

N(w).

Hence

h(Sm+1) = lim
n→∞

1
n log |Sm+1(n)| = lim

n→∞
1
n log(|Bn(XC(m+1))|+c) = h(XC(m+1)).

With (4.10) and (5.3) this implies that log λm = h(XC(m+1)) = h(Sm+1) ≥

h(XF ) which completes the proof. �

By [54, Proposition 4.4.6] we know that

lim
m→∞

h(XC(m+1)) = h(XC).

So we obtain, with Lemma 4.14, the following result.

Corollary 5.2. Let F be an infinite set of either k-powerfree or α+-

powerfree words and C the corresponding set of power containing words.

Then

h(F) = lim
m→∞

h(Sm) = lim
m→∞

h(XC(m+1)) = h(XC).

�

5.1.3. Shifts as Dynamical Systems. In general, dynamical systems

are defined as follows.

Definition 5.3. A (topological) dynamical system (M,ϕ) consists of

a compact topological Hausdorff space M together with a continuous map

ϕ : M −→M . If ϕ is a homeomorphism we call (M,ϕ) an invertible dy-

namical system.

Let X be a shift space, u ∈ B(X) and i ∈ Z. Define a cylinder set over

X as

CXi (u) :=
{
x ∈ X | x[i,i+|u|−1] = u

}
,
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i.e. CXi (u) is the set of points in which the word u occurs starting at position

i. The cylinder sets form a countable basis for a topology on the shift space

X, see [46, Section 1.1]. The following metric generates the topology. For

x, y ∈ X define

(5.5) d(x, y) :=


2−i if x 6= y and i is maximal so that x[−i,i] = y[−i,i]

0 if x = y

.

Observe that for any x ∈ X and any integer n ≥ 0 we have that

(5.6)
B2−(n−1)(x) =

{
y ∈ X | d(x, y) < 2−(n−1)

}
=
{
y ∈ X | y[−n,n] = x[−n,n]

}
= CX−n(x[−n,n]).

Cylinder sets are clopen sets, i.e. they are open and closed at the same time.

As basis of the topology cylinder sets are open. To see that cylinder sets are

closed, observe that the complement is a countable union of cylinder sets

and hence open.

The metric from (5.5) captures the idea that points of a shift space are

close when large central blocks of their coordinates agree. A sequence of

points (x(n))n∈N in a shift space X converges exactly when, for each i ≥ 0,

the central (2i + 1)-blocks stabilise, i.e. x(n) −→ x if and only if, for each

i ≥ 0, there is an ni such that

x
(n)
[i,−i] = x[i,−i]

for all n ≥ ni.

The shift map σX : X −→ X is continuous, since the following holds: If

two points in X are close, they agree on a large central block, hence their

images agree on a large central block just shifted one place to the left.

By [54, Theorem 6.1.21] we know that a subset of AZ is a shift space

if and only if it is shift-invariant and compact. With the metric d from

(5.5) a shiftspace X ⊂ AZ is a compact metric space, and hence a compact
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Hausdorff space. Therefore, the shift map σX together with X form an

invertible dynamical system, referred to as shift dynamical system.

5.1.4. Shift Dynamical Systems Arising from Substitutions. Let

A be a finite alphabet. A morphism % : A∗ → A∗ induces a map from AZ

to AZ, which we also call %, by

%(x) := . . . %(x−1).%(x0)%(x1) . . . .

The map % is referred to as substitution on A. Note that % : AZ → AZ is

continuous.

A substitution % on A is called irreducible, if for every pair of a, b ∈ A

there is an n = n(a, b) ∈ N such that %n(a) contains b. The substitution %

is said to be primitive, if there exits an n ∈ N such that %n(a) contains b for

every a, b ∈ A. Note that, in this case, n can be chosen independently of a

and b.

A finite word w ∈ A∗ is called legal for the primitive substitution % on

AZ, if it occurs as a factor of %n(a) for some letter a ∈ A and n ∈ N. Legal

words have the property that they are mapped to legal words under the

substitution.

A point w ∈ AZ is called a fixed point of a primitive substitution % on

AZ if %(w) = w and w−1.w0 is a legal two-letter word of %.

Proposition 5.4 ([7]). Let % be a primitive substitution on the alphabet

A with |A| ≥ 2. Then there exists a point w ∈ AZ and n ≥ 1 such that

w = %n(w), i.e. w is a fixed point of %n. �

Corollary 5.5. If % is a primitive substitution on the alphabet A with

|A| ≥ 2, then the following holds:

(i) limn−→∞ |%n(a)| =∞ for every letter a ∈ A.

(ii) There exists a letter a ∈ A and n ∈ N so that %n(a) begins with a.

�
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Example 5.6. As already mentioned in the introduction, the Thue-

Morse substitution is a substitution on the alphabet A2 = {0, 1} defined

by

t :
0 7→ 01

1 7→ 10.

Two distinct bi-infinite fixed points w and w̃ are obtained as limits of the

iteration of t2,

0.0 t27−→ 0110.0110 t27−→ 0110100110010110.0110100110010110 t27−→ . . .
t27−→ = w

1.0 t27−→ 1001.0110 t27−→ 1001011001101001.0110100110010110 t27−→ . . .
t27−→ = w̃

Example 5.7. Another famous substitution on A2 = {0, 1} is defined

by

f :
0 7→ 01

1 7→ 0

and is called the Fibonacci substitution. Here, two distinct bi-infinite fixed

points w and w̃ are again obtained as limits of the iteration of f2,

0.0 f2
7−→ 010.010 f2

7−→ 01001010.0100101001 f2
7−→ . . .

f2
7−→ = w

1.0 f2
7−→ 01.010 f2

7−→ 01001.01001010 f2
7−→ . . .

f2
7−→ = w̃

Let w ∈ AZ be a fixed point of the primitive substitution % on A. Define

the closed orbit of w in AZ as

O(w) := {σn(w) | n ∈ Z}.

By definition O(w) is a closed and shift-invariant subset of the compact

metric space AZ. Therefore O(w) is a shift-space, see [54, Theorem 6.1.21],

and (O(w), σO(w)) is a shift dynamical system; .

Now, we cite a result from [72, p. 105], which directly implies that the

entropy of the shift space O(w) vanishes.

Proposition 5.8. Let w be the fixed point of some primitive substitution

% on A and let c(n) be the complexity function of O(w). Then there exists
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a positive constant κ such that

c(n) ≤ κn for every n ≥ 1.

Corollary 5.9. Let w be the fixed point of some primitive substitution

% on A and let c(n) be the complexity function of O(w). Then

h(O(w)) = 0.

5.2. Topological Entropy

In this section we only state most of the results. For their proofs see for

example [86, Chapter 7] and [70, Section 6.3].

5.2.1. Open Covers. LetX be a non-empty compact topological Haus-

dorff space which is not empty. We are interested in open covers of X which

will be denoted by U or V . If U and V are open covers of X their join

U ∨V is the open cover which consists of all sets of the form U ∩ V where

U ∈ U and V ∈ V . Similarly we define the join
∨n
i=1 Ui of any finite set of

open covers of X.

An open cover U of X is a refinement of an open cover V , written as

U ≥ V , if every member of U ∈ U is a subset of some V ∈ V . Hence

U ∨ V ≥ U for any open covers U ,V . Note that if V is a subcover of U

then V ≥ U .

5.2.2. Entropy of an Open Cover. If U is an open cover of X let

N(U ) be the number of sets in a finite subcover of X with smallest cardi-

nality. The entropy of U is defined by

H(U ) := logN(U ).

Note that

(i) H(U ) ≥ 0

(ii) H(U ) = 0 if and only if N(U ) = 1 if and only if X ∈ U .

(iii) If V ≤ U then H(V ) ≤ H(U ).
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(iv) H(U ∨ V ) ≤ H(U ) +H(V )

5.2.3. Entropy of Continuous Maps. If U is an open cover of X

and

T : X → X is continuous then T−1U is the open cover of X which consists

of all sets T−1U where U ∈ U . Note that

(i) T−1(U ∨ V ) = T−1(U ) ∨ T−1(V )

(ii) U > V implies T−1(U ) ≥ T−1(V ).

(iii) H(U ) ≥ H(T−1U ). If T is also surjective thenH(U ) = H(T−1U ).

For −∞ < m ≤ n <∞, we define

U n
m :=

n∨
i=m

T−iU = T−mU ∨ T−(m+1)U ∨ . . . ∨ T−nU .

Theorem 5.10. Let X be a non-empty compact topological Hausdorff

space. If U is an open cover of X and T : X → X is continuous then

h(U , T ) := lim
n−→∞

1
n
H(U n−1

0 )

exists, and h(U , T ) ≤ H(U ). �

Definition 5.11. Let X be a non-empty compact topological Hausdorff

space. If T : X → X is continuous, the topological entropy of T is given

by

htop(T ) = sup
U

h(U , T )

where U ranges over all open covers of X.

Note that 0 ≤ htop(T ) ≤ ∞ and that it is sufficient to take the supremum

over finite open covers of X.

The following proposition provides a possibility to calculate topological

entropy.

Proposition 5.12. Let X be a non-empty compact topological Hausdorff

space and let T : X → X be continuous. If {Un}n∈N is a refining sequence
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of open covers, i.e. U1 ≤ U2 ≤ . . . and for every finite open cover V of X

there is an n ∈ N such that V ≤ Un, then

htop(T ) = lim
n→∞

h(Un, T ).

�

We conclude this chapter with the following theorem which tells us that

for a shift space the topological entropy of its shift map and the combina-

torial entropy of Definition 4.12 coincide.

Theorem 5.13. Let X ⊂ AZ be a shift space and let σX = σ be its shift

map. The topological entropy of σX equals the combinatorial entropy of X,

i.e.

htop(σX) = h(X).

Proof. For i ∈ N0 define

Ui = {C−i(u) | u ∈ B2i+1(X)} ,

where C−i(u) = CX−i(u) are cylinder sets. Obviously, {Ui}i∈N is a refining

sequence of open covers of X.

For −∞ < m ≤ n <∞ the following holds:

(Ui)nm =
n∨

j=m
σ−jUi = {C−i+m(um) ∩ . . . ∩ C−i+n(un) | uj ∈ B2i+1(X)}

= {C−i+m(u) | u ∈ B2i+n−m+1(X)}

as |u| = i+ n− (−i+m) + 1 = 2i+ n−m+ 1. With U := U0 this implies

that Ui = (U0)i−i = U i
−i and

(5.7) (Ui)n−1
0 = {C−i(u) | u ∈ B2i+n(X)} = U i+n−1

−i .

A comparison of U n−1
0 and (Ui)n−1

0 leads to the relation H(U n−1
0 ) ≤

H((Ui)n−1
0 ) which implies that h(U , σ) ≤ h(Ui, σ). Hence for all i ∈ N
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we infer with (5.7) that

h(U , σ) ≤ h(Ui, σ) = lim
n→∞

1
n
H((Ui)n−1

0 )

= lim
n→∞

1
n
H(U i+n−1

−i ) = lim
n→∞

1
n
H(U i+n−1

i ∨U i−1
−i )

≤ lim
n→∞

1
n

(H(U i+n−1
i ) +H(U i−1

−i )) = lim
n→∞

1
n
H(U n−1

0 )

= h(U , σ),

which implies that h(U , σ) = h(Ui, σ) for all i ∈ N. As at least |Bn(X)|

elements of the open cover U n−1
0 = {C0(u) | u ∈ Bn(X)} are needed to cover

X, we infer that

htop(σ) = lim
n→∞

h(Un, σ) = h(U , σ) = lim
n→∞

1
n
H(U n−1

0 ) = h(X).

�





CHAPTER 6

The Lower Bound for the Entropy

In this chapter we prove two theorems which provide a procedure to cal-

culate lower bounds for the entropy of integer and rational powerfree words.

We generalise and explain in detail Kolpakov’s ideas from [49], which start

with a Perron-Frobenius argument and lead, via several inductive steps, to

an estimate of the number of certain power containing words. This esti-

mation results in a procedure to calculate lower bounds for the entropy of

integer powerfree words as well as rational powerfree words.

We start by pointing out the basic idea of the proofs and proceed with

a reformulation of what we have to show. For technical reasons, we treat

integer and rational powerfree words separately.

Before we start off let us simplify some existing and set up some new

notation. From now on, if not specified otherwise, let F stand for an infi-

nite set of k-powerfree or α+-powerfree words over an alphabet A`, where

k, ` ∈ N and α ∈ Q. A word w ∈ F is called powerfree in both cases and it

will be clear from the context what is meant. We will repeatedly need the

following sets:

Lm := Lm(A`)(6.1)

= {v ∈ A∗` | every factor u of v with |u| = m is open or u /∈ F(m)}

Fm := Fm(A`) = Lm ∩ F(6.2)

F (w)
m (n) := {v ∈ Fm | |v| = n, v = xw}.(6.3)

Recall from (4.6) and (4.11) that F ′(m) stands for the set of equivalence

classes of powerfree words of length m and that F ′′(m) = {w1, . . . , ws}

denotes the set of open words among them.

131
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For every real number β we define

(6.4) bβc := max {n ∈ Z | n ≤ β} and dβe := min {n ∈ Z | n ≥ β} .

Repeatedly we will need the concept of multisets. A multiset is a set with

repeated elements. For example [0, 0, 1, 2, 2, 2] is a multiset. More precisely,

a finite multiset M on a set S with |S| = n elements is a function ν : S → N

such that
∑
x∈S ν(x) < ∞. One regards ν(x) as the number of repetitions

of x and we write

M = [x1, . . . , x1︸ ︷︷ ︸
ν(x1) times

, . . . , xn, . . . , xn︸ ︷︷ ︸
ν(xn) times

].

Of course the union as well as the intersection of multisets is again a multiset;

see [80] for details. Note that [0, 0, 1, 2, 2, 2] stands for a multiset whereas

{0, 0, 1, 2, 2, 2} = {0, 1, 2} continues to denote a ‘normal’ set.

6.1. Strategy

6.1.1. Idea. The derivation of the lower bound for the entropy h(F)

is based on the following idea. Assume that ∆m from Definition 4.18 is

irreducible. The Perron-Frobenius Theorem for irreducible matrices, see for

example [54, Theorem 4.2.3], tells us that the largest eigenvalue λm, called

the Perron eigenvalue of ∆m, possess a strictly positive right eigenvector

(x1, . . . , xs), which is unique up to a positive multiple. Moreover, we assume

that λm > 1 and normalise the eigenvector according to
∑s
i=1 xi = 1.

For wi ∈ F ′′(m) we define

(6.5) dm(n) :=
s∑
i=1

xi|F (wi)
m (n)|

and note that

cF (n) ≥
s∑
i=1
|F (wi)(n)| ≥

s∑
i=1

xi|F (wi)
m (n)| = dm(n).

Moreover, dm(m) = 1 since by definition |F (wi)
m (m)| = 1.
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The idea of this chapter is to show that for some γ ∈ (1, λm) and every

n ≥ m the inequality

(6.6) dm(n+ 1) ≥ γdm(n)

holds. We conclude that

dm(n) ≥ γn−m

and hence

h(F) = lim
n→∞

1
n log(cF (n)) ≥ lim

n→∞
1
n log(dm(n)) ≥ log(γ)− lim

n→∞
m
n log(γ) = log(γ),

thus providing the lower bound log(γ) for the entropy h(F).

6.1.2. Reformulation. The main task is to prove inequality (6.6).

The reformulation of this task requires the definition of the following sets.

For any wi ∈ F ′′(m) and n ≥ m we set

G(wi)(n+ 1) := {w ∈ L(wi)
m (n+ 1) | w[1 : n], w[n−m+ 1, n+ 1] ∈ F},

(6.7)

H(wi)(n+ 1) := {w ∈ G(wi)(n+ 1) | w = uv where v /∈ F}.

(6.8)

Note that for w ∈ G(wi)(n + 1), the powerfree prefix w[1 : n] and the

powerfree suffix w[n−m+ 1, n+ 1] overlap on w[n−m+ 1 : n], which is an

ancestor of wi. Considering (6.3) makes it obvious that

(6.9) |F (wi)
m (n+ 1)| = |G(wi)(n+ 1)| − |H(wi)(n+ 1)|.

and hence we have

(6.10) dm(n+ 1) =
s∑
i=1

xi|G(wi)
m (n+ 1)| −

s∑
i=1

xi|H(wi)
m (n+ 1)|.

For 1 ≤ i ≤ s we define

(6.11) Q(i) := {w ∈ F ′(m) | w is a quasi-ancestor of wi}.
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If u, v ∈ A∗` are isomorphic we have |F (u)
m (n)| = |F (v)

m (n)| which implies

that

(6.12) |G(wi)(n+ 1)| =
∑

w∈Q(i)
|F (w)
m (n)|.

With Definition 4.18 we infer that

(6.13)

s∑
i=1

xi|G(wi)(n+ 1)| =
s∑
i=1

(xi
∑

w∈Q(i)
|F (w)
m (n)|)

= (x1, . . . , xs)



δ11 δ21 . . . δs1

δ12 δ22 . . . δs2
...

... . . . ...

δ1s δ2s . . . δss





|F (w1)
m (n)|

|F (w2)
m (n)|

...

|F (ws)
m (n)|


= (x1, . . . , xs) ∆T

m (|F (w1)
m (n)|, |F (w2)

m (n)|, . . . ,F (ws)
m (n)|)T

= λm(x1, . . . , xs) (|F (w1)
m (n)|, |F (w2)

m (n)|, . . . ,F (ws)
m (n)|)T

= λm dm(n).

Since H(wi)(m + 1) = ∅ and dm(m) = 1 due to their definitions, we infer

that

(6.14) dm(m+ 1) = λm.

Considering (6.10) and (6.13), we see that

(6.15) dm(n+ 1) = λmdm(n)−
s∑
i=1

xi|H(wi)
m (n+ 1)|.

Hence, in order to show (6.6), we have to estimate
∑s
i=1 xi|H(wi)(n+ 1)| by

dm(n).

We now concentrate on the case of powerfree words for integer powers,

and consider the case of rational powers in Section 6.3.
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... ub

∈ F

v

u u

Figure 6.1. vt ∈ V (wi)
j and b ∈ Bt with bvt = buk.

6.2. Words Avoiding Integer Powers

Let in this section F = F (k)(A`), where k ∈ N and A` is an alphabet

with ` ≥ 2 letters such that F is an infinite set. Moreover, let m, p, q ∈ N

such that 2 < m ≤ p and kp−m ≤ q.

6.2.1. Polynomial. For the derivation of the lower bound we need to

define a particular polynomial. The proof of Theorem 6.1 below will provide

the motivation for its definition. We set

(6.16) J :=
{
b (m+1)

k c+ 1, . . . , b q+mk c
}
.

For every j ∈ J and wi ∈ F ′′(m) we define the set of all k-powers of minimal

period j, which do not have closed words of length m as factors:

(6.17)
V

(wi)
j : =

{
v ∈ L(wi)

m | v = uk with u ∈ F(j), per(v) = j
}

= {v1, . . . , vo} .

Now, we define for 1 ≤ t ≤ o

(6.18) Bt := {b ∈ A` | bvt[1 : kj − 1] ∈ Fm} .

Note that since bv[1 : kj−1] is k-powerfree we know thatBt ⊂ A` \ {vt[j]},

see Figure 6.1 for an illustration. For j ∈ J,wi ∈ F ′′(m) and 1 ≤ t ≤ o we

define the following multiset

(6.19)
Uj(wi) :=

⋃
1≤t≤o

Uj,t(wi), where

Uj,t(wi) :=
[
(bvt[1 : m− 1])′ | b ∈ Bt

]
⊂ F ′′(m).
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Let ηr(j) :=
∑s
i=1 xie

(r)
j (wi), where e(r)j (wi) := | {wr ∈ Uj(wi)} |. We substi-

tute g(j) := kj −m and define

g(b (m+1)
k c+ 1) = kb (m+1)

k c+ k −m =: g0

Furthermore, we set for g0 ≤ g ≤ q

η′r(g) :=


ηr(g+mk ), if g +m is divisible by k,

0, otherwise
.

Now, we are finally in a position to define inductively our polynomial

(6.20) P(p,q)
m (x) :=

q∑
g=g0

%g x
g.

Recall that we denote by (x1, . . . , xs) the right strictly positive eigenvector

corresponding to the Perron eigenvalue λm of ∆m. We set

(6.21) %g0 := min
1≤r≤s

(η
′
r(g0)
xr

)

and νr := η′r(g0)−%g0xr for r ∈ {1, . . . , s}. Let ν := (ν1, . . . , νs), ν ′ = ∆mν =

(ν ′1, . . . , ν ′s) and finally η′′r (g0 + 1) := η′h(g0 + 1) + ν ′k.

Assume now that for some g−1 with g0 ≤ g−1 < q−1 we have already

computed the numbers %g0 , . . . , %g−1 and η′′1(g), . . . , η′′s (g). Then we define

(6.22) %g := min
1≤r≤s

(η
′′
r (g)
xr

)

so that all entries in ν̃ := (η′′1(g)− %gx1, . . . , η
′′
s (g)− %gxs) are non-negative.

Let ν̃ ′ := ∆mν̃ = (ν̃1
′, . . . , ν̃s

′) and set for r ∈ {1, . . . , s}

η′′r (g + 1) := η′r(g + 1) + ν̃r
′.

For g = q, we define

(6.23) %q := max
1≤r≤s

(η
′′
r (q)
xr

).
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Note that these definitions of the coefficients of the polynomial P(p,q)
m (x)

ensure that it does not matter how the eigenvector (x1, . . . , xr) is normalised.

6.2.2. The Lower Bound. The main result of this chapter is the fol-

lowing theorem. It is a generalisation of the method introduced in [49]

and basically gives a procedure to calculate lower bounds for the entropy of

integer powerfree words.

Theorem 6.1. Let A` be a finite alphabet with ` ≥ 2 letters and let

k ∈ N such that F = F (k)(A`) is an infinite set. For m > 2 let ∆m be

the corresponding matrix from Definition 4.18. Let ∆m be irreducible and

denote its Perron eigenvalue by λm. Moreover, for p, q ∈ N with p ≥ m and

q ≥ kp−m construct the polynomial P(p,q)
m of (6.20). If for some γ ∈ (1, λm)

and all n ∈ {m, . . . , q +m− 1}.

(6.24) dm(n+ 1) ≥ γdm(n)

as well as

(6.25) λm − P(p,q)
m ( 1

γ )− 1
γ(k−1)p−1(γ(k−1) − 1)

≥ γ

then

h(F) ≥ log(γ).

Proof. Recall that we intend to show that the inequality (6.24) holds

for every n ∈ N since this gives us the lower bound log(γ) for the entropy

h(F). We argue by induction on n ≥ q + m ≥ kp. The basis is given by

assumption (6.24). So assume that for m ≤ i ≤ n− 1 the inequality

dm(i+ 1) ≥ γdm(i)

holds. This implies directly that for m ≤ i ≤ n− 1

(6.26) dm(n)
γn−i

≥ dm(i).
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...wi

j

w[n+ 2− kj]

wi

j

w[n+ 2− 2j]

w

w[n+ 1− (k − 1)j]

wi

w[n+ 1]

j

w[n+ 2− j]
w[n+ 1− j]

w[1 : n+ 1− (k − 1)j −m]

Figure 6.2. w ∈ Hj(wi) where j ∈ J1.

Recall from Section 6.1.2 that we have to estimate
∑s
i=1 xi|H(wi)(n+1)|

by dm(n). For any word w ∈ H(wi)(n+ 1) we can find the shortest suffix of

w which is a k-power. Let vw be this suffix. Since |w| = n+ 1, per(vw) can

at most be b (n+1)
k c and because |w[n −m + 1 : n + 1]| = m + 1, we know

that per(vw) > b (m+1)
k c. Hence we have b (m+1)

k c < per(vw) ≤ b (n+1)
k c. We

define

(6.27) H(wi)
j (n+ 1) :=

{
w ∈ H(wi)(n+ 1) | per(vw) = j

}
for b (m+1)

k c < j ≤ b (n+1)
k c, so that we can write

(6.28) H(wi)(n+ 1) =
∑⌊ (m+1)

k

⌋
<j≤

⌊ (n+1)
k

⌋H(wi)
j (n+ 1).

Now, we distinguish

(1) J1 :=
{
j ∈ N | p < j ≤

⌊
(n+1)
k

⌋}
and

(2) J2 :=
{
j ∈ N |

⌊
(m+1)
k

⌋
< j ≤ p

}
.

It would be possible to take p = m, but our estimation in case (2) is often

better and so it makes sense to exploit it as far as computationally possible.

Note that J2 ⊂ J from (6.16).



6.2. WORDS AVOIDING INTEGER POWERS 139

(1) We start by considering J1. Let w ∈ H(wi)
j (n + 1) with j ∈ J1. We

know that j > m and hence

w[n+ 1− kj + 1 : n+ 1− (k − 1)j]

= w[n+ 1− (k − 1)j + 1 : n+ 1− (k − 2)j]

= . . .

= w[n+ 1− j + 1 : n+ 1],

compare Figure 6.2.

This means that wi is not only a suffix of w, but also occurs in particular

at

w[n+ 1− (k − 1)j −m+ 1 : n+ 1− (k − 1)j] = wi.

So w is determined uniquely by the prefix

w[1 : n+ 1− (k − 1)j −m]

which implies that

(6.29) |H(wi)
j (n+ 1)| ≤ |F (wi)

m (n+ 1− (k − 1)j)|.

Considering (6.26) this means



140 6. THE LOWER BOUND FOR THE ENTROPY

(6.30)

s∑
i=1

xi(
∑
j∈J1

|H(wi)
j (n+ 1)|)

≤
s∑
i=1

xi(
∑
j∈J1

|F (wi)
m (n+ 1− (k − 1)j)|)

=
∑
j∈J1

(
s∑
i=1

xi|F (wi)
m (n+ 1− (k − 1)j)|)

=
∑
j∈J1

dm(n+ 1− (k − 1)j)

=
∑

p<j≤b(n+1)/kc

dm(n)
γ(k−1)j−1

<
dm(n)

γ(k−1)p−1(γ(k−1) − 1)
.

(2) Now, we consider J2, which is the more complicated case.

Let w ∈ H(wi)
j (n+ 1) with j ∈ J2. Note that

w[n+ 1− kj + 1 : n+ 1] = w[n− kj + 2 : n+ 1]

is a k-power which has wi as a suffix. It contains, by definition ofH(wi)
j (n+1),

no other k-powers as factors and we know, as w ∈ L(wi)
m (n + 1), that every

factor of length m is open. This means that w[n − kj + 2 : n + 1] ∈ V (wi)
j

and all possible k-powers of minimal period j are contained in V
(wi)
j =

{v1, . . . , vo}, see (6.17). For 1 ≤ t ≤ o define

H(wi)
j,t (n+ 1) :=

{
w ∈ H(wi)

j (n+ 1) | w = yvt
}

and let w ∈ H(wi)
j,t (n+1). Note that y 6= ε, since we assumed that j ≤ p < (n+1)

k .

Now, we follow the construction of the polynomial in Section 6.2.1. Let

u ∈ Uj(wi), see (6.19), and note that w is determined uniquely by the prefix

w[1 : n+ 1− kj],

which is always a proper prefix since j < (n+1)
k and hence kj ≤ n, compare

Figure 6.3 for an illustration. As w[n+1−kj] ∈ Bt, see (6.18), and |u| = m,
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we have

|H(wi)
j,t (n+ 1)| ≤

∑
u∈Uj,t(wi)

|F (u)
m (n− kj +m)|.

Thus

|H(wi)
j (n+ 1)| =

t∑
k=1
|H(wi)

j,t (n+ 1)| ≤
∑

u∈Uj(wi)
|F (u)
m (n− kj +m)|.

Moreover, we see that

(6.31)
s∑
i=1

xi
∑
j∈J2

|H(wi)
j (n+ 1)| ≤

s∑
i=1

xi
∑
j∈J2

∑
u∈Uj(wi)

|F (u)
m (n− kj +m)|

=
∑
j∈J2

s∑
i=1

∑
u∈Uj(wi)

xi|F (u)
m (n− kj +m)|

=
∑
j∈J2

s∑
i=1

s∑
r=1

xie
(r)
j (wi))|F (wr)

m (n− kj +m)|

=
∑
j∈J2

s∑
r=1

(
s∑
i=1

xie
(r)
j (wi))|F (wr)

m (n− kj +m)|)

=
∑
j∈J2

s∑
r=1

ηr(j)|F (wr)
m (n− kj +m)|)

≤
q∑

g=g0

s∑
r=1

η′h(g)|F (wr)
m (n− g)|

We will show now that this sum is majorized by

q∑
g=g0

%gdm(n− g).

Therefore, we first show by induction that for ` ∈ {g0, . . . , q − 1} .

(6.32)

`+1∑
g=g0

s∑
r=1

η′h(g)|F (wr)
m (n− g)|

≤
s∑
r=1

η′′r (`+ 1)|F (wr)
m (n− `− 1)|+

∑̀
g=g0

%gdm(n− g).

Note that in the proof of the inequality we only need that n ≥ `+ 1.
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... ut

vt

utw ut

wiw[n+ 1− kj]

Figure 6.3. w ∈ Hj,k(wi) where j ∈ J2 and vt = ukt .

Recall that we set %g0 = min1≤r≤s(η
′
r(g0)
xr

) and that the vectors

ν = (η′1(g0)− %g0x1, . . . , η
′
1(g0)− %g0x1) = (ν1, . . . , νs) and

ν ′ = ∆mν = (ν ′1, . . . , ν ′s)

are non-negative. Inserting these definitions gives

s∑
r=1

η′r(g0)|F (wr)
m (n− g0)|

= %g0dm(n− g0)− %g0

s∑
r=1

xr|F (wr)
m (n− g0)|+

s∑
r=1

η′r(g0)|F (wr)
m (n− g0)|

= %g0dm(n− g0) +
s∑
r=1

(η′r(g0)− %g0xr)|F (wr)
m (n− g0)|

= %g0dm(n− g0) +
s∑
r=1

νr|F (wr)
m (n− g0)|.

From (6.9) and (6.12) we know that for r = 1, . . . , s

|F (wr)
m (n− g0) ≤ |G(wr)(n− g0)| =

∑
w∈Q(r)

|F (w)
m (n− g0 − 1)|.

Thus
s∑
r=1

νr|F (wr)
m (n− g0)| ≤

s∑
r=1

νr|G(wr)(n− g0)| =
s∑
r=1

νr
∑

w∈Q(r)
|F (w)
m (n− g0 − 1)|

= (ν1, . . . , νs) ∆T
m (|F (w1)

m (n− g0 − 1)|, . . . ,F (ws)
m (n− g0 − 1)|)T

=
s∑
r=1

ν ′r|F (wr)
m (n− g0 − 1)|.
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If we recall that η′′r (g0 + 1) = η′r(g0 + 1) + ν ′r we can infer (6.32) for ` = g0:

g0+1∑
g=g0

s∑
r=1

η′r(g)|F (wr)
m (n− g)|

=
s∑
r=1

η′h(g0)|F (wr)
m (n− g0)|+

s∑
r=1

η′h(g0 + 1)|F (wr)
m (n− g0 − 1)|

= %g0dm(n− g0) +
s∑
r=1

νr|F (wr)
m (n− g0)|+

s∑
r=1

η′h(g0 + 1)|F (wr)
m (n− g0 − 1)|

≤ %g0dm(n− g0) +
s∑
r=1

ν ′r|F (wr)
m (n− g0 − 1)|+

s∑
r=1

η′r(g0 + 1)|F (wr)
m (n− g0 − 1)|

≤
s∑
r=1

η′′r (g0 + 1)|F (wr)
m (n− g0 − 1)|+ %g0dm(n− g0)

Assume now that for some ` − 1 with g0 ≤ ` − 1 < q − 1 we have already

shown that (6.32) holds. Inserting the definitions gives

s∑
r=1

η′′h(`)|F (wr)
m (n− `)|

= %` dm(n− `)− %`
s∑
r=1

xr|F (wr)
m (n− `)|+

s∑
r=1

η′′h(`)|F (wr)
m (n− `)|

= %` dm(n− `) +
s∑
r=1

(η′′r (`)− %`xr)|F (wr)
m (n− `)|

= %` dm(n− `) +
s∑
r=1

ν̃r|F (wr)
m (n− `)|

From (6.9) and (6.12) we know that for h = 1, . . . , s

|F (wr)
m (n− `) ≤ |G(wr)(n− `)| =

∑
w∈Q(r)

|F (w)
m (n− `− 1)|

and hence
s∑
r=1

ν̃r|F (wr)
m (n− `)| ≤

s∑
r=1

ν̃r
∑

w∈Q(r)
|F (w)
m (n− `− 1)|

= (ν̃1, . . . , ν̃s) ∆T
m (|F (w1)

m (n− `− 1)|, . . . ,F (ws)
m (n− `− 1)|)T

=
s∑
r=1

ν̃ ′r|F (wr)
m (n− `− 1)|.
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Thus we get

s∑
r=1

η′′h(`)|F (wr)
m (n− `)|+

s∑
r=1

η′h(`+ 1)|F (wr)
m (n− `− 1)|

= %`dm(n− `) +
s∑
r=1

ν̃h|F (wr)
m (n− `)|+

s∑
r=1

η′r(`+ 1)|F (wr)
m (n− `− 1)|

≤ %`dm(n− `) +
s∑
r=1

ν̃ ′r|F (wr)
m (n− `− 1)|+

s∑
r=1

η′r(`+ 1)|F (wr)
m (n− `− 1)|

=
s∑
r=1

η′′h(`+ 1)|F (wr)
m (n− `− 1)|+ %` dm(n− `),

which provides the induction step for (6.32):

`+1∑
g=g0

s∑
r=1

η′r(g)|F (wr)
m (n− g)|

=
∑̀
g=g0

s∑
r=1

η′r(g)|F (wr)
m (n− g)|+

s∑
r=1

η′r(`+ 1)|F (wr)
m (n− `− 1)|

≤
s∑
r=1

η′′r (`)|F (wr)
m (n− `)|+

`−1∑
g=g0

%`dm(n− g) +
s∑
r=1

η′r(`+ 1)|F (wr)
m (n− `− 1)|

=
s∑
r=1

(η′′r (`)|F (wr)
m (n− `)|+ η′r(`+ 1)|F (wr)

m (n− `− 1)|) +
`−1∑
g=g0

%`dm(n− g)

≤
s∑
r=1

η′′r (`+ 1)|F (wr)
m (n− `− 1)|+ %gdm(n− `) +

`−1∑
g=g0

%`dm(n− g)

Now we resume the estimation from (6.31) by applying (6.32) for ` = q − 1:

q∑
g=g0

s∑
r=1

η′r(g)|F (wr)
m (n− g)| ≤

s∑
h=1

η′′h(q)|F (wh)
m (n− q)|+

q−1∑
g=d0

%gdm(n− g)
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and
s∑
r=1

η′′h(q)|F (wr)
m (n− q)|

= %qdm(n− q)− %q
s∑
r=1

xr|F (wr)
m (n− q)|+

s∑
r=1

η′′h(q)|F (wr)
m (n− q)|

= %qdm(n− q) +
s∑
r=1

(η′′r (q)− %qxr)|F (wr)
m (n− q)|

≤ %qdm(n− q).

So we have finally shown that

(6.33)

s∑
i=1

xi
∑
j∈J
|H(wi)

j (n+ 1)| ≤
q∑

g=g0

%gdm(n− g) ≤
q∑

g=g0

%g
dm(n)
γn−(n−g)

= dm(n)
q∑

g=g0

%g
γg

= dm(n)P(p,q)
m ( 1

γ ).

Note that, since g0 = kb (m+1)
k c + k −m > k(m+1

k − 1) + k −m = m + 1 −

k + k −m = 1, we know that n− g0 < n− 1.

The combination of the result (6.30) for J1 and the result (6.33) for J2

now implies that

s∑
i=1

xi|H(wi)(n+ 1)| < dm(n) (P(p,q)
m ( 1

γ ) + 1
γ(k−1)p−1(γ(k−1)−1)).

and hence

dm(n+ 1) =
s∑
i=1

xi|G(wi)(n+ 1)| −
s∑
i=1

xi|H(wi)(n+ 1)|

= λmdm(n)−
s∑
i=1

xi|H(wi)(n+ 1)|

> dm(n)(λm − (P(p,q)
m ( 1

γ ) + 1
γ(k−1)p−1(γ(k−1)−1))

≥ γdm(n),

which completes the proof. �

It can take very long to check computationally that the assumption

(6.24) holds. Alternatively, we can compute inductively τn ∈ R for
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n ∈ {m, . . . , q +m− 1}, such that

(6.34) dm(n+ 1) ≥ τndm(n),

and obtain a very good candidate for γ, namely

γ = min
m≤n≤ q+m−1

τn.

The procedure to calculate τn, which was only vaguely indicated in [49], was

clarified in an email discussion with [50] and reads as follows.

We know that dm(m) = 1 and dm(m + 1) = λm, see (6.14). Hence we

define τm := λm. Let n ∈ {m, . . . , q +m− 1} and assume that τi for i < n

are already defined. So we set

d̃(n) :=
n−1∏
i=m

τi

and note that dm(n) ≥ d̃(n). Moreover, we have that

dm(n) ≥ dm(n− g)
n−1∏
`=n−g

τ` = dm(n− g) d̃(n)
d̃(n− g)

and hence

(6.35) d̃(n− g)
d̃(n)

≥ dm(n− g)
dm(n)

.

Recall (6.15) and note that if we define the set Hj(wi) as in (6.27), we

can write here also

H(wi)(n+ 1) =
∑

b (m+1)
k
c<j≤b (n+1)

k
c

H(wi)
j (n+ 1).

Let n+1 = ak+ b where a, b ∈ N and 0 ≤ b < k. Note that b (n+1)
k c = a. To

simplify the notation we set j0 := b (m+1)
k c + 1. Recall that g(j) = kj −m

and g(j0) = g0.
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If b > 0 we can follow the reasoning of Case (2) and (6.31) and apply

(6.32). In detail we get with ` = n−m− 1

a∑
j=j0

s∑
i=1

xiH(wi)
j (n+ 1) =

a∑
j=j0

s∑
r=1

ηr(j)|F (wi)(n− kj +m)|

=
ak−m∑
g=g0

s∑
r=1

η′r(g)|F (wi)(n− g)|

=
ak+b−1−m∑

g=g0

s∑
r=1

η′r(g)|F (wi)(n− g)|

=
n−m∑
g=g0

s∑
r=1

η′r(g)|F (wi)(n− g)|

≤
s∑
r=1

η′′r (n−m)|F (wr)
m (m)|+

n−m−1∑
g=g0

%gdm(n− g)

If b = 0 we can only follow the arguments of (6.31) and apply (6.32) for

periods j < n+1
k . For the estimation of the period n+1

k = a we proceed as

follows. Let

Wa(wi) :=
[
(v[1 : m])′ | v ∈ V (wi)

a

]
= [y1, . . . , yr].

Obviously,

|H(wi)
a (n+ 1)| ≤

r∑
t=1
|F (yt)
m (m)| = r.

With f (t)
a (wi) = | {wt ∈Wa(wi)} | and θt(a) :=

∑s
i=1 xif

(t)
a (wi) we see that

s∑
i=1

xi|H(wi)
a (n+ 1)| ≤

s∑
i=1

xi

s∑
t=1

f (t)
a (wi)|F (wt)

m (m)|

=
s∑
t=1

s∑
i=1

xif
(t)
a (wi)|F (wt)

m (m)|

=
s∑
t=1

θt(a).
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Here, by following (6.31) and applying (6.32) with ` = n −m − 1, we infer

that
a∑

j=j0

s∑
i=1

xiH(wi)
j (n+ 1)

=
a−1∑
j=j0

s∑
t=1

ηt(j)|F (wi)(n− kj +m)|+
s∑
i=1

xiH(wi)
a (n+ 1)

=
(a−1)k−m∑
g=g0

s∑
t=1

η′t(g)|F (wi)(n− g)|+
s∑
t=1

θt(a)

=
n−m∑
g=g0

s∑
t=1

η′t(g)|F (wi)(n− g)|+
s∑
t=1

θt(a)

≤
s∑
t=1

η′′t (n−m)|F (wt)
m (m)|+

n−m−1∑
g=g0

%gdm(n− g) +
s∑
t=1

θt(a).

Note that η′(g) = 0 for (a−1)k+1−m ≤ g ≤ (a−1)k+k−1−m = n−m.

With

(6.36) Θ(n+ 1) :=


∑s
t=1 η

′′
t (n−m) +

∑s
t=1 θt(a), n+ 1 = ak,∑s

t=1 η
′′
t (n−m), otherwise

we can write the general case as follows:

(6.37)
s∑
i=1

xi|H(wi)
m (n+ 1)| ≤

n−m−1∑
g=g0

%gdm(n− g) + Θ(n+ 1)

This implies with (6.15) and (6.35) that

dm(n+ 1)
dm(n)

≥ λm −
n−m−1∑
g=g0

%g
dm(n− g)
dm(n)

− Θ(n+ 1)
dm(n)

≥ λm −
n−m−1∑
g=g0

%g
d̃m(n− g)
d̃m(n)

− Θ(n+ 1)
d̃m(n)

= λm −
1

d̃m(n)

(
n−m−1∑
g=g0

%gd̃(n− g) + Θ(n+ 1)
)
.

So we define

(6.38) τn := λm −
1

d̃(n)

(
n−m−1∑
g=g0

%gd̃(n− g) + Θ(n+ 1)
)
.
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If the calculation of τn for n ∈ {m, . . . , q +m− 1} reveals that τn ≥ γ we

can infer from dm(n+ 1) ≥ τndm(n) that (6.6) holds.

6.3. Words Avoiding Rational Powers

In this section let α ∈ Q such that α = k+ a
b > 1 with k, a, b ∈ N where

gcd(a, b) = 1. Moreover, let F = F (>α)(A`), where A` is an alphabet with

` ≥ 2 letters such that F is an infinite set. Furthermore let m, p, q ∈ N such

that

m > 2, p ≥ m
α−max(k−1,1) − 1 and q ≥ bαpc+ 1−m.

6.3.1. Polynomial. Analogously to Section 6.2.1 the derivation of the

lower bound requires the definition of a particular polynomial. Here, the

proof of Theorem 6.2 below will motivate its definition.

The shortest forbidden powers will play a major role in what follows. Let

y be such a power with per(y) = j. Obviously, y has the structure y = ukv,

where |u| = j and |y|j > α. We see that

|y| = bαjc+ 1 and |v| = bajb c+ 1.

Let

(6.39) J :=
{
j ∈ N | m+1

α ≤ j ≤ q+m
α

}
.

For every j ∈ J and wi ∈ F ′′(m) we define the set of all shortest forbidden

powers of minimal period j, which have the word wi as a suffix and neither

contain other forbidden powers as factors nor closed words of length m:

(6.40)
V

(wi)
j : =

{
y ∈ L(wi)

m | y = ukv with u ∈ F(j), per(y) = j
}

= {y1, . . . , yo} .

Now, we define for 1 ≤ t ≤ o

(6.41) Bt := {b ∈ A` | b y[1 : bαjc] ∈ Fm} .
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Note that since by[1 : bαjc] is α+-powerfree we know that Bt ⊂ A` \ {yt[j]}.

For j ∈ J,wi ∈ F ′′(m) and 1 ≤ t ≤ o we define the multiset

Uj(wi) :=
⋃

1≤t≤o
Uj,t(wi), where

Uj,t(wi) :=
[
(byt[1 : m− 1])′ | b ∈ Bt

]
⊂ F ′′(m).

Let ηr(j) :=
∑s
i=1 xie

(r)
j (wi), where e(r)j (wi) := | {wr ∈ Uj(wi)} |. We substi-

tute g(j) := bαjc+ 1−m and define

g(
⌈

(m+1)
α

⌉
) =: g0

Note that since α > 1 the substitution g is injective. Hence, for g0 ≤ g ≤ q

we can set

η′r(g) :=


ηr(j), if there exists a j ∈ J with g(j) = g

0, otherwise
.

Now, in complete analogy to Section 6.2.1, we define the polynomial

(6.42) P(p,q)
m (x) :=

q∑
g=g0

%g x
g,

where the coefficients are inductively determined as in (6.21), (6.22) and

(6.23).

6.3.2. The Lower Bound. The main result of this section is the fol-

lowing Theorem 6.2. It is analogous to Theorem 6.1 and provides a way to

calculate lower bounds for the entropy of α+-powerfree words.

Theorem 6.2. Let α ∈ Q such that α = k + a
b > 1 with k, a, b ∈ N

where gcd(a, b) = 1. Moreover, let F = F (>α)(A`), where A` is a finite

alphabet with ` ≥ 2 letters such that F is an infinite set. For m > 2 let ∆m

be the corresponding matrix from Definition 4.18. Let ∆m be irreducible,

denote its Perron eigenvalue by λm, its strictly positive right eigenvector by

(x1, . . . , xs), and define µ := max1≤i≤s xi
min1≤i≤s xi

. Furthermore, for p, q ∈ N with

p ≥ m
α−max(k−1,1) − 1 and q ≥ bαpc+ 1−m construct the polynomial P(p,q)

m
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from (6.42). If for some γ ∈ (1, λm) and all n ∈ {m, . . . , q +m− 1}

(6.43) dm(n+ 1) ≥ γdm(n)

as well as

(6.44)
λm − P(p,q)

m ( 1
γ )− µ

∑
j>p

1
γb

aj
b c
≥ γ, if 2 > α > 1 or

λm − P(p,q)
m ( 1

γ )− 1
γ(k−1)p−1(γ(k−1) − 1)

≥ γ, if α > 2

then

h(F) ≥ log(γ).

Proof. This theorem is proved almost analogously to Theorem 6.1.

Therefore, we restrict ourselves to pointing out what is different in this

case.

To show that the inequality (6.43) holds for every n ∈ N, we argue

by induction on n ≥ q + m ≥ bαpc + 1 . Again, we have to estimate∑s
i=1 xi|H(wi)(n+ 1)| by dm(n). For w ∈ H(wi)(n+ 1) denote by

yw = ukv

the shortest forbidden α+-power, which is a suffix of w. Note that necessarily

|u| = per(yw). Since

α < |yw|
per(yw) ≤

n+1
per(yw)

we infer that per(yw) < n+1
α and hence per(yw) ≤

⌈
(n+1)
α

⌉
− 1.

Because w[n −m + 1 : n + 1] ∈ F and |w[n −m + 1 : n + 1]| = m + 1, we

know that |yw| = bα per(yw)c + 1 ≥ m + 2 and hence per(yw) ≥
⌈

(m+1)
α

⌉
.

Overall, we have

(6.45)
⌈

(m+1)
α

⌉
≤ per(yw) ≤

⌈
(n+1)
α

⌉
− 1.

In the estimation of H(wi)
j (n + 1) :=

{
w ∈ H(wi)(n+ 1) | per(yw) = j

}
we

distinguish
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...

wiwiw[1 : n+ 1− (k − 1)j −m]

vw v v v

uu

Figure 6.4. k ≥ 2, w ∈ Hj(wi) where j ∈ J1, y = ukv and
|u| = j.

w[1 : n+ 1− |v|]

vw v

u

wi

Figure 6.5. k = 1, w ∈ Hj(wi) where j ∈ J1, y = ukv and
|u| = j.

(1) J1 :=
{
j ∈ N | p < j ≤

⌈
(n+1)
α

⌉
− 1

}
and

(2) J2 :=
{
j ∈ N |

⌈
(m+1)
α

⌉
≤ j ≤ p

}
.

Note that J2 ⊂ J from (6.39).

(1) Again consider first the set J1. Let j ∈ J1, which means that

(α− 1)j ≥ m. Moreover, let

w ∈Mj :=
s⋃
i=1
H(wi)
j (n+ 1)

which is a disjoint union.

If α > 2 the word w is completely determined by

w[1 : n+1− (|v|+(k− 2)|u|+(|u|− |v|)+m)] = w[1 : n+1− (k− 1)j−m],

compare Figure 6.4. Hence |H(wi)
j (n+ 1)| ≤ |F (wi)

m (n+ 1− (k− 1)j)|, which

is exactly (6.29). So we follow the arguments from there, which results in

s∑
i=1

xi(
∑
j∈J1

|H(wi)
j (n+ 1)|) < dm(n)

γ(k−1)p−1(γ(k−1) − 1)
.
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If α < 2 we infer that α = 1+ a
b and aj

b ≥ m. Moreover, w is completely

determined by

w[1 : n+ 1− |v|] = w[1 : n−
⌊
aj
b

⌋
],

see Figure 6.5, and

w[n+ 2−m− j : n+ 1− j] = wi = w[n+ 2−m : n+ 1].

If we set

M′j :=
{
w ∈ Fm(n−

⌊
aj
b

⌋
) | w[n+ 2−m− j] = 0, w[n+ 3−m− j] = 1

}
we clearly see that |Mj | ≤ |M′j |. Let

M′′j :=
{
w ∈ Fm(n−

⌊
aj
b

⌋
) | w[n+ 1−m−

⌊
aj
b

⌋
] = 0, w[n+ 2−m−

⌊
aj
b

⌋
] = 1

}
.

Obviously, there is a bĳection between M′j and M′′j , since both fix two

letters at different positions. SinceM′′j =
⋃̇s
i=1F

(wi)
m (n−

⌊
aj
b

⌋
) we infer that

|Mj | ≤ |M′j | = |M′′j | =
s∑
i=1
|F (wi)
m (n−

⌊
aj
b

⌋
)|.

Moreover,

( min
1≤i≤s

xi)
s∑
i=1
|F (wi)
m (n−

⌊
aj
b

⌋
)| ≤

s∑
i=1

xi|F (wi)
m (n−

⌊
aj
b

⌋
)| = dm(n−

⌊
aj
b

⌋
)

implies that |Mj | ≤
dm(n−

⌊
aj
b

⌋
)

min1≤i≤s xi
. Overall, we have that

s∑
i=1

xi|H(wi)
j (n+ 1)| ≤ max

1≤i≤s
xi|Mj | ≤ µdm(n−

⌊
aj
b

⌋
)

and hence

(6.46)
∑
j∈J1

s∑
i=1

xi|H(wi)
j (n+ 1)| ≤ µ

∑
j∈J1

dm(n−
⌊
aj
b

⌋
) < µdm(n)

∑
j>p

1

γ

⌊
aj
b

⌋ .
Case (2) and the rest of the proof is done analogously to the correspond-

ing part of the proof of Theorem 6.1. �
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Analogously to the k-powerfree case, we can compute τn ∈ R inductively

for n ∈ {m, . . . , q +m− 1}, such that

dm(n+ 1) ≥ τndm(n)

as follows. Again, we follow the reasoning of the k-powerfree case and con-

centrate on what is different for α+-powerfree words.

We know that dm(m) = 1 and dm(m + 1) = λm, see (6.14). Hence we

define τm := λ. Let n ∈ {m, . . . , q +m− 1} and assume that τi for i < n

are already defined. So we set

d̃(n) :=
n−1∏
i=m

τi.

Considering (6.45) we see that

H(wi)(n+ 1) =
∑

(m+1)
α ≤j< (n+1)

α

H(wi)
j (n+ 1).

To simplify the notation, we set j0 :=
⌈

(m+1)
α

⌉
and c(n+ 1) :=

⌈
n+1
α

⌉
− 1.

If bαc(n + 1)c < n, we know that |y| = bαc(n + 1)c + 1 < n + 1 and

hence we can follow the arguments of (6.31) and apply (6.32). Recall that

g(j) = bαjc+1−m and g(j0) = g0. Note that g(c) ≤ n−m. In detail, with

` = n−m− 1, we get

c∑
j=j0

s∑
i=1

xiH(wi)
j (n+ 1) =

c∑
j=j0

s∑
r=1

ηr(j)|F (wi)(n− bαjc − 1 +m)|

=
g(c)∑
g=g0

s∑
r=1

η′r(g)|F (wi)(n− g)|

≤
n−m∑
g=g0

s∑
r=1

η′r(g)|F (wi)(n− g)|

≤
s∑
r=1

η′′r (n−m)|F (wr)
m (m)|+

n−m−1∑
g=g0

%gdm(n− g).

If bαc(n + 1)c = n, we can only follow the reasoning of (6.31) and apply

(6.32) for periods j < c(n+1). For the estimation of the period c := c(n+1)
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we proceed as follows. Define the multiset

Wc(wi) :=
[
(v[1 : m])′ | v ∈ V (wi)

c

]
= [v1, . . . , vt].

Obviously,

|H(wi)
c (n+ 1)| ≤

t∑
r=1
|F (vr)
m (m)| = t.

With f (r)
c (wi) = | {wr ∈Wc(wi)} | and θr(c) :=

∑s
i=1 xif

(r)
c (wi) we see that

s∑
i=1

xi|H(wi)
c (n+ 1)| ≤

s∑
i=1

xi

s∑
r=1

f (r)
c (wi)|F (wr)

m (m)|

=
s∑
r=1

s∑
i=1

xif
(r)
c (wi)|F (wr)

m (m)|

=
s∑
r=1

θr(c).

Here, we infer by following the arguments of (6.31) and applying (6.32) with

` = n−m− 1 that
c∑

j=j0

s∑
i=1

xiH(wi)
j (n+ 1)

=
c−1∑
j=j0

s∑
r=1

ηr(j)|F (wi)(n− bαjc − 1 +m)|+
s∑
i=1

xiH(wi)
c (n+ 1)

=
g(c−1)∑
g=g0

s∑
r=1

η′r(g)|F (wi)(n− g)|+
s∑
r=1

θr(c)

≤
n−m∑
g=g0

s∑
r=1

η′r(g)|F (wi)(n− g)|+
s∑
r=1

θr(c)

≤
s∑
r=1

η′′r (n−m)|F (wr)
m (m)|+

n−m−1∑
g=g0

%gdm(n− g) +
s∑
r=1

θr(c).

With

(6.47) Θ(n+ 1) :=


∑s
r=1 η

′′
r (n−m) +

∑s
r=1 θr(c), bαc(n+ 1)c = n∑s

r=1 η
′′
r (n−m), otherwise

we follow exactly the reasoning of the k-powerfree case, which results in
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(6.48) τn := λ− 1
d̃(n)

(
n−m−1∑
g=g0

%gd̃(n− g) + Θ(n+ 1)
)
.

Again, if the calculation of τn for n ∈ {m, . . . , q +m− 1} reveals that τn ≥ γ

we can infer from dm(n+ 1) ≥ τndm(n) that (6.6) holds.

In the following chapter, we apply Theorems 6.1 and 6.2 to the six cases

introduced above in Section 4.3.1.



CHAPTER 7

Computational Application and Bounds

In this chapter we consider upper and lower bounds for the entropy of

the following sets, which were introduced in Section 4.3.1.:

7.1 F (3)(A2) - Cubefree words over A2 = {0, 1}

7.2 F (2)(A3) - Squarefree words over A3 = {0, 1, 2}

7.3 F (> 7
4 )(A3) - (7

4)+-powerfree words over A3

7.4 F (> 7
3 )(A2) - (7

3)+-powerfree words over A2

7.5 F (2)(A4) - Squarefree words over A4 = {0, 1, 2, 3}

7.6 F (> 7
5 )(A4) - (7

5)+-powerfree words over A4

We start with the two classical cases, binary cubefree words in Section 7.1

and ternary squarefree words in Section 7.2. We review the bounds derived

by the various approaches mentioned in previous chapters and present the

best upper and lower bounds known so far. For the lower bounds our calcu-

lations confirm Kolpakov’s results from [49] exactly. However, for ternary

minimally repetitive words, see Section 7.3, our intermediate results differ

slightly from Kolpakov’s, but nevertheless the resulting lower bound coin-

cides with his. Moreover, in Sections 7.4, 7.5 and 7.6 we analyse sets which

have not been studied yet with respect to finding the best upper and lower

bounds for their entropy.

The derivation of the bounds relies on computations that were realised

in the programming language Python. The code is available on request.

7.1. Binary Cubefree Words

Define for this section h := h
(
F (3)(A2)

)
as the entropy of cubefree words

over the alphabet A2 and c(n) := cF(3)(A2)(n) as the number of binary

cubefree words of length n. The values for c(n) with n ≤ 47 are given

157
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in [31]; an extended list for n ≤ 80 is shown in Table 7.1. Moreover, the

sequence is listed as [78, entry A028445].

Table 7.1. The number c(n) of binary cubefree words of
length n for n ≤ 80.

n c(n) n c(n) n c(n) n c(n)
1 2 21 7754 41 14565048 61 27286212876
2 4 22 11320 42 21229606 62 39771765144
3 6 23 16502 43 30943516 63 57970429078
4 10 24 24054 44 45102942 64 84496383550
5 16 25 35058 45 65741224 65 123160009324
6 24 26 51144 46 95822908 66 179515213688
7 36 27 74540 47 139669094 67 261657313212
8 56 28 108664 48 203577756 68 381385767316
9 80 29 158372 49 296731624 69 555899236430

10 118 30 230800 50 432509818 70 810266077890
11 174 31 336480 51 630416412 71 1181025420772
12 254 32 490458 52 918879170 72 1721435861086
13 378 33 714856 53 1339338164 73 2509125828902
14 554 34 1041910 54 1952190408 74 3657244826158
15 802 35 1518840 55 2845468908 75 5330716904964
16 1168 36 2213868 56 4147490274 76 7769931925578
17 1716 37 3226896 57 6045283704 77 11325276352154
18 2502 38 4703372 58 8811472958 78 16507465616784
19 3650 39 6855388 59 12843405058 79 24060906866922
20 5324 40 9992596 60 18720255398 80 35070631260904

7.1.1. Upper Bound. According to (4.9), the best upper limit for the

entropy h, based on Table 7.1, is

h ≤ log c(80)
80

≈ 0.389855.

For comparison, the limit obtained using the number of words of length 79

is 0.390020, which indicates that these limits are still considerably larger

than the actual value of h.

Already in 1983, Brandenburg showed that

2 · 2
n
9 ≤ c(n) ≤ 2 · 1251

n
17



7.1. BINARY CUBEFREE WORDS 159

which leads in our setting to 0.07702 ≤ h ≤ 0.41951. The currently best

upper bound is due to Edlin [31] and Ochem and Reix [64]. They obtained

an upper bound on the growth rate of 1.457579201, which corresponds to

the bound

(7.1) h ≤ 0.376776978

on the entropy. We managed to calculate the Perron eigenvalue of the matrix

∆m from Definition 4.18 up to m = 40. According to Theorem 4.19, λ40 =

1.457587595 results in the upper bound

h ≤ 0.376782736

which is only slightly greater than the bound of (7.1). We would expect to

improve this value by calculating λm for greater m, however this requires

huge computational effort.

7.1.2. Lower Bound. We now move on to the lower bound and cube-

free morphisms. We have already seen one example, the Thue-Morse mor-

phism, recall (0.1), which is a cubefree morphism from a binary alphabet

to a binary alphabet. As explained in Section 4.3.2, it is useful to find uni-

form cubefree morphisms from larger alphabets, because these provide lower

bounds on the entropy. Clearly, if we have an r-uniform cubefree morphism

% : A∗` → A∗2, it is completely specified by the ` words wi, 1 ≤ i ≤ `, which

are the images of the letters in A`. Since any permutation of the letters in A`

will again yield a uniform cubefree morphism, the set
{
w1, . . . , w`

}
⊂ A∗2(r)

of generating words determines the morphism up to permutation of the let-

ters in A`.

Moreover, the set
{
w1, . . . , wr

}
, where w denotes the image of w under

the permutation 0↔ 1, also defines cubefree morphisms, as does
{
w̃1, . . . , w̃r

}
,

where w̃ denotes the reversal of w, i.e., the words w read backwards. This is
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obvious because the test-sets of Theorem 4.9 are invariant under these op-

erations. Unless the words are palindromic (which means that w̃ = w), the

set
{
w1, . . . , wr

}
thus represents four different morphisms (not taking into

account permutation of letters in A`), the fourth obtained by performing

both operations, yielding
{
w̃1, . . . , w̃r

}
.

For cubefree morphisms from a three-letter alphabet A3 to two letters,

one needs words of length at least six. For length six, there are twelve

inequivalent (with respect to the permutation of letters in A3) cubefree

morphisms. The corresponding sets of generating words are

{w1, w2, w4}, {w2, w3, w̃3}, {w2, w3, w4},

and the corresponding images under the two operations explained above.

Here, the four words are

w1 = 001011, w2 = 001101, w3 = 010110, w4 = 011001.

It turns out that none of these morphisms actually satisfy the sufficient

criterion of Theorem 4.7, but cubefreeness was verified using the test set of

Theorem 4.9.

One has to go to length nine to find cubefree morphisms from four to two

letters. There are 16 in-equivalent morphisms with respect to permutations

of the four letters. Explicitly, they are given by the generating sets

(7.2)
{w1, w2, w̃2, w̃3}, {w4, w6, w7, w9}, {w5, w5, w8, w8},

{w5, w5, w̃8, w̃8}, {w6, w̃7, w̃8, w9}

with words

w1 = 001001101, w2 = 001010011, w3 = 001011001,

w4 = 001101001, w5 = 010010110, w6 = 010011010,

w7 = 010100110, w8 = 011001001, w9 = 011010110.
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Note that w9 = w̃9 is a palindrome, and that two of the five sets are invariant

under the permutation 0 ↔ 1, which explains why they only represent 16

different morphisms.

Beyond four letters, the test set of Theorem 4.9 becomes unwieldy, but

the sufficient criterion of Theorem 4.7 can be used to obtain morphisms.

However, these may not have the optimal length, as the examples here show

– again for length nine all morphisms violate the conditions of Theorem 4.7.

Still, this need not be the case; for instance, morphisms from a five-letter

alphabet that satisfy the sufficient criterion exist for length 12, which in this

case is the optimal length.

As a consequence of Theorem 4.13, the morphisms (7.2) from a four

letter alphabet show that the entropy of cubefree binary words is positive,

and that

h ≥ log 2
8
≈ 0.08664.

Using the sufficient condition, this bound can be improved. For instance,

for length 15, one can find cubefree morphisms from 10 letters, which yields

a lower bound of

h ≥ log 5
14
≈ 0.11496.

However, compared to the best upper bound in (7.1) this bound is unsatis-

factory.

Much better lower bounds are delivered by Theorem 6.1. For m =

35, we calculated the matrix ∆m, whose dimension is |F ′′(35)| = 732274,

and checked computationally that it is irreducible and aperiodic. Its Per-

ron eigenvalue is λ35 = 1.45759871346. Since Theorem 6.1 requires that

p ≥ m = 35 and q ≥ 3p−m we choose p = 35 and q = 70. We calculated

P(p,q)
m of (6.20) with the following result.
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P(35,70)
35 (x) = 0.890340372x35 + 1.398381650x37 + 1.096456371x38+

30.292784422x40 + 2.533686573x41 + 1.296919173x42+

28.893958329x43 + 22.780261551x44 + 10.699704398x45+

64.314464491x47 + 92.853910037 x49 + 91.743094160x50+

67.688386637 x51 + 48.613344815x52 + 68.285930293x53+

113.239315726x54 + 144.612325329x56 + 346.136318272x58+

173.468149479x59 + 465.000387913x60 + 134.993652948x61+

224.831968847 x62 + 585.928350644x63 + 355.591901030x65+

1335.518621400x67 + 343.074472809x68 + 2202.468158894x69+

11098.126368881x70

This polynomial coincides with Kolpakov’s polynomial in [49].

For the results of the calculation of τn for n ∈ {35, . . . , 104} see Table 7.2.

As τ38 = 1.457567648 is the lowest value we conclude with τ38 > γ =

1.457567 that

d35(n+ 1) ≥ γd35(n)

for all n ∈ {35, . . . , 104}. It is easy to check computationally that

λ35 − P(35,70)
35

(
1
γ

)
− 1
γ69(γ2 − 1)

≥ γ

and hence Theorem 6.1 gives the lower bound

log(γ) ≈ 0.376768607,

which is the best lower bound so far. The difference between this bound and

the best upper bound, see (7.1), is less than 8.4 × 10−6, showing the huge

improvement over the previously available estimates.
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Table 7.2. τn for binary cubefree words of length
n ∈ {35, . . . , 104}, τ38 has the lowest value in the table.

n τn n τn n τn
35 1.457598713 59 1.457577241 83 1.457577282
36 1.457598713 60 1.457577338 84 1.457577282
37 1.457598713 61 1.457577353 85 1.457577282
38 1.457567648 62 1.457577244 86 1.457577282
39 1.457598713 63 1.457577306 87 1.457577282
40 1.457586935 64 1.457577306 88 1.457577282
41 1.457571424 65 1.457577274 89 1.457577282
42 1.457581866 66 1.457577300 90 1.457577282
43 1.457582750 67 1.457577295 91 1.457577282
44 1.457572786 68 1.457577280 92 1.457577282
45 1.457579086 69 1.457577290 93 1.457577282
46 1.457578947 70 1.457577292 94 1.457577282
47 1.457576440 71 1.457577281 95 1.457577282
48 1.457578364 72 1.457577287 96 1.457577282
49 1.457578158 73 1.457577286 97 1.457577282
50 1.457576963 74 1.457577283 98 1.457577282
51 1.457577784 75 1.457577285 99 1.457577282
52 1.457577857 76 1.457577284 100 1.457577282
53 1.457576839 77 1.457577283 101 1.457577282
54 1.457577482 78 1.457577283 102 1.457577282
55 1.457577485 79 1.457577284 103 1.457577282
56 1.457577170 80 1.457577282 104 1.457577282
57 1.457577405 81 1.457577283
58 1.457577378 82 1.457577283

Corollary 7.1. The entropy of binary cubefree words is

h
(
F (3)(A2)

)
= 0.37677 (1).

7.2. Ternary Squarefree Words

For this section, let the entropy of squarefree words over the alphabet

A3 be denoted by h := h
(
F (2)(A3)

)
and the number of ternary squarefree

words of length n by c(n) := cF(2)(A3)(n). See [4] for a list of c(n) for n ≤ 90

and [36] for a list of c(n) for 91 ≤ n ≤ 110. Moreover, the sequence is listed

as [78, entry A06156].
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7.2.1. Upper Bounds. Already in 1983, Brandenburg [18] showed

that

6 · 2
n
22 ≤ a(n) ≤ 6 · 1172

n
22

which leads in our setting to

0.03151 ≤ h ≤ 0.32120.

In 1999, Noonan and Zeilberger [63] lowered the upper bound to 0.26391 by

means of generating functions for the number of words avoiding squares of

up to length 23. Grimm and Richard [75] used the same method to improve

the upper bound to 0.263855. At the moment, the best known upper bound

is

(7.3) h ≤ 0.263740

which was established by Ochem in 2006 using an approach based on the

transfer matrix method, see [64] for details.

We managed to calculate the Perron eigenvalue of the matrix ∆m from

Definition 4.18 up tom = 55. According to Theorem 4.19, λ55 = 1.30183467

results in the upper bound

h ≤ 0.263775

which is only slightly greater than the bound of (7.3). Again, we would

expect to improve this value by calculating λm for greater m, however this

requires huge computational effort.

7.2.2. Lower Bound. In 1998, Zeilberger showed that a Brinkhuis

pair of length 18 exists, which by Theorem 4.13 implies that the entropy is

bounded by h ≥ log(2)/17 ≈ 0.04077 [32]. By going to larger alphabets,

this was subsequently improved to h ≥ log(65)/40 ≈ 0.10436 by Grimm [36]

and h ≥ log(110)/42 ≈ 0.11192 by Sun [82].
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Again, the recent work of Kolpakov [49] has made a large difference

to the lower bounds. We recalculated his results independently for m =

45, p = 52 and q = 60. The matrix ∆45 has dimension |F ′′(45)| = 277316

and is irreducible as well as aperiodic, which we checked computationally.

Its Perron eigenvalue is λ45 = 1.30201063562. We calculated the polynomial

P(p,q)
m of (6.20) with the following result, which coincides with Kolpakov’s

in [49],

P(52,60)
45 (x) = 3.759478878x44 + 3.176743177 x45 + 6.048525515x46+

7.120005082x48 + 14.679230021x50 + 41.594269716x52+

37.431675327 x55 + 40.471891525x56 + 32.780085498x58+

5.235192989x59 + 275.705550875x60.

Table 7.3. τn for ternary squarefree words of length
n ∈ {45, . . . , 104}, τ47 has the lowest value in the table.

n τn n τn n τn
45 1.302010636 65 1.301767180 85 1.301761297
46 1.302010636 66 1.301778798 86 1.301762443
47 1.301731377 67 1.301766723 87 1.301761345
48 1.302010636 68 1.301775867 88 1.301762126
49 1.301756981 69 1.301762840 89 1.301761338
50 1.301886615 70 1.301771850 90 1.301761874
51 1.301787341 71 1.301760827 91 1.301761212
52 1.301866606 72 1.301769119 92 1.301761627
53 1.301801609 73 1.301761444 93 1.301761070
54 1.301848713 74 1.301767196 94 1.301761415
55 1.301789005 75 1.301762138 95 1.301760949
56 1.301837273 76 1.301765986 96 1.301761235
57 1.301775049 77 1.301762703 97 1.301760881
58 1.301817493 78 1.301765280 98 1.301761097
59 1.301754764 79 1.301762266 99 1.301760839
60 1.301798867 80 1.301764391 100 1.301760998
61 1.301752252 81 1.301761830 101 1.301760809
62 1.301789332 82 1.301763605 102 1.301760916
63 1.301757832 83 1.301761342 103 1.301760770
64 1.301781712 84 1.301762917 104 1.301760852

For the results of the calculation of τn for n ∈ {45, . . . , 104} see Table 7.3.

As τ47 = 1.301731377 is the smallest value we conclude with τ47 > γ =
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1.30173 that

d45(n+ 1) ≥ γd45(n)

for all n ∈ {45, . . . , 104}. It is easy to check computationally that

λ45 − P(52,60)
45

(
1
γ

)
− 1
γ51(γ − 1)

≥ γ

and hence Theorem 6.1 gives the lower bound

log(γ) ≈ 0.263694,

which is the best lower bound so far. The difference between this bound

and the best upper bound, see (7.3), is less than 5× 10−5, showing the huge

improvement over the previously available estimates.

Corollary 7.2. The entropy of ternary squarefree words is

h
(
F (2)(A3)

)
= 0.2637 (1).

7.3. Ternary Minimally Repetitive Words

For this section define h := h
(
F (> 7

4 )(A3)
)
as the entropy of minimally

repetitive words over the alphabet A3 and c(n) := c
F(> 7

4 )(A3)
(n) as the

number of ternary minimally repetitive words of length n. The values for

c(n) with n ≤ 73 are given in Table 7.4.

7.3.1. Upper Bound. According to (4.9), the best upper limit for the

entropy h, based on Table 7.4, is

h ≤ log c(73)
73

≈ 0.264135331.

Our best upper limit obtained by calculating the Perron eigenvalue λm of the

matrix ∆m from Definition 4.18, is much better. We managed to calculate

λm for m ≤ 62 and by Theorem 4.19 λ62 = 1.245878780 results in the upper

bound

(7.4) h ≤ 0.219841128, which is the best upper bound so far.
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Table 7.4. The number c(n) of ternary minimally repetitive
words of length n for n ≤ 73.

n c(n) n c(n) n c(n) n c(n)
1 3 21 2388 41 207864 61 16944084
2 6 22 2952 42 259536 62 21108714
3 12 23 3654 43 323088 63 26298210
4 18 24 4596 44 402192 64 32762700
5 30 25 5754 45 501804 65 40805928
6 42 26 7278 46 625152 66 50831748
7 60 27 9144 47 778902 67 63322434
8 78 28 11424 48 971394 68 78880548
9 108 29 14364 49 1210974 69 98254608

10 144 30 18066 50 1508694 70 122399124
11 186 31 22644 51 1880184 71 152473620
12 240 32 28302 52 2343558 72 189929460
13 312 33 35472 53 2919456 73 236599440
14 420 34 44118 54 3638232
15 528 35 55128 55 4531668
16 678 36 68688 56 5644764
17 888 37 85578 57 7031772
18 1140 38 106740 58 8761464
19 1464 39 133536 59 10914990
20 1854 40 166710 60 13598538

7.3.2. Lower Bound. We now move on to the lower bound. Again,

we recalculated Kolpakov’s results from [49] independently. Here, for the

parameters m = 42, p = 72 and q = 85. The matrix ∆42 has dimension

|F ′′(42)| = 36141 and is irreducible as well as aperiodic, which we checked

computationally. Its Perron eigenvalue is λ42 = 1.247499694. Note that

p ≥ m
α−1 − 1 = 55 and q ≥ bαpc+ 1−m = 85 as required in Theorem 6.2.

We calculated P(72,85)
42 of (6.42) with the following result.

P(72,85)
42 (x) = 1.976267794x42 + 1.148061630x44 + 3.519576156x45+

1.741045692x47 + 9.687624120x49 + 0.126312256x50+

31.479339159x52 + 12.284335289x53 + 21.010556529x54+

24.183001280x56 + 96.529326821x61 + 129.216325472x64+

256.213309926x66 + 14.826730989x67 + 64.163102822x68+
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6.862804848x69 + 84.819931474x70 + 2.337609715x72+

175.026144441x73 + 41.068101819x74 + 335.714817969x75+

341.576383690x78 + 329.970328757 x80 + 694.861207725x81+

771.864597673x82 + 291.777905655x83 + 583.575596936x84+

10506.605293083x85

The coefficients of this polynomial coincide exactly with Kolpakov’s coef-

ficients in [49] for %n with n ≤ 80. The remaining coefficients differ from

Kolpakov’s as follows: %81 is greater, %82 is greater, %83 is lower, %84 is

greater and %85 is lower. We will see below that despite these differences the

resulting lower bound coincides.

For the results of the calculation of τn for n ∈ {42, . . . , 126} see Table 7.5.

As τ54 = 1.245344650 is the lowest value we conclude with τ54 > γ = 1.245,

which is also Kolpakov’s value in [49], that for all n ∈ {42, . . . , 126}

d42(n+ 1) ≥ γd42(n).

According to Theorem 6.2 we have to check that

(7.5) λ42 − P(72,85)
42

(
1
γ

)
− µ

∑
j>72

γ−b
3j
4 c ≥ γ.

The following lemma simplifies the computational verification of (7.5).

Lemma 7.3. For j, p ∈ N and every real γ > 1 the following identity

holds

(7.6)
∑
j>p

γ−b
3j
4 c = γ−b

3p−1
4 c(γ − 1)−1 + γ−3b p4c(γ3 − 1)−1.

Proof. Note that −
⌊

3(p+1)
4

⌋
is the greatest possible negative exponent

of the left side in (7.6). We look at j modulo 4 and see that every integer

n ≥
⌊

3(p+1)
4

⌋
occurs as negative exponent in

∑
j>p γ

−b 3j
4 c. Moreover, for
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Table 7.5. τn for ternary minimally repetitive words of
length n for 42 ≤ n ≤ 127, τ54 has the lowest value in the
table.

n τn n τn n τn
42 1.247499694 71 1.245637587 100 1.245529782
43 1.245471275 72 1.245675063 101 1.245524851
44 1.247499694 73 1.245623748 102 1.245525750
45 1.245698605 74 1.245654950 103 1.245521973
46 1.246641975 75 1.245595098 104 1.245522254
47 1.246354251 76 1.245638459 105 1.245519195
48 1.246647429 77 1.245594230 106 1.245516168
49 1.245938475 78 1.245589941 107 1.245517864
50 1.245990059 79 1.245613773 108 1.245514273
51 1.246329700 80 1.245592883 109 1.245515117
52 1.245792153 81 1.245601716 110 1.245512780
53 1.246201639 82 1.245587756 111 1.245513185
54 1.245344650 83 1.245594919 112 1.245511421
55 1.246028938 84 1.245574100 113 1.245510159
56 1.245676653 85 1.245559153 114 1.245510573
57 1.245775390 86 1.245577124 115 1.245508719
58 1.245921383 87 1.245554647 116 1.245508812
59 1.245890045 88 1.245565693 117 1.245507410
60 1.245884759 89 1.245552938 118 1.245507467
61 1.245806093 90 1.245559058 119 1.245506335
62 1.245858586 91 1.245550777 120 1.245505540
63 1.245689934 92 1.245545712 121 1.245505832
64 1.245555975 93 1.245549581 122 1.245504790
65 1.245760518 94 1.245538886 123 1.245504766
66 1.245609325 95 1.245542117 124 1.245504006
67 1.245723805 96 1.245533412 125 1.245503858
68 1.245635385 97 1.245536549 126 1.245503226
69 1.245706126 98 1.245529402
70 1.245679198 99 1.245526430

every integer n ≥ p+1
4 the exponent −3n occurs. In total we have

∑
j>p

γ−b
3j
4 c =

∑
n≥
⌊ 3(p+1)

4

⌋ γ−n +
∑

n≥d p+1
4 e

γ−3n.

We infer with the geometric series that

∑
n≥
⌊ 3(p+1)

4

⌋ γ−n = γ−
⌊ 3(p+1)

4

⌋ ∑
n≥0

γ−n = γ−
⌊ 3(p+1)

4

⌋
γ(γ−1)−1 = γ−b

3p−1
4 c(γ−1)−1
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and ∑
n≥d p+1

4 e
γ−3n = γ−3d p+1

4 e
∑
n≥0

γ−3n

= γ−3d p+1
4 eγ3(γ3 − 1)−1

= γ−3b p4c(γ3 − 1)−1,

since −3
⌈
p+1
4

⌉
+ 3 = −3(

⌈
p+1
4

⌉
− 1) = −3(

⌈
p−3
4

⌉
) = −3

⌊p
4
⌋
. Thus we have

shown that (7.6) holds. �

The previous lemma shows that we have to check that

(7.7) λm − P(p,q)
m

(
1
γ

)
− γ−b

3p−1
4 c(γ − 1)−1 − γ−3b p4c(γ3 − 1)−1 ≥ γ,

With our parameters this means

λ42 − P(72,85)
42

(
1
γ

)
− γ−53(γ − 1)−1 − γ−54(γ3 − 1)−1 ≥ γ.

This inequality is easily verified computationally and by Theorem 6.2 we

conclude that

log(γ) ≈ 0.219135529 ≤ h.

This is the best lower bound known so far and confirms Kolpakov’s lower

bound from [49], exactly. The difference between this bound and the best

upper bound from (7.4) is less than 7.06× 10−4.

Corollary 7.4. The entropy of ternary minimally repetitive words is

h
(
F (> 7

4 )(A3)
)

= 0.219 (1).

7.4. Binary Quasi Minimally Repetitive Words

For this section denote the entropy of 7
3
+-powerfree words over the al-

phabet A2 by h := h
(
F (> 7

3 )(A2)
)
and the number of binary 7

3
+-powerfree

words of length n by c(n) := c
F(> 7

3 )(A2)
(n). The values for c(n) with n ≤ 78

are given in Table 7.6. Moreover, they are listed as [78, entry A082380 ].
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Table 7.6. The number c(n) of 7
3
+-powerfree words of

length n ≤ 78.

n c(n) n c(n) n c(n) n c(n)
1 2 21 774 41 44030 61 2387784
2 4 22 962 42 53808 62 2914544
3 6 23 1178 43 65744 63 3558140
4 10 24 1432 44 80316 64 4343306
5 14 25 1754 45 98052 65 5302072
6 20 26 2160 46 119742 66 6471694
7 30 27 2660 47 146124 67 7899982
8 38 28 3292 48 178488 68 9642654
9 50 29 4016 49 217980 69 11771026

10 64 30 4908 50 266126 70 14368164
11 86 31 5948 51 324890 71 17538942
12 108 32 7278 52 396592 72 21408520
13 136 33 8868 53 484198 73 26132642
14 178 34 10844 54 590970 74 31898812
15 222 35 13278 55 721484 75 38937940
16 276 36 16230 56 880896 76 47529292
17 330 37 19826 57 1075384 77 58018024
18 408 38 24208 58 1312802 78 70818138
19 500 39 29554 59 1602568
20 618 40 36088 60 1956162

7.4.1. Upper Bound. According to (4.9), the best upper limit for the

entropy h, based on Table 7.6, is

h ≤ log c(78)
78

≈ 0.231738791.

Again, our best upper limit obtained by calculating the Perron eigenvalue

λm of the matrix ∆m from Definition 4.18, is much better. We managed to

calculate λm for m ≤ 66. By Theorem 4.19 λ66 = 1.220699552 results in the

upper bound

(7.8) h ≤ 0.199424097,

which is the best upper bound so far.

7.4.2. Lower Bound. We applied Theorem 6.2 with the parameters

m = 57, p = 55 and q = 72. The matrix ∆57 has dimension |F ′′(57)| =
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371870 and is irreducible as well as aperiodic, which we checked computa-

tionally. Its Perron eigenvalue is λ57 = 1.220842548. Note that, as required

by Theorem 6.2,

p ≥ m
α−1 − 1 = 41.75 and q ≥ bαpc+ 1−m = 72.

We calculated P(55,72)
57 of (6.42) with the following result.

P(55,72)
57 (x) = 2.236195116x62 + 3.212053840x64 + 5.371346804x65+

7.689687803x68 + 350.938869329x72

The results of the calculation of τn for n ∈ {57, . . . , 128} can be found

Table 7.7. τn for 7
3
+-power free words of length

n ∈ {57, . . . , 128}, τ58 has the lowest value in the table.

n τn n τn n τn
57 1.220842548 81 1.220694586 105 1.220699226
58 1.220541650 82 1.220706849 106 1.220699824
59 1.220842548 83 1.220707743 107 1.220699309
60 1.220641920 84 1.220699511 108 1.220699659
61 1.220801417 85 1.220705503 109 1.220699105
62 1.220806137 86 1.220698134 110 1.220699529
63 1.220689418 87 1.220703929 111 1.220699507
64 1.220780090 88 1.220697687 112 1.220699192
65 1.220646517 89 1.220702754 113 1.220699372
66 1.220742702 90 1.220702958 114 1.220699126
67 1.220635005 91 1.220699796 115 1.220699331
68 1.220725588 92 1.220702294 116 1.220699016
69 1.220730259 93 1.220699350 117 1.220699263
70 1.220715045 94 1.220701947 118 1.220699214
71 1.220727806 95 1.220697804 119 1.220699052
72 1.220690910 96 1.220701125 120 1.220699166
73 1.220720876 97 1.220700907 121 1.220699013
74 1.220693933 98 1.220699256 122 1.220699117
75 1.220717221 99 1.220700611 123 1.220698977
76 1.220716079 100 1.220699088 124 1.220699060
77 1.220706987 101 1.220700284 125 1.220699060
78 1.220714970 102 1.220698965 126 1.220698947
79 1.220698278 103 1.220699870 127 1.220699012
80 1.220711415 104 1.220700085 128 1.220698932

in Table 7.7. As τ58 = 1.220541650 is the lowest value we conclude with
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τ58 > γ = 1.22045, that

d57(n+ 1) ≥ γd57(n)

for all n ∈ {57, . . . , 128}. As 7
3 > 2 we have to check that

λ57 − P(55,72)
57

(
1
γ

)
− 1
γ54(γ − 1)

≥ γ

which is easily done computationally. Hence by Theorem 6.2 we have

log(γ) ≈ 0.199219643 ≤ h,

which is the best lower bound so far. The difference between this bound

and the best upper bound from (7.8) is less than 2.05× 10−4.

Corollary 7.5. The entropy of binary quasi minimally repetitive words

is

h
(
F (> 7

3 )(A2)
)

= 0.199 (1).

7.5. Quaternary Squarefree Words

For this section, define the entropy of squarefree words over the alphabet

A4 as h := h
(
F (2)(A4)

)
and the number of quaternary squarefree words of

length n as c(n) := cF(2)(A4)(n). The values for c(n) for n ≤ 25 are listed as

[78, entry A051041].

7.5.1. Upper Bound. We managed to calculate the Perron eigenvalue

λm of the matrix ∆m from Definition 4.18 for m ≤ 17. By Theorem 4.19

λ17 = 2.621592352 results in the upper bound

(7.9) h ≤ 0.963781901,

which is the best upper bound so far.

7.5.2. Lower Bound. We applied Theorem 6.1 with the parameters

m = 16, p = 17 and q = 18. The matrix ∆16 has dimension |F ′′(17)| =
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453998 and is irreducible as well as aperiodic, which we checked computa-

tionally. Its Perron eigenvalue is λ16 = 2.621725645. We calculated P(17,18)
16

of (6.42) with the following result.

P(17,18)
16 (x) = 2.588218591x11 + 2.206175304x12 + 7.8101292412x13+

109.187811438x15 + 10.426601002x16 + 268.818977531x17+

1189.465204643x18

For the results of the calculation of τn for n ∈ {16, . . . , 33} see Table 7.8.

Table 7.8. τn for quaternary squarefree words of length n
for 16 ≤ n ≤ 33, τ33 has the lowest value in the table.

n τn n τn n τn
16 2.621725645 22 2.621519960 28 2.621508638
17 2.621517232 23 2.621508237 29 2.621507993
18 2.621725645 24 2.621512451 30 2.621508210
19 2.621509285 25 2.621508158 31 2.621507956
20 2.621538400 26 2.621509728 32 2.621508034
21 2.621509069 27 2.621508037 33 2.621507938

As τ33 = 2.621507938 is the lowest value we conclude with τ33 > γ = 2.6214,

that

d16(n+ 1) ≥ γd16(n)

for all n ∈ {16, . . . , 33}. It is easy to check computationally that

λ16 − P(17,18)
16

(
1
γ

)
− 1
γ16(γ − 1)

≥ γ

and hence by Theorem 6.1 we have

log(γ) ≈ 0.963708526 ≤ h,

which is the best lower bound known so far. The difference between this

bound and the best upper bound from (7.9) is less than 7.4× 10−5.

Corollary 7.6. The entropy of quaternary squarefree words is

h
(
F (2)(A4)

)
= 0.9637 (1).
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7.6. Quaternary Minimally Repetitive Words

For this section define c(n) := c
F(> 7

5 )(A4)
(n) as the number of quaternary

minimally repetitive or 7
5
+-powerfree words of length n and the correspond-

ing entropy as h := h
(
F (> 7

5 )(A4)
)
. The values for c(n) for n ≤ 200 are given

in Table 7.9 and Table 7.10.

7.6.1. Upper Bound. According to (4.9), the best upper limit for the

entropy h, based on Table 7.10, is

h ≤ log c(200)
200

≈ 0.100680311.

Again, calculating the Perron eigenvalue λm of the matrix ∆m from Defini-

tion 4.18, gives a much better upper limit. We managed to calculate λm for

m ≤ 92.

By Theorem 4.19 the eigenvalue λ92 = 1.072732872 results in the upper

bound

(7.10) h ≤ 0.070209477,

which is the best upper bound so far.

7.6.2. Lower Bound. As in the previous cases we applied Theorem 6.2.

We managed to calculate the set of minimally repetitive words up to length

n ≤ 200, so we chose the parameters

(7.11) m = 80, p = 199 and q = 199.

Note that p and q are chosen as low as possible under the assumptions of

Theorem 6.2, namely that p ≥ m
α−1 − 1 = 199 and q ≥ bαpc+ 1−m = 199.

If we chose m > 80, this would require p ≥ 202 and q ≥ 202, which already

exceeds the maximal length of the set of words we calculated.

The matrix ∆80 has dimension |F ′′(80)| = 3102 and is irreducible as

well as aperiodic, which we checked computationally. Its Perron eigenvalue

is λ80 = 1.072732872.
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Table 7.9. The number c(n) of minimally repetitive words
of length n for n ≤ 160.

n c(n) n c(n) n c(n) n c(n)
1 4 41 9600 81 166080 121 2644368
2 12 42 10728 82 178200 122 2836224
3 24 43 11568 83 190920 123 3039888
4 48 44 12720 84 204552 124 3252816
5 72 45 13752 85 219960 125 3476760
6 96 46 15000 86 235872 126 3719616
7 120 47 15792 87 253776 127 3979800
8 168 48 16512 88 272616 128 4255488
9 216 49 17808 89 292392 129 4553784

10 288 50 19320 90 313512 130 4878744
11 384 51 20424 91 335808 131 5222736
12 456 52 21960 92 360744 132 5592864
13 504 53 23304 93 386256 133 5985072
14 600 54 24984 94 413808 134 6402216
15 648 55 26880 95 445056 135 6849600
16 696 56 28728 96 477240 136 7328328
17 792 57 31152 97 512136 137 7846296
18 840 58 33312 98 548832 138 8397288
19 960 59 35928 99 587112 139 8991984
20 1128 60 38784 100 629712 140 9633552
21 1224 61 41472 101 674040 141 10309224
22 1416 62 44496 102 723504 142 11030592
23 1512 63 47280 103 773400 143 11800800
24 1704 64 50784 104 828456 144 12629112
25 1920 65 54456 105 888936 145 13516560
26 2136 66 58056 106 951096 146 14466792
27 2448 67 62568 107 1018032 147 15497112
28 2688 68 66792 108 1089048 148 16598664
29 3048 69 71856 109 1167144 149 17775648
30 3216 70 77088 110 1250520 150 19031256
31 3432 71 82560 111 1336560 151 20359968
32 3864 72 88752 112 1434168 152 21778920
33 4248 73 94824 113 1534896 153 23294064
34 4752 74 102144 114 1642464 154 24928776
35 5258 75 109632 115 1758024 155 26680440
36 5808 76 117408 116 1880592 156 28560528
37 6480 77 126240 117 2012280 157 30595440
38 7056 78 135456 118 2152080 158 32765520
39 7848 79 145176 119 2304720 159 35072136
40 8736 80 155064 120 2469528 160 37531728
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Table 7.10. The number c(n) of minimally repetitive words
of length n for 161 ≤ n ≤ 200.

n c(n) n c(n) n c(n) n c(n)
161 40156272 171 78841032 181 154630440 191 303286776
162 42944520 172 84342240 182 165459000 192 324549144
163 45917232 173 90220800 183 177065400 193 347302872
164 49123536 174 96536496 184 189490176 194 371578440
165 52579200 175 103337736 185 202755048 195 397464000
166 56272296 176 110551848 186 216857400 196 425011464
167 60236616 177 118241016 187 231877224 197 454442088
168 64457616 178 126438408 188 247920408 198 485911272
169 68936928 179 135187872 189 265113456 199 519643296
170 73724952 180 144567720 190 283529112 200 555879576

We calculated P(p,q)
m of (6.42) with the following result.

P(199,199)
80 (x) = 0.874226453x115 + 0.222395316x119 + 0.755005665x122+

0.988354125x123 + 1.762888082x124 + 1.240696480x125+

0.022483470x128 + 0.359773091x131 + 1.872686142x137+

1.897878429x140 + 5.347598893x145 + 2.984708373x150+

13.02669727 x154 + 4.782742329x158 + 3.909829464x159+

4.071725989x164 + 5.742122845x169 + 4.481000847 x173+

14.69270437 x177 + 0.897880184x178 + 40.68750493x185+

13.122350868x187 + 1.988684414x192 + 23.106705854x195+

979.514863208x199

For the results of the calculation of τn for n ∈ {80, . . . , 278} see Ta-

ble 7.11 and Table 7.12. As τ98 = 1.066057344 is the lowest value we con-

clude with

τ98 > γ = 1.066,
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Table 7.11. τn for quaternary minimally repetitive words
of length n ∈ {80, . . . , 278}, part 1, τ98 has the lowest value.

n τn n τn n τn
80 1.072742925 147 1.070457849 214 1.068946370
81 1.072742925 148 1.070392047 215 1.068999879
82 1.072742925 149 1.069759848 216 1.068977949
83 1.072742925 150 1.070378651 217 1.068942669
84 1.072742925 151 1.070263935 218 1.068923349
85 1.072742925 152 1.070058513 219 1.068914312
86 1.072742925 153 1.070298723 220 1.068919061
87 1.072742925 154 1.070064060 221 1.068866031
88 1.072742925 155 1.070260012 222 1.068812301
89 1.072742925 156 1.070168685 223 1.068897692
90 1.072742925 157 1.070221200 224 1.068824241
91 1.072742925 158 1.070245204 225 1.068812248
92 1.072742925 159 1.070094075 226 1.068735837
93 1.072742925 160 1.070248035 227 1.068800145
94 1.072742925 161 1.069097631 228 1.068737434
95 1.072742925 162 1.068740279 229 1.068780789
96 1.072742925 163 1.069548737 230 1.068784665
97 1.072742925 164 1.069947358 231 1.068781382
98 1.066057344 165 1.069784620 232 1.068773256
99 1.072109169 166 1.069646853 233 1.068732031

100 1.072151795 167 1.069889426 234 1.068731442
101 1.072191576 168 1.069757701 235 1.068631130
102 1.066282213 169 1.069625229 236 1.068589796
103 1.071573147 170 1.069294669 237 1.068671884
104 1.071409341 171 1.069803453 238 1.068622111
105 1.071498224 172 1.069322663 239 1.068659400
106 1.071581280 173 1.069477646 240 1.068652121
107 1.071601018 174 1.069710367 241 1.068650030
108 1.071531772 175 1.069287875 242 1.068624462
109 1.070352241 176 1.069141270 243 1.068609053
110 1.067793763 177 1.069502888 244 1.068591362
111 1.071076094 178 1.069605733 245 1.068563940
112 1.067784401 179 1.069568979 246 1.068547499
113 1.069856548 180 1.069546602 247 1.068547857
114 1.070857918 181 1.069574676 248 1.068561506
115 1.070920867 182 1.069493431 249 1.068542929
116 1.070819375 183 1.069296795 250 1.068509977
117 1.070826666 184 1.069099263 251 1.068527294
118 1.070874795 185 1.069487326 252 1.068483430
119 1.070968440 186 1.069298375 253 1.068484142
120 1.070954363 187 1.069420561 254 1.068465886
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Table 7.12. τn for quaternary minimally repetitive words
of length n ∈ {80, . . . , 278}, part 2

n τn n τn n τn
121 1.070819027 188 1.069466188 255 1.068460861
122 1.070857360 189 1.069196936 256 1.068455795
123 1.070163380 190 1.069162257 257 1.068456655
124 1.067964408 191 1.069302413 258 1.068457743
125 1.070626593 192 1.069332250 259 1.068429497
126 1.069291935 193 1.069226088 260 1.068404744
127 1.070454898 194 1.069255620 261 1.068391608
128 1.070526733 195 1.069328709 262 1.068382332
129 1.070474480 196 1.069282722 263 1.068349618
130 1.070470183 197 1.069102413 264 1.068332035
131 1.070448291 198 1.068931344 265 1.068355941
132 1.070521268 199 1.069210579 266 1.068343289
133 1.070505603 200 1.069018083 267 1.068343378
134 1.070493156 201 1.069145128 268 1.068325582
135 1.070477195 202 1.069162991 269 1.068319016
136 1.070521369 203 1.069134190 270 1.068284705
137 1.070492086 204 1.069101512 271 1.068253747
138 1.070443443 205 1.069147657 272 1.068263296
139 1.070393675 206 1.069132900 273 1.068214794
140 1.070414004 207 1.069095858 274 1.068209627
141 1.070454267 208 1.069039514 275 1.068228221
142 1.070490852 209 1.069071536 276 1.068238263
143 1.070449415 210 1.069028415 277 1.068214505
144 1.070435712 211 1.069029086 278 1.068195082
145 1.070271435 212 1.068957724
146 1.070480124 213 1.069027985

that d80(n + 1) ≥ γd80(n) for all n ∈ {80, . . . , 278}. According to Theo-

rem 6.2 we have to check that

(7.12) λ80 − P(199,199)
80

(
1
γ

)
− µ

∑
j>199

1
γb

2j
5 c
≥ γ.

The following lemma simplifies the computational verification of (7.12).

Lemma 7.7. For j, p ∈ N and every real γ > 1 the following identity

holds

(7.13)
∑
j>p

γ−b
2j
5 c = 2γ−b

2p−3
5 c(γ − 1)−1 + γ−2b p5c(γ2 − 1)−1.
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Proof. Note that −
⌊

2(p+1)
5

⌋
is the greatest possible exponent of the left

side in (7.13). We look at j modulo 5 and see that every integer n ≥
⌊

2(p+1)
5

⌋
occurs as negative exponent twice in

∑
j>p γ

−b 3j
4 c. Moreover, for every

integer n ≥ p+1
5 the exponent −2n occurs. In total we have

∑
j>p

γ−b
2j
5 c = 2

∑
n≥
⌊ 2(p+1)

5

⌋ γ−n +
∑

n≥d p+1
5 e

γ−2n.

With the geometric series we deduce that

∑
n≥
⌊ 2(p+1)

5

⌋ γ−n = γ−
⌊ 2(p+1)

5

⌋ ∑
n≥0

γ−n = γ−
⌊ 2(p+1)

5

⌋
γ(γ−1)−1 = γ−b

2p−3
5 c(γ−1)−1

and ∑
n≥d p+1

5 e
γ−2n = γ−2d p+1

5 e
∑
n≥0

γ−2n

= γ−2d p+1
5 eγ2(γ2 − 1)−1

= γ−2b p5c(γ2 − 1)−1,

since −2
⌈
p+1
5

⌉
+ 2 = −2(

⌈
p+1
5

⌉
− 1) = −2(

⌈
p−4
5

⌉
) = −2

⌊p
5
⌋
. Thus we have

shown that (7.13) hold. �

The previous lemma shows that we have to check that

(7.14) λm − P(p,q)
m

(
1
γ

)
− 2µγ−b

2p−3
5 c(γ − 1)−1 − µγ−2b p5c(γ2 − 1)−1 ≥ γ,

For our parameters, see (7.11), this means

λ80 − P(199,199)
80

(
1
γ

)
− 2µγ−79(γ − 1)−1 − µγ−78(γ2 − 1)−1 ≥ γ.

Computationally it is easy to check that the former inequality with γ = 1.066

is not true. The difference λ80 − γ = 0.006732871 but already the term

(7.15) 2µγ−b
2p−3

5 c(γ − 1)−1 + µγ−2b p5c(γ2 − 1)−1

equals 1.517484148. The value of (7.15) is lower for greater p, but greater

for lower γ. For p ≥ 412 its value is lower than λ80−γ. However, this would
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require to calculate the set of of minimally repetitive words up to length

412 at least. The problem here is that the involved datasets become really

huge. Already, the set of equivalence classes of minimally repetitive words

of length 200 has a size of 4.4 GB as text file.

The case of minimally repetitive words over a four letter alphabet reveals

the limitation of the procedure based on Theorem 6.2. The upper bound

0.070209477, compare (7.10), for the entropy shows that it is very low com-

pared to the entropies in the other cases. Since a low entropy is equivalent

to a low growth rate of the set it seems reasonable that we need much higher

parameters for the estimation of the power containing sets H(wi)(n+1) from

(6.8). Unfortunately, the parameters we need for the procedure to work are

so large that they require sets that are beyond our computational scope.

In general, the procedure of Chapter 6 is superior to the methods in-

troduced in Chapter 4, since it estimates the number of elements of certain

power containing sets, rather than constructing subsets of powerfree words.
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