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Abstract

In this paper, we shall show that the following translation IM from the propo-

sitional fragment L1 of Leśniewski’s ontology to modal logic KTB is sound: for

any formula φ and ψ of L1, it is defined as

(M1) IM (φ ∨ ψ) = IM (φ) ∨ IM (ψ),

(M2) IM (¬φ) = ¬IM (φ),

(M3) IM (εab) = ♦pa ⊃ pa. ∧ .�pa ⊃ �pb. ∧ .♦pb ⊃ pa,
where pa and pb are propositional variables corresponding to the name variables

a and b, respectively. In the last section, we shall give some comments including

some open problems and my conjectures.
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1. Introduction and IM

Inoué [9] initiated a study of interpretations of Leśniewski’s epsion ε in the
modal logic K and its certain extensions. That is, Ishimoto’s propositional
fragment L1 (Ishimoto [12]) of Leśniewski’s ontology L (refer to Urbaniak
[19]) is partially embedded in K and in the extensions, respectively, by the
following translation I from L1 to them: for any formula φ and ψ of L1, it
is defined as
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(I1) I(φ ∨ ψ) = I(φ) ∨ I(ψ),

(I2) I(¬φ) = ¬I(φ),

(I3) I(εab) = pa ∧�(pa ≡ pb),

where pa and pb are propositional variables corresponding to the name
variables a and b, respectively. Here, “L1 is partially embedded in K by
I” means that for any formula φ of a certain decidable nonempty set of
formulas of L1 (i.e. decent formulas (see § 3 of Inoué [10])), φ is a theorem
of L1 if and only if I(φ) is a theorem of K. Note that I is sound. The paper
[10] also proposed similar partial interpretations of Leśniewski’s epsilon in
certain von Wright-type deontic logics, that is, ten Smiley-Hanson systems
of monadic deontic logic and in provability logic GL, respectively. (See
Åqvist [1] and Boolos [3] for those logics.)

The interpretation I is however not faithful. A counterexample for the
faithfulness is, for example, εac ∧ εbc. ⊃ .εab ∨ εcc (for the details, see
[10]). Blass [2] gave a modification of the interpretation and showed that
his interpretation T is faithful, using Kripke models. Inoué [11] called the
translation Blass translation (for short, B-translation) or Blass interpre-
tation (for short, B-interpretation). The translation B from L1 to K is
defined as follows: for any formula φ and ψ of L1,

(B1) B(φ ∨ ψ) = B(φ) ∨B(ψ),

(B2) B(¬φ) = ¬B(φ),

(B3) B(εab) = pa ∧�(pa ⊃ pb) ∧ .pb ⊃ �(pb ⊃ pa),

where pa and pb are propositional variables corresponding to the name
variables a and b, respectively. Inoué [11] extended Blass’s faithfulness
result for many normal modal logics, provability logic and von Wright-type
deontic logics including K4, KD, KB, KD4, etc, GL and ten Smiley-
Hanson systems of monadic deontic logic, using model constructions based
on Hintikka formula (cf. Kobayashi and Ishimoto [13]).

In this paper, we first propose a translation IM from L1 in modal logic 
KTB, which will be specified in § 2.

Definition 1.1. A translation IM of Leśniewski’s propositional ontology
L1 in modal logic KTB is defined as follows: for any formula φ and ψ of
L1,
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(M1) IM (φ ∨ ψ) = IM (φ) ∨ IM (ψ),

(M2) IM (¬φ) = ¬IM (φ),

(M3) IM (εab) = ♦pa ⊃ pa. ∧ .�pa ⊃ �pb. ∧ .♦pb ⊃ pa,

where pa and pb are propositional variables corresponding to the name vari-
ables a and b, respectively.

We call IM to be M-translation or M-interpretation.
In the following § 2, we shall collect the basic preliminaries for this

paper. In § 3, using proof theory, we shall show that IM is sound, as the
main theorem of this paper. In § 4, we shall give some comments including
some open problems and my conjectures.

2. Propositional ontology L1 and modal logic KTB

Let us recall a formulation of L1, which was introduced in [12]. The
Hilbert-style system of it, denoted again by L1, consists of the following
axiom-schemata with a formulation of classical propositional logic CP as
its axiomatic basis:

(Ax1) εab ⊃ εaa,

(Ax2) εab ∧ εbc. ⊃ εac,

(Ax3) εab ∧ εbc. ⊃ εba,

where we note that every atomic formula of L1 is of the form εab for some
name variables a and b and a possible intuitive interpretation of εab is ‘the
a is b’. We note that (Ax1), (Ax2) and (Ax3) are theorems of Leśniewski’s
ontology (see S lupecki [17]).

The modal logic K is the smallest logic which contains all instances
of classical tautology and all formulas of the forms �(φ ⊃ ψ) ⊃ .�φ ⊃
�ψ being closed under modus ponens and the rule of necessitation (for
K and basics for modal logic, see Bull and Segerberg [4], Chagrov and
Zakharyaschev [5], Fitting [6], Hughes and Cresswell [8] and so on).

We recall the naming of modal logics as follows (refer to e.g. Poggiolesi
[15] and Ono [14], also see Bull and Segerberg [4]):

KT: K + �φ ⊃ φ (T, reflexive relation)
KB: K + φ ⊃ �♦φ (B, symmetric relation)
KTB: KT + B (reflexive and symmetric relation).
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3. The soundness of IM

Theorem 3.1. (Soundness) For any formula φ of L1, we have

`L1 φ ⇒ `KTB IM (φ).

Proof: Let φ be a formula of L1. We shall prove the meta-implication by
induction on derivation.
Basis.

(Case 1) We shall first treat the case for (Ax1). Let a and b be name
variables. Then we have the following inferences in KTB:

(∗) IM (εab) (Assumption)

(1.1) ♦pa ⊃ pa from (∗) and Definition 1.1) †
(1.2) �pa ⊃ �pa (true in K) †
(1.3) ♦pa ⊃ pa. ∧ .�pa ⊃ �pa. ∧ .♦pa ⊃ pa (from (1.1) and (1.2))

(1.4) IM (εaa) (from (1.3) and Definition 1.1)

(1.5) IM (εab ⊃ εaa) (from (∗), (1.4) and Definition 1.1).

(Case 2) Next we shall deal with the case of (Ax2). Let a, b and c be name
variables. Then we have the following inferences in KTB:

(∗∗) IM (εab ∧ εbc) (Assumption)

(2.1) IM (εab) (from (∗∗) and Definition 1.1)

(2.2) IM (εbc) (from (∗∗) and Definition 1.1)

(2.3) ♦pa ⊃ pa. ∧ .�pa ⊃ �pb. ∧ .♦pb ⊃ pa (from (2.1) and Def 1.1)

(2.4) ♦pb ⊃ pb. ∧ .�pb ⊃ �pc. ∧ .♦pc ⊃ pb (from (2.2) and Def 1.1)

(2.5) ♦pa ⊃ pa (from (2.3)) †
(2.6) �pa ⊃ �pb (from (2.3))

(2.7) �pb ⊃ �pc (from (2.4))

(2.8) �pa ⊃ �pc (from (2.6) and (2.7)) †
(2.9) ♦pb ⊃ pa (from (2.3))

(2.10) �(♦pb ⊃ pa) (from (2.9) and the rule of necessitation)

(2.11) �♦pb ⊃ �pa (from (2.10) with a true inference in K)

(2.12) �pa ⊃ pa (true in KT)

(2.13) �♦pb ⊃ pa (from (2.11) and (2.12))
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(2.14) pb ⊃ �♦pb (true in KB)

(2.15) ♦pc ⊃ pb (from (2.4))

(2.16) ♦pc ⊃ pa (from (2.13) and (2.14) and (2.15)) †
(2.17) ♦pa ⊃ pa.∧.�pa ⊃ �pc.∧.♦pc ⊃ pa (from (2.5), (2.8) and (2.16))

(2.18) IM (εac) (from (2.17) and Definition 1.1)

(2.19) IM (εab ∧ εbc. ⊃ εac) (from (∗∗), (2.18) and Definition 1.1).

(Case 3) Lastly we shall proceed to the case of (Ax3). Let a, b and c be
name variables. Then we also have the following inferences in KTB:

(∗ ∗ ∗) IM (εab ∧ εbc) (Assumption)

(3.1) IM (εab) (from (∗ ∗ ∗) and Definition 1.1)

(3.2) IM (εbc) (from (∗ ∗ ∗) and Definition 1.1)

(3.3) ♦pa ⊃ pa. ∧ .�pa ⊃ �pb. ∧ .♦pb ⊃ pa (from (3.1) and Def 1.1)

(3.4) ♦pb ⊃ pb. ∧ .�pb ⊃ �pc. ∧ .♦pc ⊃ pb (from (3.2) and Def 1.1)

(3.5) ♦pb ⊃ pb (from (3.4)) †
(3.6) ♦pb ⊃ pa (from (3.3))

(3.7) �(♦pb ⊃ pa) (from (3.6) and the rule of necessitation)

(3.8) �♦pb ⊃ �pa (from (3.7) with a true inference in K)

(3.9) pb ⊃ �♦pb (true in KB)

(3.10) �pb ⊃ pb (true in KT)

(3.11) �pb ⊃ �pa (from (3.8) and (3.9) and (3.10)) †
(3.12) ♦pa ⊃ pa (from (3.3))

(3.13) pa ⊃ �♦pa (true in KB)

(3.14) ♦pa ⊃ �♦pa (from (3.12) and (3.13))

(3.15) �(♦pa ⊃ pa) (from (3.12) and the rule of necessitation)

(3.16) �♦pa ⊃ �pa (from (3.15) with a true inference in K)

(3.17) ♦pa ⊃ �pa (from (3.14) and (3.16))

(3.18) �pa ⊃ �pb (from (3.3))

(3.19) ♦pa ⊃ �pb (from (3.17) and (3.18))

(3.20) �pb ⊃ pb (true in KT)

(3.21) ♦pa ⊃ pb (from (3.19) and (3.20)) †
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(3.22) ♦pb ⊃ pb. ∧ .�pb ⊃ �pa. ∧ .♦pa ⊃ pb
(from (3.5), (3.11) and (3.21))

(3.23) IM (εba) (from (3.22) and Definition 1.1)
(3.24) IM (εab ∧ εbc. ⊃ εba) (from (∗ ∗ ∗), (3.23) and Definition 1.1).

Induction Steps. The induction step is easily dealt with. Suppose that
φ and φ ⊃ ψ are theorems of L1. By induction hypthesis, IM (φ) and
IM (φ ⊃ ψ) (↔ IM (φ) ⊃ IM (ψ)) are theorems of KTB. By modus ponens,
we obtain `KTB IM (ψ). Thus this completes the proof the theorem.

4. Comments

One motive from which I wrote [9] and [10] is that I wished to understand
Leśniewski’s epsilon ε on the basis of my recognition that Leśniewski’s ep-
silon would be a variant of truth-functional equivalence ≡. Namely, my
original approach to the interpretation of ε was to express the deflection of
ε from ≡ in terms of Kripke models. Another (hidden) motive of mine for
IM is to interpret L1 in intuitionistic logic and bi-modal logic. It is well-
known that Leśniewski’s epsilon can be interpreted by the Russellian-type
definite description in classical first-order predicate logic with equality (see
[12]). Takano [18] proposed a natural set-theoretic interpretation for the
epsilon. To repeat, I do not deny the interpretation using the Russellian-
type definite description and a set-theoretic one. I wish to obtain another
interpretation of Leśniewski’s epsilon having a more propositional charac-
ter. We have the following direct open problems.

Open problem 1: Is IM faithful?

Open problem 2: Find the set of other translations and modal logics
in which L1 is embedded. I think that there seems to be many possibilities.

Open problem 3: Can L1 be embedded in S4.2? (See e.g. Hamkins
and Löwe [7].)

Open problem 4: Can L1 be embedded in Grzegorczyk’s modal
Logic? (See e.g. Savateev and Shamkanov [16])

My conjectures are the following.

Conjecture 4.1. IM is faithful.
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Conjecture 4.2. t seems that L1 cannot be embedded in intuitionistic
propositional logic.

Conjecture 4.3. It seems that L1 can well be embedded in intuitionistic
modal propositional logic.

Acknowledgements. I would like to thank anonymous referees for valu-
able comments which helped improve this paper.
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