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ABSTRACT 

Natural forests cover about a third of terrestrial landmass and provides benefits such as carbon 

sequestration, and regulation of biogeochemical cycles. It is essential that adequate information 

is available to support forest management. Remote Sensing imageries provide data for mapping 

natural forests. Hence, our study aimed at mapping the Nkandla Forest Reserve attributes with 

Remote Sensing imageries. Quantitative information on the forest attributes is non-existent for 

many of these forests, including the sub-tropical Afromontane Nkandla Forest Reserve. This 

does not support scientific and evidence based natural forest management. A review of 

literature revealed that progress has been made in Remote Sensing monitoring of natural forest 

attributes. The Random Forest (RF) and Support Vector Machine (SVM) were applied to 

Landsat 8 in classifying the land use land cover (LULC) classes of the forest. Each of the 

algorithms produced higher accuracy of above 95% with the SVM performing slightly better 

than the RF. The SVM, Markov Chain and Multi-Layer Perceptron Neural Network (MLPNN) 

were adopted for a spatiotemporal change detection over the last 30 years at decadal interval 

for the forest. There were consistent changes in each of the four LULC classes. The study 

further conducted a forecasting of LULC distribution for 2029. Aboveground carbon (AGC) 

estimation was carried out using Sentinel 2 imagery and RF modelling. Four models made up 

smade of Sentinel 2 products could successfully map the AGC with high accuracies. The last 

two studies focused on tree species diversity with the first evaluating the influence of spatial 

and spectral resolution on prediction accuracies by comparing the PlanetScope, RapidEye, 

Sentinel 2 and Landsat 8. Both the spatial and spectral resolution were found to influence 

accuracies with the Sentinel 2 emerging as the best imagery. The second aspect focused on 

identifying the best season for the prediction of tree species diversity. Summer imagery 

emerged as the best season and the winter being the least performer. Overall, our study 

indicates that Remote Sensing imageries could be used for successful mapping of natural forest 

attributes. The outputs of our studies could also be of interest to forest managers and Remote 

Sensing experts. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Natural forest ecosystems are home to about 80% of terrestrial biodiversity (Aerts and Honnay, 

2011) and provide both tangible and non-tangible benefits locally and nationally. The tangible 

benefits include timber, plant medicine and non-timber forest products (NTFPs) whereas non-

tangible benefits include carbon sequestration, amelioration of local climate, regulation of 

water and biogeochemical cycles and protection of habitats. Forests are also vital for the socio-

economic and the socio-cultural wellbeing of society that either depends on them directly or 

indirectly (Agrawal et al., 2013). Many natural forests are declining due to natural phenomena 

such as climate change and human disturbances such as deforestation (Nkonya et al., 2016). 

Hence, the development of robust and cost-effective mapping research methods that provide 

adequate information on status and attributes of natural forest is essential for current sustainable 

forest management demands.  

Remote Sensing mapping of natural forests is a means of obtaining the prerequisite information 

that deepens understanding of forest dynamics. Furthermore, the information provided on the 

natural forest through Remote Sensing mapping facilitates decision making, conservation 

initiatives, resources restoration and mitigation measures by local managers, government 

agencies, civil society organizations, advocacy groups and scientists (Keenan et al., 2015). The 

specific forest attributes for which Remote Sensing data and methods are applied for mapping 

includes forest structure (Ahmed et al., 2015, St-Onge and Grandin, 2019), forest cover 

(Kanniah et al., 2016, Schlund et al., 2017, Suzuki et al., 2018, Xie et al., 2019, Yin et al., 

2017), the chemical component of canopy and leaves [for instance foliar Nitrogen] (Mutowo 

et al., 2018a), deforestation and change detection (Nandy et al., 2011, Münch et al., 2017), 

biomass and carbon estimation (Asner and Mascaro, 2014, Chenge and Osho, 2018, Gizachew 

et al., 2016, Shen et al., 2020), invasive plant monitoring (Müllerová et al., 2013, Rajah et al., 

2019), tree species diversity (Fundisi et al., 2020, Grabska et al., 2019a, Mutowo and Murwira, 

2012a), and individual tree species identification (Cho et al., 2015, Cross et al., 2019, Fang et 

al., 2020, Ferreira et al., 2019) and urbanization (Rimal et al., 2018, Addae and Oppelt, 2019).   

Many advances have been observed in recent years in new generation sensors [optical and 

active] (Fassnacht et al., 2016); for instance, improvement in the spectral and spatial resolution 

(Omer et al., 2015), the sensitivity of spectral band to vegetation (Xu et al., 2018, Roy et al., 

2014, Mutanga et al., 2016), temporal and radiometric resolution that enables them to capture 

forest growth stages [phenological monitoring] (Phiri and Morgenroth, 2017, Mutanga et al., 

2016). As a result of these advances, there has been an increase in Remote Sensing applications 

to the mapping of natural forests across many climatic zones. It likely that more advances will 

be made in sensors based on specific demands and more research may be expected moving 

forward in a bid to further improve Remote Sensing studies on natural forests. 

Machine learning algorithms and their application to forest monitoring and mapping have 

increased in recent years (Adam et al., 2014a). They are normally grouped into parametric 

(assumes a normal distribution of data ) and non-parametric (does not assume a normal 

distribution of data) algorithms (Fassnacht et al., 2016). Examples of the parametric ones 

include Maximum Likelihood (ML), various types of Discriminant Analysis and Generalized 

Linear Model whereas examples of non-parametric algorithms include RF, SVM and Neural 
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Networks. The amalgamation of these algorithms and Remote Sensing data and products helps 

to improve the capabilities and accuracies of classification and predicting models in mapping 

operations for natural forests.  

Although the number of studies in Remote Sensing mapping of natural forests has increased in 

many regions and countries with enhanced management and conservation measures, the same 

cannot be said for South Africa. Quantitative and qualitative information of natural forest 

attributes and characteristics like forest cover extent, carbon stocks estimation, tree species 

diversity data and spatial maps, are non-existent for many natural forests, which is a major 

hindrance to sustainable forest management planning and decision making. As such, 

management systems that adopt a scientific based approach based on Remote Sensing mapping 

information are lacking. The mapping of many units of natural forests across the country could 

culminate into databases on carbon levels, forest cover extent, tree species diversity scales and 

other important forest attributes which would enhance management and conservation 

measures. Hence, our study aimed to apply Remote Sensing imagery and technology to map 

the forest cover, estimate carbon stocks and predict tree species diversity of the Nkandla Forest 

Reserve, which is an Afromontane sub-tropical natural forest in the KwaZulu-Natal province 

of South Africa. The output of our study is expected to provide the requisite information that 

will contribute immensely to scientifically based forest resource management and 

conservation. It is also expected to contribute knowledge to future Remote Sensing applications 

research that would be conducted for similar sub-tropical and other forest types locally, 

nationally and globally. Modelling and classification methods as well as spectral products that 

contributed to satisfactory accuracies in the various aspects of our studies could also be adopted 

in other studies.  

To achieve the aim of the study, the specific objectives below are adopted. 

  1.1 Specific objectives 

1. To review existing literature on Remote Sensing application to natural forest monitoring. 

 

2. To map the land use and land cover (LULC) of the Nkandla Forest Reserve.  

 

3. To determine the LULC changes of the Nkandla Forest Reserve (1989-2019) and predict 

the land cover distribution for 2029. 

 

4. To predict the aboveground carbon (AGC) stocks of the Nkandla Forest Reserve.  

 

5. To predict the tree species diversity of the Nkandla Forest Reserve.  

 

6.  To identify the best season for tree species diversity prediction.  

 

1.2 Structure of the thesis 

This thesis is composed of eight chapters presented in a manuscript format. It has a general 

introduction of the study (Chapter one), followed by six manuscripts that is a systematic review 

(Chapter Two), mapping of forest cover (Chapter Three), change detection and forecasting of 
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land cover distribution for 2029 (Chapter Four), aboveground carbon estimation (Chapter 

Five), tree species diversity prediction (Chapter Six), identifying of the best season for tree 

species diversity predictions (Chapter Seven) and the last chapter (Chapter Eight) is a synthesis 

of the thesis. Four of the chapters (chapters two, three, four and six) are published in 

international peer reviewed journals (see declaration 2). While chapters five and seven are 

currently being revised and subsequently submitted to journals. Each of the manuscripts 

addresses one of the specific objectives of the study. The content and format of the peer 

reviewed manuscripts are maintained in the thesis compilation. So, each of the manuscripts has 

an introduction, materials and methods (methodology), results, discussion, conclusion and 

reference. It is worth mentioning that there are some sections of the manuscripts that have 

overlaps and repetitions, as they were unavoidable, for instance under the materials and 

methods (description of area). However, since some of the manuscripts have already been 

published and others are under peer review, the repetitions are deemed trivial as they did not 

compromise on the overall content and context of the thesis.   

1.3 Brief description of chapters 

Chapter 1  

The chapter provides an overview of the research, the gap identified and justification.  

Chapter 2  

The chapter is a reviews literature on progress made in the application of Remote Sensing to 

topical and sub-tropical natural forests monitoring. It was based on the exploration of 

predefined thematic areas of research and the specific assessment for the reviewed studies 

includes the country of research, the Remote Sensing imageries used, the machine learning 

algorithms utilised and the accuracies obtained. Recommendations were made for the gaps and 

limitations identified. 

Chapter 3  

The chapter is a research on the application of Landsat 8 and Random Forest (RF) and Support 

Vector Machine (SVM) to the mapping of land cover classes of the Nkandla Forest Reserve. 

Four land cover classes of the forest, which are closed canopy forest, open canopy forest, 

grassland and bare sites were successfully mapped for the forest. As part of the analysis, the 

performances of the RF and SVM in the classification (delineation) of four land cover classes 

of the forest were evaluated.  

Chapter 4 

The chapter presents the findings of decadal change detection of the Nkandla Forest Reserve 

from 1989 to 2019 and forecasting the spatial distribution of the land cover classes for 2029. 

Landsat satellite imageries, SVM, Markov Chain Modelling and Multi-layer Perceptron Neural 

Network are used in the land cover classification, post-classification change detection and 

forecasting for the land cover distribution. 
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Chapter 5 

The chapter is a research on the prediction of aboveground carbon (AGC) of the Nkandla Forest 

Reserve using Sentinel 2 and Random Forest machine learning algorithm. Four separate RF 

models were developed for the prediction. The predicting variables for the models were 

composed of spectral bands only, near infrared vegetation indices only, red edge vegetation 

indices only and the combined variables model. The performance RF models of each set of 

variables were evaluated and results presented.  

Chapter 6 

The chapter presents findings on a multi-sensor evaluation on the prediction of tree species 

diversity of the Nkandla Forest Reserve. The effects of spatial and spectral resolution on the 

performance and accuracies of satellite imageries in the prediction were evaluated. The satellite 

imageries used were the Sentinel 2, RapidEye, PlanetScope and Landsat 8. The modelling was 

done with the RF algorithm. 

Chapter 7   

The chapter is research on identifying the best season for the prediction of tree species diversity 

using Sentinel 2 imagery and RF algorithm. An imagery was obtained for each of the years and 

used for the analysis. The best imagery was identified, and recommendations was made for 

other future research.  

Chapter 8 

The chapter is a synthesis of the overall thesis.   

1.3 Limitations of the study 

 The limitations of the study have been listed below; 

1. There was a plan to engage the managers of the Nkandla Forest Reserve, the fringe 

communities and other stakeholders in a workshop and present the outcomes of the 

study to them. It was envisaged to help them have credible information on the forest 

and how each can contribute to protecting and conserving it. However, it could not be 

help due to lack of funds and time. 

2. A baseline LULC map was not available for the forest. As such we had to determine 

LULC classes before the data collection and mapping. As such the maps produced 

through our study could not be compared with any other map. We had to rely on our 

accuracy assessment to authenticate our maps. 

3. Tree species diversity and carbon maps are also not available for the Nkandla Forest 

Reserve. Similarly, we had to determine the accuracy of our maps based of the Random 

Forest models. 
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Abstract 

Forest covers about a third of terrestrial land surface, and tropical and subtropical zones form 

a major part. These natural forests provide multiple benefits to society, the economy, and the 

environment of the countries. Hence, to maintain these benefits, an effective and efficient forest 

monitoring, and management system is vital. Remote Sensing applications constitute a 

significant approach to monitoring forests, and several studies have demonstrated the potential. 

Thus, this paper reviews the progress made by the Remote Sensing imagery on the applications 

to the tropical and sub-tropical natural forests monitoring over the last two decades (2000-

2020). The review focused on thematic areas such as aboveground biomass and carbon 

estimations, tree species identification, tree species diversity, and forest cover and changes 

mapping. A systematic search of relevant articles was made on Web of Science, Science Direct, 

and Google Scholar by applying a Boolean operator and using keywords related to the thematic 

areas. We identified fifty peer-reviewed articles that studied the tropical and subtropical natural 

forests using Remote Sensing data. Asian and Southern American natural forests are the most 

researched natural forests, while African natural forests are not. Medium spatial resolution 

imagery (Landsat, ASTER, and Sentinel 2 imageries) was extensively utilized for forest cover 

and change mapping and aboveground biomass and carbon estimation. High spatial resolution 

imagery (Quickbird, WorldView-2 & -3, and Active and passive sensor Arial imageries) were 

used for tree species identification. Linear regression (LR) was the most used parametric 

algorithm whereas the Random Forest (RF) and Support Vector Machine (SVM) were among 

the most non-parametric algorithms. There is potential in utilising emerging satellite 

information, as they hold promise to further enhance monitoring and management of natural 

forests. We recommend more research to identify approaches that can help to overcome 

challenges of Remote Sensing applications to thematic areas so that further and sustainable 

progress can be made to effectively monitor and manage sustainable forest benefits. 

Keyword: Forests, Remote Sensing, Satellite, Monitoring, Application, Algorithm,  

 

2.1 Introduction 

Forests cover about one-third of the earth's land surface area (Khan et al., 2020), and tropical 

and sub-tropical forests form a major component of the total area. Natural forests host diverse 

plant and animal species (Ruiz-Benito et al., 2014), cater for forage resources to insect 

pollinators (Goulson, 1999), and help alleviate the effects of climate change by atmospheric 

carbon sequestration (Saatchi et al., 2011a, Pan et al., 2011). As many authors have pointed 

out, forests provide various functions that include ecological, economic, social, and 

recreational functions at local, regional, and global scales (Miura et al., 2015). Moreover, in 

developing countries, forests support millions of rural people's direct livelihood by providing 

food, medicine, fuel, fibre, non-timber forest products, and social and cultural functions 

(Mayaux et al., 2013, Agrawal et al., 2013). The world's largest tropical and sub-tropical forests 

are located in the Amazon region, followed by the tropical forests of Central and West African, 

termed as the Guineo-Congolian region, while the third-largest tropical forest region is located 

in Southeast Asia (Malhi et al., 2013).    

In recent decades, natural forests have been declining at alarming rates in most parts of the 

world (Keenan et al., 2015). As documented in many studies, humans are continuously 

changing the land use to access the planet’s resources through the clearance of forests for 
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agricultural activities and urban expansion (Ranagalage et al., 2019). Furthermore, in 

developing countries, drivers of deforestation, including timber and fuel extraction, have been 

used along with evidence concerning underlying causes such as economy, political instability, 

and governance (Maynard and Royer, 2004). These threats could modify the forest ecosystems 

(Brose and Hillebrand, 2016), in so doing reduce their functions (Hautier et al., 2014) and 

ultimately result in the extinction of tree species and species homogenization (Solar et al., 2015, 

Wang and Loreau, 2016). Thus, timely and consistent monitoring of the natural forest is critical 

because their location and condition affect local, regional and global climate, and have 

significant consequences for biodiversity and well-being of millions of rural and urban people. 

Regular and accurate monitoring of natural forests spatial extent, species composition, 

physiological characteristics, forest cover change and drivers of change, and carbon content 

would be essential for providing information for policy formulation, implementation of climate 

change-related agreements, monitoring sustainable schemes for timber extraction, reporting 

duties and conservation management measures of natural forests (MacDicken, 2015, Laurin et 

al., 2016a).  

 

Remote Sensing has been utilized in a wide variety of applications confronting the forest 

management and conservation sectors. The relevance and application of Remote Sensing for 

natural forest studies have been widely demonstrated by various authors. These applications 

include questions linked to forest biophysical parameters inventory, forest biochemical 

mapping (Vasudeva et al., 2020), tree species discrimination and mapping (Wagner et al., 2018, 

Fang et al., 2020), carbon stocks (Asner et al., 2011, Asner and Mascaro, 2014, De Moraes et 

al., 2010), forest land cover change mapping (Fokeng et al., 2020, Margono et al., 2014, 

Martinez del Castillo et al., 2015, Mayaux et al., 2005), biodiversity assessment and monitoring 

(Ferreira et al., 2016, Fundisi et al., 2020, Grabska et al., 2019a), assessment of forest extent 

(Qin et al., 2015), and tree crown delineation (Dalponte et al., 2008, Dalponte et al., 2012, 

Holmgren and Persson, 2004, Immitzer et al., 2012).  

    

An example of a review that has been of importance to Remote Sensing practitioners is 

Mutanga et al. (2016), who showed the progress made in the application of Remote Sensing 

for the monitoring of vegetation in South Africa. It considered studies done from 1996 to 2015 

on sensors and the type of vegetation with a focus on biomass, species discrimination, and land 

cover, and vegetation quality. Although certain important aspects were covered in the review, 

it failed to assess studies for tropical and sub-tropical areas. Since many advancements have 

been seen in sensors, machine learning algorithms, and many studies for the natural forest in 

tropical and sub-tropical natural forests, it will be worth conducting such a review that captures 

these advancements and areas of limitation. Therefore, our review covers a two-decade (2000 

-2020) progress made on the application of Remote Sensing in monitoring the tropical and 

subtropical natural forests. The output of this review will provide information on advances 

made and the shortfall observed on the use of Remote Sensing imageries for monitoring natural 

forests in the tropical and subtropical zones for forest managers, ecologists, and Remote 

Sensing experts and how monitoring approaches can be improved. 

 

2.2 Methodology 

A systematic search was conducted on the World Catalog, ISI Web of Science, Google Scholar 

databases to retrieve relevant articles. The search was conducted with a Boolean operator, 

“AND” and a combination of keywords which was “Remote Sensing” AND “Forest cover” 



11 
 

AND “classification” AND "mapping" AND "natural" AND "forest tree species identification" 

AND “biomass” AND “carbon” AND "diversity." This search returned 6820 articles that 

generally relate to keywords used for the search. The search was further conducted using 

similar keywords but restricted to studies published between 2000 and 2020. This resulted in 

1060 published articles. Thereafter, the titles and abstracts of the articles were assessed to 

determine their relevance to the study before downloading. Furthermore, non-natural forest 

such as plantations and duplicated studies were removed. Also, studies of global forests, urban 

forests, mangroves, savanna, and dry forests were excluded, which led to the selection of 156 

potential articles. The full text of the 156 articles was downloaded for further screening through 

abstract and full-text reading and subjection to the objectives of the review. The final screening 

resulted in 50 articles that fully met the criteria of article selection. The search strategy, 

screening, and selection processes of the relevant articles are provided in a schematic diagram 

in Figure 2.1. 

The 50 articles were further grouped into four thematic areas of Remote Sensing monitoring, 

which are 1) Biomass and carbon stock estimation, 2) Individual tree species identification, 3) 

Tree species diversity prediction, and 4) Forest cover mapping and change detection. In each 

of the articles, the focus was placed on the country of research, the type of Remote Sensing 

data employed, the algorithm used for the mapping and modelling and the accuracy produced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Schematic diagram of the literature selection process 
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2.3. Results 

Figure 2.2 illustrate the number of studies carried out over the last 20 years under the four 

thematic areas considered under our review. 

 

 

Figure 2.2: Number of studies carried out for each thematic area. Note: FCC and CD: Forest 

cover change and change detection, TSD: Tree species diversity, AGC and AGB: Aboveground 

carbon and Aboveground biomass, and TSI: Tree species identification. 

 

2.3.1 Aboveground biomass and carbon estimation using Remote Sensing 

Several studies utilized different sensors to predict aboveground biomass (Broadbent et al., 

2008, Hernández-Stefanoni et al., 2014, Pandit et al., 2018a) and aboveground carbon (Lin et 

al., 2016, Mbaabu et al., 2014, Wangda et al., 2019), [Table 2.1]. The majority of these studies 

have been conducted in the tropical and sub-tropical forests region of Asian countries such as 

China (Chen et al., 2018, Chen et al., 2019, Lin et al., 2016) and Nepal (Mbaabu et al., 2014, 

Wangda et al., 2019). Southern America placed second in the number of studies conducted 

(Clark et al., 2011, González-Jaramillo et al., 2018, Hernández-Stefanoni et al., 2014) with 

African tropical and subtropical forest region lagging behind. We noted that the area and extent 

of the study sites range between 4 ha (Broadbent et al., 2008) and 6292.68 ha (Pandey et al., 

2019).  

The majority of the studies identified by the selection criteria utilized optical sensor imagery 

to predict AGB and AGC. For example, Landsat 8 was utilized by many studies (Li et al., 2019, 

Pandit et al., 2018a, Wallis et al., 2019, Zhang et al., 2019). Other studies reviewed have 

utilized high spatial resolution optical sensor imagery such as Quickbird (Broadbent et al., 

2008); and Sentinel 2 (Vasudeva et al., 2020). O 
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other studies reviewed in this study have explored the capabilities of active sensor imagery 

such as LiDAR (González-Jaramillo et al., 2018, Hernández-Stefanoni et al., 2014, Lin et al., 

2016). We also identified studies that fused optical and active sensor imagery; for example 

Wangda et al. (2019) and Mbaabu et al. (2014), fused Lidar data and GeoEye imagery to predict 

AGB. Sentinel-1 SAR and Sentinel 2 fusion is also utilized by a number of studies (Chen et 

al., 2018, Chen et al., 2019, Ghosh and Behera, 2018). 

Non-parametric machine learning algorithms such as ANN (Chen et al., 2018), RF (Zhang et 

al., 2019); SVR (Chen et al., 2018); XGBoost (Li et al., 2019) were most commonly utilized. 

In contrast, others used parametric algorithms such as LR (Mbaabu et al., 2014); MLR (Lin et 

al., 2016); and OLS (Hernández-Stefanoni et al., 2014). Overall, both types of algorithms 

produced satisfactory accuracy, but Non-parametric approaches produced high accuracies for 

studies that adopted them.   

Accuracies reported in the reviewed articles range from a coefficient of determination as weak 

as 0.31 (Wallis et al., 2019) to a coefficient of determination as good as 0.97 (Chen et al., 2019). 

Studies that utilized a fusion of two sensors reported better results (Chen et al., 2019, Clark et 

al., 2011).  
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Table 2.1: Aboveground biomass and carbon estimation using Remote Sensing 

Reference Country 
Sensor 

names 

Algorithms

/Methods 
Area Accuracy  

(Broadbent et 

al., 2008) 
Bolivia Quickbird LR 4 ha R2= 0.70 

(Sarker and 

Nichol, 2011) 

Hong 

Kong 

AVNIR-2 

 
SWR, LR 100 km2 

R2 = 0.88  

RMSE=32 t/ha 

(Clark et al., 

2011) 

Costa 

Rica 

LiDAR, 

HYDICE  
OLS, GLS,  Not specified 

R2 = 0.90 

RMSE =38.3 Mg/ha 

(Hernández-

Stefanoni et 

al., 2014) 

Yucatan 

Peninsula 
LiDAR OLS  9 ha R2 = 0.89 

(Mbaabu et 

al., 2014) 
Nepal 

LiDAR, 

GeoEye-1 
LR 5,821 ha R2 = 0.81 

(Lin et al., 

2016) 
Taiwan LiDAR MLR Not specified 

R2 = 0.91 

RMSE = 15 ton/ha -

210 ton/ha 

(Pandit et al., 

2018b) 
Nepal Landsat 8 RF, MLR Not specified 

R2 = 0.95 

RMSE = 13.3 t/ha 

(González-

Jaramillo et 

al., 2018) 

Ecuador LiDAR LR ~85 km2 R2 = 0.91 

(Ghosh and 

Behera, 2018) 
India 

Sentinel 1 

SAR, 

Sentinel 2,  

RF, SGB 400 km2 R2 = 0.71 

RMSE = 105.027 t/ha 

(Chen et al., 

2018) 
China 

Sentinel 1 

SAR, 

Sentinel 2 

RF, ANN, 

GWR, 

SVR 

Not specified 
r = 1 

RMSE = 0.08 Mg/ha 

(Zhang et al., 

2019) 
China 

Landsat 8, 

Landsat 

TM 

RF 6.06 million ha 
R2 = 0.73 

RMSE = 6.66 Mg/ha 

(Chen et al., 

2019) 
China 

Sentinel 1 

SAR, 

Sentinel 2 

SWR, 

GWR, 

ANN, 

SVR, and 

RF. 

17,481 ha 
R2 = 0.97 

RMSE = 61.11 Mg/ha 

(Li et al., 

2019) 
China Landsat 8 

LR, RF, 

XGBoost 
13.00×104 km2 R2 = 0.37 

(Pandey et al., 

2019) 
India MODIS LR 6292.68 km2 R2 = 0.94 

(Wallis et al., 

2019) 
Ecuador Landsat 8 PLSR  R2 = 0.31 

(Wangda et 

al., 2019) 
Nepal 

GeoEye-1, 

RapidEye, 

LiDAR 

MLR 1888 ha 
R2 = 0.88 

RMSE = 44 kg/tree 
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Note: HYDICE: Hyperspectral Digital Imagery Collection Experiment, SAR: Synthetic 

Aperture Radar, LiDAR: Light Detection and Ranging, AVNIR: Advanced Visible and Near 

Infrared Radiometer type 2. SWR: Stepwise Regression, GWR: Geographically Weighted 

Regression, LR: Linear Regression, MLR: Multiple Linear Regression, PLSR: Partial Least 

Squares Regressions; OLS: Ordinary Least Squares Regression, GLS: Generalized Least 

Squares Regression, ANN: Artificial Neural Network, SVR: Support Vector Machine for 

Regression, RF: Random Forest (RF), XGBoost: Extreme Gradient Boosting, SGB: Stochastic 

Gradient Boosting 

 

2.3.2 Tree species identification using Remote Sensing  

The majority of the tree species detection studies were carried out in Southern American 

countries, including Brazil (Ferreira et al., 2013, Ferreira et al., 2016, Ferreira et al., 2019), 

Costa Rica (Clark et al., 2005, Zhang et al., 2006, Clark and Roberts, 2012) and Panama 

(Garzon‐Lopez et al., 2013). Most of the studies found in African tropical and subtropical 

forests were conducted in South Africa (Cho et al., 2015, Omer et al., 2015, van Deventer et 

al., 2017) and Ghana (Laurin et al., 2016a). We found fewer studies carried out in Asia (Lin et 

al., 2015, Cao et al., 2016). In most cases, the studied forest cover area ranges from 70 ha (Féret 

and Asner, 2012, Feret and Asner, 2013) to 6000 ha (Cho et al., 2015).  

Several studies used very high-resolution optical sensors, including WorldView-2  (Cho et al., 

2015, Omer et al., 2015, Wagner et al., 2018), and WorldView-3 (Ferreira et al., 2019). Other 

studies used hyperspectral data such as the HYDICE (Clark et al., 2005, Zhang et al., 2006, 

Clark and Roberts, 2012), AISA EAGLE (Ferreira et al., 2016, Laurin et al., 2016a), AISA 

HAWK ((Ferreira et al., 2016), and imaging spectrometer (Féret and Asner, 2012, Feret and 

Asner, 2013, Ferreira et al., 2013, Somers and Asner, 2014). Fewer studies have used the 

LiDAR (Cao et al., 2016) and digital aerial photography (Garzon‐Lopez et al., 2013) for tree 

species identification.  

Non-parametric and parametric statistical approaches were also utilized for tree species 

identification using Remote Sensing imagery. Machine learning algorithms such as the RF 

(Clark and Roberts, 2012, Cao et al., 2016), SVM (Féret and Asner, 2012, Laurin et al., 2016a, 

Wagner et al., 2018) while others also used parametric types such the ML (Clark et al., 2005) 

and the LDA, QDA, and RDA (Feret and Asner, 2013, Ferreira et al., 2013). 

The studies recorded high accuracy that ranged from 70% (Ferreira et al., 2019) and 96% 

(Ferreira et al., 2013, Wagner et al., 2018). Generally, the very high-resolution images had the 

high accuracies than most of the other image types. 

 

 

 

 

(Vasudeva et 

al., 2020) 
India Sentinel 2 

RF, ANN, 

SVM 
84.46 km2 R2 = 0.86  

RMSE = 0.26% 
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Table 2.2: Tree species identification using Remote Sensing 

Reference  Country 

Sensor/ 

Data Set 

Algorithm Area 

Average 

Accuracy 

(Clark et al., 2005) Costa Rica HYDICE 
LDA, ML, and 

SAM 

Not 

specified 
≥92% 

(Zhang et al., 2006) Costa Rica HYDICE SMA 
Not 

specified 

Not 

specified  

(Clark and Roberts, 

2012) 
Costa Rica HYDICE RF 

Not 

specified 
≥85 

(Féret and Asner, 

2012) 
USA 

CAO-Alpha 

System, LiDAR 
SVM 70 ha ≥90% 

(Feret and Asner, 

2013) 
USA 

CAO-Alpha 

System  

LDA, RDA, 

QDA, 

Linear-SVM, 

Radial-SVM, 

ANN, KNN 

70 ha ≥73% 

(Ferreira et al., 

2013) 
Brazil 

ASD 

Spectroradiomete

r 

LDA 
Not 

specified 
96% 

(Garzon‐Lopez et 

al., 2013) 
Panama DAP 

LR and Visual 

Analysis 
150 ha 76% 

(Somers and Asner, 

2014) 

Hawaii, 

USA 
EO-1 Hyperion 

MESMA, 

WASMA 
1500 

R2 = 0.74 

KC= 0.65 

(Cho et al., 2015) 
South 

Africa 
WorldView-2 SVM 6000 ha ≥89 

(Omer et al., 2015) 
South 

Africa 
WorldView-2  SVM, ANN 

Not 

specified 
≥77% 

(Lin et al., 2015) Taiwan QuickBird ML 
Not 

specified 

Not 

Specified 

(Ferreira et al., 

2016) 
Brazil 

AISA EAGLE, 

AISA HAWK, 

WorldView-3 

LDA, Radial-

SVM, L-SVM, 

and RF 

Not 

specified 
≥84% 

(Cao et al., 2016) China LiDAR RF 
Not 

specified 
86.2% 

(Laurin et al., 

2016a) 
Ghana 

AISA EAGLE, 

Sentinel 2 
SVM, ML 815 km2 

92.34% 

 

(van Deventer et 

al., 2017) 

South 

Africa 

ASD 

Spectroradiomete

r, WorldView-2, 

RapidEye,  

PLS-RF 
Not 

specified 
>92% 

(Wagner et al., 

2018) 
Brazil WorldView-2 SVM 237.6 ha 96% 
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(Ferreira et al., 

2019) 
Brazil WorldView-3 MESMA  ≥70% 

Note: CAO: Carnegie Airborne Observatory, SMA: Spectral Mixture Analysis, ML: Maximum 

Likelihood, SAM: Spectral Angle Mapper, LDA: Linear Discriminant Analysis, SVM: Support 

Vector Machine, RDA: Radial Discriminant Analysis, QDA: Quadratic Discriminant Analysis, 

AISA: Airborne Imaging Spectrometer for Application, DAP: Digital Aerial Photography, KC: 

Kappa Coefficient, SCKC: Species Conditional Kappa Coefficients, J-M: Jeffrei–Matusita, 

ASD: Analytical Spectral Device, PLS: Partial Least Square, MESMA: Multiple Endmember 

Spectral Mixture Analysis, WESMA: Wavelength Endmember Spectral Mixture Analysis. 

 

2.3.3 Tree species diversity mapping using Remote Sensing  

Africa had the highest number of tree species studies, with studies conducted in Sierra Leone 

(Laurin et al., 2014) and Kenya (Maeda et al., 2014, Schäfer et al., 2016). Studies in the Asian 

region had the second-highest number of studies which were conducted in India (Nagendra et 

al., 2010), Kyrgyzstan (Feilhauer and Schmidtlein, 2009b), and China (Zhao et al., 2018). 

Southern America had the least number of studies carried out in Panama (Gillespie et al., 2009). 

Area of coverage was reported by three studies ranging between 90 km2 (Feilhauer and 

Schmidtlein, 2009b) and 850 km2 (Maeda et al., 2014).  

Medium and high spatial resolution optical multispectral imageries were used for the tree 

species diversity mapping, for example, Landsat (Gillespie et al., 2009, Nagendra et al., 2010, 

Maeda et al., 2014, Foody and Cutler, 2006), ASTER (Feilhauer and Schmidtlein, 2009b), and 

IKONOS (Nagendra et al., 2010). Some other studies also explored Hyperspectral data for tree 

species mapping, for example, AISA EAGLE (Laurin et al., 2014, Schäfer et al., 2016), and 

AVIRIS (Carlson et al., 2007). Gillespie et al. (2009) fused Landsat ETM+ and AIRSAR to 

map tree species diversity. 

Almost all the studies reviewed for this thematic area used the LR, with the exceptions being 

GRNN, MLPNN (Foody and Cutler, 2006), and RF (Laurin et al., 2014, Zhao et al., 2018). 

The accuracies reported in these reviewed articles for the tree species diversity mapping ranged 

from a coefficient of correlation (r) of 0.36 (Nagendra et al., 2010) to R2 of 0.85 (Carlson et 

al., 2007).  
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Table 2.3: Research carried out on tree species diversity 

Reference Country Sensor 

names 

Algorithms Area Accuracy  

(Foody and 

Cutler, 2006) 

Malaysia  Landsat TM GRNN, 

MLPNN 

300km2 r =0.69 

(Carlson et al., 

2007) 

Hawaii, USA  AVIRIS LR, MCS Not 

specified  

R2 = 0.85 

(Feilhauer and 

Schmidtlein, 

2009b) 

Kyrgyzstan ASTER DCA 90 km2 R2 = 0.61 

(Gillespie et al., 

2009) 

Panama Landsat 

ETM+,  

AIRSAR 

LR Not 

specified 

R2 = 0.51 

(Nagendra et al., 

2010) 

India IKONOS and 

Landsat 

ETM+ 

Not specified Not 

specified 

r = 0.33 

(Laurin et al., 

2014) 

Sierra Leone AISA 

EAGLE 

RF Not 

specified 

R2 = 0.84.9 

RMSE = 0.30  

(Maeda et al., 

2014) 

Kenya Landsat-5 

TM, and 

Landsat-7 

ETM+ 

LR 850 km2 R2 = 0.36 

(Schäfer et al., 

2016) 

Kenya AISA 

EAGLE 

K Means 

clustering, LR 

Not 

specified 

R2 = 0.50 

RMSE = 3   

(Zhao et al., 2018) China PHI-3, 

LiDAR 

RF Not 

specified 

R2 = 0.83, 

RMSE=0.25 

Note: AVIRIS: Airborne Visible and Infrared Imaging Spectrometer, AIRSAR: Airborne 

Synthetic Aperture Radar, MCS: Monte-Carlo Simulation, DCA: Detrended Correspondence 

Analysis (DCA), PHI: Pushbroom Hyperspectral Imager, TM: Thematic Mapper, ETM: 

Enhanced Thematic Mapper Plus, GRNN: Generalised Regression Neural Networks, MLPNN: 

Multi-layer Perceptron Neural Network, TM: Thematic Mapper. 

2.3.4 Forest cover mapping and change detection with Remote Sensing 

As presented in Table 2.4, two studies were identified in Africa, which was carried out 

specifically in Nigeria (Ochege and Okpala-Okaka, 2017) and South Africa (Gyamfi-Ampadu 

et al., 2020). The other studies were carried out one article in Southern America, Belize (Voight 

et al., 2019), and three articles in Asia, Bhutan (Bruggeman et al., 2016), and Bangladesh 

(Rahman and Sumantyo, 2010), and India (Joshi et al., 2006).  

It was observed that the Landsat ETM+ and Landsat 8 was the most used multispectral 

imageries (Bruggeman et al., 2016, Ochege and Okpala-Okaka, 2017, Voight et al., 2019, 

Gyamfi-Ampadu et al., 2020) whereas Rahman and Sumantyo (2010) applied an active sensor. 

Most of the studies under this thematic area employed the ML (Rahman and Sumantyo, 2010, 

Bruggeman et al., 2016, Ochege and Okpala-Okaka, 2017). The non-parametric statistical 

approach was adopted by Gyamfi-Ampadu et al. (2020) for forest cover mapping and change 

detection. High accuracies were reported by these studies, with the least being 83% (Rahman 
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and Sumantyo, 2010) and the highest being 97% (Ochege and Okpala-Okaka, 2017, Voight et 

al., 2019).  

Table 2.4: Forest cover mapping and change detection 

Reference Country Sensor names Algorithms Area Accuracy 

(Joshi et al., 2006) India IRS-1 C WiFS 
K-means 

clustering  

Not 

Specified 
85% 

(Rahman and 

Sumantyo, 2010) 
Bangladesh 

SIR-C, ALOS 

PALSAR 
ML   

Not 

specified  
83% 

(Bruggeman et al., 

2016) 
Bhutan Landsat ETM+ ML 

Not 

specified 
87.5% 

(Ochege and 

Okpala-Okaka, 

2017) 

Nigeria 
Landsat 7 

ETM+ 
ML 

Not 

specified 
97% 

(Voight et al., 

2019) 
Belize Landsat 8 CART 

Not 

specified 
97% 

(Gyamfi-Ampadu 

et al., 2020) 

South 

Africa 
Landsat 8 RF, SVM 2218 95% 

Note: SIR-C: Shuttle Imaging Radar-C, ALOS: Advanced Land Observation Satellite 

PALSAR, WiFS: Wide Field Scanner, ML: Maximum Likelihood, HyMap: Hyperspectral 

MAPper, CART: Classification and Regression Trees.  

 

2.4 Discussion 

Information-driven and evidence-based forest management and conservation are required to 

deal with the complex and dynamic nature of forests. Remote Sensing approaches help in 

bridging the gap between science and practice for monitoring and managing natural forests by 

providing resource information (Bustamante et al., 2016). As a means of science approaches 

meeting practical needs, monitoring outcomes must be able to inform researchers, 

policymakers, funding agencies to develop pragmatic and well-adapted conservation and 

governance initiatives and contribute to strengthening management actions and policy (Gaston 

et al., 2006, Bustamante et al., 2016).  

Our paper generally reviews studies on progress made over the last two decades on Remote 

Sensing applications to monitor tropical and subtropical natural forests. Based on the applied 

search criteria, the majority of the study was conducted in Southern America, followed by Asia, 

while the least number of the study was found in Africa. Specifically, this paper reviews 

Remote Sensing studies for aboveground biomass and carbon estimation, tree species 

identification, tree species diversity, and forest cover mapping and change detection. Questions 

such as what Remote Sensing sensor types have been used, the methodology developed, and 

the accuracy achieved is investigated. The accurate and timely estimation of AGB and AGC 

are vital for carbon accounting and climate change policy direction, support CO2 emission 

monitoring, and forest management (Asner and Mascaro, 2014).  

The outcomes of the AGB and AGC have a significant impact on local, regional and global 

climate change policies (Chave et al., 2014). Hence, natural forest AGB and AGC research 
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have increased markedly over the last few years at various levels. Asia and Latin America 

produced more research, with Africa lagging behind, which is detrimental to the execution of 

projects such as the Reduce Emissions from Deforestation and Forest Degradation (REDD+). 

Africa is one of the areas to be affected by climate changes, thus it makes it vital for accurate 

information on the AGB and AGC to support such decision making. 

Many studies accessed and used optical Remote Sensing data for AGB and AGC predictions. 

The data type ranges from low, medium to very high resolution, such as Landsat (Li et al., 

2019, Wallis et al., 2019), Sentinel 2 (Vasudeva et al., 2020), and GeoEye-1 (Wangda et al., 

2019), respectively. Recent advancements in some sensors such as the Landsat 8 have increased 

its sensitivity to vegetation (Dube and Mutanga, 2015, Roy et al., 2014), making it a suitable 

sensor for AGB and AGC estimation. The highly informative three red-edge bands included in 

the spectral bands of the Sentinel 2 increases its capabilities in carbon and biomass predictions. 

It is worth noting that the number of studies that used Landsat 8 and Sentinel 2 increased over 

time, and their wide-scale of coverage and free accessibility and affordability could be reasons 

for the increase (Dube et al., 2016). Regarding hyperspectral data, the numerous spectral bands 

provide it with many capabilities for predictions across different regions (Koch, 2010, Clark et 

al., 2011, Sarker and Nichol, 2011). Although hyperspectral data has many capabilities, it has 

a problem of saturation in dense natural forests and band redundancy that can potentially affect 

its predictive ability negatively (Anu et al., 2011, Fassnacht et al., 2014b).  

Active sensors have been extensively used for AGB and AGC estimations with the LiDAR 

being the most utilized (Sarker et al., 2013, Hernández-Stefanoni et al., 2014, Lin et al., 2016). 

This is because LiDAR data can provide tree height data for a reasonable estimation of tree 

volume and delineation of tree crowns. Hence, and its combination with regression analysis 

and machine learning techniques produces better prediction outcomes (Lin et al., 2016). The 

height and structural attributes data have the potential of supporting other data types for 

accurate estimates. In light of that, recent studies have employed the fusion of other earth 

observation data and LiDAR with the anticipation of improving results (Clark et al., 2011). A 

limitation of AGC and AGB estimation observed is the covering of between 1-15 tree by 

emergent tree species in forest ecosystems (Broadbent et al., 2008). Such trees are covered 

from the nadir of sensors and it could likely lead to incorrect and underestimation of AGC and 

AGB. Fusion methods involving LiDAR and other earth observation data could likely help to 

deal with such problems. However, the commercial nature of LiDAR and the hyperspectral 

data make them largely inaccessible and hinder their extensive use, especially in Africa (Lu et 

al., 2014a). 

The algorithms and statistical analysis employed are some of the factors that influence the 

accuracies of AGB and AGC predictions. The LR and RF algorithm remains the most 

commonly used in AGC and AGB studies (Sarker and Nichol, 2011, Mbaabu et al., 2014, 

González-Jaramillo et al., 2018). The parametric nature of LR makes it assume a normal 

distribution of data, whereas the non-parametric RF does not assume a normal distribution of 

data (Fassnacht et al., 2016). High accuracy has been seen in all the studies, and as more 

advancements are being realized in methodological approaches, accuracy will improve and 

continue to be high. More multi-temporal AGC and AGB research are recommended since they 

help to monitor changes in local carbon stock and biomass.  

Tree species identification has become necessary due to factors such as species extinction and 

invasiveness. The accurate identification of tree species is vital for forest ecosystem 

management and conservation, especially for tropical and subtropical forests that are highly 

complex and diverse (Cao et al., 2016). Moreover, it is of critical importance to the modelling 
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of tree growth (Falkowski et al., 2010), and correct estimation of biomass and tree species 

diversity mapping (Jones et al., 2010). Interestingly, Africa made much progress in identifying 

individual tree species research, which is vital for natural forest management and conservation.   

Individual tree species identification is made possible with the advancement of very high-

spatial resolution imageries and the availability of LiDAR. The spatial resolution of Remote 

Sensing imageries is key in discriminating and identifying individual tree species. In selecting 

imagery for the identification process, the optimal resolution is likely to depend on the forest 

type and the methods applied (Fassnacht et al., 2016). There is a maximization of the tree 

species discrimination when the pixel size of the utilized data gives room to depict the intrinsic 

spatial characteristics of the trees being examined (Marceau et al., 1994). Furthermore, the 

spectral properties based on which tree species identification is carried out requires adequate 

spectral dissimilarity among species (Schäfer et al., 2016). Unique spectral signatures are 

usually exhibited by tree species and are often linked to their biochemical and structural 

properties  (Asner and Martin, 2009, Asner et al., 2009). Hence, there is an increase in the 

species identification accuracy when spatial and spectral information is combined (Feret and 

Asner, 2013).  

The recent advanced development in the spatial resolution of multispectral imageries has 

helped researchers to move beyond the community-level mapping of tree species to individual 

species level mapping (Cho et al., 2015). Progress was made in the number of researches that 

employed VHR multispectral satellite imageries for individual tree species identification over 

the last decade. However, VHR satellite imageries such as the WorldView -2 and Worldview- 

3 are highly used multispectral data for this kind of research and other types such as the SkySat 

and Pleiades 1 are not making many breakthroughs in their application to tree species 

identification research despite their high spatial resolution. It is likely that they are not known, 

or little information is available on them. It would be recommended that the SkySat and 

Plaeides 1 be explored for individual tree species identification, to ascertain their capabilities 

to discriminate between tree species and produce high accuracies. 

It was observed that hyperspectral data was employed in a majority of the studies and produced 

high accuracies. It is likely to be a result of the ability of the hyperspectral data to discriminate 

among various tree species because of its numerous narrow range bands that makes them 

sensitive to trees and vegetation in general. Multispectral or hyperspectral data fusion with 

LiDAR is also one of the approaches that produced higher accuracies in tree species 

identification. This method is used due to the combined ability of the LiDAR and the 

hyperspectral data. The LiDAR can provide structural information and as identified; the 

hyperspectral data have high tree species separability abilities.  

Different kinds of machine learning were applied, and they have become the main means of 

developing models for individual tree species identification. The SVM was the most used and 

could be due to its robustness to noise, ability to deal with high dimensional data, less training 

sample requirements and fast prediction (Fassnacht et al., 2016). The non-parametric 

algorithms such as the RF and the SVM are found to perform better than parametric ones such 

as the ML (Castro-Esau et al., 2004). As such, some studies that use mixed input data variables, 

including spectral bands, vegetation indices, and texture variables, usually prefer to utilize non-

parametric algorithms (Immitzer et al., 2012). It has led to an increase in the use of non-

parametric machine learning algorithms over time. Improved computational competencies 
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enhance this trend in freely available new software like the R and Python statistical packages 

(Fassnacht et al., 2016).  

Tree species diversity mapping is also of high priority for natural forest management and 

conservation research as well as policy development (Carlson et al., 2007). Biodiversity is of 

broader sense than a count of the species present, as the species composition and their relative 

abundance are of equal importance (Purvis and Hector, 2000). These components of 

biodiversity are encompassed in the concept of tree species diversity. The monitoring and 

measuring of tree species diversity is a requirement for mitigating loss of biodiversity and 

sustainable forest management (Chrysafis et al., 2020). Liang et al. (2007) found a strong 

relationship between tree species diversity and basal area growth. It was observed to be related 

to the recruitment in stands of higher tree species diversity. Remote Sensing has become a good 

source of information on tree species diversity at the landscape level over the years. The spatial 

distribution of the community of tree species is captured through modelling and prediction with 

majority of the reviewed studies over the last two decades were conducted in Asian and African 

countries with a few in South America. 

The medium spatial resolution of the Landsat imageries can map the community of tree species 

although it cannot identify individual tree species just like other multispectral imageries. The 

Sentinel 2 was not used in any study but most recent studies including Mallinis et al. (2020) 

have shown its robustness for modelling tree species diversity. The authors of that study found 

the Sentinel 2 performing better than the RapidEye which has a higher spatial resolution. Thus, 

it is recommended that the Sentinel 2 could be utilized for tree species diversity prediction due 

to its capabilities. The utilization of hyperspectral data and data fusion methods was an 

improvement in tree species diversity prediction, which could be due to their high sensitivity 

to tree species. New generation imageries such as the Planetscope, WorldView 2, WorldView 

3, TripleSat could also be adopted for tree species diversity for various natural forests as they 

may have the capability to produce improved prediction accuracies.   

Concerning the prediction algorithms, there was not much difference in those used in other 

thematic areas mapping as the LR was much preferred. They were able to produce satisfactory 

accuracies and the preference for it could be related to their performance in many studies over 

the years. Despite the successes achieved over the years in this thematic area, most studies have 

not considered phenological stages that manifest in different seasons and how they could 

enhance the prediction of tree species diversity. Accuracies are likely to be improved through 

this means and hence it is worth considering such an approach. A limitation observed is the 

lack of information on the best season for tree species diversity in tropical or sub-tropical 

natural forests. Emerging studies may explore the identification of the best season when the 

condition of tree species captured in imageries could improve the prediction accuracies.  

Natural forest cover mapping and change detection monitoring are other thematic areas of 

research that are vital to forest management due to climate change, declining forest cover and 

increasing human population that puts pressure on forests. Mapping the extent of forests 

provides information on their status that could support decision-making and initiatives meant 

to protect and conserve the forest for the continual provision of ecosystem goods and services 

(Gyamfi-Ampadu et al., 2020). Remote Sensing mapping of forest cover is restricted to 

spatially explicit broad classes of vegetation cover but not necessarily the individual tree 

species (Gudex-Cross et al., 2017). The forest cover mapping enhances the understanding of 
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carbon sequestration and stocks, level of biodiversity, sustainability in natural resource 

utilization and global change (Reddy et al., 2015). Information from forest cover mapping 

serves as the baseline for spatio-temporal change detection analysis of forest ecosystems. 

Similarly, increasing trends in deforestation, forest degradation, and fragmentation increase 

atmospheric carbon dioxide (CO2) emissions, which contribute to climate change and global 

warming. Forest cover changes also have implications on the level of carbon stocks, 

biodiversity, and habitats (Asner, 2009). Therefore, it is important for change detection analysis 

that could help to determine the extent of change over time and mitigation initiatives that could 

be adopted. 

Researchers preferred the use of Landsat satellite imageries for both forest cover mapping and 

change detection analysis. The Landsat system has inherent uniqueness in the application to 

land cover mapping due to its longest uninterrupted Earth Observation programme and first to 

offer free global images (Woodcock et al., 2008, Wulder et al., 2016). The long history offers 

researchers the opportunity to gain vital insights on current and past change trends in land cover 

(Wulder et al., 2016). Its medium spatial and spectral resolution facilitates the detection of 

natural and anthropogenic changes at both local and regional scales (Prince et al., 2009).  

Furthermore, it has a wide swath width of 185 km which makes it a good image for landscape-

level applications (Mutanga et al., 2016).  Hence, the preference to use it may be related to 

these reasons as well as the free availability which enables financial resource-constrained 

researchers who cannot afford commercial imageries to have access to data that could enhance 

their research on forest cover mapping and change detection (Phiri and Morgenroth, 2017). 

Forest cover mapping or change detection analysis that is intended to be done within the last 

decade could explore the use of imageries like the Sentinel 2 and RapidEye as they are also 

beginning to have long and good archival imageries that can support such studies.    

Concerning the classification algorithms, the ML was applied in most of the studies and high 

accuracies were produced (Rahman and Sumantyo, 2010, Bruggeman et al., 2016, Ochege and 

Okpala-Okaka, 2017). The RF and the SVM which have proving to be robust for vegetation 

studies also produced high accuracies in other studies (Gyamfi-Ampadu et al., 2020). 

Most of the studies conducted aboveground biomass (AGB) and carbon (AGC) estimation with 

few of them considering belowground biomass and carbon. Although AGB and AGC forms 

the higher percentage of both biomass and carbon stocks, it may be worth estimating the below 

ground as well to be able to ascertain the total biomass and carbon especially for tropical and 

sub-tropical natural forest. The detrimental effects of deforestation and degradation on forest 

ecosystems to AGB and AGC as was rarely determine by researchers. Forest cover loss is on 

the rise in most tropical and sub-tropical areas and relating it to the biomass and carbon stocks 

could inform forest management and conservation measures. Spatial and temporal analysis of 

biomass and carbon studies are limited or not emphasized in studies. Such analysis is also key 

to knowing the spatial distribution of these forest attributes and at what point they change.  

Many researchers continued to use common sensors such as Worldview2 and 3 for individual 

tree species identification. It will be important for emerging studies to use sensors such SkySat 

and Plaeides 1 to be used to ascertain their performance. The effect of phenological stages on 

individual tree species identification was not made clear by researchers. Also, the maximum 

number of tree species that can be separated and identified by sensors and models is vital 

information, but it is only one study that mentions and discusses its effects. There could be data 
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saturation of variables in highly diverse forest such as tropical and sub-tropical forests which 

affect accuracies. Hence, researchers could assess this and provided information for the 

scientific communities for initiatives to be put in place in modelling.  

New generation and advanced imageries such as WorldView 2, WorldView 3, TripleSat, 

PlanetScope are yet to be fully adopted for tree species diversity prediction for tropical and 

sub-tropical natural forest ecosystems. These have high spatial resolution and could likely lead 

to higher accuracies as observed in some studies. Furthermore, researchers failed to determine 

which diversity indices would be appropriate and contribute to higher accuracies.  Information 

on this may help other researchers know which ones to apply in prediction. In order for science 

to meet the current forest management demands, forest cover mapping and change detection 

should be related to factors and drivers of forest cover losses and changes by researchers. There 

could be communities-forest proximity and population density analysis and the influences they 

have on forest cover changes. It would be a more practical way of assessing forest changes. 

Forest cover mapping could be used to improve biomass and carbon estimation. Such 

information was not made available by most researchers. Relating forest cover mapping to 

biomass and carbon stocks can help to effectively assess any stock levels and how they are 

improving or declining.  

 

2.5 Conclusion 

 Our review of progress made in Remote Sensing application to forest monitoring over the past 

two decades presented interesting observations based on the thematic areas. The natural forest 

carbon and biomass, tree species identification, tree species diversity prediction and forest 

cover mapping and change detection were observed to be key areas of Remote Sensing 

monitoring. The country of research, Remote Sensing data utilized, machine learning algorithm 

applied for the modelling, prediction and classification and the accuracy produced were all 

assessed. More research would be needed in Africa on carbon and biomass as these are directly 

related to climate change. This is because Africa has been identified as one of the zones to be 

affected most by climate change.    

Advancement was observed in the types of Remote Sensing data applied to the monitoring of 

the various thematic areas. More freely available data such as the Landsat and Sentinel 2 were 

used much in African countries where there is less research funding that is hindering the 

utilization of commercial very high resolution, hyperspectral and active data for natural forest 

monitoring research. The machine learning algorithms that were used for the classification, 

modelling and predictions contributed much to the high accuracies observed for most of the 

studies.  

The outcome of this review is of importance to Remote Sensing researchers who are 

researching tropical and sub-tropical natural forests. The research outputs can guide the 

selection of Remote Sensing data and machine learning algorithms that can enhance research 

outputs. More research is recommended in these thematic areas and other relevant ones to 

provide adequate and credible information to forest managers and ecologists towards efficient 

conservation and protection initiatives.    

 



25 
 

Acknowledgment  

The authors thank the funders of this research. 

Funding 

This work is based on the research supported wholly by the National Research Foundation 

(NRF) of South Africa (Grant Number: 132924). The funders had no role in the study design, 

analysis, decision to publish, or preparation of the manuscript. 

Conflict of Interest 

The authors declare no conflict of interest 

References 

AGRAWAL, A., CASHORE, B., HARDIN, R., SHEPHERD, G., BENSON, C. & MILLER, 

D. 2013. Economic contributions of forests. Background Paper, 1. 

ANU, S., RALPH, D., DAR, R., MICHELLE, H. & J. BRYAN, B. 2011. Mapping biomass 

and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote 

Sensing of Environment 115, 2917–2930. 

ASNER, G. P. 2009. Automated mapping of tropical deforestation and forest degradation: 

CLASlite. Journal of Applied Remote Sensing, 3. 

ASNER, G. P., HUGHES, R. F., MASCARO, J., UOWOLO, A. L., KNAPP, D. E., 

JACOBSON, J., KENNEDY-BOWDOIN, T. & CLARK, J. K. 2011. High-resolution 

carbon mapping on the million-hectare Island of Hawaii. Frontiers in Ecology and the 

Environment, 9, 434-439. 

ASNER, G. P. & MARTIN, R. E. 2009. Airborne spectranomics: mapping canopy chemical 

and taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment, 

7, 269-276. 

ASNER, G. P., MARTIN, R. E., FORD, A. J., METCALFE, D. J. & LIDDELL, M. J. 2009. 

Leaf chemical and spectral diversity in Australian tropical forests. Ecological 

applications, 19, 236-253. 

ASNER, G. P. & MASCARO, J. 2014. Mapping tropical forest carbon: Calibrating plot 

estimates to a simple LiDAR metric. Remote Sensing of Environment, 140, 614-624. 

BROADBENT, E. N., ASNER, G. P., PEÑA-CLAROS, M., PALACE, M. & SORIANO, M. 

2008. Spatial partitioning of biomass and diversity in a lowland Bolivian forest: Linking 

field and Remote Sensing measurements. Forest Ecology and Management, 255, 2602-

2616. 

BROSE, U. & HILLEBRAND, H. 2016. Biodiversity and ecosystem functioning in dynamic 

landscapes. Philos Trans R Soc Lond B Biol Sci, 371. 

BRUGGEMAN, D., MEYFROIDT, P. & LAMBIN, E. F. 2016. Forest cover changes in 

Bhutan: Revisiting the forest transition. Applied Geography, 67, 49-66. 

BUSTAMANTE, M., ROITMAN, I., AIDE, T. M., ALENCAR, A., ANDERSON, L. O., 

ARAGÃO, L., ASNER, G. P., BARLOW, J., BERENGUER, E. & CHAMBERS, J. 

2016. Toward an integrated monitoring framework to assess the effects of tropical 

forest degradation and recovery on carbon stocks and biodiversity. Global change 

biology, 22, 92-109. 



26 
 

CAO, L., COOPS, N. C., INNES, J. L., DAI, J., RUAN, H. & SHE, G. 2016. Tree species 

classification in subtropical forests using small-footprintfull-waveform LiDAR data. 

International Journal of Applied Earth Observation and Geoinformation, 49, 39–51. 

CARLSON, K. M., ASNER, G. P., HUGHES, R. F., OSTERTAG, R. & MARTIN, R. E. 2007. 

Hyperspectral Remote Sensing of Canopy Biodiversity in Hawaiian Lowland 

Rainforests. Ecosystems, 10, 536-549. 

CASTRO-ESAU, K. L., SÁNCHEZ-AZOFEIFA, G. & CAELLI, T. J. R. S. O. E. 2004. 

Discrimination of lianas and trees with leaf-level hyperspectral data. 90, 353-372. 

CHAVE, J., REJOU-MECHAIN, M., BURQUEZ, A., CHIDUMAYO, E., COLGAN, M. S., 

DELITTI, W. B., DUQUE, A., EID, T., FEARNSIDE, P. M., GOODMAN, R. C., 

HENRY, M., MARTINEZ-YRIZAR, A., MUGASHA, W. A., MULLER-LANDAU, 

H. C., MENCUCCINI, M., NELSON, B. W., NGOMANDA, A., NOGUEIRA, E. M., 

ORTIZ-MALAVASSI, E., PELISSIER, R., PLOTON, P., RYAN, C. M., 

SALDARRIAGA, J. G. & VIEILLEDENT, G. 2014. Improved allometric models to 

estimate the aboveground biomass of tropical trees. Glob Chang Biol, 20, 3177-90. 

CHEN, L., REN, C., ZHANG, B., WANG, Z. & XI, Y. 2018. Estimation of Forest Above-

Ground Biomass by Geographically Weighted Regression and Machine Learning with 

Sentinel Imagery. Forests, 9. 

CHEN, L., WANG, Y., REN, C., ZHANG, B. & WANG, Z. 2019. Optimal Combination of 

Predictors and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel 

and SRTM Data. Remote Sensing, 11. 

CHO, M. A., MALAHLELA, O. & RAMOELO, A. 2015. Assessing the utility WorldView-2 

imagery for tree species mapping in South African subtropical humid forest and the 

conservation implications: Dukuduku forest patch as case study. International Journal 

of Applied Earth Observation and Geoinformation, 38, 349-357. 

CHRYSAFIS, I., KORAKIS, G., KYRIAZOPOULOS, A. P. & MALLINIS, G. 2020. 

Predicting Tree Species Diversity Using Geodiversity and Sentinel-2 Multi-Seasonal 

Spectral Information. Sustainability, 12. 

CLARK, M., ROBERTS, D. & CLARK, D. 2005. Hyperspectral discrimination of tropical rain 

forest tree species at leaf to crown scales. Remote Sensing of Environment, 96, 375-398. 

CLARK, M. L. & ROBERTS, D. A. 2012. Species-Level Differences in Hyperspectral Metrics 

among Tropical Rainforest Trees as Determined by a Tree-Based Classifier. Remote 

Sensing, 4, 1820-1855. 

CLARK, M. L., ROBERTS, D. A., EWEL, J. J. & CLARK, D. B. 2011. Estimation of tropical 

rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors. 

Remote Sensing of Environment, 115, 2931-2942. 

DALPONTE, M., BRUZZONE, L. & GIANELLE, D. 2008. Fusion of Hyperspectral and 

LIDAR Remote Sensing Data for Classification of Complex Forest Areas. IEEE 

Transactions on Geoscience and Remote Sensing, 46, 1416-1427. 

DALPONTE, M., BRUZZONE, L. & GIANELLE, D. 2012. Tree species classification in the 

Southern Alps based on the fusion of very high geometrical resolution 

multispectral/hyperspectral images and LiDAR data. Remote Sensing of Environment, 

123, 258-270. 

DE MORAES, J. F. L., SEYLER, F., CERRI, C. C. & VOLKOFF, B. 2010. Land cover 

mapping and carbon pools estimates in Rondonia, Brazil. International Journal of 

Remote Sensing, 19, 921-934. 

DUBE, T. & MUTANGA, O. 2015. Evaluating the utility of the medium-spatial resolution 

Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni 

catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 

36-46. 



27 
 

DUBE, T., MUTANGA, O., SHOKO, C., SAMUEL, A. & BANGIRA, T. 2016. Remote 

Sensing of aboveground forest biomass: A review. Tropical Ecology, 57, 125-132. 

FALKOWSKI, M. J., HUDAK, A. T., CROOKSTON, N. L., GESSLER, P. E., UEBLER, E. 

H. & SMITH, A. M. J. C. J. O. F. R. 2010. Landscape-scale parameterization of a tree-

level forest growth model: a k-nearest neighbor imputation approach incorporating 

LiDAR data. 40, 184-199. 

FANG, F., MCNEIL, B. E., WARNER, T. A., MAXWELL, A. E., DAHLE, G. A., EUTSLER, 

E. & LI, J. 2020. Discriminating tree species at different taxonomic levels using multi-

temporal WorldView-3 imagery in Washington D.C., USA. Remote Sensing of 

Environment, 246. 

FASSNACHT, F. E., LATIFI, H., STEREŃCZAK, K., MODZELEWSKA, A., LEFSKY, M., 

WASER, L. T., STRAUB, C. & GHOSH, A. 2016. Review of studies on tree species 

classification from remotely sensed data. Remote Sensing of Environment, 186, 64-87. 

FASSNACHT, F. E., NEUMANN, C., FORSTER, M., BUDDENBAUM, H., GHOSH, A., 

CLASEN, A., JOSHI, P. K. & KOCH, B. 2014. Comparison of Feature Reduction 

Algorithms for Classifying Tree Species With Hyperspectral Data on Three Central 

European Test Sites. IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing, 7, 2547-2561. 

FEILHAUER, H. & SCHMIDTLEIN, S. 2009. Mapping continuous fields of forest alpha and 

beta diversity. Applied Vegetation Science, 12, 429-439. 

FERET, J.-B. & ASNER, G. P. 2013. Tree Species Discrimination in Tropical Forests Using 

Airborne Imaging Spectroscopy. IEEE Transactions on Geoscience and Remote 

Sensing, 51, 73-84. 

FÉRET, J.-B. & ASNER, G. P. 2012. Semi-Supervised Methods to Identify Individual Crowns 

of Lowland Tropical Canopy Species Using Imaging Spectroscopy and LiDAR. 

Remote Sensing, 4, 2457-2476. 

FERREIRA, M. P., GRONDONA, A. E. B., ROLIM, S. B. A. & SHIMABUKURO, Y. E. 

2013. Analyzing the spectral variability of tropical tree species using hyperspectral 

feature selection and leaf optical modeling. Journal of Applied Remote Sensing, 7. 

FERREIRA, M. P., WAGNER, F. H., ARAGÃO, L. E. O. C., SHIMABUKURO, Y. E. & DE 

SOUZA FILHO, C. R. 2019. Tree species classification in tropical forests using visible 

to shortwave infrared WorldView-3 images and texture analysis. ISPRS Journal of 

Photogrammetry and Remote Sensing, 149, 119-131. 

FERREIRA, M. P., ZORTEA, M., ZANOTTA, D. C., SHIMABUKURO, Y. E. & DE SOUZA 

FILHO, C. R. 2016. Mapping tree species in tropical seasonal semi-deciduous forests 

with hyperspectral and multispectral data. Remote Sensing of Environment, 179, 66-78. 

FOKENG, R. M., FORJE, W. G., MELI, V. M. & BODZEMO, B. N. 2020. Multi-Temporal 

Forest Cover Change Detection in the Metchie-Ngoum Protection Forest Reserve, West 

Region of Cameroon. The Egyptian Journal of Remote Sensing Space Science, 23, 113-

124. 

FOODY, G. M. & CUTLER, M. E. J. 2006. Mapping the species richness and composition of 

tropical forests from remotely sensed data with neural networks. Ecological Modelling, 

195, 37-42. 

FUNDISI, E., MUSAKWA, W., AHMED, F. B. & TESFAMICHAEL, S. G. 2020. Estimation 

of woody plant species diversity during a dry season in a savanna environment using 

the spectral and textural information derived from WorldView-2 imagery. PLoS One, 

15, e0234158. 

GARZON‐LOPEZ, C. X., BOHLMAN, S. A., OLFF, H. & JANSEN, P. A. 2013. Mapping 

tropical forest trees using high‐resolution aerial digital photographs. Biotropica, 45, 

308-316. 



28 
 

GASTON, K. J., CHARMAN, K., JACKSON, S. F., ARMSWORTH, P. R., BONN, A., 

BRIERS, R. A., CALLAGHAN, C. S., CATCHPOLE, R., HOPKINS, J. & KUNIN, 

W. E. 2006. The ecological effectiveness of protected areas: the United Kingdom. 

Biological Conservation, 132, 76-87. 

GHOSH, S. M. & BEHERA, M. D. 2018. Aboveground biomass estimation using multi-sensor 

data synergy and machine learning algorithms in a dense tropical forest. Applied 

Geography, 96, 29-40. 

GILLESPIE, T. W., SAATCHI, S., PAU, S., BOHLMAN, S., GIORGI, A. P. & LEWIS, S. 

2009. Towards quantifying tropical tree species richness in tropical forests. 

International Journal of Remote Sensing, 30, 1629-1634. 

GONZÁLEZ-JARAMILLO, V., FRIES, A., ZEILINGER, J., HOMEIER, J., PALADINES-

BENITEZ, J. & BENDIX, J. 2018. Estimation of Above Ground Biomass in a Tropical 

Mountain Forest in Southern Ecuador Using Airborne LiDAR Data. Remote Sensing, 

10. 

GOULSON, D. 1999. Foraging strategies of insects for gathering nectar and pollen, and 

implications for plant ecology and evolution. Perspectives in Plant Ecology, Evolution 

Systematics, 2, 185-209. 

GRABSKA, E., HOSTERT, P., PFLUGMACHER, D. & OSTAPOWICZ, K. 2019. Forest 

Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sensing, 11. 

GUDEX-CROSS, D., PONTIUS, J. & ADAMS, A. 2017. Enhanced forest cover mapping 

using spectral unmixing and object-based classification of multi-temporal Landsat 

imagery. Remote Sensing of Environment, 196, 193-204. 

GYAMFI-AMPADU, E., GEBRESLASIE, M. & MENDOZA-PONCE, A. 2020. Mapping 

natural forest cover using satellite imagery of Nkandla Forest Reserve, KwaZulu-Natal, 

South Africa. Remote Sensing Applications: Society and Environment, 18, 1-14. 

HAUTIER, Y., SEABLOOM, E. W., BORER, E. T., ADLER, P. B., HARPOLE, W. S., 

HILLEBRAND, H., LIND, E. M., MACDOUGALL, A. S., STEVENS, C. J., 

BAKKER, J. D., BUCKLEY, Y. M., CHU, C., COLLINS, S. L., DALEO, P., 

DAMSCHEN, E. I., DAVIES, K. F., FAY, P. A., FIRN, J., GRUNER, D. S., JIN, V. 

L., KLEIN, J. A., KNOPS, J. M., LA PIERRE, K. J., LI, W., MCCULLEY, R. L., 

MELBOURNE, B. A., MOORE, J. L., O'HALLORAN, L. R., PROBER, S. M., 

RISCH, A. C., SANKARAN, M., SCHUETZ, M. & HECTOR, A. 2014. 

Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 

508, 521-5. 

HERNÁNDEZ-STEFANONI, J., DUPUY, J., JOHNSON, K., BIRDSEY, R., TUN-DZUL, F., 

PEDUZZI, A., CAAMAL-SOSA, J., SÁNCHEZ-SANTOS, G. & LÓPEZ-MERLÍN, 

D. 2014. Improving Species Diversity and Biomass Estimates of Tropical Dry Forests 

Using Airborne LiDAR. Remote Sensing, 6, 4741-4763. 

HOLMGREN, J. & PERSSON, Å. 2004. Identifying species of individual trees using airborne 

laser scanner. Remote Sensing of Environment, 90, 415-423. 

IMMITZER, M., ATZBERGER, C. & KOUKAL, T. 2012. Tree Species Classification with 

Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite 

Data. Remote Sensing, 4, 2661-2693. 

JONES, T. G., COOPS, N. C. & SHARMA, T. J. R. S. O. E. 2010. Assessing the utility of 

airborne hyperspectral and LiDAR data for species distribution mapping in the coastal 

Pacific Northwest, Canada. 114, 2841-2852. 

JOSHI, P. K. K., ROY, P. S., SINGH, S., AGRAWAL, S. & YADAV, D. 2006. Vegetation 

cover mapping in India using multi-temporal IRS Wide Field Sensor (WiFS) data. 

Remote Sensing of Environment, 103, 190-202. 



29 
 

KEENAN, R. J., REAMS, G. A., ACHARD, F., DE FREITAS, J. V., GRAINGER, A. & 

LINDQUIST, E. 2015. Dynamics of global forest area: Results from the FAO Global 

Forest Resources Assessment 2015. Forest Ecology and Management, 352, 9-20. 

KHAN, I. A., KHAN, M. R., BAIG, M. H. A., HUSSAIN, Z., HAMEED, N. & KHAN, J. A. 

2020. Assessment of forest cover and carbon stock changes in sub-tropical pine forest 

of Azad Jammu & Kashmir (AJK), Pakistan using multi-temporal Landsat satellite data 

and field inventory. PLoS One, 15, e0226341. 

KOCH, B. 2010. Status and future of laser scanning, synthetic aperture radar and hyperspectral 

Remote Sensing data for forest biomass assessment. ISPRS Journal of Photogrammetry 

and Remote Sensing, 65, 581-590. 

LAURIN, G. V., PULETTI, N., HAWTHORNE, W., LIESENBERG, V., CORONA, P., 

DARIO PAPALE, D., CHEN, Q. & VALENTINI, R. 2016. Discrimination of tropical 

forest types, dominant species and mapping function guilds by hyperspectral and 

sumulated Senitnel 2. Remote Sensing of the Environment, 164-176. 

LAURIN, V. G., CHEUNG-WAI CHAN, J., CHEN, Q., LINDSELL, J. A., COOMES, D. A., 

GUERRIERO, L., DEL FRATE, F., MIGLIETTA, F. & VALENTINI, R. 2014. 

Biodiversity mapping in a tropical West African forest with airborne hyperspectral data. 

PLoS One, 9, e97910. 

LI, LI, LI & LIU 2019. Influence of Variable Selection and Forest Type on Forest Aboveground 

Biomass Estimation Using Machine Learning Algorithms. Forests, 10. 

LIANG, J., BUONGIORNO, J., MONSERUD, R. A., KRUGER, E. L. & ZHOU, M. 2007. 

Effects of diversity of tree species and size on forest basal area growth, recruitment, 

and mortality. Forest Ecology and Management, 243, 116-127. 

LIN, C., POPESCU, S. C., THOMSON, G., TSOGT, K. & CHANG, C. I. 2015. Classification 

of Tree Species in Overstorey Canopy of Subtropical Forest Using QuickBird Images. 

PLoS One, 10, e0125554. 

LIN, C., THOMSON, G. & POPESCU, S. 2016. An IPCC-Compliant Technique for Forest 

Carbon Stock Assessment Using Airborne LiDAR-Derived Tree Metrics and 

Competition Index. Remote Sensing, 8. 

LU, D., CHEN, Q., WANG, G., LIU, L., LI, G. & MORAN, E. 2014. A survey of Remote 

Sensing-based aboveground biomass estimation methods in forest ecosystems. 

International Journal of Digital Earth, 9, 63-105. 

MACDICKEN, K. G. 2015. Global Forest Resources Assessment 2015: What, why and how? 

Forest Ecology and Management, 352, 3-8. 

MAEDA, E. E., HEISKANEN, J., THIJS, K. W. & PELLIKKA, P. K. E. 2014. Season-

dependence of Remote Sensing indicators of tree species diversity. Remote Sensing 

Letters, 5, 404-412. 

MALHI, Y., ADU-BREDU, S., ASARE, R. A., LEWIS, S. L. & MAYAUX, P. 2013. African 

rainforests: past, present and future. Philosophical Transactions of the Royal Society B, 

368, 20120312. 

MALLINIS, G., CHRYSAFIS, I., KORAKIS, G., PANA, E. & KYRIAZOPOULOS, A. P. 

2020. A Random Forest Modelling Procedure for a Multi-Sensor Assessment of Tree 

Species Diversity. Remote Sensing, 12. 

MARCEAU, D. J., GRATTON, D. J., FOURNIER, R. A. & FORTIN, J.-P. 1994. Remote 

Sensing and the measurement of geographical entities in a forested environment. 2. The 

optimal spatial resolution. Remote Sensing of Environment, 49, 105-117. 

MARGONO, B. A., POTAPOV, P. V., TURUBANOVA, S., STOLLE, F. & HANSEN, M. C. 

2014. Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change, 

4, 730-735. 



30 
 

MARTINEZ DEL CASTILLO, E., GARCÍA-MARTIN, A., LONGARES ALADRÉN, L. A. 

& DE LUIS, M. 2015. Evaluation of forest cover change using Remote Sensing 

techniques and landscape metrics in Moncayo Natural Park (Spain). Applied 

Geography, 62, 247-255. 

MAYAUX, P., HOLMGREN, P., ACHARD, F., EVA, H., STIBIG, H. J. & BRANTHOMME, 

A. 2005. Tropical forest cover change in the 1990s and options for future monitoring. 

Philos Trans R Soc Lond B Biol Sci, 360, 373-84. 

MAYAUX, P., PEKEL, J.-F., B, D. E., DONNAY, F., LUPI, A., ACHARD, F., CLERICI, M., 

BODART, C., BRINK, A., NASI, R. & BELWARD, A. 2013. State and Evolution of 

the African rainforests between 1990 and 2010. Phil Trans R Soc B. 

MAYNARD, K. & ROYER, J.-F. 2004. Sensitivity of a general circulation model to land 

surface parameters in African tropical deforestation experiments. Climate Dynamics, 

22, 555-572. 

MBAABU, P. R., HUSSIN, Y. A., WEIR, M. & GILANI, H. 2014. Quantification of carbon 

stock to understand two different forest management regiems in Kayar Khola 

Watershed Nepal. Indian Society of Remote Sensing 42, 745–754. 

MIURA, S., AMACHER, M., HOFER, T., SAN-MIGUEL-AYANZ, J., ERNAWATI & 

THACKWAY, R. 2015. Protective functions and ecosystem services of global forests 

in the past quarter-century. Forest Ecology and Management, 352, 35-46. 

MUTANGA, O., DUBE, T. & AHMED, F. 2016. Progress in Remote Sensing: vegetation 

monitoring in South Africa. South African Geographical Journal, 98, 461-471. 

NAGENDRA, H., ROCCHINI, D., GHATE, R., SHARMA, B. & PAREETH, S. 2010. 

Assessing Plant Diversity in a Dry Tropical Forest: Comparing the Utility of Landsat 

and Ikonos Satellite Images. Remote Sensing, 2, 478-496. 

OCHEGE, U. F. & OKPALA-OKAKA, C. 2017. RS of vegetation cover changes in the humid 

tropical rainforests of Southeastern Nigeria 1984 2014. Cogent Geoscience, 3. 

OMER, G., MUTANGA, O., ABDEL-RAHMAN, E. M. & ADAM, E. 2015. Performance of 

Support Vector Machines and Artificial Neural Network for Mapping Endangered Tree 

Species Using WorldView-2 Data in Dukuduku Forest, South Africa. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 8, 4825-4840. 

PAN, Y., BIRDSEY, R. A., FANG, J., HOUGHTON, R., KAUPPI, P. E., KURZ, W. A., 

PHILLIPS, O. L., SHVIDENKO, A., LEWIS, S. L. & CANADELL, J. G. 2011. A large 

and persistent carbon sink in the world’s forests. Science, 1201609. 

PANDEY, P. C., SRIVASTAVA, P. K., CHETRI, T., CHOUDHARY, B. K. & KUMAR, P. 

2019. Forest biomass estimation using Remote Sensing and field inventory: a case study 

of Tripura, India. Environ Monit Assess, 191, 593. 

PANDIT, S., TSUYUKI, S. & DUBE, T. 2018a. Estimating Above-Ground Biomass in Sub-

Tropical Buffer Zone Community Forests, Nepal, Using Sentinel 2 Data. Remote 

Sensing, 10. 

PANDIT, S., TSUYUKI, S. & DUBE, T. 2018b. Landscape-Scale Aboveground Biomass 

Estimation in Buffer Zone Community Forests of Central Nepal: Coupling In Situ 

Measurements with Landsat 8 Satellite Data. Remote Sensing, 10. 

PHIRI, D. & MORGENROTH, J. 2017. Developments in Landsat land cover classification 

methods: A review. Remote Sensing, 9, 967. 

PRINCE, S., BECKER-RESHEF, I. & RISHMAWI, K. 2009. Detection and mapping of long-

term land degradation using local net production scaling: Application to Zimbabwe. 

Remote Sensing of Environment, 113, 1046-1057. 

PURVIS, A. & HECTOR, A. 2000. Getting the measure of biodiversity. Nature, 405, 212-219. 

QIN, Y., XIAO, X., DONG, J., ZHANG, G., SHIMADA, M., LIU, J., LI, C., KOU, W. & 

MOORE, B. 2015. Forest cover maps of China in 2010 from multiple approaches and 



31 
 

data sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS Journal of 

Photogrammetry and Remote Sensing, 109, 1-16. 

RAHMAN, M. M. & SUMANTYO, J. T. S. 2010. Mapping tropical forest cover and 

deforestation using synthetic aperture radar (SAR) images. Applied Geomatics, 2, 113-

121. 

RANAGALAGE, M., WANG, R., GUNARATHNA, M. H. J. P., DISSANAYAKE, D. M. S. 

L. B., MURAYAMA, Y. & SIMWANDA, M. 2019. Spatial Forecasting of the 

Landscape in Rapidly Urbanizing Hill Stations of South Asia: A Case Study of Nuwara 

Eliya, Sri Lanka (1996–2037). Remote Sensing, 11. 

REDDY, C. S., JHA, C. S., DIWAKAR, P. G. & DADHWAL, V. K. 2015. Nationwide 

classification of forest types of India using Remote Sensing and GIS. Environ Monit 

Assess, 187, 777. 

ROY, D. P., WULDER, M. A., LOVELAND, T. R., C.E, W., ALLEN, R. G., ANDERSON, 

M. C., HELDER, D., IRONS, J. R., JOHNSON, D. M., KENNEDY, R., SCAMBOS, 

T. A., SCHAAF, C. B., SCHOTT, J. R., SHENG, Y., VERMOTE, E. F., BELWARD, 

A. S., BINDSCHADLER, R., COHEN, W. B., GAO, F., HIPPLE, J. D., HOSTERT, 

P., HUNTINGTON, J., JUSTICE, C. O., KILIC, A., KOVALSKYY, V., LEE, Z. P., 

LYMBURNER, L., MASEK, J. G., MCCORKEL, J., SHUAI, Y., TREZZA, R., 

VOGELMANN, J., WYNNE, R. H. & ZHU, Z. 2014. Landsat-8: Science and product 

vision for terrestrial global change research. Remote Sensing of Environment, 145, 154-

172. 

RUIZ-BENITO, P., GÓMEZ-APARICIO, L., PAQUETTE, A., MESSIER, C., KATTGE, J. 

& ZAVALA, M. A. 2014. Diversity increases carbon storage and tree productivity in 

Spanish forests. Global Ecology and Biogeography, 23, 311-322. 

SAATCHI, S. S., HARRIS, N. L., BROWN, S., LEFSKY, M., MITCHARD, E. T., SALAS, 

W., ZUTTA, B. R., BUERMANN, W., LEWIS, S. L. & HAGEN, S. 2011. Benchmark 

map of forest carbon stocks in tropical regions across three continents. Proceedings of 

the National Academy of Sciences, 108, 9899-9904. 

SARKER, L. R. & NICHOL, J. E. 2011. Improved forest biomass estimates using ALOS 

AVNIR-2 texture indices. Remote Sensing of Environment, 115, 968-977. 

SARKER, M. L. R., NICHOL, J., IZ, H. B., AHMAD, B. B. & RAHMAN, A. A. 2013. Forest 

Biomass Estimation Using Texture Measurements of High-Resolution Dual-

Polarization C-Band SAR Data. IEEE Transactions on Geoscience and Remote 

Sensing, 51, 3371-3384. 

SCHÄFER, E., HEISKANEN, J., HEIKINHEIMO, V. & PELLIKKA, P. 2016. Mapping tree 

species diversity of a tropical montane forest by unsupervised clustering of airborne 

imaging spectroscopy data. Ecological Indicators, 64, 49-58. 

SOLAR, R. R. D. C., BARLOW, J., FERREIRA, J., BERENGUER, E., LEES, A. C., 

THOMSON, J. R., LOUZADA, J., MAUÉS, M., MOURA, N. G. & OLIVEIRA, V. H. 

2015. How pervasive is biotic homogenization in human‐modified tropical forest 

landscapes? Ecology Letters, 18, 1108-1118. 

SOMERS, B. & ASNER, G. P. 2014. Tree species mapping in tropical forests using multi-

temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis. 

International Journal of Applied Earth Observation and Geoinformation, 31, 57-66. 

VAN DEVENTER, H., CHO, M. A. & MUTANGA, O. 2017. Improving the classification of 

six evergreen subtropical tree species with multi-season data from leaf spectra 

simulated to WorldView-2 and RapidEye. International Journal of Remote Sensing, 38, 

4804-4830. 

VASUDEVA, V., NANDY, S., PADALIA, H., SRINET, R. & CHAUHAN, P. 2020. Mapping 

spatial variability of foliar nitrogen and carbon in Indian tropical moist decidous forest 



32 
 

using sentinel data. INTERNATIONAL JOURNAL OF REMOTE SENSING, 42 1139–

1159. 

VOIGHT, C., HERNANDEZ-AGUILAR, K., GARCIA, C. & GUTIERREZ, S. 2019. 

Predictive Modeling of Future Forest Cover Change Patterns in Southern Belize. 

Remote Sensing, 11. 

WAGNER, F. H., FERREIRA, M. P., SANCHEZ, A., HIRYE, M. C. M., ZORTEA, M., 

GLOOR, E., PHILLIPS, O. L., DE SOUZA FILHO, C. R., SHIMABUKURO, Y. E. & 

ARAGÃO, L. E. O. C. 2018. Individual tree crown delineation in a highly diverse 

tropical forest using very high resolution satellite images. ISPRS Journal of 

Photogrammetry and Remote Sensing, 145, 362-377. 

WALLIS, C. I. B., HOMEIER, J., PEÑAC, J., BRANDL, R., FARWIG, N. & BENDIX, J. 

2019. Modeling tropical montane forest biomass, productivity and canopy traits with 

multispectral Remote Sensing data. Remote Sensing of Environment, 77–92. 

WANG, S. & LOREAU, M. 2016. Biodiversity and ecosystem stability across scales in 

metacommunities. Ecol Lett, 19, 510-8. 

WANGDA, P., HUSSIN, Y. A., BRONSVELD, M. C. & KARNA, Y. K. 2019. Species 

stratification and upscaling of forestCarbon estimates to landscape scale using GeoEye 

Nepal. International Journal of Remote Sensing, 40, 7941-7965. 

WOODCOCK, C. E., ALLEN, R., ANDERSON, M., BELWARD, A., BINDSCHADLER, R., 

COHEN, W., GAO, F., GOWARD, S. N., HELDER, D. & HELMER, E. 2008. Free 

access to Landsat imagery. Science, 320. 

WULDER, M. A., WHITE, J. C., LOVELAND, T. R., WOODCOCK, C. E., BELWARD, A. 

S., COHEN, W. B., FOSNIGHT, E. A., SHAW, J., MASEK, J. G. & ROY, D. P. 2016. 

The global Landsat archive: Status, consolidation, and direction. Remote Sensing of 

Environment, 185, 271-283. 

ZHANG, J., RIVARD, B., SÁNCHEZ-AZOFEIFA, A. & CASTRO-ESAU, K. 2006. Intra- 

and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: 

Implications for species identification using HYDICE imagery. Remote Sensing of 

Environment, 105, 129-141. 

ZHANG, M., DU, H., ZHOU, G., LI, X., MAO, F., DONG, L., ZHENG, J., LIU, H., HUANG, 

Z. & HE, S. 2019. Estimating Forest Aboveground Carbon Storage in Hang-Jia-Hu 

Using Landsat TM/OLI Data and Random Forest Model. Forests, 10. 

ZHAO, Y., ZENG, Y., ZHENG, Z., DONG, W., ZHAO, D., WU, B. & ZHAO, Q. 2018. Forest 

species diversity mapping using airborne LiDAR and hyperspectral data in a 

subtropical forest in China. Remote Sensing of Environment, 213, 104-114. 

 

 

 

 

 

 

 

 

 



33 
 

CHAPTER 3. MAPPING NATURAL FOREST COVER USING SATELLITE 

IMAGERY OF NKANDLA FOREST RESERVE, KWAZULU-NATAL, SOUTH 

AFRICA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

Abstract 

Natural forest ecosystems are vital environmental resources that provide multiple benefits to 

society, making it imperative to be monitored and mapped for practical management purposes. 

Satellite Remote Sensing technology is a new source of data and information for forest 

management and conservation. This study, therefore, applied Support Vector Machine (SVM) 

and Random Forest (RF) algorithms to Landsat 8 image for mapping a natural forest in South 

Africa. The objectives were to classify the forest into specific thematic cover classes that 

indicate its condition, compare the classification performance of the two algorithms based on 

their default parameters, and determine the most important variables that contributed to the 

mapping accuracy. The closed canopy forest was determined as the dominant thematic class, 

followed in descending order by the open canopy forest, grassland, and bare sites. Both 

algorithms obtained high classification accuracies of above 95%, although the SVM was 

slightly superior to the RF. The McNemer test indicated that the difference in performance 

between the two algorithms was statistically insignificant. The most important variables that 

contributed to the accuracy were the red, blue, green, Near Infrared and Short-Wave Infrared 

bands, which is attributed to their sensitivity to vegetation. The information provided through 

the study can be utilized for the planning, management and prioritization initiatives aimed at 

the protection and conservation of the forest reserve and similar forest ecosystems. The 

mapping approach could be used for other natural forest ecosystems to ascertain the spatial 

coverage of the specific thematic cover for conservation purposes. The SVM is recommended 

for forest ecosystem mapping as it optimally utilized the capabilities of the spectral bands that 

reflect their actual importance in the mapping of each cover class. The bands identified as 

important variables can be incorporated as part of input variables when using Landsat 8 satellite 

imagery for natural forest mapping. 

Keywords: Forest ecosystem, Remote Sensing, Support Vector Machine, Random Forest, 

Mapping, Conservation. 

 

3.1. Introduction 

Natural forest ecosystems are a key resource serving a multitude of functions in the provision 

of goods and services (Cardinale et al., 2012, Gilroy et al., 2014, Lohbeck et al., 2016, Pedro 

et al., 2015) which contributes immensely to the wellbeing of society. These include the 

provision of habitat for wildlife species and maintenance of biodiversity, amelioration of local 

climate, carbon sequestration, provision of aesthetic values, protection of watersheds as well 

serving as a source of food, medicine, timber, and non-timber forest products [NTFPs] (Miura 

et al., 2015, Jucker et al., 2016, Mori et al., 2017, Jactel et al., 2017). These multiple benefits 

can be sustained when forests are intact and undisturbed. However, forest ecosystems are 

threatened by deforestation and degradation over time mainly due to human activities (Nkonya 

et al., 2016).  

Forest cover mapping and monitoring are therefore essential to provide adequate data and 

information on the status and condition of the forest to assist in planning and initiatives geared 
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towards sustainable forest management. Some of this information might include the spatial 

coverage and scale (Chen and Bradshaw, 1999), functional composition (Laurin et al., 2016b), 

afforestation and deforestation rates (Hirose et al., 2016, Omruuzun et al., 2015), forest types 

and successional stages (Laurin et al., 2013), and tree species information (Immitzer et al., 

2012). The generation of such data and information on natural forest ecosystems is vital as they 

could be proxy or input data for carbon stock estimation (Nogueira et al., 2015), forest species 

distribution modelling (Foody et al., 2003), forest cover change detection and ecosystem 

services assessment (Balthazar et al., 2015).  

Requisite forest cover information can be obtained by either traditional inventory or Remote 

Sensing approaches. However, traditional methods are time-consuming and may cover only a 

small extent of the area. Remote Sensing methods, on the other hand, cover large areas (Turner 

et al., 2003, Turner, 2014, Skidmore and Pettorelli, 2015, Jetz et al., 2016), provides cost-

effective temporal data (Wulder et al., 2004, dBozkaya et al., 2015) and able to measure and 

estimate the richness and distribution for forests (Rocchini et al., 2005, He et al., 2011, 

Pettorelli et al., 2014). Furthermore, the data and information generated could easily be 

updated, transferred and shared. These make Remote Sensing approaches have an advantage 

over the traditional methods and hence its adoption for obtaining and providing data and 

information for sustainable forest management.  

Remote Sensing hyperspectral or multispectral data are adopted for the classification and 

prediction of forest conditions and attributes. Hyperspectral sensors produce a high amount of 

spectral information from land surface objects due to their numerous narrow spectral bands 

(Dalponte et al., 2008). This enables them to produce high accuracies as demonstrated by some 

studies. For instance, Petropoulos et al. (2012) employed the Hyperion hyperspectral imagery 

to optimally map land cover using the support vector machine (SVM) and object-oriented 

method. In other studies, Luo et al. (2015) fused Light Detection and Ranging (LiDAR) and 

Compact Airborne Stereographic Imager (CASI) to map land cover classification. It proved 

useful as the height and ground-based information contributed to obtaining high accuracy. The 

SVM outperformed the maximum likelihood algorithm (ML) when they were applied to the 

fused data. Ghamisi et al. (2015) similarly fused LiDAR and AISA Eagle data and LiDAR and 

Airborne Laser Mapper (ALS) data for mapping land cover in two different regions. This also 

yielded high accuracy while the RF outperformed the SVM when applied to the data. 

Multispectral satellite data are alternative to hyperspectral data as they are also capable of 

mapping land cover classes accurately. For instance, in a comparative study, Jia et al. (2014) 

employed Landsat 8 and Landsat 7 data sets and SVM and ML algorithms for land cover 

mapping using a texture-based approach. Landsat 8 was more capable in the mapping process 

due to its high spectral and spatial resolution while the SVM also proved superior to the ML. 

Another comprehensive comparison was carried out by applying object and pixel-based 

classification approach and ML, SVM, k-Nearest Neighbour (KNN), Feature Analyst (FA) and 

Spectral Mixture Analysis (SMA) algorithms to Landsat 8 and Landsat 5 (Poursanidis et al., 

2015). The study found the pixel based SVM and the Landsat 8 to have produced a more 

accurate land cover map due to the ability of the SVM to utilize the pixels and the resolution 

of the Landsat 8, respectively.  
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In other land cover mapping, the multitemporal and angular MODIS data was found to be more 

efficient in estimating tree cover extent as compared to nadir-view multispectral data 

(Heiskanen and Kivinen, 2008). The potential of Multispectral Airborne Laser Scanning 

(MALS) which provides 3D point clouds have also been assessed for land cover mapping 

(Matikainen et al., 2017). It turned out that the MALS was optimal in mapping both ground 

level and elevated classes and was indicated to have the potential to undertake automated land-

use change detection. Over the years, other multispectral data such as IKONOS (Kim et al., 

2011), SPOT (Lobo et al., 2010), RapidEye (Adam et al., 2014b) have equally demonstrated 

to be good data types that could be utilized for both local and regional land cover mapping. 

Prediction of forest attributes has also been undertaken using both hyperspectral and 

multispectral data. Hyperspectral data have been used for predicting tree species (Clark and 

Roberts, 2012, Dalponte et al., 2013, Feret and Asner, 2013, Ghosh et al., 2014) and they were 

more efficient in identifying individual species as well as discriminating variations among 

species of similar spectral characteristics. This was attributed to its numerous spectral bands 

allowing for identification of minimal variation among spectral attributes of species. Advanced 

multispectral satellite data with improved spectral resolution have also been used in predicting 

species diversity and richness (Gillespie et al., 2009, Nagendra et al., 2010, Omer et al., 2015, 

Sheeren et al., 2016). All these data types have contributed to enhancing the understanding of 

forest and environmental systems for sustainable management. 

It is acknowledged that in land cover and landscape mapping, the accuracy is not based on the 

use of the right data or image alone, but is equally dependent on the classification algorithm 

(Lu and Weng, 2007). In view of that, machine learning algorithms have hence been employed 

by Remote Sensing researchers and scientists for land cover mapping in recent years (Thanh 

Noi and Kappas, 2017). These algorithms are non-parametric, which do not assume normality 

in data distribution and are effective and efficient in terms of process time and have the ability 

to produce high accuracies than parametric algorithms (Fassnacht et al., 2016). The algorithm 

learns the characteristics of the object through the training samples and uses it to identify the 

characteristics of the unclassified data (Belgiu and Drăguţ, 2016).  

The RF (Breiman, 2001) and the SVM (Vapnik, 1995) have been two top machine learning 

algorithms applied to the hyperspectral and multispectral data for spatial and spectral analysis. 

The use and popularity of RF and SVM have increased significantly among the other non-

parametric algorithms (Adam et al., 2014b, Thanh Noi and Kappas, 2017) mainly due to their 

superiority in handling complex Remote Sensing data. Apart from already mentioned research, 

other studies involving forest and other landscapes classification that have employed the RF 

(Rodriguez-Galiano et al., 2012, Stefanski et al., 2013, Nitze et al., 2015, Tsutsumida and 

Comber, 2015, Ahmed et al., 2015) and the SVM (Petropoulos et al., 2012, Paneque-Gálvez et 

al., 2013, Singh et al., 2013) affirms their capabilities. They are mostly used either together for 

comparative studies or on a single basis for mapping purposes.  

Our study set out to use Landsat 8 satellite image for mapping the natural forest cover of the 

Nkandla Forest Reserve in KwaZulu-Natal, South Africa with the RF and SVM algorithms. 

The objectives of the study are hence to; i) map the thematic cover classes of Nkandla Forest 

Reserve with the SVM and RF algorithms, ii) assess the performances of the RF and SVM 
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algorithms, and iii) determine the important Landsat 8 bands valuable for accurate forest cover 

mapping. The study was necessitated because there is no quantitative information that provide 

details on the land use land cover classes of the Nkandla Forest Reserve. It important to indicate 

that the performance of Landsat 8 imagery and the RF and SVM algorithm has been provided 

in many studies. That notwithstanding, their performances could be influenced by the type of 

forest, the modelling approach and the expertise of the researcher in their application. 

Therefore, it is vital that further studies are carried out in different forest types and good 

modelling approach utilised to ascertain their performances. Hence, the need for our study to 

be conducted to assess the performance of the Landsat 8 as well as the RF and SVM algorithms 

for the sub-tropical Afromontane forest. With regards to the choice of study area, the Nkandla 

Forest Reserve was used for the study due to its unique attribute as an Afromontane natural 

forest. Furthermore, it is among the limited natural forests coverage in South Africa and 

information on its land use land cover (LULC) is non-existent. Thus, the outcome of our study 

will provide information to forest managers and policymakers for the management and 

prioritization of initiatives aimed at conserving the forest in the wake of increasing climate 

change and habitat degradation. It is also expected that findings could contribute to the 

knowledge base on Landsat 8 spectral bands and the two machine learning algorithms to 

enhance their use in other studies. 

3.2 Materials and Methods  

3.1 Study Area 

The Nkandla Forest Reserve is a natural forest of unique attributes and among the limited 

natural forest ecosystems in South Africa (Figure 3.1). It is an Afromontane Sub-tropical forest 

in the KwaZulu-Natal Province and located on latitude 28° 43' 50.88" S and longitude 30° 7' 

9.84" E. It has a temperate, subtropical climate with the highest average temperature of 27°C 

in December and January and the lowest average of 2°C in the winter months of June and July 

(Ezemvelo KZN Wildlife, 2015a). The topography is generally steep and undulating, with an 

altitude extending up to about 1300 m. The South African Government notice of 1st March 

1918 established it as a forest reserve with an estimated area of about 2218 ha. It was re-

proclaimed as a forest reserve and gazetted under the KwaZulu Government Conservation Act 

1992. The forest is of socio-cultural importance to the fringing communities and it is formally 

managed under a semi-protected management system. Surrounding communities are allowed 

to obtain non-timber forest products (NTFPs) and domestic animals including cattle are 

allowed into the reserve to graze. The reserve has recorded some invasive plants and trees such 

as bugweed (Solanum mauritianum), American bramble (Rubus cuneifolius), Mauritius thorn 

(Caesalpinia decaptala), Australian blackwood (Acacia melanoxylon) and Gum tree 

(Eucalyptus spp). The patches of grassland are found mostly on and along hills with some 

patches found between areas of forest tree cover. Also, certain boundaries are surrounded by 

grassland which experiences frequent fires. The fringing and adjacent communities are fast 

expanding and transforming due to developmental activities, plantation development, and crop 

and animal farming. There is a single asphalted road that runs through the forest reserve linking 
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the communities. There is also office space and staff residences that cover some portions of the 

reserve area. 

 

 

Figure 3.1: Map of the study area. Note: A is the Landsat 8 satellite image of the Nkandla 

Forest Reserve, and B is a map of South Africa indicating the location of the study area. 

3.2 Definition of forest cover classes 

Four thematic cover classes were defined as deemed relevant to study the condition of the 

Nkandla Forest Reserve. The classes are closed canopy forest, open canopy forest, grassland, 

and bare site areas (Table 3.1). With regards to the determining the four thematic classes, a 

reconnaissance survey was carried out in the forest to have an overview of the thematic cover 

classes before the actual data collection was undertaking. This served as basis for the land use 

land cover classification.  
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Table 3.1: Definition of thematic cover classes used in the study  

Forest class Code Definition 

Closed canopy 

forest 

CCF This forest class has a canopy of trees touching each other 

and forming a continuous canopy layer (70% to 100%) that 

does not allow much sunlight onto the forest floor. It has 

low vegetation on the forest floor, and visibility under the 

canopy could be up to about 20 m and beyond. 

Open canopy 

forest 

OCF This forest class does not have a continuous formation of 

the canopy (30% to70%). It has gaps in the crown of trees 

and allows much sunlight onto the forest floor. This area 

has much growth of seedlings, saplings, herbaceous plants, 

shrubs, and weeds. Visibility under the canopy could be 

less than 20 m. 

Grassland GL This class is characterized by the continuous growth of 

grass and herbaceous layer. 

Bare sites BS This class comprises sites within the forest that do not have 

vegetation cover at all. 

 

3.3 Data Used  

The Remote Sensing and the field data used for the study have been described below. 

3.3.1 Remote Sensing data acquisition and prepossessing 

A Landsat 8 satellite imagery was used for the study. The recently launched Landsat 8 sensor 

is among satellites providing multispectral images that are used for different forest and land 

cover classification (Poursanidis et al., 2015, Fassnacht et al., 2015, Sothe et al., 2017, Chen et 

al., 2017, Pastor-Guzman et al., 2015). The Landsat 8 multispectral images have improved 

radiometric sensitivity (overall noise reduction) which enhances the characterization of forest 

conditions as well as the refined spectral range of bands including the near-infrared (NIR) that 

are vital for improved spectral response to vegetation  (Pahlevan et al., 2014, El-Askary et al., 

2014). Furthermore, it has improved signal to noise ratio (SNR) and increased spectral record 

precision resulting from the increased sensor-dwell time at each ground pixel  (Jia et al., 2014, 

Irons et al., 2012).  

A cloud-free image captured on 8th May 2019 was downloaded from the United States 

Geological Survey (USGS) website. The date of the image was chosen to closely follow the 

time of field data collection as discussed in the section below. The image was atmospherically 

and geometrically corrected. Eight spectral bands of the image were then selected based on 

their spatial resolution and used as input variables for the classification algorithms. The 

selected bands were Coastal aerosol (Band 1), Blue (Band 2), Green (Band 3), Red (Band 5), 
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Near infra-red (Band 5), Short Wave infra-red 1 (Band 6), Short wave infra-red 2 (Band 7) and 

Cirrus (Band 9).  

3.3.2 Reference data collection and processing 

Ground-based field techniques were used in collecting reference data sets (Lowry et al., 2007) 

for developing and validating the mapping model. It was based on predefined thematic cover 

classes and done in a manner that is representative of each cover class of the forest reserve 

(Foody, 2004, Foody and Mathur, 2004). The fieldwork was conducted from 22nd April 2019 

to 7th May 2019 where reference points were collected through a random data collection 

approach. Collecting randomly placed reference data across a study area for each thematic 

cover helps to avoid opportunistic biased classification (Hammond and Verbyla, 1996, Friedl 

et al., 2000, Zhen et al., 2013). Furthermore, this approach was used because apart from the 

grassland areas and the bare sites which could be clearly identified from afar, that of the closed 

and open canopy forest covers cannot be determined as such. A minimum area of 25m2 and an 

ocular estimation of site composition and structural parameters were hence used to determine 

which area falls under each class especially for the closed and open canopy forest covers when 

they were opportunistically encountered. This was done through traversing along transects 

across the forest into the different areas in the middle, north, south east and western parts.  

Global Position System (GPS) points were recorded for a class when it met the minimum area 

(25m2), site composition and structural parameters. The number of points collected at a site 

was dependent on the extent of a cover class. More than one point was recorded for a cover 

class within a site that had wide coverage to ensure that it is well delineated in the mapping 

process. The number of points to be collected for each cover class was however not 

predetermined which gives reasons for the differences in the number of points for each of them. 

The points were superimposed on the satellite image and random-sized polygons were digitized 

around them on a class-by-class basis in the ArcMap 10.6.1 mapping environment. The satellite 

image and the cover class reference polygons were then imported into the R statistical package 

(Team, 2017). The pixel values of the cover class reference polygons were extracted and 

subsequently divided into a training data set (70%) and independent validation data set (30%) 

[Table 3.2] for each cover class using a randomized approach. The SVM and RF algorithms 

were trained using the training data set, while the accuracy assessment was done using the 

independent validation data set. 
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Table 3.2: Training and validation data sets used in the study. 

Thematic 

cover 

category 

Reference 

points 

No. of 

Polygons 

Training 

set 

pixels 

Validation 

set pixels 

No. of pixels 

Closed 

canopy forest 

93 63 160 69 229 

Open canopy 

forest 

81 76 120 45 165 

Grassland 78 69 108 43 151 

Bare sites 49 20 20 11 31 

Total 301 228 408 168 576 

 

3.4 Image classification  

The pixel-based approach was used for the classification of the thematic cover classes. These 

processes were carried out in the R statistical package environment (Team, 2017) with the RF 

and SVM algorithms. The design mechanism of the RF and SVM algorithms, as well as the 

packages (libraries) and functions used for each in the classification, have been detailed below. 

3.4.1 Random Forest 

The RF is an ensemble classifier that makes provision for growing a large number of trees after 

which the class is determined through a vote for the most popular class (Breiman, 2001). The 

RF uses the bagging approach where trees are created from a subset of the training dataset 

through a replacement process. The bagging ensemble approach has been demonstrated to 

achieve higher accuracy than single tree classifiers such as the Decision Tree (DT) and is stable 

and not sensitive to noise in the training data or overtraining (Briem et al., 2002, DeFries and 

Chan, 2000, Pal and Mather, 2003, Chan and Paelinckx, 2008).  

In the process, about two-thirds of the sample data are used to train the classifier as a training 

or calibration set. The other one third, which is called the out-of-bag (OOB) set that was not 

part of the training set are reserved and used for internal cross-validation that provides an 

estimate on the performance of the RF model (Breiman, 2001). It is considered to be an 

unbiased estimation of the generalization error, which is contributed by the proportion between 

the misclassification and the total number of OOB elements. The RF does not overfit the data 

(Rodríguez-Galiano et al., 2011) because as the number of trees increases, the generalization 

error of a forest converges (Breiman, 2001). Furthermore, the generalization error generated 

depends on the strength of every single tree and the correlation between them.  

The RF classifier uses two development parameters known as the Ntree and the Mtry, which 

are used when building the model for the classification. The Ntree is the number of decision 

trees while the Mtry is the number of variables selected and tested for the best split when 

growing the trees. The Ntree value could be set as large as possible, and this will not result in 
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overfitting of the data (Kulkarni and Sinha, 2012, Ghosh and Joshi, 2014). Several used 500 

Ntree value since it is the default number (Belgiu and Drăguţ, 2016) and also probably because 

there is a stabilization of the errors even before this number of classification trees is achieved 

(Lawrence et al., 2006).  Several studies have indicated that the use of the default value 

produced satisfactory results (Duro et al., 2012, Immitzer et al., 2012, Zhang and Roy, 2017). 

Breiman (2001), mentions that increasing the number of trees than the required number might 

not be essential, although it does not affect the model. Feng et al. (2015) also stated that with 

an Ntree value of 200, the model could achieve accurate results.  Concerning the Mtry, the 

default value, which is the square root of the number of input variables is used by many studies 

(Gislason et al., 2006, Duro et al., 2012). The total number of variables could be used (Ghosh 

and Joshi, 2014), but it may increase the computational time (Belgiu and Drăguţ, 2016) when 

building the model.   

Furthermore, the RF provides a function to determine the important variable that contributed 

most to the classification accuracy. The important variable can be determined either by the 

Mean Decrease Accuracy (MDA) or the Mean Decreased Gini [(MDG] (Breiman, 2001, Liaw 

and Wiener, 2002).  The MDA presents an estimate of accuracy by quantifying the degree to 

which an input variable in the model provides a decreased mean squared error. The MDG, on 

the other hand, is an impurity metric (Belgiu and Drăguţ, 2016), which measures the node 

impurity or the degree to which an input variable produces a terminal node in the forest from 

the classification trees (Ahmed et al., 2015). The MDG could be indicated to be the variable 

that provides the best split at the node of trees in the forest created for the classification. 

In the R package, the “caret” package (library) was used alongside the “rf” function in the 

model building and prediction (classification). The 70% training data set of each of the thematic 

cover classes (Table 3.1) was used to train and build the model. The input variables for the 

model were the eight selected spectral bands. The default Ntree and Mtry values were used in 

the modeling. No model tuning was therefore done during modeling as means of a possible 

means of comparing the performance RF algorithm with SVM using the default parameters. 

The model was then applied to the Landsat 8 image of the forest to complete the classification. 

The variable importance function of the RF was employed to determine and rank the general 

most important variables that contributed to the classification accuracy. Furthermore, each 

variable was analyzed on a class-by-class basis to evaluate their contribution to the 

classification of the specific thematic cover classes.  

3.4.2 Support Vector Machine 

The SVM algorithm undertakes classification using a statistical learning theory (Vapnik, 1995, 

Fauvel et al., 2006, Licciardi et al., 2009). The classifier is trained to find an optimal hyperplane 

through the minimization of the upper bound of the classification error (Cortes and Vapnik, 

1995). The SVM was initially developed as a binary classifier that was meant to separate only 

two classes (Huang et al., 2002). In that process, the classifier finds a separating hyperplane 

that will best separate two classes in a multidimensional feature space, hence the hyperplane is 

the decision-making surface upon which the class separation takes place (Petropoulos et al., 

2012). The decision boundary selected will be the one that leaves the greatest distance between 
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the hyperplane and the closest vector of the two classes (Vapnik, 1995). The closest data points 

to the hyperplane are termed as ‘support vectors’ as they are used in measuring the margin. The 

number of support vectors is consequently small (Vapnik, 1995). This applies generally to 

linearly separable data and so the linear function is use for the classification. 

However, there are multiclass data such as remotely sensed data (e.g. multispectral satellite 

images), which may be difficult to separate using normal linear separable SVMs. This is 

because such data points or types overlap with each other and hence linear separable decision 

boundaries may not provide high accuracy (Mountrakis et al., 2011). As a means to classify 

such non-linear data types, a set of new SVM kernels has been developed including the radial 

basis function (RBF), polynomial and sigmoid have been developed (Fauvel et al., 2006). 

Among these, the RBF and the polynomial kernels are mostly used for remotely sensed data 

(Huang et al., 2002, Oommen et al., 2008). In such multiclass data, the SVM classifiers use a 

one-against-one (pairwise) or one-against-all classification approach, where the correct class 

is determined following a voting mechanism (Karatzoglou et al., 2006, Mazzoni et al., 2007, 

Ghosh and Joshi, 2014). Two parameters normally tuned during model building are the cost of 

constraints violation (C) and sigma (σ). The C parameter accounts for the overfitting of the 

model while the σ parameter controls the shape of the hyperplane (Ghosh et al., 2014).  

In this study, the radial based function SVM (RBF-SVM) kernel is subsequently used for the 

classification of the forest cover classes. At the modeling stage, the “caret” package provides 

an estimate that is appropriate for the σ parameter using the “sigest” function based on the 

training data (Ghosh et al., 2014). The “caret” package in the R statistical package. The 

“svmRadial” function was for the RBF-SVM (subsequently called SVM). The model training 

and building approach employed for the RF was used for SVM. The modeling and 

classifications for SVM algorithms were done using the default parameters for the purpose of 

comparison. No model tuning was carried out in the model building. In a similar fashion to the 

RF, each variable was analyzed on how they contributed to the mapping of the specific thematic 

cover classes.  

3.4.3 Accuracy Assessment  

Generally, the accuracy of land cover mapping is assessed by the degree to which the 

classification agrees with the validation reference data (Zhen et al., 2013). The training set used 

for the classification must be statistically independent of the validation set (Hammond and 

Verbyla, 1996) for credibility purposes. The 30% independent validation data that was set aside 

from the total reference data (Table 3.2) was used for the accuracy assessment for the thematic 

cover mapping by the SVM and RF algorithms. The accuracy assessment was conducted 

through the computation of accuracy estimates of the confusion matrix for each classifier, 

including the overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA) and 

kappa coefficient. The overall accuracy is a division of the total correctly classified pixels (the 

diagonal number in the confusion matrix) by the total pixels in the confusion matrix 

(Congalton, 1991, Congalton, 2001). The producer’s accuracy is obtained by dividing the total 

correctly classified pixels in a category by the total number of pixels in that category (column 

numbers in the confusion matrix) and is known as the omission error. It indicates how an area 
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is well classified. On the other hand, the user’s accuracy is a division of the total correctly 

classified pixels in a category by the total number of classified pixels (row numbers in the 

confusion matrix) and known as commission error (Congalton, 1991, Congalton, 2001). It is 

indicative of the probability that a classified pixel in an image represents the actual category 

on the ground (Story and Congalton, 1986). The kappa coefficient measures the difference of 

the agreement between reference data and the algorithm employed for the classification against 

the likelihood of agreement between the reference data and a random algorithm (Adam et al., 

2014b). 

As a means of testing the difference in the performance of the RF and SVM classifiers, 

McNemar’s test which judges the significant difference between two proportions (McNemar, 

1947, de Leeuw et al., 2006, Petropoulos et al., 2012) was performed. It is a non-parametric 

test that is based on the confusion matrices of different classifiers using 2 by 2 dimensions 

(Foody, 2004). The 2 by 2 dimension used eliminates the constraints of large size matrices as 

they converted to that dimension with a focus on the binary distinction between correctly and 

misclassified classes (Foody, 2004). As indicated by Foody (2004) and de Leeuw et al. (2006), 

it is based on a standardized normal test static which is expressed as;   
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,
f f
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f f

−
=

+
      (1) 

 

where f12 is the total number of pixels that were misclassified by the first algorithm but 

correctly classified by the second algorithm, while f21 is the total number of pixels that were 

correctly classified by the first algorithm but misclassified by the second algorithm (Manandhar 

et al., 2009, Adam et al., 2014b). Using the 5% level of significance (p ≤ 0.05), the difference 

in accuracies of the confusion matrices of the two classifiers will be statistically significant if 

the Z value is greater than 1.96 (Congalton and Mead, 1983). 

 

3.5 Results 

3.5.1 Spatial extent of forest thematic cover 

The SVM and the RF produced different spatial extents for each of the thematic classes with 

some differences being wide and others minimal (Table 3.3 and Figure 3.2). The SVM 

classified the closed canopy forest as the most dominant cover class with a spatial extent of 

1059.23 ha while the bare site which the least dominant with a coverage of 20.97 ha. The open 

canopy forest and the grassland cover types were the second and third dominant cover with 

910.60 ha and 226.55ha respectively. Contrary to the outcome of the SVM algorithm, the RF 

determined the open canopy forest as the most dominant class with an estimated coverage of 
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1195.45 ha while the closed canopy forest was determined as the second dominant with total 

coverage of 741.17 ha. The spatial extent of the grassland and the bare site was estimated to be 

264.32 ha and 16.42 ha.  

Both algorithms determined a similar geographic location for each of the thematic cover classes 

with the only differences being in the extent of each specific thematic cover. Most of the closed 

canopy forest is distributed in the middle of the forest and towards the north, south, 

southwestern and northeastern sections of the forest reserve. The open canopy forest lies in the 

northeastern, southeastern and southwestern parts of the reserve while small patches of open 

canopy forest are found in the middle site of the reserve. The grassland is mostly distributed in 

patches at the northeastern, northwestern and southeastern boundaries of the reserve. The bare 

sites are also clustered around the southeastern, northeastern boundaries and some dotted 

around the southwestern boundary. Most of the bare sites are found within the grassland areas. 

Table 3.3: Spatial coverage of each thematic cover classes produced by the SVM and RF 

Algorithms. 

Thematic 

cover/classes 
Code 

SVM RF 

Area 

(Ha) 

Percentage 

cover (%) 

Area 

(Ha) 

Percentage 

cover (%) 

Open canopy forest OCF 910.60 41.07 1195.45 53.91 

Closed canopy forest CCF 1059.23 47.77 741.17 33.43 

Grassland GL 226.55 10.22 264.32 11.92 

Bare sites BS 20.97 0.94 16.42 0.74 

Total Area  2217.36 100 2217.36 100 
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Figure 3.2: Thematic map of the Nkandla Forest Reserve. A is map produce by the SVM 

algorithm and B is a map produced by the RF algorithm. 
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3.5.2 Comparison of RF and SVM mapping accuracy 

The classification performance of the SVM and RF algorithms was evaluated using the 

independent validation data set. The confusion matrices of the SVM and the RF (Table 3.4) 

provide details on the estimates of the user’s accuracy and producer’s accuracy for each 

thematic cover class as well as the overall accuracy and kappa coefficient. The SVM recorded 

a slightly higher overall accuracy of 95.83% and a kappa coefficient of 0.94 than the RF which 

had an overall accuracy of 95.24% with a kappa coefficient of 0.93. 

The SVM produced higher estimates for almost all the producer’s accuracies than RF of the 

thematic cover classes. It was only in the producer’s accuracy of the open canopy forest where 

the RF had a higher estimate than the SVM. Both algorithms recorded the highest producer’s 

accuracy for the closed canopy forest with estimates of 100% for the SVM and 98.55% for the 

RF. Similarly, they also recorded the lowest for the bare site with SVM obtaining 81.81% and 

the RF obtaining 72.72%. The SVM again had higher estimates in the user’s accuracy than the 

RF except for that of the closed canopy forest where the RF outperformed the SVM. Both 

recorded the highest values for the open canopy forest and the lowest values for the bare sites.  

Table 3.4: Confusion Matrix for SVM and RF indicating the Overall Accuracy (OA), 

Producer’s Accuracy (PA), User’s Accuracy (UA) and kappa coefficient 

SVM RF 

 
Reference data 

 
Reference data 

BS CCF GL OCF Row 

total 

UA 

(%) 

 
BS CCF GL OCF Row 

total 

UA 

(%) 

Classified 

data 

BS 9 0 2 0 11 81.81 BS 8 0 2 0 10 80.00 

CCF 0 69 0 3 72 95.83 CCF 0 68 0 2 70 97.14 

GL 2 0 41 0 43 95.35 GL 3 0 41 0 44 93.18 

OCF 0 0 0 42 42 100 OCF 0 1 0 43 44 97.73 

Column 

total 

11 69 43 45 168 
 

Column 

total 

11 69 43 45 168 
 

PA 

(%) 

81.81 100 95.35 93.33 
  

PA 

(%) 

72.72 98.55 93.35 95.56 
  

OA 95.83 
     

OA 95.24 
     

Kappa 0.94 
     

Kappa 0.93 
     

 

Further in this study, the McNemar test was conducted to compare the difference between the 

RF and SVM algorithm in relation to the accuracy parameters in the confusion matrices. As 

illustrated in Table 3.5, the two algorithms agreed on 161 pixels out the 168 pixels, with 157 

correctly classified (bottom right) and 4 pixels misclassified (top left) by both algorithms. The 
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SVM and RF, however, disagreed on 7 pixels out of the 168 pixels. SVM correctly classified 

4 pixels that were misclassified by RF (bottom left), while RF correctly classified 3 pixels, 

which were misclassified by SVM (top right). The McNemar test produced a Z-value of 0.37 

corresponding to a P-value of 1.0 at a 5% significance level. The values obtained indicate that 

there is no significant difference in accuracy between the SVM and the RF algorithms.  

Table 3.5: McNemar’s test results for comparison of Random Forest (RF) and Support Vector 

Machine (SVM) Algorithms.  
 

RF 

 

 

SVM 

 Misclassified Correctly classified Total 

Misclassified 4 3 7 

Correctly classified 4 157 161 

Total 

Z – value 

8 

0.377 

160 168 

 

 

3.5.3 General Variable Importance of Landsat 8 bands   

The important variables that contributed most to the overall accuracy of the classification were 

determined and evaluated based on the Mean Decrease Accuracy (MDA) of the RF. On the 

overall (general) scale, the red band (B4) was determined as the most important variable while 

Cirrus (B9) was the least important variable (Figure 3.3). All the visible ranges of bands, that 

are red (B4), green (B3) and blue (B2), together with the near-infrared (NIR) and shortwave 

infrared 1 (SWIR 1) were ranked among the first five that contributed much to the accurate 

classification. Although the B9 was determined to be the least important variable, dropping it 

in the subsequent iteration in the modelling process did not change the initial accuracy obtained 

or the order of importance for the rest of the seven bands. 
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Figure 3.3: General variable importance ranking of the Landsat 8 bands using the MDA. The 

bands B1(Coastal aerosol), B2 (Blue), B3 (Green), B4 (Red), B5 (Near infra-red), B6 (Short 

Wave infra-red 1), B7 (Short wave infra-red 2) and B9 (Cirrus) are normal numbering order. 

3.5.4 Class by class variable importance 

The contribution of each spectral band to the mapping of each thematic cover class was 

determined for both the SVM and the RF algorithms. Under the SVM, all the spectral bands 

recorded 100% importance in the mapping of the bare sites (X1), closed canopy forest (X2) 

and the grassland (X3) except for the NIR and Cirrus (Figure 3.4). In the case of the open 

canopy (X4), it was the coastal aerosol, red, green and blue bands that had 100% importance 

value. Relatively lower importance values were however obtained by the NIR (61.60%), SWIR 

1 (70.27%) and SWIR 2 (99.78%) for the open canopy. The Cirrus did not have any 

contribution to the mapping of the open canopy forest as it had a 0% importance value. The 

specific thematic cover class variable importance measure for the SVM algorithm was much 

uniform with fewer variations in values. 
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Figure 3.4: Thematic class-specific variable importance ranking of the Landsat 8 spectral bands 

by the SVM algorithm. The bands B1(Coastal aerosol), B2 (Blue), B3 (Green), B4 (Red), B5 

(Near infra-red), B6 (Short Wave infra-red 1), B7 (Short wave infra-red 2) and B9 (Cirrus) are 

ranked based on their importance value in mapping the classes. 

 

There were however many variations in the importance values among the spectral bands for 

each of the thematic cover classes by the RF (Figure 3.5).  For the bare site (1), the coastal 

aerosol was the most important band with an importance value of 83.19% while the blue and 

red bands were the second and third with values of 68.21% and 49.64% respectively. The SWIR 

1, however, had a 0% contribution, while the green, SWIR 2, cirrus and NIR bands contributed 

different degrees although equal to or below 40%. The three most important bands to the closed 

canopy forest (2) were the visible range bands, with the green (62.45%), blue (62.02%) and red 

(60.59%) appearing in descending order. The other bands had an importance value of below 

50% with the least important being the cirrus. All the bands displayed improved importance in 

the mapping of the grassland cover (3). The most important was the SWIR 1 with 100% value 

followed by the red band with 92% value. The rest of the bands had importance values between 

50% and 80% except for the coastal aerosol and 9 which had values below 40%. It is only in 

this class that band 9 could achieve a value slightly above 20%. Similarly, to the closed canopy 

forest, the bands in the visible range were important with the red, green and blue appearing in 

descending order obtaining values of 81.74%, 56.51%, and 56.20% respectively. The other 

bands obtained an importance of below 40% in mapping the thematic cover class.  
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Figure 3.5: Thematic class-specific variable importance ranking of the Landsat 8 bands by the 

RF algorithm. The bands B1(Coastal aerosol), B2 (Blue), B3 (Green), B4 (Red), B5 (Near 

infra-red), B6 (Short Wave infra-red 1), B7 (Short wave infra-red 2) and B9 (Cirrus) are ranked 

based on their importance value in mapping the classes. 

 

3.6 Discussion 

The mapping of the Nkandla Forest Reserve through the application of SVM and RF algorithms 

to Landsat 8 satellite imagery facilitated a provision of an understanding of the forest cover 

status, the extent of each thematic class for management and conservation purposes. A process 

that also contributes to deepening the knowledge in the application use of the algorithms and 

their inherent capabilities as well as an overview of how each band contributed to the mapping 

specific thematic forest cover class.  

The SVM and RF algorithms utilized the pixel values of the training sites from the Landsat 8 

data to define and delineate the four important natural forest cover classes. The closed canopy 

forest was identified to be the dominant forest cover. Spatially, it covers about 47.76% of the 

forest reserve area with its areas of distribution and geographic locations clearly identified. The 

closed canopy forest is characterized by an unbroken or continuous layer of the tree canopy 

and have less sunlight reaching the forest floor (Arihafa and Mack, 2013) as compared to the 
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open canopy forests. As a result, regeneration may be less induced in such portions of forest 

ecosystems (Yamamoto, 2000). However, such areas are still able to sequester carbon and serve 

as carbon sinks (Kline et al., 2016) and thus play a major role in climate change mitigation 

(Köhl et al., 2015). For a continual realization of such benefits, forest managers will have to 

ensure that there are no disturbances in locations where they are distributed, especially negative 

human interventions. 

The open canopy forest was the second dominant forest class covering about 41.07% of the 

forest and distributed around and within the closed canopy forest. This area is characterized by 

broken canopy or gaps which might have resulted from past forest disturbance caused by 

human interventions such as the felling of trees or natural occurrences such as tree falls. The 

gaps allow sunlight to get to the forest floor (Marthews et al., 2008) that initiates a number of 

ecological and biological activities that are not common in areas without gaps (Sanford et al., 

1986). These include variations in carbon and nutrient cycles (Feeley et al., 2007), alteration 

in competition for sun among species (Rüger et al., 2009) and variations in microclimate 

(Marthews et al., 2008). These gaps, however, may be critical for enhanced regeneration 

through the advanced growth of tree seeds from the soil seed banks (Sanford et al., 1986, 

Yamamoto, 2000). These ecological processes could account for the observed regeneration of 

tree seedlings within the gaps in these portions of the forest. The regeneration process could 

enhance the productive and protective functions of the forests because of the continuous 

biological and ecological process. For instance, these areas of active tree regrowth and 

regeneration may result in increased carbon sequestration through the accumulation of biomass 

(Feeley et al., 2007), which are mainly stored in above-ground and below-ground biomass 

(Vicharnakorn et al., 2014). This process enhances the contribution of the forest in climate 

change mitigation and amelioration of the local climate.  

It must, however, be indicated that as a result of the gaps, the species composition of the forest 

could be altered due to variation in individual species shade tolerance capacity (de Römer et 

al., 2007, Tanaka et al., 2008). Moreover, there could be increased growth in lianas and 

climbing trees, which can increase competition for space and nutrients with regenerating trees 

(Toledo‐Aceves and Swaine, 2008). The lianas and climbers could cause over shading and high 

tree mortality, and eventually lead to reduced forest biomass and carbon sequestration (Körner, 

2004, Granados and Körner, 2002). Furthermore, the canopy gaps could lead to the growth of 

tickets and other invasion species (Baret et al., 2008) that can colonize the gaps. This is 

ascertained in the observed presence of such climbers, lianas, thorns, and thickets found in the 

open canopy area of the forest. Therefore, it will be worth it for forest management to pay close 

attention to the open canopy areas and have strategies to mitigate the negative effects while 

facilitating forest regeneration to restore the area into a closed canopy forest.  

The grassland, which is the third dominant thematic cover in the forest reserve area has no tree 

cover and a total spatial extent of about 10.22%. This might have been caused by frequent fires 

especially around and along the forest boundaries. The presence of no trees might have been 

caused by the presence of rocks or impervious layers underneath the soil that cannot support 

tree growth. In addition, the thick growth of grass may suppress the growth of any tree seed 

dispersed by wind to that location. Another reason could be a result of browsing by grazing 
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cattle in the forest reserve area. The grasses could be fuel for wildfire (Cheney and Gould, 

1995, Snyder et al., 2006, Davies et al., 2015), and hence effective fire management initiatives 

are required to prevent such occurrences. Furthermore, the grasslands could be a source of 

weeds and alien herbaceous species (Chambers et al., 2007, Davies et al., 2011a), which could 

possibly colonize or spread into the open and closed canopy forest areas. This is evident in the 

presence of bugweed (Solanum mauritianum) commonly spotted in certain portions of the 

forest especially around the western part of the forest reserve. There is also the presence of 

Australian blackwood (Acacia melanoxylon) which is capable of taking over grassland areas. 

The invasive weeds and plants may hence alter the natural ecosystem and ecological process 

of the forest and possibly limits its functional ability in the course of time. Efforts must hence 

be in place by forest managers to monitor and control the spread of grassland, weed, or alien 

species in these areas clearly mapped and delineated. Notwithstanding these possible threats, 

the covering of the soil by grassland may be vital in preventing soil erosion and soil loss in 

those portions of the forest reserve.  

The bare sites constitute the least dominant area, which covers 0.7% of the total area and has 

no vegetation cover. It includes areas developed into offices, accommodation, road network 

and sites with exposed soil. Areas with no vegetation that have bare soils are prone to soil 

erosion (Keesstra et al., 2016) and soil loss (Labrière et al., 2015). Although it has the smallest 

spatial cover as compared to the other cover types, conservation managers could still put in 

efforts to promote tree growth if only they are not rocky sites or covered with impervious 

layers. Soil erosion and soil loss must be monitored in such areas to prevent possible 

detrimental effects to adjacent cover types. It will be important for management to reduce the 

development of permanent infrastructure in the forest as it also contributes to the loss of tree 

cover and interferences with natural systems.  

The mapping process which has clearly delineated the various thematic forest cover classes, 

their distribution and spatial extent will serve as important information to forest managers to 

where to implement conservation management strategies.  

On evaluating the performance of the algorithms, the SVM was slightly superior in the mapping 

of the natural forest cover by producing high accuracies than the RF. This was evident in the 

estimates obtained for the overall, producer’s and user’s accuracies as well as the kappa 

coefficient where some differences were observed. Furtherance to evaluating their 

performance, the McNemar test (McNemar, 1947, Foody, 2004, de Leeuw et al., 2006) 

revealed that the difference between mapping accuracies of the SVM and the RF was 

statistically insignificant. This is in line with Adam et al. (2014b) who also had the SVM 

producing a slightly higher accuracy than the RF but the difference was statistically 

insignificant. It is important to note that the two algorithms were applied using their default 

design parameters with no tuning undertaken. Their ability to produce high accuracies above 

95% could, therefore, be attributed to their inherent design capabilities (Fassnacht et al., 2016, 

Thanh Noi and Kappas, 2017). This is evident in studies that found the SVM (Petropoulos et 

al., 2012, Paneque-Gálvez et al., 2013) the RF (Yin et al., 2017, Matasci et al., 2018, Pelletier 

et al., 2016) to have demonstrated much robustness in forest cover and other land cover 

classification and mapping. 
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The general variable importance variable evaluated using the MDA of RF algorithm, enabled 

the study to provide an overview of the importance of each of the Landsat 8 bands (input 

variables) used in the mapping of the forest cover. The red band was determined to be the most 

important band in the mapping and contributed much to the accuracy with the second most 

important being the green band. The three other bands which add up to form the top five were 

the SWIR 1, the blue and the NIR. Their determination as the top five bands, especially the 

visible bands and the NIR could be attributed to their sensitivity to vegetation and making them 

useful for vegetation mapping (Dube and Mutanga, 2015, Li et al., 2013, Roy et al., 2014, Xu 

et al., 2018). This is evidently and practically affirmed as the forest reserve has a substantial 

vegetation cover above 99% (open canopy, closed canopy, and grassland area) as determined 

by the algorithms. El-Askary et al. (2014) and Pahlevan et al. (2014) further indicated that the 

Landsat 8 has more refined spectral bands that makes them important in characterizing forest 

conditions. This information is vital since it will provide insight into the bands that could be 

incorporated into input variables of the Landsat 8 satellite for mapping natural forest 

ecosystems. Knowing the important variable will enhance feature selection, which has been 

indicated as a valuable technique that contributes to reducing redundancy, enhancing 

computation and improving classification accuracy (Pal and Foody, 2010, Onojeghuo and 

Blackburn, 2011, Millard and Richardson, 2013, Nitze et al., 2015). 

The evaluation of the spectral bands on how each contributed to the mapping of the specific 

thematic cover class provided an in-depth knowledge of their importance to the classes. It 

demonstrates their sensitivity to each cover class which may have a direct influence on the 

accuracy obtained as shown in the producer’s and user’s accuracies. It must, however, be 

acknowledged that the performance or importance of the spectral bands may not be mutually 

exclusive of the algorithm that is used based on the findings of this study. The algorithm could 

influence how the spectral bands perform and the level of importance it might have in the 

classification or mapping of cover classes. For instance, the spectral bands had importance 

values of above 90% to 100% in almost all the classes under the SVM algorithm mapping 

except for cirrus which had very low value. The outcome of the class-specific importance for 

the SVM algorithm, therefore, may be a true reflection of the inherent design capabilities of 

the individual Landsat 8 bands in detecting land surface cover objects such as vegetation. This 

is because the NIR band is designed to be sensitive to growing vegetation like forest while the 

SWIR bands are sensitive to land surfaces with exposed soils (Li et al., 2013). These bands 

were among those that had very high importance values in the mapping of the closed and open 

canopy forest as well as the bare sites. This is contrary to that of the RF algorithm, where the 

level of importance obtained for the NIR and SWIR bands was very low, with many differences 

and somehow not reflecting their true design capabilities. This was the same for all the other 

bands except for the grassland cover where the SWIR1 had 100% and the red band had 92%. 

The SVM may hence be recommended for use in similar studies involving natural forest 

ecosystem mapping based on the outcomes of this study. This is because it optimally utilized 

the spectral bands in a way that reflects their actual importance and design capabilities in 

specific thematic forest cover mapping. This outcome is vital as it could inform the selection 

of features, algorithms and the application of machine learning methods in forest cover 

mapping.  
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3.7 Conclusions 

Natural forest ecosystems are an important resource that produces ecosystem goods and 

services beneficial to the wellbeing of society. The Nkandla Forest Reserve is among the 

natural forests in South Africa that contribute to the provision of such services. Remote Sensing 

forest cover mapping information outputs are necessary to inform and assist in forest 

management planning. The use of Landsat 8 satellite imagery to map the thematic cover classes 

proved useful. The thematic cover mapping was made possible by the SVM and the RF 

algorithms, however, the SVM was slightly superior to the RF considering all the accuracy 

parameters. The McNermer test further revealed that the difference between the accuracies of 

the two algorithms is statistically insignificant. The obtaining of high accuracies by the two 

algorithms even under default conditions may indicate that their internal design parameter 

makes them much more robust for forest cover mapping based on the outcomes of this study. 

However, the SVM may be recommended for forest ecosystem mapping involving the use of 

the Landsat 8 satellite image as it optimally utilized the spectral bands in a manner that 

demonstrates their design capabilities in mapping specific cover classes.  

Generally, the three visible range bands, the SWIR 1 and the NIR were the top five important 

variables of Landsat 8 that contributed to accurate classifications. This is attributed to their 

sensitivity to vegetation and hence these bands could be incorporated into bands selected for 

forest cover classification. The detailed spatial information provided through the forest cover 

mapping could be vital to forest managers in prioritization and prescribing interventions such 

as enhanced natural regeneration reforestation, fire management, carbon stock assessments and 

other conservation initiatives for the forest. Moreover, the data and information could be 

assessed and integrated into the national database of forest ecosystems for effective planning 

on issues such as climate change mitigation by policymakers and other relevant stakeholders.  
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Abstract 

Forest cover change analyses have an essential role in forest management. Thus, this study 

adopted Landsat satellite imageries to assess the decadal spatiotemporal forest cover changes 

that occurred between 1989 and 2019 and predicted the 2029 land cover distribution of the 

Nkandla Forest Reserve, facing encroachment threats. The support vector machine algorithm 

and Land Change Modelling were utilized to classify and detect changes that occurred between 

1989-1999, 1999-2009, 2009-2019. The Markov Chain Model and Multi-Layer Perceptron 

were adopted for future land cover prediction. Consistent changes through inter-transitioning 

between the land cover types (closed canopy forest, open canopy forest, grassland, and bare 

sites) were detected. The closed canopy forest increased from 883.46 ha to 1059.23 ha, whereas 

the open canopy forest declined from 1091.89 ha to 910.60 ha between 1989 and 2019. 

Generally, the observed changes were caused by ecological processes and human disturbances. 

The future cover prediction indicated that the closed canopy forest will decline between 2019 

and 2029, whereas the open canopy forest, grassland, and bare sites will increase. The 

information provided through this study will support the management of the Nkandla forest to 

ensure its continual supply of ecosystem services of national and global importance.  

Keywords: Natural Forest, Remote Sensing, Change Detection, Sustainable, Support Vector, 

Modelling. 

 

4.1 Introduction 

Natural forest ecosystems contribute significantly to the maintenance of biodiversity (Arroyo-

Rodriguez et al., 2020, Boedhihartono, 2017, Kumar et al., 2019) and the provision of other 

ecosystem services such as mitigation of climate change (Gilroy et al., 2014, Lohbeck et al., 

2015). Natural forests also have social and cultural benefits (Agrawal et al., 2013, Ahammad 

et al., 2019), such as traditional medicines (Tugume et al., 2016) which are important for 

societal wellbeing. The forest species, density, and spatial extent are vital in ensuring the 

provision of these services. These characteristics are determined by the ecological and 

biological process and interdependence that takes place within the natural forest ecosystem.  

In many places, natural forests are changing and dwindling due to deforestation, degradation, 

and fragmentation. Anthropogenic factors such as deforestation and natural elements such as 

regeneration, insect attack, and tree mortality are among the major causes of forest cover 

changes (Gómez et al., 2016, Ngwira and Watanabe, 2019, Barlow et al., 2016). Natural forest 

cover changes have severe implications on biodiversity richness, habitat conservation, carbon 

sequestration and storage, climate change regulation, soil conservation, water supplies, and 

other ecosystem services (Reddy et al., 2018, Zhu et al., 2018, Chaudhary et al., 2016, Sharma 

et al., 2019). Thus, forest cover change detection and future forest cover prediction studies 

using Remote Sensing technologies are essential for providing information that supports 

effective forest management strategies to ensure these benefits are sustained.   

Many studies have utilized Remote Sensing imagery for change detection and forecasting of 

future forest cover distribution. This is because Remote Sensing imagery covers a large area, 

it is cost-effective (Khatami et al., 2016), and serves as a source of spatial data for undertaking 

forest cover change detection (Hansen and Loveland, 2012, Vittek et al., 2014, Rawat and 
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Kumar, 2015). Land cover change detection methods are a highly variable and evolving area 

of application (Tewkesbury et al., 2015, Wessels et al., 2016). User discretion is usually 

employed in selecting the best change detection approach (Tewkesbury et al., 2015), as there 

are no universal methods for such assessments. However, the methods adopted could be 

dependent on the Remote Sensing data available, the topography of the study area, and the 

scope of the study (Lu et al., 2014b). Hence, most studies develop a hybrid methodological 

approach for the change detection operation. Supervised and unsupervised image classification, 

Markov Chain and Cellular Automata models, Multi-Layer Perceptron Neural Networks, and 

image differencing are among the approaches mostly used in forest cover change detection and 

forecasting.  

Da Ponte et al. (2017) conducted a forest cover loss analysis for the Paraguay Atlantic forest 

from 2003 to 2013 using 15 image scenes of Landsat Enhanced Thematic Mapper (ETM) and 

the Landsat 8. The landcover classification based on which the change detection was conducted 

had overall accuracies ranging from 81% to 95% and kappa coefficient ranging from 0.62 to 

0.90. The study found that a total of 6000 km2 forest was lost between 2003 and 2013 from a 

total forest area of 33, 000 km2. This was found to be caused by the clearing of land for 

mechanized agriculture land use systems and has left most areas with fragmented landscapes. 

The situation has compromised the integrity of the forest and affected its functionality. Mihai 

et al. (2017) also carried out a study in the Iezer Mountains of Romania to detect total forest 

cover change that occurred between 2002 and 2015. The Remote Sensing data used were the 

Landsat ETM, Landsat 8 and Sentinel 2. The Maximum Likelihood algorithm was used for the 

image classification of seven land cover classes in the forest and the overall accuracies ranged 

higher than 91% while the kappa coefficient was above 0.90. The image differencing technique 

was used for the change detection and it was discovered that a total of 6100 ha was lost between 

2002 and 2015. This area of forest was converted to pasture and barren land. In another study, 

a multi-temporal change detection analysis was undertaken to identify forest cover losses that 

took place between 1984 and 2015. Through a post image classification analysis, it was 

observed that the year 2000 had the most change with 1431.6 ha of forest land converted to oil 

palm plantations, built-up area and human settlements. However, there was a slight increase of 

about 2.59% for the primary forest and 5.06 for the secondary forest between 2000 and 2015. 

This increase was a positive trend and maintenance of such phenomenon, could improve forest 

cover.   

In Mexico, Vázquez-Quintero et al. (2016) developed a hybrid methodological approach that 

incorporated a Maximum likelihood supervised classification with Markov Chain and Cellular 

Automation model approach in classifying two main forest types (Pine and Oak forests) for 

change detection and future cover prediction for 2028. This was carried out using archival 

Landsat images which were Multispectral Scanner (MSS) of 1973, Thematic Mapper (TM) of 

1990, and Landsat 8 of 2014. The land cover classification had overall accuracies of 93%, 94%, 

and 92% for 1973, 1990, and 2014 images respectively. Their findings indicated that the pine 

forest was the most affected over the period while the oak forest will further decline in its extent 

by 2028. Similarly, Voight et al. (2019) in Southern Belize employed Landsat 8 imagery of 

2014, 2016, and 2017 in modelling forest cover change and predict future distribution. The 

Google Earth Engine was used for the land cover classification and obtained an overall 

accuracy of 88% for 2014, 94% for 2016, and 95% for 2017. A post-classification future forest 

cover prediction for 2026 was carried out using the Markov Chain Model. The prediction 
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indicated that the extent of forest cover in 2016 will decrease by 3.1% in 2026 mainly due to 

expansion in agricultural lands. These dynamics of changes are indicated to have negative 

implications that will require effective forest management to possibly initiate mitigation 

measure and reduce the vulnerability of the forest landscape.  

Apart from change detection and future projection of forest landscapes, other studies have been 

carried out in urban landscapes with similar modelling approaches. These studies analyzed the 

rapid expansion in urban lands at the expense of vegetative areas and the associated negative 

implications. A change detection to identify how urban areas in Greater Accra, Ghana revealed 

that there has been a 277% increase in built-up areas, while forest areas have declined from 

34% to 6.5% between 1991 and 2015 (Addae and Oppelt, 2019). The future projections 

indicated that the built-up area would increase from 44% of the total landmass in 2015 to 70% 

in 2025. This study too was carried out with Landsat 4 TM, Landsat 7 ETM, Landsat 7 ETM+, 

and Landsat 8 for the years 1991, 2000, 2009, and 2015, respectively. Similarly, a Maximum 

Likelihood classification and Multi-Layer Perceptron Markov Chain Model were used for the 

change detection and future land distribution prediction. In another study, the effect of rapid 

urbanization was assessed and it revealed that an increased rate of urbanization happened 

between 1996 and 2017 (Ranagalage et al., 2019). The support vector machine was used to 

classify the various land use land cover (LULC) with the use of Landsat 5TM image of 1996 

and 2006, and Landsat 8 image of 2017. The overall accuracies were 85% for 1996, 93% for 

2006, and 92% for 2017 images. A post-classification change detection revealed that there had 

been a 1791 ha increase in built-up areas and a 1919 ha decline in agricultural lands between 

1996 and 2017. The study further carried out two-time step future predictions for 2027 and 

2037 which indicated the built-up will increase by 13.4% and 17.7%, respectively. On the other 

hand, the agricultural land will have a decline of 3.2% in 2027 and 2.5 in 2037.     

Most of these studies conducted for forest cover or urban landscapes are observed to have 

provided the information needed to assist in the forest and other land use management and 

conservation. However, such studies are lacking in the South African scenario. To date, there 

has not been a study that assesses the past and present status of natural forests, as well as its 

possible future implications. Therefore, a forest cover change modelling and forecasting of 

future cover distribution are important for natural forests in a country that has only 0.4% of the 

total land area as natural forests (DAFF, 2015). As a result of the increasing threat to natural 

forests cover, comprehensive and credible information on coverage and likely future coverage 

is critical for effective natural forest management strategy. Thus, this study aimed to undertake 

spatial and temporal analysis of the Nkandla Natural Forest Reserve between 1989 and 2019 

at a decadal interval and predict the likely forest cover distribution for 2029. The Nkandla 

Forest Reserve which is the study area in context faces possible threats due to expanding fringe 

and adjacent communities as well as increasing human activities in the forest (Ezemvelo KZN 

Wildlife, 2015b). Issues such as wildfires, agricultural activities, exotic species plantations, 

and uncontrolled grazing are among the immediate threats. The quantitative and qualitative 

outcomes of this study will provide an understanding of the change dynamics, trends, and 

distribution of land use cover of the forest, which will be beneficial for forest management and 

conservation. Furthermore, the outcomes have the potential to contribute to national policy 

directions on climate change mitigation and forest protection, which can also feed into 

international initiatives.  

 



69 
 

4.2 Materials and methods 

4.2.1 Study area  

The Nkandla Forest Reserve was established in 1918. It is an Afromontane sub-tropical forest 

in the KwaZulu-Natal (KZN) province of South Africa and has a total area of 2,217 ha. It is 

located on 28° 43′ 50.88″ S and 30° 7′ 9.84″ E (Figure 4.1). The forest experiences a peak 

average temperature of 27°C between December and January, and the lowest average 

temperature of 2°C in the winter months of June and July (Ezemvelo KZN Wildlife, 2015b). It 

has a generally steep and undulating topography and an altitude of a minimum level of 500 m 

and exceeding 1300 m. It has four main land cover types made up of closed canopy forest 

(1,059.23 ha), open canopy forest (910.60 ha), grassland (226.55 ha), and bare sites [20.97 ha] 

(Gyamfi-Ampadu et al., 2020). The grasslands are found on hilltops and downhills with some 

patches interspersing the areas of the closed and open canopy forests. Some areas around the 

forest boundaries experience frequent fires due to the activities of the forest fringe 

communities. The fringe communities graze their domestic animals such as cattle in the 

grasslands of the forest and obtain some non-timber forest products (NTFPs). An increase in 

commercial plantations and expanding communities possess some level of threat to the forest. 

 

Figure 4.1: Map of the study area. Note: Map A is a satellite image of the Nkandla Forest 

Reserve, and Map B is a map of South Africa indicating the location of the forest. 
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4.3 Data used 

4.3.1 Field data  

Ground-based reference data were collected for the forest cover classification. Predefined 

thematic land cover types were determined to enhance the reference data collection. These land 

cover types are closed canopy forest, open canopy forest, grassland, and bare site. The closed 

canopy forest has the tree canopy touching each other to form a continuous layer (70% to 

100%) with less sunlight reaching the forest floor. It has low vegetation on the forest floor, and 

visibility may be up to about 20 m under the canopy. The open canopy forest is characterized 

by a broken canopy, a high level of gaps, and no continuous canopy layer (30% to70%). It has 

an undergrowth of seedlings and other herbaceous plants with visibility of up to less than 20 

m. The grassland has a continuous growth of the grass and herbaceous layer. The bare sites are 

made up of sites that do not have any vegetation cover. 

 A random data collection approach was employed to avoid opportunistic biased classification 

(Zhen et al., 2013, Millard and Richardson, 2015, McRoberts and Westfall, 2016). Moreover, 

it also served best especially for the closed and open canopy forest types which cannot be easily 

identified from afar. A 25 m2 minimum area criteria and ocular estimation of site composition 

and structural parameters were used in determining each land cover type when they were 

opportunistically encountered through traversing along transects. When a site met the defined 

parameters, Global Position System (GPS) coordinates were recorded and placed under the 

appropriate cover type. The GPS coordinates of each land cover type were superimposed on 

the 2019 image and random-sized polygons were digitized around them in the ArcMap 10.6.1 

mapping environment. A total of 63, 76, 69, and 20 random sized polygons were digitized for 

the closed canopy forest, open canopy forest, grassland, and bare sites cover types respectively.  

4.3.2 Remote Sensing imagery used and pre-processing  

The Remote Sensing data used for the study was Landsat satellite imagery as it has proven 

useful in many land use land cover (LULC) analyses (Voight et al., 2019, Da Ponte et al., 2017, 

Fokeng et al., 2020). Cloud free Landsat 4 TM, Landsat 5 TM, and Landsat 8 images were 

obtained from the United States Geological Survey (USGS) online data portal (www. 

earthexplorer.usgs.gov). The images were for 1989, 1999, 2009, and 2019 and the details have 

been illustrated in Table 4.1 The images were preprocessed to optimal parameters to facilitates 

their use for the required analysis. The apparent reflectance function in ArcGIS 10.6.1 was 

used to atmospherically correct the image and transform the image radiance to spectral 

reflectance. All the images had the same extent as well as columns and rows to ensure their 

effective use for the analysis. 
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Table 4.1: Characteristics of the Landsat images used.  

Acquisition 

date 
Landsat type Sensor 

Spatial 

resolution (m) 

Number of 

bands used 

19/04/1989 Landsat 4 TM 30 6 

09/01/1999 Landsat 4 TM 30 6 

12/05/2009 Landsat 5 ETM 30 6 

08/05/2019 Landsat 8 OLI 30 7 

Note: TM is Thematic Mapper, ETM is Enhanced Thematic Mapper and OLI is Operational 

Land Imager. 

 

4.3.3 Environmental parameters data  

The Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) data were 

downloaded from the United States Geological Survey (USGS) online data portal (www. 

earthexplorer.usgs.gov). The DEM of the reserve was delineated and used to generate the slope 

gradient and the aspect using ArcGIS 10.6.1. They were processed into raster files and 

projected to the coordinate systems of the images and as well the same dimensions. They were 

subsequently used as environmental data in the change modelling for the production of 

transitional potential maps.  

4.4 Image classification and Accuracy Assessment 

The satellite images and the digitized reference polygons were imported into the R statistical 

package environment (Team, 2017). The pixel values representing each of the land cover types 

were extracted from the digitized reference polygons. The pixel values were then partitioned 

into a training set (70%) and a validation set (30%) for each land cover type. Subsequently, the 

radial function support vector machine (SVM) algorithm was used for classifying the images. 

The SVM has proven to be a robust image classification algorithm in many studies (Cervantes 

et al., 2020, Wang et al., 2017, Thanh Noi and Kappas, 2018). The “caret” package which 

contains several classification functions was employed for the process (Ghosh et al., 2014). 

The “svmRadial” function was applied and used for the training of the classification model. 

The model was trained with the training data set to classify the 1989, 1999, 2009, and 2019 

images. The default parameters of the algorithm were used with no tuning or optimization as it 

is possible to obtain optimal accuracies with default parameters (Gyamfi-Ampadu et al., 2020). 

The common spectral bands that were selected for each of the images were the red, green, blue, 

near infra-red (NIR), and the shortwave infrared bands (SWIR 1& 2). These bands are sensitive 

to vegetation (Roy et al., 2014, Dube and Mutanga, 2015) and the application of the SVM 

algorithm reflected the importance of each in classifying and mapping the land cover types. 

The validation set was subsequently used for the classification accuracy assessment and 

confusion matrices were derived for them. The matrix depicts the estimates of the parameters 

used for the accuracy assessment which are the overall accuracy, producer’s accuracy 

(omission error) and user’s accuracy (commission error) and the kappa coefficient (Pal and 

Ziaul, 2017, Rousta et al., 2018).  
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4.5 Historical Land Cover Change Detection 

The Land Change Modeler [LCM] (Eastman, 2015) was implemented in the TerrSet Geospatial 

Modelling system to model the land cover changes that occurred at decadal intervals from 

1989-1999, 1999-2009, and 2009-2019 as well as the overall change that occurred between 

1989 and 2019. The changes were assessed based on the coverage of each land cover type at 

each decade. The areas of gain and losses, areas of no change, spatial trends, and extent for 

each of the land cover types were mapped for each time interval. The gains and losses analysis 

estimated the changes while the areas of no change were identified through the persistence 

analysis.  

4.5.1 Transition Probability Matrices and Potential Maps 

The transition potentials provide an estimation of the likely future changes a land cover type 

may experience between two historical periods. Transition probability matrices were created 

with Markov Chain Model (MCM) using the 1989, 1999, 2009, and 2019 forest cover maps. 

The MCM works based on the Markovian stochastic approach that predicts the possibility of 

change from one state to the other by using transition probability metrics of land cover changes 

experienced over a certain period (Rimal et al., 2018, Wu et al., 2019). It relies on the transition 

probabilities to control the temporal dynamics among the land cover types (Kamusoko et al., 

2009). It then facilitates the estimation of states of conversion and transfer rates among the 

types (Sang et al., 2011). The MCM is not capable of simulating spatially distributed cover 

change (Sang et al., 2011, Mishra and Rai, 2016), but it can determine and predict land cover 

change quantities effectively (Yang et al., 2012). The integration of the MCM with algorithms 

such as the Multi-Layer Perceptron Neural Networks (MLPNN) provides a robust method to 

quantify and model the temporal and spatial changes in land cover (Mishra and Rai, 2016).  

The transition potential maps were hence created with the MLPNN algorithm. The MLPNN is 

made up of interconnected nodes that respond to weighted inputs it receives from other nodes 

in the network (Addae and Oppelt, 2019). It is trained to reduce errors in a network by weight 

adjustment between the nodes. It has the capability of making the best generalization for each 

cover transition and simulation (Maithani, 2015). In conducting land cover modelling, the 

MLPNN algorithm creates the maps by using transition sub-models made up of transition 

between cover types over a time interval. The potential maps are then used for the simulation 

and prediction of future land cover distribution. 

In the actual production of the potential maps, the MLPNN trains the model with the sample 

pixels that experienced a transition from one land cover type to another and a different pixel 

set that did not experience any change in the two land cover maps. With the use of default 

parameters, the sample size is set equal to the smallest number of the set of pixels that 

transitioned from one land cover type to another. The selected set of pixels are assigned to two 

classes by the MLPNN consisting of a set for the training of the model and another set for 

validating the accuracy of the MLPNN model. The MLPNN uses the training set of pixels as 

an example in developing a multivariate function that predicts the transition potential based on 

the values at any location for the assigned explanatory variables (Eastman, 2015). When the 

process is completed, the MLPNN produces several statistics that provide information 

regarding the power of the explanatory variables as well as the accuracy of predicting the land 

cover type transitions and persistence. 
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There are three layers which are inputs, outputs, and hidden layers in the MLPNN algorithm 

structure. Concerning this study, the 1999 and 2009 land cover maps were used as base maps 

for the algorithm. The other inputs consisted of 10 transitional sub-models of the cover types 

and three environmental variables. The environmental variables were the DEM, slope gradient, 

and aspect generated for the study area. The transition potential maps were the outputs of the 

model after the algorithm has run 10,000 iterations. A map was produced for each of the ten 

transition sub-model for the forest cover change by implementing the model using the default 

parameters. The hidden layer is made up of a series of process and iterations that transforms 

the input data to produce the output layer.   

4.5.2 Land cover distribution forecasting 

The Markov Chain was applied to the transition potential maps produced by the 1999 and 2009 

forest cover maps to predict the forest cover for 2019. In the process, the Markov chain 

calculated the extent of land cover that will be transitioning to the other for each land cover 

type over the specified future date. With the Markov chain being a stochastic process, the next 

stage of the system ( 1)t + is dependent on its current state ( )t (Eastman, 2015). The extent of 

change that will be experienced was estimated by the Markov chain based on the two land 

cover maps used for the modelling. There was an estimation of the extent of land cover that 

would be expected to change from the later date to the specified future date. This is based on 

the projected transition potentials that are derived from the MLPNN (Aguejdad et al., 2017) 

and then creates the transition probability matrix. The transition probability matrix ( * )n n  

obtained for the land cover maps is expressed by;  
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where P denotes the probability matrix of n  states, 

 ijp denotes the transition probability of state i to j   

The probability of the future state of a cell is also given as; 

( 1) ( )*p t p t P+ =        (4.2) 

where ( 1)p t + denotes the future land cover distribution,  

( )p t denotes the current land cover distribution, 

P denotes the transition potential. 

The process ended with the production of hard and soft prediction maps. The hard prediction 

map has the same land cover types as input maps. The model is based on the competitive land 

allocation model with similarity to a multi-objective decision process (Eastman, 2015). On the 

other hand, the soft prediction map has a similarity with the transition potential map. It 

expresses the change probability of every pixel for a transition in a continuous map format.  
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4.5.3 Validation and Projection 

Validation is essential to assess accuracy of the prediction model. Once satisfactory 

performance is achieved, then it can be used for predicting the possible future land cover 

distribution. In this study, it was conducted by comparing the simulated 2019 map with the 

2019 classification map (actual map) using kappa statistics (Kamusoko et al., 2009, Wang et 

al., 2012). The Kappa for no information (Kno) which is a variation of the standard kappa index 

is used to define the overall accuracy of the model. The ability of the simulation to predict the 

location is validated by kappa for grid-level location (Klocation),  while the quantity is predicted 

by Kappa for quantity [Kquantity] (Pontius Jr and Schneider, 2001). When each of the values is 

close to 1 then the model is defined as perfect, but if it is close to 0 then it is considered 

imperfect (Pontius Jr, 2002, Pontius Jr and Schneider, 2001).  

The model produced a Kappa for no information (Kno) of 0.84, which was close to 1 and 

therefore considered satisfactory for the prediction. The prediction was subsequently 

conducted for the year 2029. 

 

4.6 Results 

4.6.1 Spatial distribution of cover types  

Land cover maps were produced for 1989, 1999, 2009, and 2019 to ascertain the extent and 

spatial distribution of each land cover type of the forest reserve. Spatially, each land cover type 

is mostly distributed or clustered in certain parts of the reserve (Figure 4.2). The pattern of 

distribution for the cover types did not change markedly from that of 1989, as similar patterns 

were observed for each of the land cover maps produced for each decadal year. 

The closed canopy forest is mostly distributed in the middle, northeastern, south, and 

southwestern parts of the reserve. The open canopy forest intersperses into the areas of the 

closed canopy and is also distributed in the southeastern, southwestern, and northeastern parts 

of the reserve with some patches found in the middle.  The grassland could be found in the 

southeastern, northwestern, and northeastern boundaries of the reserve. Most of the bare sites 

are found within the grassland in the northeastern, southwestern, and southeastern boundaries 

of the forest.   
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Figure 4.2: Land cover maps of the forest reserve produced from the classified images of 

1989, 1999, 2009, and 2019. 

 

A detailed accuracy assessment was conducted for the classification (Table 4.2). The overall 

accuracies obtained were 94.64%, 90.22%, 94.38% and 95.83% while the kappa coefficient 

was 0.92, 0.84, 0.91 and 0.93 for 1989, 1999, 2009 and 2019 images respectively. The high 

accuracies obtained reflect the robustness of the SVM algorithm in utilizing the selected 

Landsat bands to map each cover type. The overall accuracies for each classification were 

within acceptable limits of 80% and above, and hence the forest maps produced were 

satisfactory to be used for the modelling. 
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Table 4.2: Accuracy assessment of forest cover classifications for 1989, 1999, 2009, and 

2019 images. 

Accuracy Forest cover class 1989 1999 2009 2019 

 

User’s Accuracy (%) 

Closed Canopy forest 98.55 89.25 98.53 95.83 

Open Canopy forest 95.65 88.46 97.87 100 

Grassland 89.13 96.77 95.92 95.35 

Bare Sites 85.71 87.50 57.14 81.81 

 

Producer’s Accuracy (%) 

Closed Canopy forest 98.55 93.26 98.53 100 

Open Canopy forest 97.78 82.14 97.87 93.33 

Grassland 95.35 96.77 88.68 95.35 

Bare Sites 54.54 87.50 80.00 81.81 

Overall Accuracy (%)  94.64 90.22 94.38 95.83 

Kappa Coefficient  0.92 0.84 0.91 0.93 

 

4.7 Spatiotemporal Analysis 

4.7.1 General forest cover changes 

The land cover types of the forest reserve experienced considerable changes in their respective 

coverage between 1989 and 2019 (Table 4.3). In this period, the closed canopy forest had a 

change in extent from 883.46 ha in 1989 to 1059.23 ha in 2019. This accounts for a 7.93% 

increase representing a total area of 175.77 ha, occurring at a rate of 5.86 ha per year. The 

changes happened mostly in the middle and towards the northern parts of the forest (Figure 

4.2).  

On the other hand, the open canopy forest lost 8.18% of its coverage by decreasing in extent 

from 1091.99 ha in 1989 to 910.59 ha in 2019. The total area of change was 181.40, which 

happened at the rate of 6.04 ha per year (Table 4.3). The changes occurred mostly in the middle, 

towards the north and northeastern parts of the forest (Figure 4.2). 

The grassland increased by 2.8% as a result of a change in extent from 218.97 ha as of 1989 to 

226.55 ha as of 2019. This represented a total area of change by 7.60 ha which happened at a 

rate of 0.25 ha per year. These changes were concentrated around the southeastern and 

southwestern parts of the forest (Figure 4.2). The bare sites decreased from 22.94 ha in 1989 

to 20.98 in 2019. This represents a change in area by 1.96 ha, which happened at a rate of 0.06 

per year. The changes occurred mostly around the southern parts of the forest (Figure 4.2). The 

individual land cover type changes fed into the overall changes that were experienced between 

1989 and 2019 (Table 4.3). 
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 Table 4.3: Decadal land cover changes that occurred for the Nkandla Forest Reserve from 1989 to 2019. 

Land Cover 

Class 

1989 1999 2009 2019 ∆1989-1999 ∆1999-2009 ∆2009-2019 

Land Cover 

Class 

Area 

(ha) 

% Area 

(ha) 

% Area 

(ha) 

% Area 

(ha) 

% Area (ha) Area (ha) Area (ha) 

Closed canopy 883.46 39.84 936.13 42.22 968.98 43.70 1059.23 47.77 52.66 32.86 90.55 

Open canopy 1091.99 49.25 980.14 44.21 939.52 42.37 910.60 41.07 -111.85 -40.62 -28.91 

Grassland 218.97 9.88 285.47 12.87 288.59 13.02 226.55 10.22 65.50 3.13 -62.04 

Bare sites 22.94 1.03 15.62 0.70 20.26 0.91 20.98 0.94 -7.32 4.63 0.75 

Total Area 2217.36 100 2217.36 100 2217.36 100 2217.36 100    
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4.7.2 Decadal changes within forest cover types 

The changes experienced in coverage between 1989 and 2019 were due to inter-

transitions between the land cover types and were assessed at a decadal interval for 1989-

1999, 1999-2009, and 2009-2019. The area of a land cover type that transitioned into 

another, served as a loss for it but as a gain for the other land cover type. Much of the 

transitions occurred between the closed and the open canopy forest types. The closed 

canopy consistently increased in coverage at each decadal interval by gaining more areas 

of the open canopy forest. This is a result of more trees in the open canopy forest growing 

(vertical and horizontal) to fill canopy gaps and form continuous layers. Much of these 

substantial changes occurred between 1989-1999, involving an area of 302.88 ha and 

between 1999-2009 involving an area of 319.22 (Details of this can be found in Table 4.5 

of Appendix 4.1). This could be seen around the middle, eastern, and towards the 

northeastern parts of the forest (Figure 4.2). As a result of the consistent changes, the 

closed canopy forest became the dominant land cover from 2009 and remained as such 

as of 2019. 

Despite that, the closed canopy also had a considerable area of its cover transitioning to 

open canopy forest consistently at each decadal interval. This is manifested in the increase 

in gap openings that break the continuous canopy layer of the closed canopy forest. 

Between 1999 and 2009, it experienced the largest loss to the open canopy forest 

involving an area of about 301.27 ha (Details can be found in Table 4.5 of Appendix 4.1). 

This is observed mostly around the eastern and southeastern parts of the forest (Figure 

4.2). Some parts of the closed canopy forest ranging between 3 ha and 19 ha also 

transitioned to grassland. This happened due to the loss of tree cover in these parts making 

grassland take over. There was no complete turnover of the structural condition of the 

closed canopy forest. This is because about two-thirds of its cover experienced no change 

(persisted) at each decadal interval, which may explain the pattern of distribution 

remaining like that of 1989. 

The open canopy similarly experienced a consistent and substantial change in each 

decade. Much of the gains it had were as a result of parts of the closed canopy forest 

experiencing gaps in its continuous canopy layer. The period it had such significant gain 

was 1989-1999 involving an area of 237.62 and 1999-2009 involving an area of 301.27 

(Details of this can be found in Tables 4.6 and 4.7 of Appendix 4.2 and 4.3). In terms of 

the areas that transitioned from the open canopy forest to the closed canopy forest, the 

process is the same as explained under why the closed canopy increased in the extent of 

coverage. About two-thirds of its original extent experienced no change. Comparatively, 

the total area of tree cover of the open canopy growing into close canopy was more than 

that of the closed canopy losing tree cover to become open canopy. Hence, the open 

canopy lost its status as the dominant cover from 2009 onwards to the closed canopy 

forest. 

Most of the area of the grassland had as of 1989 experienced no change, although some 

parts underwent a consistent change at each decade. The gains it had were as a result of 

taking over some parts of the closed and open canopy forests because of tree cover loss. 

Between 2009-2019, it had the highest gain of the open canopy forest, involving an area 

of 60.43 (Details of this can be found in Table 4.8 of Appendix 4.4). It took over some 
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areas of the bare sites at each decade to a varying extent ranging between 8 ha and 14 ha. 

This is as a result of grassland colonizing these areas of no vegetation cover. However, 

between 5 ha and 17 ha of its cover changed into the bare site. 

The bare sites similarly experienced a change in each decade. Most of its increase in size 

was as a result of part of the grassland losing its vegetation cover to become bare. Such 

extent ranged between 4 ha and 17 ha, with the 1989-2009 period having the most change 

involving an area of about 16.70 ha. 

 

4.7.3 Land cover predictions 

The model was validated to ascertain its suitability for predicting the future land cover 

distribution of the forest. A satisfactory kappa accuracy of 0.84 was obtained which 

indicated its suitability. The prediction was conducted for the 2029 land cover distribution 

(Table 4.4 and Figure 4.3). Amongst all the land cover types, it is the closed canopy forest 

that may have the highest likely change in coverage. The prediction indicated that the 

closed canopy forest will experience a decline in coverage from 1059.23 (47.77%) in 

2019 to 979.43 (44.17%) in 2029 (Table 4.4). This represents a loss of 79.80 ha at a rate 

of 7.98 ha per year, accounting for about 3.6% of its original area. These changes could 

likely happen around the eastern, southeastern, and northeastern parts of the reserve 

(Figure 4.3). The predicted loss of some areas of the closed canopy forest is a result of 

mostly the grassland taking over those places due to tree cover loss.  

The open canopy was predicted to increase from 910.60 ha (41.07%) in 2019 to 920.78 

ha (41.53%) in 2029. This involved an area of 10.18 ha increasing at a rate of 1.08 ha per 

year. The open canopy forest will not experience much change as compared to the closed 

canopy forest and the grassland as it will still cover about 41% of the forest between 2019 

and 2029.  

The grassland was predicted to gain about 68.02 ha (3%) more between 2019 and 2029 

at a rate of 6.08ha per year. In 2029 it will increase from 226.55 ha (10.22%) to 294.57 

ha (13.28%). Much of the gains of the grassland will be as a result of taking over some 

parts of the closed canopy forest. The bare sites were predicted to increase marginally 

from 20.98 ha (0.94%) to 22.58 ha (1.02%) in 2029.    
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Table 4.4: Actual land cover of 2019 and predicted land cover distribution of the forest 

for 2029. 

Land cover types 

2019 

(Actual) 

2029 

(Predicted) 

 Area (ha) % Area (ha) % 

Closed Canopy 1059.23 47.77 979.43 44.17 

Open Canopy 910.60 41.07 920.78 41.53 

Grassland 226.55 10.22 294.57 13.28 

Bare Site 20.98 0.94 22.58 1.02 

Grand Total 2217.36 100 2217.36 100 

 

 

 

Figure 4.3: Predicted land cover distribution map of the forest for 2029. 

 

4.8. Discussion 

Forest cover change detection and future prediction analysis have many implications on 

decision making and policy directions both at the national and international levels, 

concerning the conservation of forest ecosystems, species diversity, and climate change. 

The information provided is vital for sustainable forest management in ascertaining the 
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condition of forests concerning trends and dynamics of changes. It ensures effective 

planning and prioritization of initiatives meant to sustain forest ecosystems as well as 

devise mitigation actions in case of loss of tree cover. The outcomes of this study are 

therefore essential at the local and national level considering the limited total area of 

natural forest reserves in South Africa. This was made possible by the freely available 

Remote Sensing satellite imagery and implementation of LULC Modelling. 

The Landsat satellite imagery data proved useful in both the classification and change 

detection analysis. The historical data enables the research to assess the past and present 

changes for sustainable forest management. The sensor has a long history of providing 

data that has contributed to land cover analysis with much success (Phiri and Morgenroth, 

2017). The Landsat data has equally proven useful in many other studies that have 

conducted LULC changes analysis in different forest ecosystems and landscapes (Addae 

and Oppelt, 2019, Da Ponte et al., 2017, Mihai et al., 2017, Vázquez-Quintero et al., 

2016). The attributes of the Landsat images coupled with the methodological approach 

enhanced the spatial and temporal changes mapping and projections for the Nkandla 

Forest Reserve. The visible range bands, NIR, and SWIR bands which were used in the 

classification have good sensitivity for vegetation (Roy et al., 2014, Dube and Mutanga, 

2015). This facilitated the delineation of each land cover type of the forest, thus enhancing 

the spatiotemporal analysis. 

The SVM algorithm was also robust for the image classification as it was instrumental in 

enhancing the ability of the spectral bands in detecting each land cover type. The 

delineation was enhanced by the design and inherent capabilities of the SVM algorithm, 

as also reported in other studies (Cervantes et al., 2020, Wang et al., 2017, Thanh Noi and 

Kappas, 2018). As a non-parametric algorithm, it does not assume normality in 

distribution which makes it suitable to forest land cover classification as natural forest 

ecosystems are not normally distributed. The other capabilities include robust to high 

dimensional data and noise, fast prediction due to support vectors, and require less 

training data sets (Fassnacht et al., 2016). As a result of the effective classification carried 

out by the SVM, the MLPNN and MCM combination (Addae and Oppelt, 2019, 

Ranagalage et al., 2019), was able to spatially detect and map each marginal change and 

the inter-transitions among cover types at decadal intervals with good accuracy. It also 

enhanced the prediction of the future land cover distribution of the forest. Thus, the hybrid 

methodological approach was vital and can be replicated in similar studies. 

The study found that the Nkandla Forest Reserve experienced changes through either 

increase or a decrease in the extent of each land cover type, resulting in the spatial and 

temporal changes that occurred over the 30 years (1989-2019). Spatially, the changes are 

not localized, but it spreads across the forest and mostly occurred in the middle, southern, 

southeastern, southwestern, and towards the northeastern part of the forest reserve. The 

direction of change reflected the inter-transitions between the land cover types. Generally, 

it has been indicated that forest cover changes are usually caused by natural (ecological) 

and anthropogenic factors (Deb et al., 2018, Fragal et al., 2016). This was evident for the 

forest reserve as both ecological and anthropogenic factors were observed to be driving 

the changes that occurred.  



82 
 

Ecological processes such as regeneration, tree stem growth, and mortality contributed to 

the high levels of gains and losses manifested in the inter-transitions among the cover 

types. The natural sub-tropical forest just like tropical forests undergoes complex 

ecological processes over time, which leads to changes within the tree cover. These 

forests are characterized by high diversity, high productive systems and net primary 

productivity [NPP] (Malhi et al., 2004), which lead to rapid tree growth. The NPP is a 

major moderator of carbon cycles and other ecological processes (Zhang et al., 2016). 

This may explain what was observed in most parts of the open canopy forest, where large 

areas transitioned into closed canopy forest consistently at each decadal interval. It is a 

confirmation of studies that suggest that increased growth and regeneration of tree species 

diversity occur in gaps within open canopy areas of forests (He et al., 2015).  

Observations also indicate that some ecological processes are enhanced within the gap 

since sunlight can get to the forest floor (Muscolo et al., 2014, He et al., 2019). The 

process leads to high NPP resulting in increased stem recruitment rates and stand-level 

biomass growth (Zhang et al., 2016). It is, therefore, possible that most of these gap areas 

with young trees might have undergone such rapid growth to form continuous and 

interlocking canopy layers. More open canopy areas might have consistently experienced 

this over the 30 years. This accounts for the consistently increased coverage of the closed 

canopy forest. Such forest cover changes have positive impacts on ecosystem functioning 

and biodiversity interactions. The capacity of the forest is thus enhanced to provide 

ecosystem services such as carbon sequestration, enhanced tree species diversity, wildlife 

conservation, and habitat protection. If these processes are not interfered with through 

anthropogenic factors, then the forest will be positioned to continually perform its 

productive and protective functions effectively.  

As the forest trees grow, mortality may increase through wind-throw, disease, and over 

maturity accounting for losses within the tree cover (Neumann et al., 2017). Tree 

mortality affects species diversity, forest structure, growing stock, yield, rate of growth, 

nutrient and carbon cycling (Fontes et al., 2018, MacLean, 2016). The transitioning of 

some parts of the closed canopy to open canopy could be attributed to these ecological 

processes. Mortality increases the level of gap opening, breaking the continuous canopy 

structure of the forest. This may disrupt the ecological cycles thereby affecting ecosystem 

services such as carbon sequestration and tree species diversity. The ecological processes, 

therefore, influenced the level of changes and are likely to further influence future forest 

cover distribution. 

Human-induced factors also contributed to the transitioning of closed canopy forest to the 

open canopy forest or the open canopy to grassland. Uncontrolled cattle grazing and 

extraction of NTFPs by fringing communities of the Nkandla Forest Reserve could be 

contributing factors to these observed changes. Also, wildfires caused by fringe 

communities through crop and animal farms close to the boundaries affected areas of tree 

cover. It must be noted that not all human disturbances lead to fragmentation of forest or 

mass habitat loss, but they do have detrimental effects on the forest ecosystem and 

biodiversity (Peres et al., 2006). Subtle but permanent extraction of fractions of forest 

products is experienced through harvesting of firewood and NTFPs, hunting, and 

domestic grazing animals (Martorell and Peters, 2005, Boucher et al., 2011). The effects 

may include alteration in seed dispersal at forest sites that experience domestic animals, 
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firewood extraction, and hunting activities (Leal et al., 2014). These chronic disturbances 

cause forest degradation on smaller scales across forests affecting biological integrity. 

The disturbances interrupt and modify the ecological cycles leading to reduced 

regeneration and seedling growth. Human-induced modification of forest ecosystems has 

hence been identified to reshape and impact the systems significantly (Ribeiro et al., 2015, 

Boivin et al., 2016), which was evident for the forest. 

The chronic human disturbances also account for the increased coverage of the grassland 

especially the taken over of parts of the closed and open canopy forests. Naturally, 

grasslands are prone to wildfires  (Snyder et al., 2006, Davies et al., 2015), so fires caused 

by fringe communities around the boundaries spread and destroys tree cover. It is also 

possible that the felling of poles for domestic purposes near the boundaries might have 

opened these areas for grass to invade. Grassland areas are also susceptible to weeds and 

alien species (Chambers et al., 2007, Davies et al., 2011a), which can easily take over tree 

cover areas and lead to tree seedling and sapling mortality. Already some invasive species 

have been recorded in parts of the grassland (Ezemvelo KZN Wildlife, 2015b), and it 

could be a reason for the grassland gaining some more coverage in the closed and open 

canopy forests. These confirm that chronic human disturbances have detrimental effects 

on forest landscapes, and it will be important for forest managers to device measures and 

initiatives that could help curb such disturbances and ensure that functional abilities of 

forests are not compromised. 

On the other hand, the extent of the bare sites remained low although it experienced some 

gain and losses in some areas. However, it took over some parts with tree cover so it will 

be important to check such bare sites and avoid its spread. The grassland took over some 

parts of bare sites, which is good in ecological terms as it will help to reduce erosion in 

such sites.   

Historical mapping and spatiotemporal analysis have aided the simulation and prediction 

of possible future land cover (Addae and Oppelt, 2019, Vázquez-Quintero et al., 2016, 

Voight et al., 2019). The outcomes of these projections are important as they can inform 

forest management strategies and policymaking. The prediction of the future land cover 

distribution for the Nkandla Forest Reserve for 2029 revealed that the closed canopy 

forest will decline in coverage by about 79 ha of the total extent of 2019. The predicted 

loss is likely to happen in the northeastern, southeastern, and eastern parts of the forest. 

These areas are close to the boundaries where fringe communities are expanding with 

associated increased crop production, animal farming, and frequent fires. On the other 

hand, the open canopy areas will gain about 10 ha more by 2029, while the grassland will 

gain about 68 ha more by 2029. The increase in the extent of the grassland and open 

canopy increasing in extent will be due to the taking over parts of the closed canopy areas. 

The predicted cover loss for the closed and open canopy forests may be caused by the 

same process of ecological and anthropogenic factors. Chen et al. (2013) similarly found 

land cover types losing parts of their extent in predictions, although they might have 

experienced an increase in the earlier years. These predictions provide a scenario that 

should arouse the need for forest managers to put in measures like increased monitoring 

and surveillance in and around the forest. 
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Generally, forest landscapes may seem intact and unperturbed due to their tree cover. 

However, there can be subtle or small-scale changes that may go unnoticed and over time 

affect large areas. This leads to forest degradation and fragmentation and reducing its 

functionality. Forest managers must develop initiatives including financial commitments 

towards periodic monitoring. The monitoring will ensure early detection of changes and 

provide an understanding of the responses of the forest to the changes as well as potential 

impacts on its biodiversity (McGeoch et al., 2011, Daume et al., 2014). It will enable the 

management to initiate effective strategies for maintaining forest ecosystems for the 

continual supply of goods and services. The use of Remote Sensing technology and 

methods are recommended to be adopted to support forest monitoring. 

There could also be the engagement of the fringing communities to promote collaborative 

forest management and conservation. Since the forests play a socio-ecological, cultural, 

and economic role at the local and national levels, engaging and including communities 

in conservation and monitoring initiatives could help reduce the immediate and possible 

future threat to forests. A reduction in chronic human disturbances will reduce the 

degradation and fragmentation of the forest reserve. 

4.9. Conclusion 

The spatial and temporal analysis revealed the land cover changes that happened in the 

Nkandla Forest Reserve between 1989 and 2019 at decadal intervals. These changes were 

manifested in the inter-transitions among the four land cover types especially between the 

closed and open canopy forests. However, the closed canopy had the most gains over the 

period which is positive as it improves the provision of ecosystem goods and services due 

to an increase in tree cover. These gains could be attributed to the ecological process and 

a non-interference of these processes will enhance the ability of the forest to continually 

provide ecosystem services. The chronic human disturbances are also drivers for such 

changes and have negative effects on the forest reserve and as such they must be 

addressed. The prediction of the 2029 land cover distribution of the forest revealed that 

there will be a decline in the coverage of the closed canopy forest, while the open canopy 

will increase marginally. The decline in the extent of the closed canopy forest is likely to 

be caused by grassland taking over some of its areas. Under this, the grassland is likely 

to gain some more areas amongst the cover types.  

The quantitative and qualitative spatial and temporal insights provided through this study 

will be vital for sustainable forest management with regards to planning and developing 

effective forest monitoring and conservation strategies and initiatives. It is important to 

note that the effect of forest cover changes is not only felt locally or nationally, but it has 

a global impact ultimately. It is therefore recommended that approaches such as the use 

of Remote Sensing technology, which made this research possible, and non-technological 

strategies such as engaging and involving forest fringe communities could be adopted to 

improve monitoring and conservation of forest ecosystems. It should be done in a bid to 

ensuring that dwindling natural forests cover are curbed to secure and save these forest 

resources of local, national, and global significance for the continual provision of 

ecosystem goods and services. 
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Appendix 4.1 

Table 4.5: General land cover changes of the forest reserve between 1989 and 2019. 

2019 

1989 

Closed 

Canopy 

Open 

Canopy 

Grassland Bare Sites 

Grand 

Total 

Closed Canopy 795.71 87.48 0.27 0.00 883.46 

Open Canopy 262.98 792.24 33.03 3.74 1091.99 

Grassland 0.54 27.22 179.06 12.14 218.95 

Bare Sites 0.00 3.66 14.19 5.09 22.92 

Grand Total 1059.23 910.59 226.55 20.98  

Net Change 175.77 -181.40 7.6 -1.94  

Annual Change 5.86 -6.04 0.25 -0.06  

Annual Change 

rate (%) 

0.61 -60 0.11 -0.29  

Note: The table presents the extent of each land cover type of the forest that persisted between the two 

periods as well as the area that was either gained from or lost to the other land cover types over 

the same period.  
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Appendix 4.2 

Table 4.6: Land Cover Transition Matrix of the Forest Reserve for 1989-1999. 

1999 

1989 

Closed 

Canopy 

Open 

Canopy 

Grassland Bare Sites 

Grand 

Total 

Closed Canopy 632.80 237.62 13.03 0.00 883.46 

Open Canopy 302.88 715.11 73.28 0.71 1091.99 

Grassland 0.36 27.22 182.46 8.93 218.97 

Bare Sites 0.09 0.18 16.70 5.98 22.94 

Grand Total 936.13 980.14 285.47 15.62 2217.36 

Net Change 52.66 -111.85 65.50 -7.32  

Annual Change 5.26 -11.19 6.65 -0.73  

Annual Change 

rate (%) 

0.59 -1.07 2.69 -3.75  

Note: The table presents the extent of each land cover type of the forest that persisted between the two 

periods as well as the area that was either gained from or lost to the other land cover types over 

the same period.  
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Appendix 4.3 

Table 4.7: Land Cover Transition Matrix of the Forest Reserve for 1999-2009 

2009 

1999 

Closed 

Canopy 

Open 

Canopy 

Grassland Bare Sites 

Grand 

Total 

Closed Canopy 630.93 301.27 3.84 0.09 936.13 

Open Canopy 319.22 610.31 50.17 0.44 980.14 

Grassland 18.84 27.76 225.93 12.94 285.47 

Bare Sites 0.00 0.18 8.66 6.78 15.62 

Grand Total 968.99 939.52 288.60 20.25 2217.36 

Net Change 32.86 -40.62 3.13 4.63  

Annual Change 3.27 -4.06 0.13 0.46  

Annual Change 

rate (%) 

0.35 -0.42 0.11 2.63  

Note: The table presents the extent of each land cover type of the forest that persisted between the two 

periods as well as the area that was either gained from or lost to the other land cover types over 

the same period.  
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Appendix 4.4 

Table 4.8: Land Cover Transition Matrix of the Forest Reserve for 2009-2019 

2019 

2009 
Closed 

Canopy 

Open 

Canopy 
Grassland Bare Sites 

Grand 

Total 

Closed Canopy 863.65 104.62 0.71 0.00 968.98 

Open Canopy 189.78 741.80 7.76 0.17 939.50 

Grassland 5.71 60.43 209.15 13.30 288.59 

Bare Sites 0.09 3.75 8.93 7.49 20.23 

Grand Total 1059.23 910.59 226.55 20.98  

Net Change 90.55 -28.91 -62.04 0.75  

Annual Change 9.06 -2.89 -6.20 0.075  

Annual Change 

rate (%) 
0.90 -0.31 -2.39 1.28  

Note: The table presents the extent of each land cover type of the forest that persisted between the two 

periods as well as the area that was either gained from or lost to the other land cover types over 

the same period.  
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CHAPTER 5: MAPPING THE ABOVEGROUND CARBON STOCK OF SUB-

TROPICAL NATURAL FOREST USING SENTINEL 2 SATELLITE 

IMAGERY AND RANDOM FOREST ALGORITHM 
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Abstract 

Accurate estimates of aboveground carbon (AGC) stocks are important for climate policies 

and forest management. However, such information is lacking for many sub-tropical forests in 

African countries. Therefore, this study utilized Sentinel 2 imagery and Random Forest (RF) 

regression models to predict and map the AGC of the Nkandla forest in KwaZulu-Natal, South 

Africa. The study compared the performance of four RF models and ranked the spectral 

variables to ascertain their significance in AGC modelling. The models were made up of an 

equal number of preselected sets of Spectral bands, Near Infrared (NIR) vegetation indices, 

Red-edge vegetation indices, and Combined Variables that were extracted from Sentinel 2 

imagery as predicting variables. The results showed that all the models had a comparable 

coefficient of determination (R2) but varied root mean squared error (RMSE). The Combined 

Variables model outperformed the other models (R2 =0.949, RMSE = 20.65 Mg/ha). The red-

edge vegetation indices model was the second best with the spectral bands model emerging as 

the third. The NIR vegetation indices model was the least performing model due to its high 

RMSE. The study demonstrates the capabilities of the freely available fine-scale Sentinel 2 

imagery and RF algorithm for AGC prediction and mapping. 

Keywords: Carbon, Natural Forest, Management, Vegetation, Random Forest, Remote 

Sensing. 

 

5.1 Introduction 

Accurate estimation of aboveground carbon is vital for carbon accounting, carbon emission 

monitoring, climate change policies and, land use and forest management (Asner and Mascaro, 

2014). The living biomass of forests accounts for about 40% of total terrestrial carbon (Pan et 

al., 2011), and serves as a proxy for estimating aboveground carbon stocks (Vicharnakorn et 

al., 2014). Aboveground carbon (AGC) information is essential due to fluctuations in carbon 

stock trends as a result of dwindling forest ecosystems caused by deforestation, degradation, 

and fragmentation of natural forests. Adequate and reliable AGC stock estimation at the local, 

regional and global levels is therefore essential for improving climate change policies (Chave 

et al., 2014). Periodic measurements and assessment of the trends and dynamics of carbon 

stocks are means by which such credible quantitative and qualitative information can be 

obtained. 

Different methods have been used for forest AGC measurements, monitoring and assessments, 

including field inventory, Remote Sensing technology,  and a combination of both (Jucker et 

al., 2017). Field inventory methods are identified to be time-consuming, expensive, and cover 

a very limited area (Thurner et al., 2014). Nonetheless, it is the most accurate (Kumar and 

Mutanga, 2017). On the other hand, the Remote Sensing technology has wide areas of coverage 

(White et al., 2016), serves as a source of cost-effective temporal data (Bozkaya et al., 2015), 

making it more advantageous to apply for AGC mapping. Some studies have adopted the 

approach of combining Remote Sensing methods and field inventory data as a much robust 

approach since the two methods complement each other and utilize their good attributes for 

improved results (Mohd Zaki et al., 2018).  

Many studies have utilized various Remote Sensing sensors for the prediction of AGC across 

different forest ecosystems and landscapes. The sensor type is mostly determined by their 

availability, ecosystem type and objective of study. In regards to active sensors, the light 

detection and ranging [LiDAR] (Saatchi et al., 2011b, Asner et al., 2011, Brilli et al., 2019) 
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and synthetic aperture radar [SAR] (Sarker et al., 2013, Qazi et al., 2017, Mitchard et al., 2009) 

have been used and have proven useful and robust. The areas of the landscapes for these studies 

include forest, savanna, woodlands, and tree plantations. 

Multispectral satellite imagery has also been used widely for AGC prediction. For instance, 

Fuchs et al. (2009) applied Quickbird and archived ASTER data using k-nearest neighbour (k-

NN) methods and linear regression to estimate AGC and determine its spatial variability in the 

Siberian tundra forest. The Quickbird outperformed the ASTER data (RMSE = 6.42 t/ha, 

RMSEr = 44%). In the ranking of the variables, the Gray-level co-occurrence matrix (GLCM) 

contrast kernel of 25×25 pixels of the Quickbird performed better than all the other variables. 

The application of MODIS and regression models were used to assess the AGB and carbon 

stocks of different vegetation types in India (Devagiri et al., 2013). Carbon stock of 3 

megatonnes (Mt) was produced by the regression models with a corresponding R2 of 0.81. The 

prediction was done with NDVI values of specific months and that of December produced the 

best results. In another study, Wang et al. (2009) utilized spectral bands, principal components 

and band ratio variables of Landsat TM in spatial uncertainty analysis of forest vegetation 

carbon. Variations and uncertainties were observed due to different plot sizes with the 

coefficient of correlation (r) varying between 0.401 to 0.405. The least performing variables 

were band ratio [(TM2 + TM3 + TM5)/ TM7]. Landsat 8 data was also employed in estimating 

the living biomass and carbon for the lowland miombo landscape in Tanzania (Gizachew et 

al., 2016). The NDVI was selected and used among other vegetation due to ease of application 

and interpretation. The applied linear model had a root mean squared error (RMSE) of 44 t/ha. 

The total living biomass was estimated to be 140 Mt while the total living carbon was estimated 

to be 47% of the biomass.  

The recently launched Sentinel 2 satellite imagery by the European Satellite Agency (ESA), 

Sentinel 2, has also provided satisfactory results in various vegetation studies. Castillo et al. 

(2017) used the Sentinel 1SAR and the Sentinel 2 imagery in the estimation of AGB mangrove 

forest in the Philippines. The SAR based models were more accurate with a correlation of 0.82 

and 0.83 and a corresponding RMSE of 27.8 – 28.5 Mg/ha. The red-edge bands (RE1, RE2 

and RE3) combination with elevation data were the best predictors while the Inverted Red-

edge Chlorophyll Index (IRECI) produced the best accuracy among other vegetation indices. 

Chen et al. (2019) similarly, evaluated the Sentinel 1 SAR, Sentinel 2 imagery and SRTM 

digital elevation model (DEM) in AGB prediction. The performance of Geographically 

Weighted Regression (GWR), Support Vector Machine regression (SVMR), Stepwise 

Regression (SWR), Random Forest (RF) and Artificial Neural Network (ANN) and were also 

evaluated. The Sentinel series and the STRM DEM were the best performers among the 

variables while the RF produced the best accuracy (mean error = 1.39, mean absolute error = 

25.48, r = 0.9769 and RMSE = 61.11 Mg/ha). The capacity of the Sentinel 2 to estimate AGB 

was evaluated for a community forest in Nepal (Pandit et al., 2018a). The effect of the number 

of input variables used in predicting models was also investigated. The model that combined 

all the spectral bands and vegetation indices variables provided better AGB estimates with a 

corresponding R2 of 0.81 and RMSE of 25.57 t/ha. The red-edge bands were found to be 

important variables that contributed to the accuracy.  

South Africa has a limited area of its landmass of natural forest ecosystems (DAFF, 2015). 

Considering, the limited area of such natural forests, it is important to monitor and estimates 

its aboveground carbon to contribute to the national carbon database. However, information 

on the AGC stocks of most natural forests is non-existent which affects carbon management. 

Also, changes and dynamics in carbon trends cannot be accounted for as there is no baseline 

information to be used for temporal carbon analysis. The Nkandla Forest Reserve is one of the 

main forests in the KwaZulu-Natal province, South Africa which also lacks such carbon stocks 
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information. Only a few studies that have been done on AGC and AGB (Dube and Mutanga, 

2015, Dube and Mutanga, 2016), but it is not representative and adequate on the available AGC 

stocks for the natural forests and contribute to the natural carbon database. Therefore, our study 

aims to predict and map the AGC stocks of the Nkandla Forest Reserve using Sentinel 2 

imagery and Random Forest (RF) regression. It also seeks to assess compare and assess the 

predictive ability of different spectral products of the Sentinel 2. The output of this study will 

provide AGC stock distribution information which will be vital for local carbon accounting 

and management. The provision of the information will be beneficial to local and national 

carbon accounting and monitoring. It will also help to identify robust and informative Sentinel 

2 spectral products that will contribute to the performance of the RF models and accuracies. 

This will be of much benefit in knowing which spectral products to select for carbon modelling 

in either similar subtropical forests or that of other climatic zones. 

 

5.2 Materials and Methods 

5.2.1 Study Area 

The Nkandla Forest Reserve was established and gazetted as a forest reserve in 1918, and 1992 

respectively. It is an Afromontane sub-tropical forest in the KwaZulu-Natal (KZN) province 

of South Africa with a total area of 2,218 ha. It is located on 28° 43′ 50.88″ S and 30° 7′ 9.84″ 

E (Figure 5.1). The forest experiences a peak average temperature of 27°C between December 

and January, and the lowest average temperature of 2°C in the winter months of June and July 

(Ezemvelo KZN Wildlife, 2015b). It has a generally steep and undulating topography and an 

altitude of a minimum level of 500 m and exceeding 1,300m. It has four main land covers made 

up of closed canopy forest (1,059.23 ha), open canopy forest (910.60 ha), grassland (226.55 

ha) and bare sites [20.97 ha] (Gyamfi-Ampadu et al., 2020). The grasslands are found on 

hilltops and downhills with some patches interspersing the areas with tree cover. Some areas 

around the forest boundaries experience frequent fires due to the activities of the forest fringe 

communities. The fringe communities graze their domestic animals such as cattle in the 

grasslands of the forest and obtain some non-timber forest products (NTFPs). An increase in 

commercial plantations and expanding communities possess some threat to the forest. 
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Figure 5.1: Map of the study area. Note: A is a map of the Nkandla Forest Reserve, B is a 

map of the KwaZulu-Natal (KZN) province and C is the map of South Africa indicating the 

location of KZN province and the Nkandla Forest Reserve. 
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5.3 Field inventory and AGC estimation 

Field data were collected from 275 sampling plots (20 m x 20 m) that were set in the forest, 

between 24 April 2019 and 7 May 2019. We selected this plot size to enhance alignment with 

the spatial resolution of the Sentinel 2 imagery. Since AGC is derived from AGB estimations, 

the dimensions of living trees were measured and recorded with a diameter at breast height 

(DBH) criteria of ≥ 5 cm. The information recorded for each tree was the DBH, height, species 

name (local and scientific), and the GPS coordinates. The DBH was measured with a standard 

diameter tape (in cm), and the heights with a Vertex Hypsometer.  

 

The AGB of every single tree was calculated by using a generic allometric equation developed 

by Chave et al. (2014) as presented below: 

 

AGBtree = 0.0673 × (WD × DBH2 × H)0.973     (5.1)  

 

Where; AGBtree is the AGB of the individual tree species, WD(g/cm3) is the wood density of 

the tree, DBH (cm) is the diameter at breast height of the tree and H is the total height of the 

tree. 

The wood densities of trees were obtained from the databases for pantropical global wood 

densities (Chave et al., 2009, Zanne et al., 2009) and the African wood density (Carsan et al., 

2012), based on their availability. This standard equation and species wood densities were used 

because it was developed for common trees and has worked well in many studies.  

After determining the AGB, the standard carbon fraction of 0.50 was applied to derive the 

AGC (IPCC, 2006). The computed individual tree AGC was then aggregated to generate the 

plot level AGC and used as the dependent variable for the Random Forest regression models. 

5.3.1 Field data statistics 

The descriptive statistics of the field plot level AGC presented in Table 5.1, illustrate that about 

63% of the trees are with DBH of between 5 cm to 20 cm, and 27% between 20 cm to 40 cm. 

While the rest are big trees (above 40 cm) represented by 10%.  

Table 5.1: Descriptive statistics of field measured data. 

Parameter DBH (cm) Height (m) AGC (Mg/ha) 

Mean 19.24 12.11 2.20 

Minimum 5 5.5 0.11 

Maximum 113 32.5 206.45 

Standard Deviation 13.51 5.07 6.54 

 

5.4 Remote Sensing imagery data 

The Remote Sensing imagery data used in the study were spectral bands and spectral indices 

generated from the near infrared (NIR) and red-edge regions of the electromagnetic spectrum. 
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5.4.1 Spectral bands variables 

A cloud-free Sentinel 2 imagery which was captured on the 14th of April 2019 was downloaded 

from the USGS website (https://earthexplorer.usgs.gov). The Sentinel 2 imagery has 13 

spectral bands ranging from the visible to the shortwave infrared regions of the electromagnetic 

spectrum. The image was preprocessed to optimal parameters to facilitates its use for the 

required analysis. The imagery was atmospherically corrected with the semi-automatic 

classification plugin (SCP) of the QGIS 3.10 software. The dark object subtraction (DOS1) 

SCP plugin was also applied to transform the image radiance to spectral reflectance. For this 

AGC prediction, ten spectral bands were selected (Table 5.2). The bands 1, 9, and 10 were not 

used as they contain aerosols, water vapour, and cloud information. The selected bands are 

sensitive to living biomass, carbon, and their respective resolutions are optimal for quantifying 

these elements (Wang et al., 2018a, Chen et al., 2018, Pandit et al., 2018a). The use of spectral 

bands that are sensitive to vegetation is important in vegetation modelling and predictions.  

Furthermore, the sensitivity of the spectral bands to vegetation enhances their correlation with 

the dependent variable that is used to extract their spectral reflectance values for the analysis. 

All the bands were resampled to 10 m spatial resolution using the nearest neighbourhood 

analysis in the SNAP toolbox to enhance stacking for improved analysis. Related AGB studies 

suggest that improving the spatial resolution of Sentinel 2 imagery to finer scales reduces 

uncertainties and improves accuracies (Attarchi and Gloaguen, 2014, luVaglio Laurin et al., 

2017). 

Table 5.2: Details of spectral bands 

Band Name/Code 
Central 

Wavelength 

Spatial Resolution 

(m) 

B2 Blue (490 nm) 0.490 10 

B3 Green (560 nm) 0.560 10 

B4 Red (665 nm) 0.665 10 

B5 RE1 (705 nm) 0.705 20 

B6 RE2 (740 nm) 0.740 20 

B7 RE3 (783 nm) 0.783 20 

B8 NIR (842 nm) 0.842 10 

B8A NIR2 (865 nm) 0.865 20 

B11 SWIR1 (1610 nm) 1.610 20 

B12 SWIR 2 (2190 nm) 2.190 20 

RE: Rede edge; NIR: near-infrared; SWIR: shortwave infrared 

 

5.4.2 Spectral Indices variables 

In this study, we made use of eight conventional NIR vegetation indices that have mostly been 

adopted in AGC and AGB studies. They were generated from the resampled and 

atmospherically corrected Sentinel 2 imagery with the appropriate mathematical expressions 

(Table 5.2). The use of preprocessed imagery is necessary to improve outputs of vegetation 

indices and to relate them to the image reflectance (Byrd et al., 2014, Zhang et al., 2014). These 

vegetation indices used in our study were useful in vegetation related studies (Wicaksono, 

2017, Zhang et al., 2019, Askar et al., 2018) but yet to have a wide application in direct AGC 

prediction and mapping making it necessary to test their capabilities for AGC estimations. 

https://earthexplorer.usgs.gov/
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Seven red-edge region vegetation indices were also generated from the Sentinel 2 imagery with 

the application of suitable band mathematical expressions (Table 5.2). They were also 

generated from the atmospherically corrected and resampled image. The Sentinel 2 generated 

red-edge vegetation indices have recently been applied and tested in vegetation studies  (Lin et 

al., 2019, Xie et al., 2018, Zhang et al., 2018) but are yet to be specifically used as a predicting 

set of variables in AGC estimation. Therefore, it is worth applying them directly to the AGC 

prediction and ascertain their capabilities for the modelling as well. 

 

Table 5.1: Details of NIR and Red-edge region vegetation indices variables  

Predictor 

variable 

Relevant 

band/index 

Sentinel 2 Band Mathematical 

expressions 

Resolution 

/Reference 

 

 

 

NIR 

Vegetation 

Indices 

EVI 2.5*(B8-B4) / (B8+6 * B4 -7.5*B3 + 1) (Huete et al., 

2002) 

DVI B8 - B4 (Tucker, 1979) 

NDVI (B8 - B4) / (B8 + B4) (Rouse et al., 

1974) 

GNDVI (B8 - B3) / (B8 - B3) (Buschmann and 

Nagel, 1993) 

RDVI (B8 - B4) /√ (B4 + B4) (Roujean and 

Breon, 1995) 

GRVI B8/B3 (Sripada et al., 

2005) 

SR B8 / B4 (Birth and 

McVey, 1968) 

MSR (B8 / B4)-1 /√ (B8 / B4) +1 (Chen, 1996) 

 

 

 

 

Red-edge 

Vegetation 

Indices 

NDVIre1 (B8 - B5) / (B8 + B5) (Gitelson and 

Merzlyak, 1994) 

NDVIre2 (B8a - B5) / (B8a + B5)  

REI (RE2 - RE1) / (RE2 + RE1) (Zarco-Tejada et 

al., 2001) 

NDre1 (B6 - B5) / (B6+B5) (Gitelson and 

Merzlyak, 1994) 

NDre2 (B7 - B5) / (B7+B5) (Barnes et al., 

2000) 

MSRre (B8 / B5)-1 /√ (B8 / B5) +1 (Chen, 1996) 

MSRren (B8a / B5)-1 / √ (B8a / B5) +1 (Fernández-

Manso et al., 

2016) 

RE: Rede edge; NIR: near-infrared; SWIR: shortwave infrared, EVI: Enhance Vegetation 

Index, DVI: Difference Vegetation Index, NDVI: Normalised Difference Vegetation Index, 

RDVI: Renormalised Difference Vegetation Index, SR: Simple Ratio, GNDVI: Green 

Normalized Difference Vegetation Index, NDVIre1: Normalized Difference Vegetation Index 

red-edge 1, REI: Red-edge Index, NDre1: Normalized Difference red-edge 1, NDre2: 

Normalized Difference red-edge 2, MSRre: Modified Simple Ratio red-edge, MSRren: 

Modified Simple Ratio red-edge narrow. 
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5.4.3 Variable selection  

The prediction of AGC requires the use of independent variables for estimating the AGC 

stocks. Inferences from some studies suggest that the number of predicting variables in a 

regression influences the output (Pandit et al., 2018a, Millard and Richardson, 2015, Mutowo 

et al., 2018b). Models with a larger number of variables usually have an advantage over those 

with a smaller set of variables. We compared the predictive abilities of four RF models with 

each having an equal number of variables. The variables were made of a set of spectral bands, 

NIR and red-edge vegetation indices. This was done to provide an equal ground for comparing 

the performance of each model. The best and significant variables were preselected from each 

variable set to reduce the possibility of redundancy and multicollinearity as a result of a high 

number of predictor variables.   

We applied the Recursive Feature Elimination (RFE) algorithm to execute the selection 

process. The RFE algorithm was applied separately to each set of spectral variables using the 

RF function with 10-fold cross-validation in the R statistical package. The RFE algorithm 

selects variables that are important to significantly contribute to the model accuracy. This is 

done through four main steps which are 1) training of the RF model, 2) computation of the 

permutation importance measure, 3) elimination of the less relevant variables (features) and 4) 

repetition of the first 3 steps till no further variables (features) remains. The process is done by 

recomputing the permutation importance at each step of variable performance assessment and 

elimination. It selects a smaller size and more efficient variable subset since, the most 

informative variables are well ranked in the last stages of the steps of the backward procedure 

(Gregorutti et al., 2017). As a result of different training sets, it is likely to obtain slightly 

different variables at every iteration (Wang et al., 2018a). Therefore, the algorithm was 

implemented in 20 iterations for each set of variables to ensure the selection of credible, robust 

and informative ones (Li et al., 2016). At each iteration, the least number of variables with 

minimum was selected as the optimal value. The most frequently occurring variables were 

selected as the optimal ones. 

At the end of the RFE implementation, the top five variables each were selected from the 

spectral bands (n=10), NIR vegetation indices (n=8) and Red-edge vegetation indices variables 

(n=7) to form four separate RF models. Each set of variables selected was used in a model 

corresponding to the spectral product type from which they were selected.  The Blue, RE1, 

RE2, RE3 and NIR bands were selected from the set of spectral bands, the DVI, EVI, NDVI, 

MSR, SR were selected from the set of NIR vegetation indices while the REI, NDre1, MSRren, 

NDre2, NDVIre1 were selected from the red-edge vegetation indices. Afterwards, the original 

set of variables of the spectral bands and the vegetation indices were combined (n=25) and the 

top five were also selected to form the fourth model. This model was subsequently called the 

Combined Variables model. The variables selected from this model were RE1, RE2, SWIR2, 

NDVI and MSRren. Each set of the five selected variables were used in the separate RF models. 

The breakdown of the spectral products used for the RF models into a specific set of spectral 

bands only, NIR vegetation indices only and red-edge vegetation indices only is important as 

it enhances a full assessment of the predictive abilities of each set when they are used alone in 

an AGC predicting model. There are many categories of spectral products with the 

advancement of Remote Sensing modelling of vegetation and some might likely be much more 

robust and informative than others. Hence, our approach to break them down into a specific set 

of products and used for the AGC prediction. This further enhanced the analysis of the 

contribution of each set of products to the accuracies of the predicting models.  It also enhanced 

the testing of their performances and analyze their performance and contribution to modelling 

accuracies.   
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5.5 Random Forest Regression Modelling 

We used Random Forest regression models to predict and map the AGC stock. The Random 

Forest (RF) is a non-parametric machine learning algorithm that is capable of undertaking both 

classification and regression. The algorithm uses a bagging approach to split the data; a part of 

the data is for training and building the decision tree. The remaining part is for estimating the 

out-of-bag (OOB) error for each tree. This result is an unbiased estimation of the generalization 

error. An advantage of the RF is that it does not overfit data, handle complex data and also able 

to deal with the problem of multicollinearity (Ramoelo et al., 2015, Abdel-Rahman et al., 

2013a, Rodríguez-Galiano et al., 2011, Breiman, 2001). The RF ntree and mtry are two main 

parameters that determine the outputs of the RF. The ntree is the total number of decision trees 

grown in the model with a default value of 500, while the mtry is the number of predictor 

variables selected that performs the splitting at each node. The default values of these 

parameters produce optimum results (Belgiu and Drăguţ, 2016, Duro et al., 2012). Besides, the 

RF allows the assessment of the statistical significance of each predicting variable in the model. 

Four separate RF regression models were developed for the selected top five variables of the 

(a) Spectral bands, (b) NIR vegetation indices, (c) Red-edge vegetation indices and (d) 

Combined Variables to relate them with the field observed data. These predicting models were 

executed in the R statistical software environment (Team, 2013) through the “randomForest” 

package (Liaw and Wiener, 2002). The field observed data were extracted separately with each 

spectral variable set and subsequently partitioned into 70% training data (192 plots), and 30% 

independent validation data (83 plots) in a random selection approach. Each RF model was 

calibrated with the training data and then applied the bootstrapping of 500 iterations to predict 

the AGC using the independent 83 validation set for each of them. Bootstrapping is a 

resampling approach that selects samples randomly in a replacement manner and allows 

conclusions to be drawn from the samples instead of making assumptions about the estimator 

(Mooney et al., 1993). In the process, 192 plot data were drawn at each bootstrap iteration with 

replacement from 192 samples while the remaining 83 samples were used to validate the model 

outputs (Fassnacht et al., 2014c). 

 

5.6 Models evaluation and variables importance 

The predictive performance of the four RF regression models were compared and evaluated 

based on two main statistical parameters. These were the coefficient of determination (R2) and 

the root mean squared error (RMSE) values. These accuracy parameters were calculated from 

the means of the 500 bootstrapped samples. The model that produced the highest R2 and least 

RMSE was considered the most accurate. We produce a final AGC stock map of the studied 

forest from the best RF model.  

The variable importance feature in the RF algorithm allowed us to evaluate the significance of 

each of the variables in the model accuracy. The significance of the variables relates to the 

increasing percentage in mean squared error (%IncMSE), which denotes the effect of a variable 

in a model when it is removed. We evaluated this, to determine which Sentinel 2 variables 

(products) could be considered as best in AGC prediction for natural forests 

 



105 
 

5.7 Results 

5.7.1 Random Forest models performance  

The performance of the four RF models was evaluated and compared based on the defined 

accuracy parameters (Table 5.4). Comparable result (R2) has been observed between all the RF 

models, which may be due to the strength of the RF and the use of an equal number of predictor 

variables in the models. However, there was a marked difference in the RMSE. The Combined 

Variables model outperformed the other RF models with R2 of 0.949 and RMSE of 20.65 

Mg/ha. The Red-edge vegetation indices variables model was the second-best with R2 of 0.945 

and RMSE of 21.60 Mg/ha, the Spectral bands' variables model was the third-best by returning 

R2 of 0.948 and RMSE of 21.83 Mg/ha. Lastly, the NIR vegetation indices variables model 

returned R2 of 0.948 and RMSE of 22.94 Mg/ha, making it the least performing model. 

Table 5.2: Model accuracies. 

Predictor Variable R2 RMSE (Mg/h) 

Combined Variables (n=5) 0.949 20.65 

Red-edge vegetation indices 

only (n= 5) 

0.945 21.60 

Spectral bands (n=5) 0.948 21.83 

NIR Vegetation indices 

(n= 5) 

0.946 22.94 

 

Scatter plots showing the correlation between the RF model predictions and the field observed 

(measured) outputs for each model are presented in Figure 5.2. The scatter plots were produced 

with a randomly selected independent validation set for each RF model. It could be observed 

that a good relationship exists between the field measured and RF predicted AGC.  

 

 

Figure 5.2: Scatter plots indicating the relationship between the observed and predicted AGC. 

The line of best fit is represented by the blue line with the shaded region representing the 95% 
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confidence interval. Note: A represents the Combined Variables model (A), B represents the 

Red-edge vegetation indices model, C represents the Spectral bands model and D represents 

the NIR vegetation indices.  

 

5.7.2 AGC map 

The Combined Variables RF model emerged as the best among the others. Hence, it was 

utilized to produce the AGC map to show the spatial distribution and concentration across the 

Nkandla Forest Reserve (Figure 5.3). The carbon levels are classified into ranges to show the 

different levels of concentration. A high amount of the variance in the AGC was predictable 

by the model variables. The closed and open canopy areas of the forest which form about 90% 

of the forest have the highest concentration of carbon ranging from 50 mg/ha and above due to 

its tree cover. The grasslands which constitute about 10% of the land cover of the forest ranged 

below 50 Mg/ha.  

 

 

Figure 5.3: Final AGC distribution map produced for the Nkandla Forest Reserve. 

 

5.7.3 AGC prediction variable importance 

The variable importance feature of the RF algorithm was used to determine and rank the 

importance of every variable based on their significance in each model. The variable 

importance is a measure of the significance of each variable to the prediction accuracy of the 

model. The criteria used in this study was the percentage increasing mean squared error (% 

IncMSE) for each variable in each RF model.  



107 
 

The Combined Variables RF model had the red-edge bands such as the RE2 and the RE1 

emerged as the first and third important variables (Figure 5.4A). The NDVI was the second 

most important variable while the MSRren was the least important. Concerning the Red-edge 

vegetation indices RF model, the REI was the most important variable while the least variable 

was the NDVIre1 (Figure 5.4B). The MSRen and the NDre1 had comparable %IncMSE 

showing their equal importance to the model and prediction of the AGC stock. The three 

Sentinel 2 red-edge bands, RE1, RE2 and RE2 emerged as the top three most important 

variables for the spectral band’s RF model (Figure 5.4C). The least ranked variable was the 

Blue band. The DVI was the most important variable, followed by the MSR and NDVI in 

respective order as the top three variables for the NIR vegetation indices RF model (Figure 

5.4D). The least important variable was the SR.  

 

 

 

Figure 5.4: Variable importance for the variables of the four RF model of models. A is for the 

Combined Variables model, B is for the Red-edge vegetation indices, C is for the Spectral 

bands model and D is for the NIR vegetation indices model. The variables have been ranked 

based on the least to the most important variable from left to right.  

 

5.8 Discussion 

Our study found that all four RF models had a comparable coefficient of determination (R2). 

This may be due to the use of an equal number of variables used in the models. Inferences 

drawn from AGC and AGB studies suggest that models with a large number of predicting 

variables produced a high R2 and lower RMSE values as compared to models with a smaller 

number of variables (Millard and Richardson, 2015, Mutowo et al., 2018a, Pandit et al., 2018a). 

This reveals the critical role the number of predicting variables has on model accuracies. As a 

result of the satisfactory findings of our study, it may be important to consider using the same 



108 
 

number of predicting variables for models especially in comparative studies to provide possible 

equal grounds for comparison.   

A second reason for the comparative accuracy could be due to the capabilities of the RF 

algorithm. The RF algorithm can handle different complex Remote Sensing data and variables 

types (Fassnacht et al., 2016). Furthermore, it works effectively with the different types of data 

sets without overfitting and as well deals with multicollinearity (Fassnacht et al., 2016, 

Ramoelo et al., 2015). These attributes make the RF robust for the prediction of AGC and the 

production of satisfactory accuracies. The finding of our study is similar to other studies that 

found the RF algorithm contributing to predicting model accuracies (Dube and Mutanga, 2015, 

Ghosh and Behera, 2018). Hence, it has been recommended by many studies to be adopted for 

vegetation monitoring and assessments.    

Thirdly, the pre-selection of robust and informative variables for the four RF models could also 

account for the comparable accuracies. The selection of significant predictors is necessary to 

prevent the challenge of saturation, redundancy, computational complexities and low 

accuracies (Millard and Richardson, 2013, Nitze et al., 2015). Furthermore, it makes models 

simple and easy to interpret, reduces the variance of the model and therefore overfitting and 

also fast training of the model. These might have enhanced the predictive ability of the RF 

models. The Recursive Feature Elimination (RFE) algorithm could be adopted for the selection 

of important and robust variables when developing predicting models. The use of the RFE 

algorithm was important for developing the RF regression models as the selected variables 

were robust in the prediction. The usefulness of the RFE algorithm has also been found by 

other studies (Ghosh and Joshi, 2014, Wang et al., 2018a). Hence, the prior selection of the 

best and statistically significant variables could be adopted as a major component of predictive 

studies involving AGC and other vegetation studies. 

As a result of the comparable R2 obtained by all the four models, the determination of the best 

model was based on the one that had a lower RMSE than the other three. Thus, the Combined 

Variables model performed better than the other models due to its slightly lower RMSE. The 

Sentinel-2 products that contributed significantly to the output of the combined variables RF 

model are the RE1, RE2, SWIR2, NDVI and MSRren as the predicting variables. This is 

explained by the combined effect of the unique capabilities and information of the variables. 

The output of the model is reflective of the sensitivity of these variables to vegetation attributes 

such as chlorophyll, canopy structure and phenology. Rajah et al. (2019) stated that a strong 

relationship exists between the red-edge and the SWIR with vegetation parameters, thus further 

explaining the findings of our studies. These findings share similarities with other vegetation 

studies that also found the combination of Sentinel 2 spectral bands and vegetation indices 

variables performing better than single set variables (Mutowo et al., 2018a). Spectral bands in 

the red-edge region are sensitive to green vegetation biomass variations in contrast to 

senescence stage vegetation and are less susceptible to the problem of saturation  (Todd et al., 

1998, Mutanga and Skidmore, 2004). It explains the correlative ability of the red-edge bands 

with biomass and AGC (Sibanda et al., 2015, Dube and Mutanga, 2016). The MSRren shares 

in the capabilities of the red-edge bands as it is derived from those regions. Moreover, MSRren 

may have lessened the problem of data saturation in the model as the red-edge vegetation 

indices a less prone to the problem of saturation (Mutanga and Skidmore, 2004). The inclusion 

of the NDVI in the model might have also paid off in improving the predictive ability of the 

model. The NDVI is among the commonly used NIR vegetation indices applied in vegetation 

studies which is able to characterize canopy growth and vigor (Sripada et al., 2005, Xue and 

Su, 2017). It also relates to photosynthesis and canopy structure (Grace et al., 2007, Gamon et 

al., 1995). These attributes of the NDVI complimented that of the red-edge bands and the 

MSRren to make the combined variable much more robust. Similarly, the SWIR2 also proved 
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significant as it has also been found to be sensitive to species composition (Aklilu Tesfaye and 

Gessesse Awoke, 2020). These characteristics of the variables proved their importance in the 

modelling and affirm that a careful combination of key variables of spectral bands and 

vegetation indices could be a robust approach to predicting AGC.  

Although the merger of the capabilities RE1, RE2, SWIR2, NDVI and MSRren contributed to 

the Combined Variables model accuracy, they were ranked with the RF importance variable 

feature to ascertain which of them contributed much to the performance and accuracy of the 

model. The RE1 and RE2 were the first and third variables respectively, while the NDVI was 

the second. This ranking output further affirms the superior robustness of the red-edge bands 

over the other spectral variables.  

Despite the selected Spectral bands, NIR and Red-edge vegetation indices variables RF model 

had slightly higher RMSE margins than the Combined variables model, it is not indicative that 

they are not appropriate for the prediction of AGC of natural forests. This is because each of 

these models produced some level of satisfactory results with the comparable high R2 and 

varying RMSE values, indicating their correlation with the field measured AGC. The Red-edge 

vegetation RF variables model was the second as it performed better than the spectral bands 

and the NIR vegetation models because it also had a slightly lower RMSE than them. The REI, 

NDre1, MSRren, NDre2, NDVIre1 formed the variables in this model. The red-edge vegetation 

indices are sensitive to leaf and chlorophyll content and phenological stages (Aklilu Tesfaye 

and Gessesse Awoke, 2020, Xie et al., 2018), and hence reflecting the robustness they share 

with the bands from which they are derived. Emerging studies have been exploring the use of 

more Sentinel 2 red-edge derived vegetation indices through existing and new modelling 

approaches to ascertain their usefulness for vegetation related research (Fernández-Manso et 

al., 2016, Xie et al., 2018, Zhang et al., 2018). However, these red-edge vegetation indices 

appear to have been applied in AGC studies on a limited scale. Therefore, our study outcomes 

could contribute to ascertaining their usefulness for AGC prediction and mapping for natural 

and heterogenous forest ecosystems. Similarly, Fernández-Manso et al. (2016) found the red-

edge vegetation indices outperforming the NIR vegetation indices. Additionally, Forkuor et al. 

(2020) also indicated that the red-edge vegetation indices performed better than other 

vegetation indices including those derived from the SWIR region. The calculation of red-edge 

vegetation indices was not possible owing to the unavailability of red-edge bands in old 

generation satellite sensors such as Landsat, MODIS and ASTER (Mutowo et al., 2018b). 

However, it is now possible in new generation sensors such as Sentinel 2, thus providing a 

means of further using them for AGC quantification to provide more insights on improving 

their utilization. In order to evaluate the performance of five red-edge vegetation indices, they 

were also ranked with the RF variable importance feature. The REI, MSRren and NDre1 were 

the top three variables of the red-edge vegetation indices set and were significant contributors 

to its statistical output.  

The Sentinel 2 bands RF model was the third-best performing model as it had the third lower 

error margin. It had the RE1, RE2, RE3, NIR and the Blue bands. The findings of other studies 

have also affirmed the capabilities of the Sentinel 2 spectral bands (Wicaksono, 2017, Zhang 

et al., 2019, Ghosh and Behera, 2018). The robustness of the red-edge bands has been seen in 

all the models and needs not be overemphasized. The NIR band displays strong reflectance for 

sites with high vegetation, hence its use in most vegetation related studies (Gizachew et al., 

2016).  On the other hand, the blue band has low reflectance and might have contributed to the 

error margin of the model. It was the least important variable when it was ranked alongside the 

other four bands by the RF algorithm. The RE1, RE2 and RE3 (red-edge) bands were the top 

three most important variables in the spectral band’s RF model. This finding is similar to that 

of other studies, including  Castillo et al. (2017) and Pandit et al. (2018a) who also found the 
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red-edge bands to be the most important variables and had a better prediction than the other 

spectral bands. Comparatively, Sentinel 2 may have an advantage over the other multispectral 

imagery (optical sensors) since it is the only one with three red-edge bands (Han et al., 2017). 

These red-edge bands are found to be more informative (Kira et al., 2016), making them 

effective for vegetation attributes monitoring and measurements including AGC.  

The NIR vegetation indices RF model was the least performing model as it had the highest 

RMSE. Its variables were the DVI, NDVI, MSR, EVI and the SR. In terms of their 

characteristics, the DVI can distinguish between vegetation and soil (Tucker, 1979), while the 

NDVI can detect vegetation growth and vigour. The MSR has an increased sensitivity to the 

biophysical parameters of vegetation (Chen, 1996) whereas the EVI optimizes vegetation 

signals. Furthermore, it corrects soil background signals and reduces the influences of the 

atmosphere through the use of the blue reflectance region (Huete, 1988). Lastly, the SR is 

effective to use under various conditions and it is created by the band with the strongest 

vegetation reflectance and the band with the deepest absorption of chlorophyll (Birth and 

McVey, 1968). Generally, vegetation indices derived from Sentinel 2 are confirmed to 

correlate well with vegetation (Adan, 2017). It has been found that the effects of environmental 

conditions and shadows on spectral reflectance, especially in complex vegetation stands, can 

be minimized by vegetation indices (Adam et al., 2014a). Although all these attributes are 

related to the vegetation, it could not effectively deal with the error. That notwithstanding, they 

may be used for use in AGC studies as they had a high correlation with the vegetation based 

on their high R2. The DVI, NDVI and MSR emerged as the top three most important variables 

while the SR was the least important.  

It may be worth indicating that the different modelling approaches coupled with data types, 

can potentially influence the AGC stock quantification as each research works with and settles 

on what finally produces optimal results. The use of Sentinel 2 imagery and the RF regression 

algorithm with the application of these identified important and statistically significant 

variables could be adopted for AGC studies in other natural forest ecosystems. It will lead to 

the identification of the best variables and robust models. This can deepen the understanding 

surrounding the utilization and application of the imagery and algorithms in explaining AGC 

stocks and dynamics. 

The AGC map that was produced helps to identify the ranges, concentration and spatial 

distribution of AGC across the forest and it will be useful for carbon management. A high 

amount of the AGC is concentrated in the closed canopy and open canopy forests of the reserve 

due to the high tree cover. This is found almost across the entire forest except for areas that 

have dense grasslands. This map will be beneficial to the management of the forest to know 

where to set priorities with regards to AGC management. Furthermore, the map could also help 

to validate future AGC spatiotemporal analysis, monitoring and mapping. 

The field data indicated that the forest is not old, and it has the potential to sequester more 

carbon as it continues to grow. This could be guaranteed if there are no human modifications, 

like land use land cover changes, deforestation and degradation which would interfere with the 

ecological and biological processes of the forest reserve. Effective management will be 

required for this forest to ensure the conservation of trees and ensure the realization of the 

potential forest capacity as a carbon sink.  

The outputs of our study could have implications on natural forest management, carbon 

accounting and climate change adaptation and mitigation programmes both locally and 

internationally. It provides information on the range and distribution of AGC, useful to national 

and international databases on carbon stocks for informed decision making and policy 
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directions. An example is an assessment of including certain forests in the Reducing Emissions 

from Deforestation and forest Degradation-plus (REDD+) initiative of the United Nations 

(Avtar et al., 2020).  

Finally, the results of this study demonstrate the potential of Sentinel 2 satellite imagery and 

RF regression algorithm in predicting and mapping AGC stocks in sub-tropical natural forests. 

This is in line with related studies that similarly observed the ability of the imagery and the 

algorithm suitable for AGB, AGC and vegetation monitoring (Chen et al., 2019, Ghosh and 

Behera, 2018, Forkuor et al., 2020). The findings could contribute to further deepening the 

understanding of the dynamics and approaches in the application of Sentinel 2 imagery and RF 

machine learning algorithm for AGC prediction and mapping in different forest ecosystems, 

landscapes and ecological zone. 

 

5.9 Conclusion 

Climate change, forest cover changes, carbon accounting and forest management makes AGC 

estimations important at the local and international levels. Also, due to the dynamic nature of 

forest ecosystems and increasing human interventions, it will be worth quantifying the local 

and national AGC stocks to support management decisions and policies. Several approaches 

involving the combination of many Remote Sensing data, field measurements and machine 

learning algorithms are being explored on different scales to provide the quantitative and 

qualitative information needed for decision making. One of those is the application of the 

Sentinel 2 and RF regression algorithm in the AGC prediction, estimation and mapping used 

in this study.  

The results showed that the selection and combination of their key variables could improve 

prediction accuracies. The red-edge bands and their derived vegetation indices were observed 

to be informative and robust for AGC modelling as compared to the other spectral bands and 

the NIR vegetation indices of the other models. Also, the use of an equal number of variables 

in predicting models could be considered for comparative studies as it provides a potential 

equal basis for comparison. The modelling approach and the identified statistically significant 

variables may be adopted and utilized in the estimation and mapping of AGC stocks.  

Furthermore, this study demonstrates the capabilities and robustness of Sentinel 2 data and RF 

regression algorithm in the direct AGC prediction and spatial mapping in natural sub-tropical 

forests. The AGC estimation is important as it is the first for the study area and will support 

forest management. Also, since this research is among the studies that have tested the direct 

prediction and mapping of AGC in natural forests, it may serve the larger Remote Sensing 

community and forest managers because of the vital information it provides. The freely 

available Sentinel 2 imagery and RF machine learning algorithm could be further used in 

studies especially in tropical and subtropical zones such as Africa to enhance contribution to 

national and global AGC carbon stock estimates.    
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Abstract 

Forests contribute significantly to terrestrial biodiversity conservation. Monitoring of tree 

species diversity is vital due to climate change factors. Remote Sensing imagery is a means of 

data collection for predicting diversity of tree species. Since various sensors have different 

spectral and spatial resolutions, it is worth comparing them to ascertain which could influence 

the accuracy of prediction of tree species diversity. Hence, this study evaluated the influence 

of the spectral and spatial resolutions of PlanetScope, RapidEye, Sentinel 2 and Landsat 8 

images in diversity prediction based on the Shannon diversity index (H′), Simpson diversity 

Index (D1) and Species richness (S). The Random Forest regression was applied for the 

prediction using the spectral bands of the sensors as variables. The Sentinel 2 was the best 

image, producing the highest coefficient of determination (R2) under both the Shannon Index 

(R2 =0.926) and the Species richness (R2 =0.923). Both the Sentinel and RapidEye produced 

comparable higher accuracy for the Simpson Index (R2=0.917 and R2=0.915, respectively). 

The PlanetScope was the second-accurate for the Species richness (R2=0.90), while the Landsat 

8 was the least accurate for the three diversity indices. The outcomes of this study suggest that 

both the spectral and spatial resolutions influence prediction accuracies of satellite imagery. 

Keywords: natural forests; diversity; prediction; sensors; random forest; conservation 

 

6.1 Introduction 

Forests cover about one-third of the earth’s total landmass and contain a large amount of 

terrestrial biodiversity (Gamfeldt et al., 2013, Aerts and Honnay, 2011). Forest biodiversity is 

an expression of the differences among the living organisms present in the ecosystem and it is 

considered as one of the means of measuring forest health and stability (Wang and Gamon, 

2019). The interdependence and interaction among the species influence and facilitate the 

provision of ecosystem goods and services (Iverson and McKenzie, 2013). These ecosystem 

goods and services include carbon sequestration and storage, provision of habitats for wildlife, 

production of non-timber forest products (NTFPs), regulation of water and biogeochemical 

cycles (Millennium Ecosystem Assessment, 2005). Although forest biodiversity includes trees, 

animal species and other life forms, trees seem to be the most essential elements as without 

them there will be no forest and most ecosystem goods and services provision will be hindered. 

The prediction and estimation of tree species diversity provide forest managers, ecologists and 

conservationists information for forest management decisions. The spatial information 

obtained through the estimation of the tree species is vital for effective forest management and 

biodiversity conservation (Turner et al., 2003); and it provides better understanding of forest 

ecological processes such as tree growth rates, species recruitment, and net productivity (Luo 

et al., 2019). In recent years, remote sensors have provided data that help predict, estimate and 

map forests at various levels (Fundisi et al., 2020, Grabska et al., 2019b). This is due to its large 

spatial coverage, less time consumption, and cost-effectiveness as compared to traditional 

inventories and assessments (Adelabu et al., 2013, Ustuner et al., 2016, Kavzoglu and Mather, 

2003). That notwithstanding, the methodological approach that establishes the relationship 

between Remote Sensing imagery and field data is identified as a robust means of predicting 

tree species diversity. 
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The advances in remote sensors, data characteristics, and processing systems have increased 

the potential of satellite imagery in providing accurate and robust spatially explicit estimates 

of tree species diversity. Satellite imagery from sensors has been employed for tree species 

diversity assessments for various types of forests in many areas. The output of these 

assessments has demonstrated the ability of Remote Sensing satellite imagery to predict species 

diversity based on field derived measured data. Furthermore, many of these studies prescribe 

images and approaches that could be adopted in the modelling process. 

Different types of sensors, including multispectral (Chrysafis et al., 2020, Madonsela et al., 

2018, Mutowo and Murwira, 2012a, Arekhi et al., 2017, Foody and Cutler, 2006, Gillespie et 

al., 2016, Gould, 2000, Grabska et al., 2019b), hyperspectral (Carlson et al., 2007, Colgan et 

al., 2012, Oldeland et al., 2010, Kalacska et al., 2007, Laurin et al., 2014, Schäfer et al., 2016) 

and active ones like the Light detection and ranging (LiDAR) have been used over the years 

for the prediction of tree species diversity in different forest types, and climatic zones and 

scales. Hyperspectral images can predict tree diversity with better accuracy due to their 

numerous narrow bands (Nagendra et al., 2013, Ghosh et al., 2014). On some occasions, the 

hyperspectral data are fused or combined with LiDAR (Zhao et al., 2018, Sun et al., 2019). 

This data fusion approach helps to take advantage of the ability of the hyperspectral data to 

detect different vegetation communities and the ability of the LIDAR data to measure the 

structural attributes of tree species. Furthermore, the LiDAR data can pass through clouds, 

which allows incident rays to reach the target feature and the reflected rays to get to the sensor. 

However, the high cost of acquiring hyperspectral and LiDAR data has hindered the mass 

application in diversity prediction (Mutowo and Murwira, 2012a). 

Multispectral images could be said to have been used much in the prediction of tree species 

diversity. One of the most used is the Landsat images which have proven useful in the forest 

zones within which they were applied (Arekhi et al., 2017, Madonsela et al., 2017, Mohammadi 

and Shataee, 2010). Over the years there has been an improvement in its spectral bands and 

how they sense vegetation, especially with the Landsat 8 (Dube and Mutanga, 2015). Since the 

success of diversity prediction across different forest zones depends on the ability of the 

spectral bands to correlate with tree species characteristics, it is important to adopt images that 

have a high sensitivity to forests. Another satellite imagery that has been used is the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer [ASTER] (Feilhauer and 

Schmidtlein, 2009a, Mutowo and Murwira, 2012a). It seems to have not had much application 

in the prediction of diversity across many forest types as compared to the Landsat satellite 

imagery. However, the studies that have used it have found its spatial and spectral product 

capable of producing good prediction accuracies (Mutowo and Murwira, 2012b). Another 

Remote Sensing imagery that has also proven robust and informative and is also freely 

available is Sentinel 2 imagery. It has a medium resolution and a large number of spectral bands 

that enhance its accuracy outputs (Grabska et al., 2019b, Persson et al., 2018, Chrysafis et al., 

2020). It is also one of the images that have been used extensively for many vegetation studies. 

It is the only Remote Sensing imagery that has three red edge bands which give it some level 

of advantage over the other satellite imageries (Mutowo et al., 2018a). This is because of the 

chlorophyll information it contains which contributes to the high sensitivity it has for 

vegetation. These reasons could be the basis for the high accuracies it produces in diversity 

studies. 
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The spectral and spatial products of images including the bands, vegetation indices and texture 

variables are normally used as the predicting variables. Apart from the spectral bands, one of 

the most used predictors is the normalized difference vegetation index (NDVI) (Arekhi et al., 

2017, Gould, 2000, Pau et al., 2012, Oindo and Skidmore, 2010, Krishnaswamy et al., 2009). 

It is derived from the bands with the highest absorption (Red) and reflectance (near infrared), 

which makes it useful under various conditions. However, one of the drawbacks of the NDVI 

is data saturation in areas with a high leaf area index (LAI). This could also likely affect 

diversity estimation under certain circumstances. Texture variables such as the Gray Level Co-

occurrence Matrix (GLCM) have also contributed to the prediction of diversity (George-

Chacon et al., 2019, Ozdemir et al., 2008, Fundisi et al., 2020). The spectral bands such as the 

near infrared (NIR), red edge (RE) and the shortwave infrared (SWIR) have been found to be 

important in many diversity studies (Otunga et al., 2018, Tigges et al., 2013, van Deventer et 

al., 2017, Tuominen et al., 2018). These are located in the regions in the electromagnetic 

spectrum that contains vegetation information and including any of them in predictive models 

could improve performance outputs. The use of any of these variables could be dependent on 

the forest type and the tree cover density. For instance, most forests in temperate and boreal 

zones may not be of high density and heterogenous as compared to tropical and subtropical 

forests. As such forests in the tropical and subtropical forest are likely to require robust 

predictors as compared to temperate and boreal forests. The capabilities of the predictors may 

be sensor-dependent and the advancement in their design over the years has made diversity 

studies much more successful. 

The methods and modelling techniques are also one of the main factors that contribute to 

diversity prediction outputs. Most studies have resorted to the use of regression which is carried 

out by either parametric or non-parametric machine learning algorithms. The Random Forest 

(RF) which is a non-parametric algorithm is one of the main algorithms that have been 

extensively used in predictions (Pedro et al., 2015, Chrysafis et al., 2020, Mallinis et al., 2020). 

As a non-parametric algorithm, it does not assume a normal distribution of data and it is optimal 

to be used for diversity modelling of natural forests due to these characteristics. The linear 

regression which is a parametric algorithm has as well been used in many studies (Mutowo and 

Murwira, 2012b, John et al., 2008, Madonsela et al., 2018). The modelling technique in the use 

of these algorithms is an important factor to consider as one of the things that affect accuracies. 

The prediction of tree species diversity in many forests and climatic zones have become 

necessary with time due to factors such as increasing climate change that are negatively 

affecting species. The availability and advancement of different sensors are continually being 

tested for their suitability for diversity modelling as well as increasing knowledge in their 

application. However, none of these studies has been carried out for subtropical natural forests 

in South Africa, which creates a gap in tree diversity management. It must be noted that 

subtropical natural forests are characterised by high tree species diversity and density (Ouyang 

et al., 2016, Huang et al., 2017, Sun et al., 2017). As such, it will require informative and robust 

imagery to predict and map their tree species diversity. Thus, evaluating multi-sensors 

performance and identifying the best based on their spectral and spatial resolutions is beneficial 

for the application of imagery in diversity prediction and mapping. Hence, our study aimed to 

assess how the performance and accuracies of PlanetScope, RapidEye, Sentinel 2 and Landsat 

8 images could be influenced by their spectral and spatial resolution in the prediction of tree 

species diversity for a subtropical natural forest in KwaZulu-Natal (KZN) province, South 
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Africa. The Shannon Index (H′), Simpson Index (D1) and the Species richness (S) together with 

RF regression modelling, are utilised to identify which image has a good relationship with them 

and produce good accuracy. The outcomes of our study will provide information on how 

spectral and spatial resolution could influence image model accuracies, which can provide a 

guide in the decision making on the imagery to select for predicting tree species diversity of 

subtropical natural forests. It will also contribute to existing knowledge and approach to 

modelling of diversity for forest management and conservation. Furthermore, it could assist 

forest managers in devising measures that can enhance the conservation and protection of forest 

diversity. 

 

6.2. Materials and Methods 

6.2.1. Study Area 

The Nkandla Forest Reserve is an Afromontane sub-tropical forest type, and it was established 

in 1918. It is found in the north of KwaZulu-Natal province, South Africa. It has a total area of 

2217 ha and located on 28° 43′ 50.88″ S and 30° 7′ 9.84″ E (Figure 6.1). A peak average 

temperature of 27°C is experienced between December and January, and the lowest average 

temperature of 2°C in the winter months of June and July (Ezemvelo KZN Wildlife, 2015b). It 

has an undulating and steep topography with an altitude of a minimum level of 500 m and 

exceeding 1300 m. It has four land cover types made up of closed canopy forest (1,059.23 ha), 

open canopy forest (910.60 ha), grassland (226.55 ha) and bare sites [20.97 ha] (Gyamfi-

Ampadu et al., 2020). It has common tree species such as Cryptocarya myrtifolia, Trichilia 

dregeana, Bridelia micrantha, Elaeodendron croceum, Podocarpus henkelii and Olea 

capensis. 
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Figure 6.1: Map of the study area. Note: A is the Nkandla Forest Reserve, B is the map of 

South Africa indicating the location of KZN province and the forest and C is the map of 

Africa indicating the location of South Africa. 

 

6.2.2. Field Inventory and Diversity Indices Estimation 

Tree data information was collected from the accessible parts of the Nkandla Forest Reserve 

between 24 April 2019 and 7 May 2019. This is because it was observed from a reconnaissance 

survey that some parts of the forest, especially the western portions were inaccessible due to 

the presence of high elevation and deep slopes. Therefore, the inventory was restricted to the 

middle and northeastern parts which have gentle slopes. Existing transects were followed and 

a systematic approach was used in setting up the sampling plots in the gentle slope and 

relatively flat terrain. Eleven 100 m x 100 m plots (1 ha) were randomly set up in areas with 

gentle slopes and flat terrain. Each of the 1 ha plots was subdivided into 25 subplots of 20 m x 

20 m sizes each to facilitate the data collection. Thus, the tree data was obtained from a total 

of 275 subplots. In each subplot, the diameter at breast height (DBH) of tree species ≥ 5 cm 

was measured with a diameter tape. Other information recorded for the trees was the species 

name (local and scientific) and the GPS coordinates of the trees. The individual number of 

species was summed up for each sampling plot. This approach of tree inventory did not 

compromise on the data collected because similar numbers and types of tree species were 

measured and recording in most of the sample plots. The tree data were further compared and 

confirmed for similarity with the tree list in the management plan of the forest obtained from 

the Ezemvelo KZN Wildlife. 
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The relative number of each tree species was used to compute the Shannon Index (H′) 

(Shannon, 1948), Simpson Index (D1) (Simpson, 1949) and Species richness (S) (Morris et al., 

2014) for each species. There was done by using the mathematical functions in equations 5.1, 

5.2 and 5.3 for the three diversity indices respectively. These indices have been well established 

and they allow for comparison of tree species diversity levels at different scales (Daly et al., 

2018) and they as well help to account for the evenness and richness of diversity for each site. 

The Species richness takes into consideration the absolute number of species in a particular 

ecosystem, while the evenness takes into consideration the relative abundance of each species 

(Mallinis et al., 2020). The Shannon Diversity Index (H′) accounts for both the species richness, 

and species abundance (Ifo et al., 2016). The original Simpson Index (D) emphasizes on the 

evenness component of diversity (Simpson, 1949). The Shannon Index is sensitive towards 

species rarity and abundance, while the Simpson Index is sensitive towards abundance in 

species distribution (Morris et al., 2014). These indices have been used widely and are 

confirmed to have a relationship with the spectral reflectance of Remote Sensing sensors 

(Oldeland et al., 2010). 

 

 

H′ = − ∑ 𝑝𝑖 x ln(𝑝𝑖)

𝑆

𝑖=1

 (6.1) 

                              D1=1 − ∑ 𝑝
𝑖

𝑆

𝑖=1
 (6.2) 

                           S = N 
(6ss.

3) 

 

 

where pi is the proportionate abundance of the ith species in the sampling plot, S is the total 

number of all species in a sampling plot, and ln is the natural logarithm of the proportionate 

abundance of species in the sampling plot. 

 

6.2.3. Field Inventory Data Analysis 

The descriptive statistics for the Shannon Index (H′) and Simpson Index (D1) and Species 

richness (S) that were computed for the field inventory are presented in Table 6.1. 
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Table 6.1: Descriptive statistics of Shannon Index (H′), Simpson Index (D1) and Species 

richness (S) produced from the field inventory data. 

Parameter Shannon Index Simpson Index Species richness 

Mean 2.055 0.891 9 

Minimum 0.949 0.155 4 

Maximum 2.718 0.993 15 

Standard Deviation 0.290 0.068 2.47 

 

6.2.4. Remote Sensing Data 

We used four different sensors of different spectral and spatial resolutions because the study’s 

focus was to compare and assess multi-sensor spectral and spatial resolution effects on 

accuracies in tree species diversity prediction. The satellite imageries used in the study were 

Landsat 8, Sentinel 2, RapidEye and PlanetScope (Table 6.2). All the images were cloud-free. 

The Landsat 8 has 10 spectral bands covering the visible to the shortwave infrared (SWIR) 

region of the electromagnetic (EM) spectrum with a spatial resolution of 30 m. The Sentinel 2 

has a spectral resolution of 13 also ranging from the visible range to the SWIR region of the 

spectrum with varying spatial resolution. The blue, green, red and near infrared (NIR) spectral 

bands have a spatial resolution of 10 m, while the three red edges bands, narrow near infrared 

(NNIR) and the two shortwave infrared bands (SWIR 1 and SWIR2) have a spatial resolution 

of 20 m. The coastal aerosol (Band 1), water vapour (Band 9) and cirrus bands (Band 10) have 

a spatial resolution of 60 m. The Landsat 8 and the Sentinel 2 are both freely available imagery 

that has been used extensively for vegetation related studies. The Landsat 8 is provided by the 

United States Geological Service (USGS) while Sentinel 2 is provided by the European Space 

Agency (ESA). 

The RapidEye has a spatial resolution of 5 m and five spectral bands which ranges from the 

visible to the NIR region of the EM spectrum. It is also among the sensors that have been used 

extensively for vegetation studies. On the other hand, the PlanetScope is a relatively new sensor 

and it is yet to be much used in diversity prediction. It has four spectral bands ranging from the 

visible to the NIR of the EM spectrum with a spatial resolution of 3 m. Both the RapidEye and 

PlanetScope are commercial sensors provided by the Planet Team. 

A Landsat 8 image captured on 8 May 2019 was downloaded from the Earth Explorer website 

(www.usgs.gov) of the USGS. The Landsat 8 image was atmospherically corrected from Top-

of-Atmosphere to surface reflectance using the apparent reflection function in ArcGIS 10.6.1. 

The coastal aerosol band (Band 1), the panchromatic band (Band 8), Cirrus (Band 9) and 

thermal infrared bands (Bands 11 and12) were not included in the bands considered for the 

analysis. They were excluded because the band 1 contains aerosols, band 8 is panchromatic, 

band 9 contains cloud information, while bands 11 and 12 contains thermal information. The 

Sentinel 2 image was captured on 14 April 2019 and was similarly downloaded from the Earth 

Explorer website (www.usgs.gov) of the USGS. It was atmospherically corrected using the 

semi-automatic classification plugin (SCP) of the QGIS 3.10 software. The image radiance was 

http://www.usgs.gov/
http://www.usgs.gov/
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transformed into spectral reflectance with the dark object subtraction (DOS1) SCP plugin of 

the QGIS 3.10 software. The image was further resampled to 10 m spatial resolution using the 

SNAP toolbox for the spectral bands to have a uniform resolution, as they are varied. This 

operation was done to enhance the analysis. Bands 1, 9 and 10 were excluded because they 

contain aerosols, water vapour and cloud information respectively. The PlanetScope and the 

RapidEye images were downloaded from the Planet Explorer website (www.planet.com / 

www.api.planet.com). The PlanetScope was captured on 30 April 2019 while the RapidEye 

was captured on 18 June 2019. The two images were atmospherically corrected by the suppliers 

(Planet Team) and subsequently provided to be downloaded for the analysis. The 

characteristics of each of the four images have been detailed in Table 6.2. 

 

 

http://www.planet.com/
http://www.api.planet.com/
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Table 6.2: Details of the spectral and spatial resolution of satellite imageries. 

Sentinel 2 Landsat 8 RapidEye PlanetScope 

Bands Bandwidth 

(nm) 

Spatial 

resolution 

(m) 

Bands Bandwidth Spatial 

resolution 

(m) 

Bands Bandwidth 

(nm) 

Spatial 

resolution 

(m) 

Bands Bandwidth 

(nm) 

Spatial 

resolution 

(m) 

Blue 458-523 10 Blue 452-512 30 Blue 440-510 

 

5 Blue 455-515 

 

3 

Green 543-573 10 Green 533-590 30 Green 520-590 5 Green 500-590 

 

3 

Red 650-680 10 Red 636-673 30 Red 630-685 

 

5 Red 590-670 

 

3 

RE1 698-713 20 NIR 851-879 30 RE 690-730 

 

5 NIR 780-860 

 

3 

RE2 733-748 20 SWIR1 1566-1651 30 NIR 760-850 

 

5    

RE3 773-793 20 SWIR2 2107-2294 30       

NIR 785-899 10          

NNIR 855-875 20          

SWIR2 1565-1655 20          

SWIR2 2100-2280 20          
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6.2.5. Important Variables Selection 

The Recursive Feature Elimination (RFE) algorithm was subsequently used to select important 

variables to be used as input variables for the Random Forest regression model for each of the 

four images. This process is very important as it helps to eliminate noisy variables and reduce 

redundancy and computational complexities (Ghosh and Joshi, 2014, Wang et al., 2018a). The 

RFE process of elimination is carried out in a stepwise approach involving; 1) the training of 

the RF model, 2) computing the permutation importance measure, 3) eliminating of the less 

relevant variables (features) and 4) repeating the first 3 steps until no further variables remain 

(Wang et al., 2018a). The most informative variables are ranked in the last stage of the steps 

of the backward procedure and the algorithm selects a smaller size and more efficient variable 

subset. 

The SWIR1, SWIR2, RE2, NIR and NNIR bands were selected for Sentinel 2, whereas the 

Red, NIR and RE bands were selected for the RapidEye. The VNIR bands were maintained by 

the algorithm for the PlanetScope after the running of several iterations. Lastly, the Green, Red, 

NIR and SWIR1 bands were selected for the Landsat 8. 

6.2.6. Random Forest Regression Modelling 

Random Forest (RF) (Breiman, 2001) regression models were used to predict the tree species 

diversity based on the Shannon diversity (H′) and Simpson diversity (D1) and Species richness 

(S) derived from the field measured data. The prediction established the relationship between 

the diversity indices and the spectral characteristics of the image data. The RF is a non-

parametric machine learning algorithm that can undertake both classification and regression 

(Breiman, 2001). A bagging system is used to split the data by the algorithm where a part of 

the data is used for training and building the decision tree. The remaining set is used for 

estimating the out-of-bag (OOB) error for each tree. The RF algorithm has an advantage of not 

overfitting data because there is a convergence of the generalization error when the number of 

trees increases (Rodríguez-Galiano et al., 2011, Breiman, 2001). It is also able to deal with the 

problem of multicollinearity (Abdel-Rahman et al., 2013b, Ramoelo et al., 2015). The RF has 

two main parameters that contribute to the accuracies of models. These are the ntree and the 

mtry and they may be tuned or left in defaults values. The ntree has a default value of 500 and 

it is the total number of decision trees grown in the model. The default value of the mtry is the 

total number of predictor variables divided by 3 (N/3) when used in regression models. Studies 

that have used the default values of both parameters have obtained satisfactory results (Duro et 

al., 2012, Nitze et al., 2015). Aside from these characteristics, the RF enables the assessment 

and ranking of statistical significance of each predicting variable in the model with the use of 

its variable importance feature. 

The four models were implemented with the “randomForest” package (Liaw and Wiener, 2002) 

in the R statistical software environment (Team, 2013). The spectral pixel values of each of the 

four images were extracted and used in the models. The 275 sample plot values of each of the 

Shannon (H′) and Simpson (D1) diversity indices and Species richness (S) values computed 

from tree species data were partitioned into 70% training data (192), and 30% independent 

validation data (83) in a random selection approach. We calibrated each RF regression model 
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with the training data and then applied the bootstrapping of 500 iterations to predict the 

diversity. 

A parameter optimization process was carried out to find the best ntree and mtry values for the 

RF model of each of the four satellite imageries. The “tuneRF” function in the “randomForest” 

package was used to find the optimal mtry value for the models. The value obtained after the 

process was 1 for all the models. On the other hand, the optimal ntree values obtained for the 

Sentinel 2, RapidEye, PlanetScope and the Landsat 8 models were 600, 500, 900 and 400 

respectively. The ntree and the mtry values were then used in models for predicting the tree 

species diversity. The independent 83 validation set of each image was subsequently used for 

the validation of prediction accuracies. 

6.2.7. Models Evaluation 

The four RF regression models’ predictive abilities were compared and assessed based on two 

main statistical parameters. These parameters were the coefficient of determination (R2), and 

the root mean squared error (RMSE). The means of the 500 bootstrapped samples were used 

to calculate the accuracy parameters values. The RF regression model with the highest R2 and 

lowest RMSE values was determined as the most accurate. 

6.2.8. Variable Importance 

The variable importance feature of the RF algorithm was applied to evaluate and rank the 

predicting variables according to their statistical importance in contributing to the accuracy of 

each model. The importance of each variable is determined by the percentage increase in mean 

squared error (%IncMSE). The %IncMSE denotes the effect of a predicting variable in a model 

when it is removed from it. This was assessed to determine the spectral bands that play an 

important role in the prediction and correlated well with the Shannon Diversity Index (H′) and 

Simpson Diversity Index (D1) and Species richness (S) for the subtropical natural forest. 

 

6.3. Results 

6.3.2. Sensor Performance Evaluation 

The RF model was utilized to evaluate the performance of the four sensors for the prediction 

of the tree species diversity for Shannon Index, Simpson Index, and the Species richness. Their 

performances were evaluated based on the R2 and the RMSE. The model with the highest R2 

and lowest RMSE was considered more accurate and robust. 

As illustrated in Table 6.3, the Sentinel 2 image model was the most accurate (R2 = 0.926, 

RMSE = 0.148) for the prediction of tree species diversity derived using Shannon Index while 

the RapidEye emerged as the second accurate (R2 = 0.902, RMSE = 0.147) for the same 

diversity index. The PlanetScope model was the third accurate (R2 = 0.898, RMSE = 0.156) 

with the Landsat 8 model being the least accurate (R2 = 0.529, RMSE = 1.748). 
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The Sentinel 2 and the RapidEye were the most accurate with a comparable accuracy output 

(R2 = 0.917, RMSE = 0.043 and R2 = 0.915, RMSE = 0.044 respectively) for the tree species 

prediction tree with the Simpson Diversity Index [D1] (Table 6.3). Whereas the PlanetScope 

produced the second-best accuracy (R2 = 0.899, RMSE = 0.045), and Landsat 8 was the least 

accurate (R2 = 0.410, RMSE = 0.063). 

The Sentinel 2 was once more the most accurate (R2 = 0.923, RMSE = 1.983), under the Species 

richness (S), while the PlanetScope was the second accurate (R2 = 0.900, RMSE = 1.293) 

(Table 6.3). The RapidEye was the third accurate (R2 = 0.833, RMSE = 1.287), and the Landsat 

8 was the least accurate model (R2 = 0.532, RMSE = 1.746). 

 

Table 6.1: RF sensor model accuracies for the Sentinel 2, RapidEye, PlanetScope and the 

Landsat 8 for Shannon Index, Simpson Index and the Species Richness. 

Image 
Shannon 

Index 
 

Simpson 

Index 
 

Species 

Richness 
 

 R2 RMSE  p value R2 RMSE    p value R2 RMSE    p value 

Sentinel 2 0.926 0.148 <2.2×1016  0.917 0.043 <2.2×1016  0.923 1.183 <2.2×1016 

RapidEye 0.902 0.147 <2.2×1016  0.915 0.044 <2.2×1016  0.833 1.287 <2.2×1016 

PlanetScope 0.898 0.156 <2.2×1016  0.899 0.045 <2.2×1016  0.900 1.293 <2.2×1016 

Landsat 8 0.529 1.748 <2.2×1016  0.410 0.063 <2.2×1016  0.532 1.746 <2.2×1016 

 

The statistical evaluation conducted for the prediction has been presented in Table 6.4. It was 

observed that there was a slight underestimation for the prediction under the Shannon Index 

and the Species richness by all four images. On the other hand, the prediction for the Simpson 

Index had the field measured values and the predicted values correlated much better as they 

were within ranges of each other. Scatter plots produced by each RF model of the imageries 

which establishes the relationship between the field measured and predicted diversity under the 

Shannon Index, Simpson Index and Species richness are presented in Figures 6.2–6.4. 
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Table 6.2: The statistical analysis of the prediction made with the RF for each of the images 

under the Shannon Index, Simpson Index and the Species richness. 

Satellite  

Image 
Parameter 

Shannon 

Index 

Simpson 

Index 

Species  

richness 

 

Sentinel 2 

Mean 2.05 0.89 9.24 

Minimum 1.51 0.55 6.58 

Maximum 2.34 0.95 12.7 

Standard deviation 0.15 0.04 1.33 

 

 

RapidEye 

Mean 2.05 0.89 9.22 

Minimum 1.40 0.53 5.73 

Maximum 2.44 0.94 13.48 

Standard deviation 0.18 0.04 1.41 

 

 

PlanetScope 

Mean 2.05 0.89 9.26 

Minimum 1.61 0.56 6.25 

Maximum 2.44 0.95 12.67 

Standard deviation 0.15 0.04 1.30 

 

 

Landsat 8 

Mean 2.06 0.89 9.04 

Minimum 1.73 0.73 6.13 

Maximum 2.42 0.95 13.37 

Standard deviation 0.15 0.04 1.41 
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Figure 6.2: Scatter plot for the Shannon Index prediction. (A) is for Sentinel 2, (B) is for 

RapidEye, (C) is for PlanetScope, and (D) is for Landsat 8. The blue line is the line of best fit 

and the dashed line is the 1:1 line as shown on the individual plots. 

 

 

 

Figure 6.3: Scatter plot for the Simpson Index prediction. (A) is for Sentinel 2, (B) is for 

RapidEye, (C) is for PlanetScope, and (D) is for Landsat 8. The blue line is the line of best fit 

and the dashed line is the 1:1 line as shown on the individual plots. 
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Figure 6.4: Scatter plot for the Species richness predictions. (A) is for Sentinel 2, (B) is for 

RapidEye, (C) is for PlanetScope, and (D) is for Landsat 8. The blue line is the line of best fit 

and the dashed line is the 1:1 line as shown on the individual plots. 

 

6.3.3. Predicting Important Variables 

The Variable Importance feature of the RF was utilized to rank the importance of each Remote 

Sensing variable for the prediction of the tree species diversity. RF regression algorithm 

provides the percentage increase mean square error (%IncMSE), which was used to rank the 

variables. The variables for each of the sensors under the Shannon Index, Simpson Index and 

the Species richness were ranked in decreasing order of importance for each RF model. 

Table 6.5 illustrates the ranking of the important variables of the Sentinel-2 spectral bands used 

for the prediction of tree species diversity under the Shannon, Simpson, and Species richness 

indices. The SWIR1 band was the most important variable for the tree species diversity 

predicted using the Shannon index. The second-best to the least important variables were the 

SWIR 2, RE2, NNIR and the NIR respectively. 

For the Simpson Index (D1) predictions, the RE2 was the most important variable, while the 

SWIR1 was the second important variable. The third and fourth positions were occupied by 

the SWIR2 and NNIR. The NIR was again least important in the prediction. The %IncMSE 

values indicated that it played a very minimal role for this diversity index. Regarding the 

Species richness, the SWIR1 was once more the most important variable, while the NNIR, 

SWIR2, RE2 and NIR followed as second to the least, respectively. 
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Table 6.3. Variable importance ranking for the Sentinel 2 image model under the Shannon 

Index, Simpson Index and the Species richness. 

Shannon Index Simpson Index Species richness 

Band %IncMSE Band %IncMSE Band %IncMSE 

SWIR1 17.75 RE2 6.71 SWIR1 18.57 

SWIR2 14.11 SWIR1 6.05 NNIR 16.19 

RE2 13.52 SWIR2 5.43 SWIR2 13.27 

NNIR 8.97 NNIR 4.50 RE2 10.88 

NIR 4.89 NIR -0.03 NIR 6.99 

 

The important variable ranking for the RapidEye spectral bands used in the RF model is 

illustrated in Table 6.6 for the Shannon Index, Simpson Index and the Species Richness. The 

most important variable under the Shannon Index was the Red band. The second was the NIR 

whereas the RE was last. The ranking of the most important variables for the Simpson Index 

and the Species richness was the same. The NIR was the most important band, while the RE 

and Red bands were the second and third respectively. 

Table 6.4. Variable importance ranking for the RapidEye image model under the Shannon 

Index, Simpson Index and the Species richness. 

Shannon Index Simpson Index Species richness 

Band %IncMSE Band %IncMSE Band %IncMSE 

Red 19.64 NIR 6.28 NIR 12.58 

NIR 14.24 RE 4.79 RE 9.25 

RE 14.01 Red 1.91 Red 8.39 

 

Table 6.7 displays the important variables for the PlanetScope image under the three diversity 

indices. The Green and Red bands had the same level of significance under the Shannon Index 

in their contribution to the accuracy of the image’s model. They shared the first position while 

the Blue band was third and the NIR was the least significant. For the Simpson Index, the Green 

band was the important variable for the prediction done under the Simpson Index. The NIR 

was the second-best contributor to the accuracy with the Blue and Red being third and last. 

With the Species richness, the NIR emerged as the best variable and the Green band was the 

second best. The Red and Blue bands shared the third and fourth positions respectively. 
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Table 6.5: Variable importance ranking for the PlanetScope image model under the Shannon 

Index, Simpson Index and the Species richness. 

Shannon Index Simpson Index Species Richness 

Band %IncMSE Band %IncMSE Band %IncMSE 

Green 9.93 Green 6.03 NIR 14.54 

Red 9.91 NIR 5.83 Green 13.46 

Blue 7.78 Blue 5.44 Red 12.78 

NIR 7.04 Red 2.01 Blue 10.11 

 

The variable importance of the Landsat 8 was not much different from that of the Sentinel 2, 

RapidEye and the PlanetScope as presented in Table 6.8. The SWIR1 which is one of the key 

spectral bands of the Landsat 8 was the most important variable for the Shannon Index. The 

NIR occupied the second position, followed by the Green and Red bands as third and last 

respectively. The reverse was the situation under the Simpson Index, where the NIR was the 

most important and the SWIR1 was the second. The Red band emerged as the third and the 

Green was the last. In the case of the Species richness, the SWIR1 was the best variable and 

the NIR following as the second-best variable. The Red and Green bands occupied the third 

and last position respectively. 

Table 6.6. Variable importance ranking for the Landsat 8 image model under the Shannon 

Index, Simpson Index and the Species Richness. 

 

6.4. Discussion 

In recent years there has been the launch and availability of free and commercial remote sensors 

that produce imageries which are adopted for forest vegetation-related research. The spectral 

and spatial attributes are vital for Remote Sensing imagery, and these could influence their 

suitability, and robustness for the characterization and prediction of forest attributes such as 

tree species diversity (Ganivet et al., 2019). The sensor type influences and contributes much 

to accuracy (Fassnacht et al., 2014a). Therefore, the assessment of different sensors based on 

their spectral and spatial resolution in the prediction and mapping of species diversity is 

Shannon Index Simpson Index Species Richness 

Band %IncMSE Band %IncMSE Band %IncMSE 

SWIR1 18.01 NIR 8.36 SWIR1 18.96 

NIR 15.38 SWIR1 7.87 NIR 16.71 

Green 14.16 Red 5.11 Red 13.91 

Red 11.96 Green 3.77 Green 13.80 
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beneficial to ecologists and Remote Sensing experts. It is worth noting, that each sensor does 

have its strength and limitation (Lu, 2006), as a result of their spectral and spatial resolutions. 

This was displayed in the accuracy produced under each of the three diversity indices. 

Furthermore, it indicates the relationship between the predicting spectral variables and the 

indices. 

The Sentinel 2 imagery was the most accurate and performed better than the RapidEye, 

PlanetScope and Landsat 8 for the prediction using the Shannon Index and the Species richness. 

It was also the best image together with the RapidEye under the Simpson Index as both had a 

comparable high R2 and low RMSE. Several factors could account for the higher performance 

of the Sentinel 2 than the other images. Firstly, the five important spectral bands (RE2, NIR, 

NNIR, SWIR1 and SWIR 2) selected through the application of the Recursive Feature 

Elimination (RFE) may have been robust than that of the other three images. The availability 

of the red edge and the SWIR bands for the Sentinel 2 might have also contributed significantly 

to its accuracy. The red edge and SWIR bands, which are also positioned in Sentinel 2, have a 

higher sensitivity to healthy vegetation and minimum susceptibility to saturation (Todd et al., 

1998, Mutanga and Skidmore, 2004). These attributes of the bands make them effective for 

diversity prediction in high density natural forests. It is important to note that the sensitivity of 

the red edge and the SWIR bands enhance their correlation with vegetation (Rajah et al., 2019). 

This sensitivity may be attributed to the narrow bandwidth and their location in the 

electromagnetic spectrum. It is also likely that the spectral bands of the Sentinel 2 are more 

informative than that of the RapidEye, PlanetScope and the Landsat 8. This may explain the 

better correlation of the Sentinel 2 with the field measured Shannon Index, Simpson Index and 

the Species richness that led to its high accuracy. Also, the larger number of spectral bands 

used for the RF regression model of the Sentinel 2 could have enhanced its capability and 

influenced the high accuracy. Findings of Rocchini et al. (2007) indicated that a large number 

of spectral bands increased diversity prediction accuracy, thus, suggesting the preference of 

large number spectral bands to a small number (Wang et al., 2018b). The spatial resolution of 

the Sentinel 2 could have also been a key factor because the pixels of the image are likely to 

have more tree species falling within it. As a result, more information on vegetation might have 

been preserved for the image. Since the three diversity indices rely on the types and number of 

species, the ability of the image to have more trees falling well within its pixels is vital for 

higher accuracy in predictions. Our study shares a similarity with Mallinis et al. (2020), who 

also found the Sentinel 2 performing better than the RapidEye in species diversity prediction 

in the Mediterranean region. Among other reasons, the study indicated that the absence of 

SWIR bands for the RapidEye could be a contributing factor, which has some relation to our 

findings. The inherent capability of the Sentinel 2 that enhances the detection and 

characterizing of vegetation have been confirmed in other research (Chrysafis et al., 2020, 

Immitzer et al., 2019, Martin-Gallego et al., 2020), which further validates our findings. 

A knowledge of the variables that contributed most to the accuracy of models is important in 

modelling. It helps to select key variables that are robust, reduces redundancy and noise in the 

prediction and characterisation of vegetation attributes (Millard and Richardson, 2015, Ghosh 

and Joshi, 2014). With regards to the Sentinel 2, the RE2, SWIR1 and the SWIR2 contributed 

significantly to accuracy outputs both under the Shannon index and the Species richness, 

mainly due to their high sensitivity to vegetation. Immitzer et al. (2019) also observed that the 

red edge and the SWIR bands were useful and produced better accuracy for broadleaf species 
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classification. In addition, the importance of the red edge band is emphasized by Grabska et al. 

(2019b), while Persson et al. (2018) and (Bolyn et al., 2018) highlight the significance of the 

SWIR vegetation variability classification and separation. It is worth stating that, although the 

NIR had a higher reflectance for healthy vegetation, it was the least contributor to the higher 

accuracy of the Sentinel 2. It was not robust enough for the prediction as it could not enhance 

the capabilities of the image. With the advancement and increase in Remote Sensing imagery 

and their application to vegetation and forests attribute characterisation and mapping, the 

identification of these key bands is vital. 

In the prediction with the Simpson Index, the RapidEye performed better than the PlanetScope 

and the Landsat 8 as it produced a comparable higher accuracy together with the Sentinel 2. 

This could have been due to the availability of the red edge and the NIR band for the RapidEye 

(Parson, 2013, Immitzer et al., 2019, Bolyn et al., 2018), which may have significantly 

contributed to the higher accuracy it produced under this diversity index. Although it has been 

suggested that having a larger number of variables are important (Rocchini et al., 2007, Wang 

et al., 2018b), it is also possible that selecting few but robust and informative bands as inputs 

variables for a model could help reduce noise and produce higher accuracies. That might have 

worked for the RapidEye under the Simpson Index. On the other hand, its finner spatial 

resolution could have had an effect on accuracies under the Shannon Index and the Species 

richness. It is indicated that higher spatial resolution of satellite imageries usually contain the 

structural attributes of vegetation community, but some information on the species type and 

the relative abundance is lost (Nagendra, 2001). This may further account for why it placed 

second to the Sentinel 2 under the Shannon Index and Species richness. Taking individually, 

its coefficient of determination for the three diversity indices ranged between 0.83 and 0.92, 

accounting for its good explanation of the variance and suitability for diversity modelling. The 

RapidEye has been found useful in vegetation studies such as intra and inter-species biomass 

prediction (Dube et al., 2014), forest structural information (Wallner et al., 2014), tree species 

classification (Adelabu et al., 2013) and urban vegetation classification (Tigges et al., 2013). 

Hence, it could further be evaluated in similar studies to ascertain its suitability for diversity 

prediction. 

The PlanetScope is a relatively new image as compared to the RapidEye, Sentinel 2 and 

Landsat 8. It was the second-best image for the Simpson Index, but the third-best for the 

Shannon and the Species Richness in the prediction. Although four spectral bands were used 

for its RF regression model, its spectral bands are likely less informative and sensitive to 

vegetation as compared to the RapidEye and the Sentinel 2. Its bands are made up of only the 

visible and near infrared (VNIR) and lacks bands such as the red edge and the SWIR. This 

might have also accounted for the low accuracies it had as compared to the Sentinel 2 and the 

RapidEye. As identified by our study findings and other vegetation related studies (Mallinis et 

al., 2020), the red edge and SWIR are very useful and contribute to model accuracies. Similarly, 

to the RapidEye, the fine spatial resolution of the PlanetScope might have also reduced its 

ability to have a high number of species, thereby producing lower accuracies for the Shannon 

Index and the Species richness. On the positive side, it has a very good temporal resolution 

(revisit time) of one day, which makes it suitable for time series species diversity studies. It 

could also be accessed for vegetation phenological and seasonal variation studies because of 

the daily revisit time that could capture seasonal changes observed in vegetation. In the variable 

importance assessment, the Green and NIR bands were much more accurate respectively for 
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the Shannon Index, Simpson Index and the Species richness. Generally, the VNIR bands are 

common to most satellite images and are sensitive and correlate well with vegetation (Dube 

and Mutanga, 2015). Among the VNIR bands, the Red, Green and the NIR have high 

reflectance for healthy vegetation and could be considered as part of the spectral bands 

employed for diversity prediction in high density natural subtropical forests. 

The low performance of the Landsat may be directly related to the low spatial resolution as 

compared to the other images. Its accuracy for the Shannon and Simpson Indices were just 

about half of that of the other images. Contrary to the findings of our studies, it has provided 

satisfactory accuracies in studies, (Madonsela et al., 2017, Maeda et al., 2014), although it was 

not compared with other images. On a more general basis, it is among the images that have 

been used for vegetation studies including diversity (Madonsela et al., 2017, Gillespie et al., 

2016, Gould, 2000). Furthermore, its bands have been designed and improved for detecting 

and mapping vegetation (El-Askary et al., 2014, Pahlevan et al., 2014), and it has proven to be 

useful for those vegetation studies. Similarly, the most important variables among the spectral 

bands used for the prediction under the three indices were the SWIR 1 and the NIR. The 

importance of these bands needs not be overemphasized as their capabilities have already been 

indicated for the other images. On an individual basis, it may be useful for diversity prediction 

as has been found in vegetation related studies. Its high amount of historical data could be 

explored for multitemporal and time series diversity studies. 

Generally, the spectral bands had a high relationship with the Shannon index, Simpson index 

and the Species richness with most of the accuracies for the Sentinel 2, RapidEye and 

PlanetScope. Successful diversity estimation with the utilisation of Remote Sensing data would 

be dependent on the spectral variables that could suitably capture the species diversity for the 

landscape in question (Madonsela et al., 2017). Therefore, spectral bands in the VNIR up to 

the SWIR region could be used to further ascertain their suitability for diversity prediction and 

mapping in natural subtropical forests. 

Concerning the diversity indices, the use of either one of them could be dependent on the 

objective of the study, the forest type and the image. Spectral bands respond differently to them 

in their application to diversity prediction. However, little attention has been given to finding 

out much about their sensitivity to the species distribution patterns (Madonsela et al., 2017), 

with the use of spectral variables. Since species abundance, richness and evenness are likely to 

change with time, it may be important to determine the indices that best correlate with spectral 

variables through seasonal and temporal studies. 

The Random Forest regression algorithm was very beneficial in the prediction by each image 

model. It demonstrated the capability to handle different types of complex Remote Sensing 

image data (Belgiu and Drăguţ, 2016). Since it is a non-parametric machine learning algorithm, 

it does not assume normality (Fassnacht et al., 2016). This attribute is useful for natural forests 

since they are mostly heterogeneous and do not have a normal distribution. Furthermore, it can 

handle redundancy, reduce noise and deal with multicollinearity (Breiman, 2001, Abdel-

Rahman et al., 2013b). All these might have probably influenced the functioning of the models 

to produce satisfactory accuracies. It could explain why the RF is mostly adopted for most 

vegetation related studies including diversity prediction. 
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The findings of our study have shown the capability of the images and important spectral bands 

most especially for the Sentinel 2, RapidEye and PlanetScope that are optimal for the prediction 

and mapping of tree species diversity. The output of our study is important for forest managers 

and ecologists in the modelling and prediction of tree species diversity. This could assist forest 

managers and ecologists in the selection of images and spectral bands for the prediction of 

diversity in natural subtropical forests. Generally, it could assist in the application of Remote 

Sensing technology and modelling in the estimation of diversity. 

 

6.5. Conclusions 

Our study assessed how spectral and spatial resolutions influence the accuracy of Remote 

Sensing imagery models based on the Shannon index, Simpson index and Species richness for 

the Nkandla natural forest in South Africa. Since various sensors perceive vegetation 

differently based on their spatial and spectral resolutions, finding a suitable one for the 

prediction of the tree species diversity in high density natural forests is important. It has been 

demonstrated in our studies and others that both the spectral and spatial resolutions of satellite 

imagery have much influence on the accuracies of images. The medium spatial resolution of 

Sentinel 2 and its spectral resolution makes it more capable in the prediction of diversity. 

Although the RapidEye, PlanetScope and Landsat 8 had lower performances than the Sentinel 

2, it is not indicative that they may not be used for diversity prediction in natural subtropical 

forests. Since their abilities have been demonstrated in our study, they may be used to further 

ascertain the condition under which they could work better. On an individual basis, each of the 

imageries may be applied as they produced satisfactory accuracies. Also, since there are no 

generic spectral and spatial resolutions for diversity prediction currently, more studies could 

be carried out to test different sensors in various forest types to ascertain which could work 

much better. 
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CHAPTER 7: IDENTIFYING THE BEST SEASON FOR PREDICTING TREE 

SPECIES DIVERSITY USING SENTINEL 2 SATELLITE IMAGERY AND 

RANDOM FOREST ALGORITHM 
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Abstract 

Tree species diversity contributes to the functional traits of forest ecosystems and is an 

important measure of forest health. Therefore, Remote Sensing prediction of tree species 

diversity is essential because it provides useful information for sustainable forest tree species 

diversity management. Remote sensors record different spectral signatures of tree species 

within the various seasons of the year thereby affecting the performance of satellite imagery 

models used to predict tree species diversity. Information on the best season is very important 

for tree species diversity prediction. However, there is currently no information on the best 

season for predicting tree species diversity for the sub-tropical natural forests in South Africa. 

Thus, our study aimed at identifying the best season for tree species diversity prediction by 

evaluating the performance of Sentinel 2 imageries captured in summer, spring, autumn and 

winter. The Random Forest (RF) regression algorithm was utilized to model and identify the 

best season using texture variables derived from Sentinel-2 imageries of each of the four 

seasons. The texture variables derived from the Sentinel-2 imagery were used as independent 

variables, and the Shannon Diversity Index (H′) values derived from the field survey was used 

as the dependent variable for the models. The summer imagery outperformed the spring, 

autumn, and winter imageries by a small margin. Its coefficient of determination (R2) was 0.94, 

and its Root Mean Squared Error (RMSE) was 0.130. The spring imagery emerged as the 

second-best while the autumn imagery followed as the third best. The winter imagery was the 

last best imagery. The result indicates that the best season for tree species diversity prediction 

of sub-tropical natural forests using Remote Sensing imagery could be the summer. The 

findings have vital implications for forest managers and researchers when estimating tree 

species diversity with satellite imageries.    

 

Keyword: Species, Diversity, Imagery, Prediction, Random Forest, Accuracy, Sentinel 2, 

Management 

 

7.1 Introduction 

Tree species diversity is one of the means of measuring forest health (Arekhi et al., 2017) and 

it contributes significantly to the ecological process that enhances the net growth of a forest. 

The functional traits of forests are enhanced by tree species diversity and the intactness and 

level of diversity facilitate the provision of multiple ecological benefits (Gamfeldt et al., 2013). 

Among these ecological benefits includes the regulation of water, carbon and biogeochemical 

cycles (Millennium Ecosystem Assessment, 2005). Although there are natural threats to tree 

species diversity, human-induced factors are the major factors of decline  (Zhao et al., 2018). 

They are observed through deforestation, homogenization of ecosystems through the planting 

of single and mostly exotic species and agricultural land expansion (Laurin et al., 2014). 

Reliable information is needed in both the local management and conservation efforts and as 

well as for the international community in the global policy direction for conserving 

biodiversity (Sinton, 2017). Therefore, estimation and monitoring of tree species diversity is a 

requirement for mitigation measures to biodiversity losses and effective management, 

conservation and protection of forest ecosystems (Chrysafis et al., 2020). The estimation of 
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tree diversity is a worthy operation in enhancing the availability of spatial distribution 

information in identifying hotspots and the level of diversity to support decision making. 

Effective methods and technology are essential for the assessment of diversity at all levels in 

providing adequate information for tree species management and conservation (Schäfer et al., 

2016). It is especially true and vital in the tropical and subtropical zones that are highly diverse 

(Gaston, 2000) and where there is a poor understanding of tree species diversity and its 

importance to the forests (Milliken et al., 2010). Remote Sensing has proven to have the 

capability to map the spatial and temporal distribution diversity in various forest types (Carlson 

et al., 2007, John et al., 2008, Wallis et al., 2017, Zhao et al., 2018).  

Promising results have been reported in Remote Sensing modelling and prediction of tree 

species diversity in various ecological zones and forest types. For instance; Feilhauer and 

Schmidtlein (2009a) employed the ASTER imagery in Kyrgyzstan to predict the alpha 

diversity among tree species. The Partial Least Squares Regression (PLSR) was used for the 

modelling with the ASTER spectral products and digital elevation model features (elevation, 

slope, aspect) used as input variables. The model was able to explain 61% of the variance. 

Mutowo and Murwira (2012a) similarly utilized the ASTER spectral variables in assessing the 

relationship between them and the tree species diversity for the savanna woodland in South 

Africa. The standard deviation of the near-infrared band (stdev NIR) and the soil adjusted 

vegetation index (SAVI) were used as predicting variables in a linear regression model for the 

prediction. The combined stdev NIR and the SAVI could explain between 60% and 64% of the 

variance in the diversity, which was better than when they were used on a singular basis. 

Madonsela et al. (2018) evaluated the capabilities of the Normalized Difference Vegetation 

Index (NDVI) and the woody canopy cover (WCC) for predicting tree species diversity in the 

savanna zone of South Africa using Landsat 8. The relationship between the tree species 

diversity and the WCC was evaluated in the first model while the second model evaluated the 

relationship between the combined WCC and the NDVI for diversity prediction in a factorial 

model. The findings of the study indicated that there was a significant relationship between 

WCC and diversity. The relationship between the combined WCC and the NDVI and the tree 

species diversity was found to be insignificant.  

The high-resolution imaging spectroscopy data and light detection and ranging (LiDAR) have 

also been used for tree species diversity prediction. The Airborne Visible and Infrared Imaging 

Spectrometer (AVIRIS) was employed to map species richness in Hawaii (Carlson et al., 2007). 

The spatial and spectral derivatives of the portions of the electromagnetic spectrum that relates 

to biochemical properties such as water nitrogen content were assessed. The linear regression 

and the combined wavelengths linked with biochemical analysis were used to establish the 

relationship between spectral reflectance and species richness.  Lastly, Sun et al. (2019) utilized 

the LiDAR and VHR-RGB data together with modified deep learning methods (AlexNet, 

VGG16, and ResNet50) for estimation of the diversity in a tropical wetland in Southern China. 

The prediction was based on four diversity indices (the Shannon diversity index, the Simpson 

diversity index, the Margalef richness index and the Pielou evenness index) calculated from 

field data. The highest overall accuracy was produced by the VGG16, displaying the potential 

of deep learning for tree species diversity prediction.  

Some studies also considered the effects of seasons on the prediction of tree species diversity. 

Maeda et al. (2014) conducted in the Afromontane forest of Taita hills in Kenya used 15 
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Landsat time-series data to ascertain the extent to which the relation between Remote Sensing 

indicators and the tree species diversity depends on the season of the year. Through the simple 

and multivariate regression modelling, the authors established that the season of the year 

influences the relationship between Remote Sensing metrics and tree species diversity. The 

recently launched Sentinel 2 imagery was applied together with Geodiversity data (aspect and 

elevation) to assess multi-seasonal and single-season diversity prediction in the Mediterranean 

region (Chrysafis et al., 2020). The findings indicated that multi-seasonal models produced the 

highest accuracies, while single-season models of mid-summer and mid-autumn produced the 

second-best accuracies. Furthermore, the study reported that Geodiversity data had very little 

influence on the accuracies. 

Each season of the year exhibits climatic conditions that cause changes in the phenology and 

morphology of tree species. Tree’s phenology denotes the biological processes in trees, which 

include flowering, budburst, seed set, seed dispersal and leaf fall that relates to prevailing 

climatic conditions (Davi et al., 2011, Yang et al., 2017). On the other hand, tree morphology 

relates to the physical structures such as roots, stems, branches, twigs as well as leaves, flowers 

and fruits. The changes in phonological and morphological traits in trees due to prevailing 

conditions are likely to influence how they are perceived by sensors and affect the spectral 

signatures that are recorded. Thus, the performance and accuracy produced by the predicting 

model of a sensor could also be influenced by the phenological and morphological cycles, 

depending on the season of the year the imagery is captured. For instance, Sentinel 2 imageries 

captured in each of the four seasons, that is summer, winter, spring and autumn may produce 

high or low accuracy depending on the season in which they were captured. Although there is 

a possibility of the performance being affected, many studies that predict tree species diversity 

do not take the season imageries are captured into consideration. This is because there is 

currently no information on the best season for which tree species diversity prediction could 

be undertaken. Some limitations in the performance of the predicting models of imageries 

could be observed as a result. Therefore, our study focuses on identifying the best season for 

predicting tree species diversity in a sub-tropical natural forest in South Africa. It is expected 

that high accuracies could be produced by the models of satellite imageries captured in the best 

season. Also, it could be a piece of useful information for ecologists, forest managers and 

Remote Sensing scientists in conducting such studies in natural forests.         

 

7.2 Materials and Methods 

7.2.1 Study Area 

The subtropical Nkandla natural forest reserve was established in 1918 and it is found in the 

KwaZulu-Natal (KZN) province of South Africa. It has a total area of about 2,217 ha and is 

located on 28° 43′ 50.88″ S and 30° 7′ 9.84″ E (Figure 7.1). It experiences the highest average 

temperature of 27°C between the summer months of December and January and records the 

lowest average temperature of 2°C in the winter months of June and July (Ezemvelo KZN 

Wildlife, 2015b). It has a steep and undulating topography across the entire forest. Its altitude 

is at the lowest level of 500 m and exceeds 1300 m at the highest range. The forest has been 

classified into four land cover types, comprising of closed canopy forest, open canopy forest, 

grassland and bare sites (Gyamfi-Ampadu et al., 2020).  
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Figure 7.1: Map of the study area. Note: A represents the Nkandla Forest Reserve, B is a map 

of South Africa indicating the location of KZN province and the forest reserve and C is an 

Africa indicating the location of South Africa.  

 

7.3 Tree Data Collection and Diversity Estimation  

The tree inventory survey was undertaken between 24 April 2019 and 07 May 2019. Parts of 

the middle and western section of the forest were found to be inaccessible mainly due to deep 

valleys. As such, the tree information was collected from the accessible parts that have gentle 

slopes (Figure 7.1). A systematic approach was used in setting up the plots in gentle slope after 

following existing transects. Firstly, eleven 1 ha (100 m x 100 m) plots were set up in the gentle 

slope areas. After that, each of the plots was divided into 25 subplots of 20 m x 20 m. A total 

of 275 plots were obtained from the subplots and the tree information was subsequently 

collected from them. The diameter at breast height (DBH) of all trees ≥ 5cm was measured and 

recorded in each of the plots. The local and scientific names as well as the coordinate of each 

tree was also recorded. The sampling design and the collection of the data in the accessible 

parts of the forest were not a compromise on the data as similar tree species were recorded in 

the majority of the sampling plots. The tree data was used to compute the Shannon Diversity 

Index [H′] (Shannon, 1948) and used as the dependent variable for the prediction. The Shannon 

Diversity Index accounts for species evenness, abundance and rarity (Ifo et al., 2016, Morris et 

al., 2014). The mathematical function used for the diversity indices have been expressed in 

equations 1: 

H′= − ∑   𝑝𝑖 x ln (𝑝
𝑆

𝑖=1
i)    (7.1) 
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Where pi is the proportionate abundance of the ith species in the sampling plot, S is the total 

abundance of all species in a sampling plot, and ln is the natural logarithm of the proportionate 

abundance of species in the sampling plot. 

 

7.4 Remote Sensing imagery data 

We used the Sentinel 2 imagery for our study because it has provided good accuracies in many 

other vegetation studies (Immitzer et al., 2019, Mutowo et al., 2018a, Pandit et al., 2018a, 

Grabska et al., 2019a). Additionally, Sentinel 2 imagery was used because it produced the best 

accuracy among four satellite imageries that were used to assess the effects of spatial and 

spectral resolution on tree species diversity prediction (Gyamfi-Ampadu et al., 2021). It has 13 

spectral bands that range from the visible to shortwave infrared (SWIR) regions of the 

electromagnetic spectrum and the spectral bands have varying spatial resolutions. Since our 

study sought to identify the best season for predicting tree species diversity, four imageries of 

Sentinel 2 were downloaded from the United State Geological Services [USGS] website 

(www.usgs.gov). The four imageries were made up of an imagery each for summer, autumn, 

winter and spring yearly seasons. The summer imagery was captured on 29th January 2020, 

autumn on 14th April 2019, winter on 18th July 2019 and spring on 6th October 2019. It is 

important to note that the date of capture of each of the imageries was in the middle of the 

season. The seasons are at their peak around that period. The imageries were atmospherically 

corrected with the semi-automatic plugin of the QGIS 3.6.1 software. The bands 1, 9 and 10 

were excluded from the bands used for the analysis as they contain aerosols, water vapour and 

cloud information. The details of the 10 spectral bands used in the study are found in Table 7.1. 

 

Table 7.1: Details of Sentinel 2 spectral bands used in the analysis 

Band Name/Code Central Wavelength Spatial Resolution 

(m) 

B2 Blue 0.490 10 

B3 Green  0.560 10 

B4 Red 0.665 10 

B5 Red-edge 1 0.705 20 

B6 Red-edge 2 0.740 20 

B7 Red-edge 3 0.783 20 

B8 Near Infrared 0.842 10 

B8a Near Infrared 2 0.865 20 

B11 Shortwave Infrared 1 1.610 20 

B12 Shortwave Infrared 2 2.190 20 

http://www.usgs.gov/
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7.5 Deriving of texture variables 

The variables used as inputs for predicting models is an important factor that determines the 

accuracy of tree species diversity studies. One of such is texture variables that are derived from 

texture analysis. Texture analysis refers to mathematical functions, procedures and models 

applied to extracting spatial information on earth features from imageries (Srinivasan and 

Shobha, 2008). It defines the local spatial organization of spectral values varying spatially that 

are repeated in a region of bigger spatial scales (Srinivasan and Shobha, 2008). Hence, the 

image texture contains vital information on spatial and structural information about earth 

surface features (Coburn and Roberts, 2004, Kayitakire et al., 2006). In tree species diversity 

prediction, the spatial and structural information could be of value as the pixel size may 

determine the level and number of species that could be captured within. The spectral and 

spatial resolution of satellite imageries influences the accuracies of tree species diversity 

predictions (Gyamfi-Ampadu et al., 2021). Therefore, variables that are derived for spatial 

information of spectral bands could enhance the accuracy output. 

Texture variables were derived from each set of 10 spectral bands of Sentinel 2 imagery of 

each of the four seasons and used as the independent (predicting) variables. Seven texture 

variables (Contrast, Dissimilarity, Homogeneity, Entropy, Grey-level Cooccurrence Matrix 

(GLCM) Mean, GLCM Variance, and GLCM Correlation) were derived using the 5 x 5, 7 x 7, 

and 9 x9 window size for each season. The mathematical functions of each of the variables and 

their description can be found in Table 7.2.  
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Table 7.2: Mathematical functions of the texture variables and their descriptions  

Texture variable Mathematical function Description 

Contrast 

∑ 𝑃𝑖𝑗

𝑁=1

𝑖𝑗=0

(𝑖 − 𝑗)2 

It measures the overall 

amount of a window’s local 

variation. (Yuan et al., 1991) 

 

Dissimilarity 

∑ 𝑃𝑖𝑗|𝑖−𝑗|

𝑁−1

𝑖𝑗=0

 

It is similar to contrast. 

However, the difference is 

that where there is an 

exponential increase in 

contrast weights in a 

diagonal movement, 

dissimilarity weight 

increases linearly.   

 

Homogeneity 

∑
Pij

1+(i-j)2

N-1

ij=1

 

It is a measure of the 

smoothness of image texture. 

When there is a large change 

in spectral values, it results in 

small homogeneity values, 

while a small change results 

in larger homogeneity 

values. (Tuttle et al., 2006)  

 

Entropy 

- ∑ Pijln(Pij)

N-1

ij=1

 

The disorder in the imagery 

is measured by Entropy. 

Many GLCM features have 

small values when the image 

is not uniform, implying that 

Entropy is very large 

(Baraldi and Panniggiani, 

1995). 

 

GLCM Variance 

σ2= ∑ Pij(i-μi)
2

N-1

ij=1

 

 

σ2= ∑ Pij(i-μj)
2

N-1

ij=1

 

 

 

The variability of the spectral 

response of the pixel is 

accounted for by Variance 

(Tuttle et al., 2006). It takes 

into consideration the 

pairwise combination of the 

variability  

GLCM Mean 
1

2
[∑ iP(i-j)+jPij

N-1

ij=1

] 

The average grey level in the 

local window represented by 

the Mean (Pacifici et al., 

2009). 
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GLCM Correlation 

∑ Pij [
(i-μi) (i-μj)

√(σi
2)(σj

2)
]

N-1

ij=1

 

It measures the grey level 

linear dependency within an 

imagery (Kayitakire et al., 

2006). 

Note: P is the texture index while i and j refer to the texture pixels. 𝜎 and 𝜇 represent the mean 

and standard deviation, respectively. N is the dimension of the co-occurrence matrix. 

 

After the derivation process, the summer, spring, autumn and winter imageries had a total of 

70 texture variables each for every window (5x5, 7 x 7 and 9 x 9). In order to ascertain the best 

window to use for the prediction, a pre-testing modelling was carried for all the four imageries 

through RF regression model analysis using the texture variables derived for each of the 5 x 5, 

7 x 7, and 9 x9 windows. The 7 x 7 window emerge as the best after the pre-testing modelling. 

Hence, the 7 x 7 window was subsequently used for each of the four imageries’ models.  

 

7.5.1 Predicting Variables Selection 

Important predicting variables were selected from each set of 70 texture variables of the 

summer, autumn, winter and spring imageries using the Recursive Feature Elimination (RFE) 

algorithm. The benefits of this operation are that it helps to reduce computational complexities, 

reduce redundancy, and eliminate noisy variables (Ghosh and Joshi, 2014, Wang et al., 2018a). 

Out of the 70 predicting variables of a single season, the top five predicting variables were 

selected. The same process was executed for all the remaining seasons.  

The Band-6-Entropy, Band-12-Entropy, Band-8A-Entropy, Band-8-Homogeneity and Band-

5-GLCM variance were selected for the summer imagery. The Band-5-Contrast, Band-5-

GLCM correlation, Band-5-Dissimilarity, Band-6-Homogeinity and Band-4-Contrast were 

selected for the autumn imagery. The Band-6-GLCM correlation, Band-8A-Homogeneity, 

Band-6-Entropy, Band-7-Contrast and Band8A-Entropy were selected for the winter imagery, 

while the Band-11-Entropy, Band-2-Entropy, Band-11-GLCM correlation, Band-7-Entropy 

and Band-3-Homogeneity were selected for the spring imagery. 

 

7.5.2 Random Forest regression models 

The Random Forest is an ensemble-based non-parametric algorithm that operates through the 

production of many decision trees by using a subset of training variables that are randomly 

selected (Breiman, 2001, Belgiu and Drăguţ, 2016). It can be used both for classification and 

regression analysis. It uses a bagging method by utilizing the randomly selected samples to 

generate a forest, built on Classification and Regression Trees [CART] (Abdel-Rahman et al., 

2013a). Generally, two-thirds of the samples are used in training the trees, while the remaining 

one-third (out of the bag [OOB]) is used for internal cross-validation. This mostly determines 

the performance of the RF model (Breiman, 2001, Rodríguez-Galiano et al., 2011). The RF 

algorithm can handle a complex number of variables, it does not overfit data and able to deal 

with multicollinearity in modelling (Abdel-Rahman et al., 2013a, Ramoelo et al., 2015). Some 

internal parameters that contribute to the performance are the mtry and ntree. These are user-
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defined parameters that could be optimized (tuned) or left in default values. It has been found 

that the model accuracies are more sensitive to the mtry than the ntree (Ghosh and Joshi, 2014).  

The RF model was implemented and analyzed for each of the four imageries using the 

“randomForest” package (Liaw and Wiener, 2002). Extraction of the pixel values was carried 

out for each imagery model. In a random selection approach, 275 sample values for Shannon 

Index (H′) were subsequently partitioned into training samples of 70% (192) and validation 

samples of 30% (83) for each of the four imageries. A tuning of the mtry and ntree parameters 

was carried out to determine the best values that could be used in each model. The tuneRF 

function was used to obtain the best mtry value in the R statistical software environment (Team, 

2013). The mtry values that were obtained for the summer, autumn, winter and spring were 2, 

1, 1 and 2 respectively. The ntree values of 100 to 1000 at an interval of 100 was tested to 

obtain the best value for each imagery model. After the testing, the best values obtained for 

summer, autumn, winter and spring imageries were 900, 700, 600, and 700 respectively. A 500 

bootstrapping iterations were used to predict the tree species diversity based on the derived 

Shannon Index (H′) after training the model with the 70% sample. The 30% validation set of 

each of the four seasons was then used to validate the prediction accuracies for each of them.  

 

7.5.3 Model evaluation and tree species diversity map production 

The performance of the four season models was evaluated with the coefficient of determination 

(R2) and the root mean squared error (RMSE). The model that produced the highest R2 and 

lowest RMSE was the most accurate among the others.  

A tree species diversity map was produced by the imagery that produced the best accuracy. 

This map is meant to provide a spatial distribution of tree species diversity across the forest by 

showing areas of high and low diversity. 

 

7.5.4 Importance Variables Evaluation and Diversity Map Production 

The importance of each of the predicting variables of each of the four seasons was evaluated 

and ranked for their significance and contribution to the accuracies obtained for each imagery. 

This was done by using the variable importance feature in the RF algorithm. The determination 

of the importance of each variable was based on the percentage increase in mean squared error 

(%IncMSE). The %IncMSE expresses the effect of a variable used in a model when it is 

eliminated from it. 
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7.6 Results 

7.6.1 Field Measured Data Analysis 

Table 7.3 presents the descriptive statistics of the Shannon Diversity Index (H′) values derived 

from the field measurement data of each sample plot. These values were used as the dependent 

variable of the RF models. 

 Table 7.3: Descriptive statistics of the field inventory data.  

Parameter value Statistical values 

Mean 2.055 

Minimum 0.949 

Maximum 2.718 

Standard deviation 0.290 

  

7.6.2 Image Model Performance 

The best imagery was determined by the highest R2 and the lowest RMSE. The accuracies of 

all the imageries have been presented in Table 7.4. The summer imagery model produced the 

overall best accuracy with a slightly higher accuracy value (R2 = 0.94, RMSE = 0.130) while 

the spring imagery produced the second-best accuracy (R2 = 0.93, RMSE = 0.138). The winter 

and autumn imageries had a comparable R2 of 0.92. Among the two, the autumn imagery 

produced a lower RMSE of 0.138 making it the third-best imagery. The winter imagery was 

hence the last performing imagery model due to a higher RMSE of 0.144.  

Table 7.4: RF model accuracies of the four seasonal imageries. 

Seasonal Image Accuracies 

 R2 RMSE 

Summer 0.94 0.130 

Spring 0.93 0.138 

Autumn 0.92 0.138 

Winter 0.92 0.144 

 

A scatter plot was produced to illustrate the relationship between the field measured values and 

the predictions made by RF models of the four seasons imageries (Figure 7.2). 
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Figure 7.2: Scatter plots for the tree species diversity prediction. (A) is for the Summer 

imagery, (B) is for Spring imagery, (C) is for Autumn imagery, and (D) is for Winter 

imagery. The blue line is the line of best-fit while the dashed line is the 1:1 as illustrated in 

the individual plots. 

 

A map that illustrates the tree species diversity distribution for the Nkandla Forest Reserve was 

produced with the summer imagery since it produced the best accuracy (Figure 7.3). 

 

Figure 7.3: The diversity map produced for the Nkandla Forest Reserve. 
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7.6.3 Important variables 

With the help of the variable importance feature in the RF algorithm, the predicting variables 

were ranked based on their contribution to the accuracy of each imagery model. The ranking 

of the significance of each variable was determined by the percentage increase in mean square 

error (%IncMSE). The Band-8-Homogeneity was the most important variable for the summer 

imagery while the Band-6-Entropy, Band-12-Entropy, Band-8A-Entropy and Band-5-GLCMV 

(Variance) followed from second to the least important respectively (Table 7.5)  

Table 7.5: The variable importance ranking of the Summer imagery. 

Predicting texture variable %IncMSE 

Band-8-Homogeneity 27.93 

Band-6-Entropy 24.74 

Band-12-Entropy 22.58 

Band-8A-Entropy 21.75 

Band-5-GLCMV 12.20 

 

Concerning the spring imagery, the Band-11-Entropy was ranked as the most important 

variable. The Band-11-GLCM Correlation was second-best whereas the was Band-2-Entropy 

third-best variable (Table 7.6). The Band-3-Homogeneity was fourth, while the Band-7-

Entropy was least important. 

Table 7.6: The variable importance ranking of the Spring imagery. 

Predicting texture variable %IncMSE 

Band-11-Entropy 17.70 

Band-11-GLCMC (Correlation) 12.94 

Band-2-Entropy 10.93 

Band-3-Homgeneity 10.16 

Band-7-Entropy 5.57 

 

The Autumn imagery had the Band-5-Contrast to be the most important variable and the Band-

5-Dissimilarity was second-best. The third to least were Band-5-GLCM Correlation, Band-4-

Contrast and Band-6-Homogeinity respectively (Table 7.7). 
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Table 7.7: Variable importance ranking for Autumn imagery. 

Predicting texture variable %IncMSE 

Band-5-Contrast 20.10 

Band-5-Dissimilarity 19.94 

Band-5-GLCMC (Correlation) 19.62 

Band-7-Contrast 21.75 

Band-5-GLCM variance 12.20 

 

With regards to the winter imagery, the Band-7-Contrast emerged as the most important 

variable and the Band-6-GLCM correlation was the second-best. The Band-8A-Homogeneity 

was the third-best while the Band-8A-Homogeneity was the fourth and the Band-6-Entropy 

was the least important (Table 7.8).  

  Table 7.8: Variable importance ranking for Winter imagery. 

Predicting texture variable %IncMSE 

Band-7-Contrast 25.56 

Band-5-GLCMC (Correlation) 14.99 

Band-8A-Entropy 14.39 

Band-8A-Homogeneity 14.39 

Band-6-Entropy 13.81 

 

 

7.7 Discussion 

The four seasons of the year relate to changes in climatic conditions and are important in 

determining the phenological cycles, morphology and senescence period of trees and 

vegetation in general. The leaf and canopy density is related to the phenology and morphology 

of trees and is likely to be affected, depending on the season of the year. The phenological 

process involves leaf budding, leaf flushing, fruiting and leaf fall in relation to the seasons of 

the year due to climatic variations (Kikim and Yadava, 2001, Davies et al., 2011b). The 

phenological pattern of tree species exhibits a strong seasonality in subtropical forest 

ecosystems (Kikim and Yadava, 2001), as a result of the prevailing climatic conditions. It is 

worth noting that sensors specific phenological stages and processes are not recorded by 

satellite sensors but rather general measurements of activities and growth of vegetation 

(Atkinson et al., 2012). Therefore, the spectral reflectance may be influenced by the seasonal 

changes experienced by tree species, thus determining how vegetation is perceived and 

recorded by the sensor. The spectral signature can be significantly changed and influenced by 

the condition of the vegetation at certain seasons of the year (Maeda et al., 2014). The 

morphology of natural forests trees species may either remain the same or change at different 

seasons and it may as well affect the spectral reflectance of imageries (White et al., 1997). 
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Therefore, identifying the best season for tree species diversity prediction is of importance to 

forest managers, ecologists, Remote Sensing scientists. Tree species diversity prediction done 

in the best season could help to improve accuracies.   

In our study, the summer imagery performed slightly better than the spring, winter and autumn 

imageries. The summer image had a better correlation with the Shannon Diversity Index 

resulting in the higher accuracy produced. The findings may be an indication that the best 

season for tree species diversity prediction could be the summer and imageries captured within 

this season are likely to perform better by producing high accuracy as observed for the sub-

tropical natural forest of South Africa. The reason behind this finding could be related to the 

condition of tree species (phenology and morphology) during the summer months.  

The capture date of the summer imagery was in the middle of the season when the season is at 

its peak (Bond et al., 2003, Davis and Joubert, 2011), and the availability of summer rains 

guarantees continual photosynthesis and growth during these months. Although there is high 

temperature experienced most of the day, the composition of vegetation and the canopy are 

likely to remain unchanged. Rainfall which contributes immensely to the growth rates of 

vegetation is still present during the summer months. The rainfall that intersperses the dry 

period is enough to reduce the potential threats to phenology and morphology of tree species 

during the summer months. Therefore, it is possible that the phenology of the tree species is 

not stalled and the morphology of tree species may also not be affected as their condition may 

not change. This is mainly because the forests do not experience “no growth temperature” due 

to lack of rainfall, but experience “growth temperatures” with the availability of rains that 

maintain growth (Ellery et al., 1991). As such, the leaf density and tree characteristics are not 

reduced by the seasonal variation during the summer months (Bond et al., 2003). Furthermore, 

since the peak of the growing season is mid-summer, the rate of evapotranspiration and 

transpiration do not show marked differences (Dye and Versfeld, 2007). As such, the functional 

traits of the forests are probably maintained throughout the year. Dye and Versfeld (2007) 

found the plantation forest to retain a high green leaf index throughout the year, and the sub-

tropical natural forest may share similarities with the plantation forest trees. As a result, the 

canopy of trees does not enter the senescence and deciduous stage and can maintain their 

growth rate and physical characteristics. Thus, the spectral signature recorded by the sensor at 

this time of the year may be from a community of healthy tree species and resulting in the 

slightly higher performance of the summer imagery.   

A tree species diversity map of the Nkandla Forest Reserve was produced with the summer 

imagery since it was the most accurate. The map will be of importance at the local level for the 

forest managers and will assist them to know areas of low, moderate, and high tree species 

diversity. This information will be vital for planning involving initiatives such as enrichment 

planting in less diverse areas.  

The textural variables selected as predicting variables for the RF model by the Recursive 

Feature Elimination algorithm was also useful and contributed to the accuracies obtained. This 

is because some texture variables can be redundant and highly correlated (Pacifici et al., 2009), 

which may affect models performance and reduce accuracies. Also, a large number of features 

can lead to high computational complexities (Ghosh and Joshi, 2014). Therefore, the selection 

of a subset of the predicting variables is useful as it can improve the accuracies of models 

because the noisy and redundant variables are eliminated. In the application of the RF model, 
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the main variables that contributed to the higher accuracy of the summer imagery were the 

Band-8-Homogeneity. The entropy was also important to model as three entropy variables 

derived for bands 6, 12 and 8A made good contribution to the imagery’s accuracy. These 

variables could be adopted as predicting variables when using a summer imagery for tree 

species diversity prediction in a subtropical natural forest. 

The spring imagery was the second-best by also producing a slightly better accuracy than the 

autumn and winter imageries. The spring season follows the winter period when the growth of 

some species might have ceased or lost their leaves, especially for deciduous species. Most tree 

species seem to have their phenological period occurring during the transition of the winter and 

spring seasons (Kikim and Yadava, 2001). Therefore, the spring period is a time of flowering 

and growth of new leaves for some species in response to longer days and available warm air 

and soil temperatures. However, the process does not happen at the same time for all species 

causing a spatial variation across the forest landscape (Liang and Schwartz, 2009). The 

phenomenon is likely to affect the spectral reflectance and signature of imageries captured in 

the spring season in the sub-tropical zone like our study area. The spectral reflectance may be 

low due to the new growth of tree leaves as compared to the time when they have fully grown 

leaves in summer. This could be the reason for the slightly lower accuracy produced by the 

spring imagery. In terms of the performance of the predicting variables, the entropy variable 

also had a significant contribution to the accuracy of the spring imagery. The Entropy variable 

derived for the bands 11 and 2 were first and third respectively, while the Band-11-GLCMC 

(Correlation) was ranked second. These texture variables could also be adopted for the spring 

imageries in case they are used for diversity predictions. 

With the summer and the spring imageries having emerged as the first and second-best 

imageries respectively, the autumn imagery followed with the third-best accuracy. The autumn 

season is associated with a fall of leaves (Soudani et al., 2012) and deciduous species are likely 

to be much more affected than evergreen species. The phenological process is likely to reduce 

or stalled within the autumn season as the chlorophyll content in leaves decomposes, the 

nitrogen content is withdrawn and leaves eventually fall (Kodani et al., 2002). Hence, lower 

rates of the leaf area index (LAI) is observed among tree species, especially for deciduous tree 

species. The spectral reflectance and signatures of satellite imagery may be affected as a low 

reflectance may be recorded from the tree species due to the loss of leaves. Such a situation 

might have had some level of effect on the autumn imagery as it will have fewer tree canopy 

leaves reflecting incidence radiation for recording by the sensor. The lower accuracy recorded 

for the autumn imagery may be related to this condition of tree species prevailing in the autumn 

season. With regards to the variable importance assessment, the texture variables derived from 

band 5 of the Sentinel 2 contributed significantly to the accuracy of the autumn imagery. The 

Band-5-Contrast, Band-5-Dissimilarity and Band-5-GLCMC (Correlation) were the first three 

variables among the five predicting variables of the RF model of the imagery.  

The Winter imagery had a comparable R2 with the autumn image, but it was the least accurate 

due to its higher RMSE as compared to the summer, spring and autumn imageries. It may be 

related to the natural phenomenon of the tree leaves having lesser growth rates and 

photosynthetic activities and some also undergoing senescence. Breunig et al. (2015) indicated 

that in the winter months, spectral reflectance is much affected because of lowered sun 

illumination. Furthermore, it has been found that the LAI decreases (Li et al., 2017) and to 

some extent shadow could cast on the tree species canopy by the higher local area topography 
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which modifies the level of incident solar radiation and the reflectance reaching the sensor 

(Song and Woodcock, 2003).  The dry and cold winter season is usually associated with the 

maximum dropping of leaves (Kikim and Yadava, 2001) and emergent trees and in the second 

upper stratum may be much vulnerable. Furthermore, Breunig et al. (2015) observed reduced 

plant area index (PAI) and increase gap openings in the winter months. Therefore, the 

phenological and morphological characteristics of species could be much more affected as the 

winter months are the harsh season of the year for the tree species. These reasons may explain 

the slightly less accuracy the winter imagery produced, and the higher level of error as 

compared to the summer, spring and autumn imagery. Concerning the importance variable 

analysis, the Band-7-Contrast, Band-5-GLCMC (Correlation) and Band-8A-Entropy were the 

top three predicting variables. In situations where it is only the winter season imagery that is 

available, these predicting variables could be utilized as they proved useful for the model of 

the imagery for prediction in the subtropical natural forest. 

 

7.9 Conclusion 

Different types of forest, satellite imageries, and algorithms used for modelling and prediction 

are likely to provide different prediction accuracies of forest attributes such as tree species 

diversity depending on the season. The findings of our study are vital for ecologists, 

conservationists, and other vegetation Remote Sensing experts. Since the season of the year 

could influence the spectral reflectance of imageries and how vegetation is perceived and 

recorded by the sensor, it is important to identify the best season for tree species diversity 

prediction to enhance the production of good accuracies. The summer season emerged as the 

best for predicting tree species diversity for sub-tropical natural forest which may be different 

from what other sites in literature produced. It is an indication that the summer season could 

probably be the best season for the prediction of tree species diversity of the natural sub-tropical 

forests. This information is vital for tree species diversity prediction, especially at the local 

level. Other studies may be recommended for similar sub-tropical forest zone to ascertain the 

best season for predictions. Our study is unique based on the predicting variables (texture 

variables) and the modelling approach employed. Key predicting variables identified for the 

prediction could also be adopted for tree species diversity in similar climatic and ecological 

zones. 
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8.1 Synthesis of the chapters 

All the specific objectives that were defined for this study were achieved. From the six 

manuscripts, it could be realised that Remote Sensing has a good potential in its application for 

the mapping of natural forests. In most specific terms the mapping of forest cover, detection of 

forest cover change and forecasting of future land cover distribution, the carbon stock 

estimation, tree species diversity prediction and the identifying of the best season for tree 

species predictions were all carried out successfully. Generally, more such studies would be 

recommended to enhance sustainable forest management based on the information provided 

through Remote Sensing mapping of sub-tropical natural forests such as the Nkandla Forest 

Reserve. A synthesis of each chapter has been provided below for each of the manuscripts.   

8.2 Two Decades Progress on The Application of Remote Sensing for Monitoring 

Tropical and Sub-Tropical Natural Forests: A Review 

Interesting observations were made in our review of relevant literature on the progress made 

in Remote Sensing application to tropical and sub-tropical natural forests. The tropical and sub-

tropical climatic zones are found in Southern America, Asia and Sub-Saharan Africa. The 

predefined thematic areas of which were, AGB and AGC estimations, tree species 

identification, tree species diversity prediction and forest cover mapping and change detection 

were identified to be key areas of Remote Sensing mapping of natural forests. Africa was 

observed to be lagging behind Southern America and Asia in the number of studies carried 

over the period of assessment. More research is recommended in African countries for the 

natural forest as it is faced with a high rate of deforestation and climate change  

It was observed from the finding that sensors are being improved to map complex and highly 

diverse natural tropical and sub-tropical forests and also to meet the demands of science and 

practice in Remote Sensing applications. Freely available Landsat and Sentinel 2 remains 

highly used especially in African researchers. Commercial very high resolution, hyperspectral 

and active sensors mostly have less application in Africa and more research funding may be 

made provided for African research. High research budget needs to be made available for 

African researchers to be able to carry out highly advanced research that will be of much use 

to sustainable forest management and conservation.  

The application of machine learning algorithms has also increased over time and has led to 

improved accuracies. Since accuracy is a means of measuring the credibility of Remote Sensing 

mapping and monitoring, more advanced forms of modelling using machine learning 

algorithms are employed by researchers.     

This review outcomes are of importance to Remote Sensing researchers undertaking key 

studies for tropical and sub-tropical natural forests. The research outputs will be a good guide 

for the selection of Remote Sensing data and machine learning algorithms that can facilitate 

modelling and provide good research outputs. More research is recommended in these thematic 

areas and other relevant ones to provide adequate and credible information to forest managers 

and ecologists towards efficient conservation and protection initiatives.    
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8.3 Mapping Natural Forest Cover Using Satellite Imagery of Nkandla Forest Reserve, 

Kwazulu-Natal, South Africa. 

Multiple benefits are obtained from natural forest ecosystems in their provision of ecosystem 

goods and services which are of importance to direct and indirect forest dependants. Research 

has shown that Remote Sensing forest cover mapping is a major means of obtaining 

information that contributes immensely to making informed and evidence-based decisions that 

enhance sustainable forest management. The Landsat 8 imagery could successfully delineate 

the land cover classes of the Nkandla Forest Reserve. These land cover classes are closed 

canopy forest, open canopy forest, grassland and bare sites. The RF and SVM were used for 

the land cover classification and their performances were evaluated. They both proved robust 

for the classification as each of them produced accuracies that were above 95%.  

The finding is confirmed by other studies that also found the SVM and RF producing higher 

accuracies in land use/cover classification (Paneque-Gálvez et al., 2013, Petropoulos et al., 

2012, Pelletier et al., 2016, Yin et al., 2017). The SVM, however, produced performed better 

than the RF with slightly higher accuracy. Adam et al. (2014) similarly found the SVM 

performing better than the RF. Both algorithms are recommended for mapping of forest cover 

due to their inherent capabilities in handling complex natural forests. 

The visible and the SWIR bands were the most important variables that significantly 

contributed to the accuracy due to their sensitivity to vegetation. Many other studies have 

similarly found these bands useful for vegetation mapping. Thus, they are recommended to be 

included in spectral that are used for forest cover mapping. Knowledge of land cover classes is 

a key part of forest management and so, this mapping is a worthy operation.  

 

8.4 Multi-Decadal Spatial and Temporal Forest Cover Change Analysis of Nkandla 

Natural Reserve, South Africa. 

The focus of this study which was to detect changes in the land cover of the Nkandla Forest 

Reserve revealed a persistent change for all the four land cover classes (closed canopy forest, 

open canopy forest, grassland and bare sites). Inter-transitions were observed among the cover 

classes which led to the changes. The closed canopy forest has the most gain over the period 

and it became the dominant land cover type. This is an indication of tree cover taking over 

canopy gaps within the open canopy forest. Such changes are positive as more tree cover 

enhances the provision of ecosystem goods and services. A negative type that involves the 

taking over of closed canopy areas by the open canopy forest, grassland and bare sites is not a 

good sign as it lowers the level of ecosystem services provision. Natural and human causes 

were found to be the major causes of the changes.  

The prediction of future land cover classes is important as it helps to put in mitigation measures 

for negative forms of changes. The forecasting in spatial distribution carried out for 2029 

revealed that the closed canopy forest will have the most changes as compared to the open 

canopy forest, grassland and bare sites. It will experience a decline while the open canopy 
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forest and bare sites will have a slight increase. The grassland was predicted to have the most 

increase by 2029.       

The mapping was made possible with the Landsat data due to the availability of historical data 

which dates back to the 1970s. The Landsat imageries could delineate the four land use/cover 

classes of the Nkandla Forest Reserve with high accuracies. Other studies were also successful 

in the application of Landsat data in land use/cover classification (Addae and Oppelt, 2019, Da 

Ponte et al., 2017, Mihai et al., 2017, Vázquez-Quintero et al., 2016). The MLPNN and the 

MCM applied in similar studies were found to facilitate the spatial and temporal change 

detection (Addae and Oppelt, 2019, Ranagalage et al., 2019). 

The spatio-temporal information provided through our study will be of importance to the forest 

managers with regard to planning. It is recommended that pragmatic measures should be put 

in place to prevent the human form of disturbances to the forest to maintain its integrity. This 

will ensure the continual provision of ecosystem goods and services. 

 

8.5 Mapping of Aboveground Carbon Stock in Sub-Tropical Natural Forest using 

Sentinel 2 Satellite Imagery and Random Forest Algorithm. 

The prediction of AGC with Remote Sensing data has been more necessary due to increasing 

climate change and deforestation. It is also important in carbon accounting and forest 

management. The combination of Sentinel 2 and RF for the modelling of the AGC of the 

Nkandla Forest Reserve was also carried out successfully. The prediction abilities of the 

spectral bands, NIR vegetation indices and red-edge vegetation were compared for the 

modelling of the AGC. This helped to identify the sentinel 2 spectral products that will be much 

robust for the AGC prediction.  

The red-edge bands and their derived vegetation indices were observed to be informative and 

robust for AGC modelling as compared to the other spectral bands and the NIR vegetation 

indices of the other models. The modelling methods and the identified important variables may 

be adopted and utilized in the estimation and mapping of AGC stocks in other climatic zones 

to ascertain their usefulness. 

The outcomes of our study shares similarities with some studies that found the RF algorithm 

contributing to predicting model accuracies (Dube and Mutanga, 2015, Ghosh and Behera, 

2018). Furthermore, the red edge-edge bands of the Sentinel 2 were identified as being 

informative and much robust in vegetation studies due to their high sensitivity. The finding of 

our study is similar to other studies that found the RF algorithm contributing to predicting 

model accuracies (Dube and Mutanga, 2015, Ghosh and Behera, 2018).   

 

8.6 Evaluating Multi-Sensors Spectral and Spatial Resolutions for Tree Species Diversity 

Prediction.  

Many studies are carrying out tree species diversity prediction in many climatic zones and 

Remote Sensing imageries due to its importance in forest management. Spatially explicit 

information provided through such predictions has been demonstrated to be vital as it helps to 
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identify tree species diversity hot spots and less diverse areas in natural forests. Although many 

studies have used various Remote Sensing imageries for tree species diversity predictions 

across different forest zones, the influence of the spectral and spatial resolution of sensors on 

the prediction accuracies had not been fully assessed. Hence, our study evaluated the influence 

of the spectral and spatial resolution on the prediction accuracies in tree species diversity by 

comparing the performance of Landsat 8, Sentinel 2, RapidEye and the PlanetScope. The 

Shannon Index (H′), Simpson Index (D1) and the Species richness (S) together with RF 

regression modelling were utilised to identify which imageries had a good relationship with 

them and produce good accuracy.  

The Sentinel 2 outperformed the RapidEye, PlanetScope and Landsat 8. The RapidEye was the 

second-best imagery while the PlanetScope was the third-best imagery. The Landsat 8 

performed the least. Our study shares a similarity with Mallinis et al. (2020), who also found 

the Sentinel 2 performing better than the RapidEye in species diversity prediction in the 

Mediterranean region. This observation is due to inherent capability of the Sentinel 2 that have 

been confirmed in vegetation related studies (Chrysafis et al., 2020, Immitzer et al., 2019, 

Martin-Gallego et al., 2020). 

The findings indicated that both spatial and spectral resolution influence the predicting 

accuracies of imageries in tree species diversity predictions for natural sub-tropical forests. 

More such studies are recommended for other forest zones to ascertain how the accuracies of 

different imageries could be influenced by the spectral and spatial resolutions. Such 

information would be vital for forest managers and ecologists.  

 

8.7 Identifying the Best Season for Predicting Tree Species Diversity using Sentinel 2 

Satellite Imagery and Random Forest Algorithm 

The seasons of the year determine phenology and morphological changes and characteristics 

of tree species. Changes are realised in the tree species phenology and morphology based on 

the seasons of the year and are likely to affect how sensors perceive vegetation and may further 

affect the accuracies of imageries. It is, therefore, important to identify the best season for the 

prediction of tree species diversity due to these changes in tree characteristics that affect 

spectral signatures and reflectance of sensors. A combination of RF regression algorithm and 

texture variables were used for the modelling. From the results of our study, the summer season 

was observed to be the best for tree species diversity due to the higher performance of the 

summer imagery as compared to the spring, autumn and winter imageries. Similar studies are 

recommended for other forest zones to ascertain the best season for tree species diversity 

predictions. 

In a similarly study, Chrysafis et al. (2020) found the multi-seasonal models producing the 

highest accuracies than single-season models of mid-summer. Although the approach used for 

the referenced study was not used in our study, it is worth mentioning the output. Subsequent 

studies could adopt this modelling approach as it may enhance the accuracy. An inconsistency 

was observed with in relation to Chrysafis et al. (2020) as the mid-summer season was found 

to the second best season while it was found to be the first in our study. 
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