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ABSTRACT 

Smallholder farming systems contribute significantly to agricultural production, livelihood sustenance, 

and socio-economic growth in developing nations. Despite their relative importance, smallholder 

farmers tend to lack the resources required to maximize their potential and generally face the 

challenges of unhealthy and water-stressed crops, resulting in low yields. Hence, it is imperative to 

provide smallholder farmers with innovative, objective, low-cost solutions to assist them in optimizing 

productivity. Recent precision agricultural developments, in the form of unmanned aerial vehicles 

(UAVs) mounted with very high-resolution cameras, provide spatially explicit near real-time 

information that is useful in monitoring and assessing farm and plot scale crop growth dynamics. The 

synergistic use of UAV technology with remote sensing techniques allows for a deeper understanding 

of crop characteristics that could assist with operational decisions related to crop health at the field 

level, allowing the timely implementation of remedial solutions to ensure productivity.  

 

In light of these recent developments, the focus of the study was to explore the utility of multispectral 

and thermal infrared UAV technology in determining crop health and water stress levels during 

different phenological stages. In this regard, the study analyzed maize due to it being the most 

important staple grain crop that is extensively cultivated in South Africa, especially by smallholder 

farms, for economic gain and food security. The study utilized crop health and water stress indicators 

of chlorophyll content, foliar temperature, and stomatal conductance. Specifically, chlorophyll content 

was used as the main proxy for crop health because of its well-known biochemical pigment that serves 

as an indicator of plant productivity. Additionally, crop foliar temperature and stomatal conductance 

were used as proxies for water stress due to their ability to indicate the water content and crop water 

productivity status. A random forest machine learning algorithm was used to predict chlorophyll, 

temperature, and stomatal conductance over the various maize phenological stages, and determine the 

most optimal growth stage(s) for the prediction of each crop characteristic. Furthermore, automated, 

in-field, time-series data of normalized difference vegetation index (NDVI) and foliar canopy 

temperature were measured to further understand maize health and water stress over the phenological 

stages through in-situ measurements.  

 

The remotely sensed UAV data and its synergistic use with the robust machine learning algorithm 

were able to accurately predict chlorophyll, temperature, and stomatal conductance across 

phenotyping. Specifically, chlorophyll content was optimally predicted during the early vegetative 
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(RMSE = 13.9 µmol m-2, R2 = 0.80, RRMSE = 11 %), early reproductive (RMSE = 87.4 µmol m-2, R2 

= 0.89, RRMSE = 7 %) and late vegetative (RMSE = 96.2 µmol m-2, R2 = 0.85, RRMSE = 8 %) growth 

stages through the near-infrared, red-edge, and vegetation indices derived from these sections. The 

foliar temperature was optimally estimated during the mid-vegetative growth stage (RMSE = 0.59 ºC, 

R2 = 0.81, RRMSE = 2.6 %) through the thermal infrared, near-infrared, red-edge, and UAV-derived 

vegetation indices. Finally, stomatal conductance was optimally predicted during the early 

reproductive growth stage (RMSE = 25.9 mmol m-2 s-1, R2 = 0.85, RRMSE = 11.5 %) through the 

thermal infrared, near-infrared red-edge, and UAV-derived vegetation indices. The resulting maps of 

chlorophyll, temperature and stomatal conductance variation captured the spatial heterogeneity over 

the maize field for the various growth stages. The maize crop was found to be relatively healthy 

throughout phenotyping; however, it suffered mild water stress during the early vegetative stage and 

after an unforeseen hailstorm during the mid and late reproductive stages. 

 

Smallholder farming is seldom the focus of innovation and precision agriculture. However, this study 

illustrated the use of smart agro-climatic, high-resolution and quick turn around technology for 

smallholder agricultural systems. Such technology provides smallholder farmers with important in-

field information on crop biophysical factors allowing them to make informed, tactical decisions for 

improved interventions on crop management through various stages of phenology. 
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CHAPTER 1: INTRODUCTION  

1.1. Background of the study  

 

The demand for agricultural products is fuelled by the ever-increasing worldwide population, which is 

expected to reach 9 billion people by 2050 (Nhamo et al., 2020). An additional 2.4 billion people are 

expected to be concentrated in developing regions such as sub-Saharan Africa by 2050, placing a 

further strain on agricultural production, even though more than 20% of the population is already food 

insecure (Lipper et al., 2014). Additional impacts of weather and climate further challenge agriculture, 

especially in smallholder agricultural systems that are dependent on rainfall for irrigation needs 

(Kurukulasuriya and Ajwad, 2007). Maize (Zea mays L.) is a staple grain crop grown in South Africa, 

and its yields account for over 50 % of the population’s energy needs (Dhau et al., 2018). Amongst 

rural smallholder farmers, maize is a favoured crop and is predominantly cultivated for socio-economic 

growth, food security and livelihood sustenance (Abraha and Savage, 2006; Adisa et al., 2018). 

However, the reduced seasonal rainfall and high maximum temperatures of this decade, have caused 

inconsistencies in the growth and overall health of maize crops (Adisa et al., 2018). Consequently, 

smallholder farmers face challenges of unproductive and water-stressed crop yields that are generally 

lower than the potential of the land (Adisa et al., 2018; Walker et al., 2018). Specifically, in South 

Africa, the majority of smallholder farms are located in rural areas and generally lack the resources of 

larger-scale commercial agriculture (Thamaga-Chitja and Morojele, 2014). Such resource limitations 

reduce the productivity and potential of  smallholder fields, as most of the on-farm decisions are based 

on indigenous knowledge (Soropa et al., 2015). To remedy such situations, rural smallholder farmers 

require innovative, objective, and low-cost solutions to assist them in gaining a deeper understanding 

of their crop productivity and to ensure a sustainable provision of food security (Baiphethi and Jacobs, 

2009; Kumar and Sharma, 2013; Nhamo et al., 2020).  

 

Several studies have illustrated the potential use of remote sensing technologies for agricultural 

applications; however, these applications typically use satellite-borne earth observation or manned 

aerial vehicles (Manfreda et al., 2018). Satellite-earth observation data is known to provide useful 

datasets at various spatial, spectral, and temporal resolutions (Dube and Mutanga, 2015; Slagter et al., 

2020; Timothy et al., 2016). However, the major limitation of freely available satellite imagery is the 

spatial resolution, which is generally far too coarse to capture the spatial heterogeneity of small-scale 

farms and fields (Sandbrook, 2015). Moreover, satellite revisit times and the influence of atmospheric 
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perturbations such as cloud cover, reduce the frequency of data capture and processing (Manfreda et 

al., 2018; Nhamo et al., 2020). Nevertheless, there are available satellite-borne observation datasets 

and manned aerial vehicles that are capable of overcoming such spatio-temporal resolution issues. 

These include Hyperion Earth Observing (EO)-1, Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS), Compact Airborne Spectrographic Imager (CASI) among others (Vorovencii, 2009). 

However, there are often far too costly for smallholder agricultural applications (Cucho-Padin et al., 

2020). In recent years, precision agricultural practices facilitated by unmanned aerial vehicles (UAVs), 

commonly known as drones, have emerged as an option for small-scale agricultural remote sensing 

applications (Hoffmann et al., 2016; Hu et al., 2021; Messina and Modica, 2020). UAVs offer vast 

potential for smallholder applications, as the low-flying altitudes capture data at very-high spatial 

resolutions (up to a centimetre), as well as at various spectral resolutions that depend on the on-board 

camera (Maes and Steppe, 2019; Nhamo et al., 2020). Moreover, data is captured in almost near real-

time at user-determined temporal intervals and ground sampling distances, which is useful for 

detecting and mapping phenological growth changes and individual crop canopy patches (Cucho-Padin 

et al., 2020). Thus, the use of such objective and time-efficient technology holds significant potential 

for providing near real-time agrometeorological data that informs farmers as to the status of their crops 

throughout phenotyping.  

 

Advanced multispectral and thermal infrared UAV data makes crop image data analytics and objective 

assessments of crop characteristics possible. Existing research literature documents various indicators 

of crop health and water stress (Ahumada-Orellana et al., 2019; Carroll et al., 2017; Hernández-

Clemente et al., 2019; Miller et al., 2020). Specifically, crop health and water stress can be detected 

based on three optical crop elements: (1) chlorophyll content, (2) foliar temperature, and (3) stomatal 

conductance. Generally, a crop is productive when there are dynamic photosynthetic rates, which result 

in strong chlorophyll concentrations, low foliar temperatures, and high levels of stomatal conductance. 

Specifically, the vigorous green pigments in the leaves are indicative of the plant chlorophyll content, 

informing on the state of the crops’ biochemical productivity and overall health. Moreover, the 

photosynthetic productivity of the crop is also a result of dynamic stomatal conductance rates, which 

are affected by the crop moisture content and rate of transpiration. Hence, lower foliar temperatures 

are experienced by the crop when there are optimal rates of stomatal conductance and higher 

chlorophyll concentrations, indicating a healthy and productive crop with minimal water stress. Thus, 

the determination of chlorophyll content, foliar temperature, and stomatal conductance are often used 

as proxies for the evaluation of crop health and water stress through time i.e. growth season (Zhang et 

al., 2019c) 
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The three aforementioned crop characteristics are typically predicted through proximal remote sensing 

techniques premised on the reflectance of chloroplasts and foliar water molecules in the near-infrared 

(NIR) and shortwave infrared regions of the electromagnetic spectrum. Generally, most UAV-based 

assessments of crop health and water stress have assessed the use of the visible and NIR regions of the 

spectrum, yet few studies have assessed the utility of UAV red-edge and thermal infrared sections 

(Zhang et al., 2019a). Additionally, literature has illustrated the use of vegetation indices (VIs) from 

various sections of the electromagnetic spectrum to extract vegetation health and water status 

characteristics, whilst maximizing factors of soil background reflectance, sun angle effects or 

atmospheric effects (Matongera et al., 2017; Tahir et al., 2018; Zhang et al., 2019a). The most common 

indices used to evaluate crop health and water stress are the normalized difference vegetation index 

(NDVI), canopy chlorophyll content index (CCCI), red-edge chlorophyll index (CIrededge), and the 

normalized difference water index (NDWI) amongst a variety of others (El-Hendawy et al., 2019; 

Liang et al., 2018; Zarco-Tejada et al., 2012; Zhang and Zhou, 2019). Furthermore, the use of machine 

learning algorithms such as the random forest, support vector machines and multiple linear regression, 

have proven to be instrumental in characterizing crop characteristics such as the water and health status 

of plants (Abdel-Rahman et al., 2013; Guo et al., 2020; Han et al., 2019; Hassanijalilian et al., 2020). 

The random forest ensemble has been widely proven to outperform the other two aforementioned 

algorithms (Ramos et al., 2020; Yao et al., 2013). Hence, it was anticipated that the use of UAV-

derived data (spectral and thermal infrared bands with VIs) coupled with robust random forest 

regression could produce accurate estimations of chlorophyll, foliar temperature, and stomatal 

conductance as indicators of crop health and water stress in smallholder farms.  

 

Although UAV remote sensing techniques have become a useful tool for predicting biophysical and 

biochemical components of crops, there are limited studies that have evaluated the utility of UAV-

derived data in combination with machine learning algorithms to estimate crop health and water stress 

for smallholder farmers. Therefore, it is imperative that indicators of crop health and water stress such 

as chlorophyll, foliar temperature, and stomatal conductance are predicted, as findings of such crop 

factors over the various growth stages could provide useful information for smallholder farmers. 

1.2. Aim 
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The aim of the research is to test the utility of multispectral and thermal infrared UAV-derived data in 

predicting maize crop health and water stress through indicators of chlorophyll, foliar temperature, and 

stomatal conductance. 

1.3. Objectives 

In this respect, the study seeks to: 

1. Predict the chlorophyll content of maize over UAV based phenotyping as a proxy for crop 

health in smallholder farming systems, 

2. Estimate foliar temperature and stomatal conductance variability as a proxy for maize water 

stress using UAV based phenotyping in smallholder farms. 

1.4. Research Questions 

 

1. At which phenological stage can UAV-derived multispectral remotely sensed data accurately 

predict the chlorophyll content variability of maize as a proxy for its overall health across the 

growing cycle? 

2. At which stage can foliar temperature and stomatal conductance of maize variability be 

accurately estimated using multispectral and thermal UAV-derived data as a proxy for water 

stress in smallholder crop fields?  

1.5. Thesis Structure 

 

The thesis contains four chapters, two of which may be regarded as standalone manuscripts (Chapters 

2 and 3). As such, the two chapters have their own introduction, materials and methods, results, 

discussion, and conclusion sections. It should be noted that the two chapters contain similarities as 

they address the same overarching aim of the study. The chapters are presented as follows:  

 

Chapter One provides a general introduction to the thesis, outlining the use of UAV-derived data in 

estimating the health and water stress of maize in smallholder farms. The research aim, objectives, and 

research questions are included in this chapter.  
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Chapter Two serves as the first standalone manuscript which predicts maize chlorophyll 

concentrations using multispectral UAV-derived data coupled with a random forest regression to 

understand the maize crop health of the smallholder farm. This was achieved throughout maize 

phenotyping. Automated in-field time-series data of NDVI was also utilized to further understand the 

crop health over maize phenotyping. 

 

Chapter Three, the second manuscript, estimates the foliar temperature and stomatal conductance of 

maize over phenotyping to understand potential water stress of the smallholder farm. This was done 

throughout the various growth stages of maize. Continuous in-field crop temperature measurements 

and meteorological data were used to further understand crop water stress over the maize growing 

cycle. 

 

Chapter Four consolidates the findings of the study by synthesizing all the findings and conclusions 

from Chapter Two and Chapter Three. In addition, this chapter addresses limitations of the study 

and techniques and makes recommendations for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

 
 

***** 

Lead into Chapter 2:  

Smallholder farmers depend on healthy crop yields, due to crops of higher productivity generally 

providing a greater source of revenue at sale. Consequently, smallholder farmers need to monitor crops 

throughout phenotyping to ensure that they remain healthy; however, they tend to lack the resource to 

do so. Objective and low-cost technological solutions such as UAVs and its derived data, are useful in 

assisting smallholder farmers in optimizing their productivity. Specifically, maize crop health can be 

optimally estimated through the indicator of chlorophyll, due to its vigorous green-pigment 

concentrations found in the foliar canopy. In this regard, Chapter 2 determines the maize crop health 

status of a Swayimane smallholder farm, through the prediction of maize chlorophyll concentrations 

over the various phenological stages and uses in-situ NDVI measurements to enhance crop health 

conclusions. Furthermore, prediction of the most optimal maize chlorophyll stage is determined using 

the random forest regression models. The findings from this chapter demonstrate the utility of UAV-

derived data and further assist smallholder farmers in improving management throughout the various 

stages of maize growth. 
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CHAPTER 2: PREDICTION OF THE CHLOROPHYLL CONTENT OF MAIZE 
USUNG OVER UAV BASED PHENOTYPING AS A PROXY FOR CROP HEALTH 

IN SMALLHOLDER FARMING SYSTEMS (PAPER 1)1 

Abstract 

 
Smallholder farmers are reliant on healthy and productive crop yields to sustain their socio-economic 

status and ensure livelihood security. Recent advances in South African precision agriculture, in the 

form of unmanned aerial vehicles (UAVs), provide spatially explicit, almost near real-time information 

that can be used to assess crop dynamics and inform smallholder farmers. The use of UAVs with 

remote sensing techniques allows for high spatial resolution data to be captured at various spatio-

temporal resolutions, which is particularly useful towards the field and farm scale applications in 

smallholder farming systems. Specifically, crop chlorophyll content is assessed as it is one of the most 

well-known and reliable indicators of crop health, due to its biophysical pigment and biochemical 

processes that suggest plant productivity. In this regard, the study evaluated the utility of multispectral 

UAV imagery using a random forest machine learning algorithm, in order to estimate the chlorophyll 

content of maize through the various growth stages. The random forest model required in-field 

chlorophyll data that was collected for training and validation. The results illustrated that the near-

infrared and red-edge wavebands, as well as vegetation indices derived from these wavelengths were 

fundamental in estimating chlorophyll content throughout maize phenotyping. Furthermore, the 

random forest model optimally estimated the chlorophyll content of maize over the various 

phenological stages. Particularly, maize chlorophyll was best predicted during the early vegetative, 

late vegetative, and early reproductive growth stages to RMSE accuracies of 13.9 µmol m-2, 96.2 µmol 

m-2, 87.4 µmol m-2, respectively. The least accurate chlorophyll content results were predicted during 

the mid-reproductive and late reproductive growth stages to RMSE accuracies of 76.2 µmol m-2 and 

31.3 µmol m-2, respectively, as a consequence of a hailstorm. A resultant chlorophyll variation map of 

the maize growth stages captured the spatial heterogeneity of chlorophyll within the maize field. 

Therefore, the findings of the study demonstrate that the use of UAV multispectral and thermal 

imagery with a robust machine algorithm is a critical tool to support the decision-making and 

management on smallholder farms.  

 

                                                 
1 This chapter has been submitted for publication and is currently under review by the Journal of Remote Sensing (MDPI) 
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Keywords: drones, precision agriculture, random forest, vegetation indices, unmanned aerial vehicles 

2.1. Introduction 

 
Smallholder agricultural systems contribute significantly to agricultural production, livelihood 

sustenance, and socio-economic growth in developing nations (Kamara et al., 2019). Specifically, in 

sub-Saharan Africa, smallholder farming practices are threatened by a decline in productivity and 

profitability due to the recent and ongoing effects of climatic variability (Adisa et al., 2018; Salami et 

al., 2010; Vanlauwe et al., 2014). Maize (Zea mays L.) is one of the staple grain crops grown in South 

Africa and is extensively cultivated at a subsistence scale for household economic gain, food security, 

and for feedlots (Adisa et al., 2018; Tefera et al., 2011). Smallholder farmers typically cultivate maize 

under rainfed conditions, where they aim to maximize production and produce healthy crop yields. 

Despite the goals of smallholder farmers to optimise yields, small-scale farming systems often face a 

variety of challenges (Adisa et al., 2018; Unganai and Murwira, 2010). Their dependence on rainfall 

poses a significant threat to crop yields, as a reduced seasonal rainfall and severe weather phenomena 

impact the overall health, biochemical processes, and physical development of crops (Muzari et al., 

2012; Okonya et al., 2013). Smallholder farms also lack the resources required to maximise their 

potential and are often faced with low unproductive yields that are significantly lower than the potential 

of the land (Walker and Schulze, 2006). Hence, it is imperative to provide smallholder farmers with 

innovative, effective, low-cost solutions to assist them in optimising their productivity to produce 

increased and healthy yields (Nhamo et al., 2020; Shi et al., 2016). Therefore, a deeper understanding 

of crop dynamics could assist smallholder farmers in identifying crop health issues at an early stage, 

allowing them to implement the necessary remedial solutions to ensure productivity. 

 

Literature has documented various indicators of crop health (Hernández-Clemente et al., 2019; 

Nicholls et al., 2004; Whitford et al., 1998); however, chlorophyll content has been identified as one 

of the most important and reliable health and productivity indicators (Flynn et al., 2020). This is due 

to the biophysical pigment in the leaves and biochemical photosynthetic processes that suggest plant 

productivity (Tahir et al., 2018; Terashima et al., 2009). Hence, monitoring its concentration and 

variability in plants could aid in evaluating crop productivity through time (Zhang et al., 2019c), which 

is significant towards detecting subtle crop changes and optimising healthy yields in smallholder 

farming practices (Afzal and Mousavi, 2008; Li et al., 2015).  
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For many years, advanced and objective tools such as remote sensing have been used to estimate and 

monitor agricultural vegetative health and productivity (Pinter Jr et al., 2003; Wu et al., 2014). For 

example, Sibanda et al. (2020) estimated the foliar chlorophyll content of grasses using field-based 

hyperspectral data, Delegido et al. (2011) estimated the chlorophyll content of multiple agricultural 

crops using Sentinel-2 red-edge bands, and Kooistra and Clevers (2016) estimated the chlorophyll 

content in potato leaves using vegetation indices derived from RapidEye satellite imagery. Such 

studies have illustrated the use of remote sensing as a powerful tool in characterising chlorophyll 

concentrations in different vegetation, and thus, at a farm scale, it may be useful to use chlorophyll as 

a proxy for crop health and productivity (Kanning et al., 2018).  

 

Remote sensing techniques obtain the potential to monitor crop productivity and map its spatial 

distribution based on high-resolution images of varied wavelengths (Duveiller et al., 2013; Miao et al., 

2009; Nhamo et al., 2020). Conventional applications of earth observation techniques use satellite 

borne earth observation or manned aerial vehicles (Berra and Peppa, 2020; Nhamo et al., 2018). 

However, a major constraint of freely available satellite borne data is its inability to fulfil the ever-

increasing need for high spatial and temporal resolution data, which is necessary for monitoring small-

scale crop properties throughout phenotyping (Psirofonia et al., 2017). Moreover, manned aerial 

vehicles can overcome the issues of spatio-temporal resolution, but the associated costs are a major 

limitation for smallholder farms.  

 

In recent years, unmanned aerial vehicles (UAVs) have been globally recognized as an innovative, 

low-cost, and effective precision technology for agricultural applications. UAVs offer state-of-the-art 

image data throughput analytics at very high resolutions (VHR) and have proven to be effective in 

overcoming the limitations of satellite imagery (Maes and Steppe, 2019; Nhamo et al., 2020). There is 

great potential for UAVs in small-scale agriculture as the low-flying altitudes capture VHR spatial and 

spectral data. High resolution images are acquired by multispectral cameras mounted onboard UAVs, 

which offer almost near real-time data that is critical for monitoring subtle shifts in crop phenology 

and crop vigour. Moreover, UAVs can be deployed frequently at user-determined ground sampling 

distances and revisit times, which is impossible with conventional freely accessible satellite-borne 

sensors such as Landsat 8 Operational Land Imager or Sentinel 2 Multispectral Instrument (Xiang and 

Tian, 2011). Thus, VHR UAV imagery has the ability to detect individual maize plants, canopy patches 

and ultimately, phenological growth patterns over the fragmented smallholder fields. Therefore, 

accurate mapping and analysis of smallholder maize fields using a VHR UAV holds significant 
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potential for providing data that could inform farmers on the health status of their crops through the 

phenological cycle.  

 

Specifically, multispectral chlorophyll data can be optimally assessed through the use of UAV-derived 

vegetation indices (VIs) and a robust machine learning algorithm. VIs are mathematical 

transformations of image bands that are used quantitatively to extract spectral properties such as 

canopy cover, plant vigour and phenological dynamics (Khan et al., 2018; Xue and Su, 2017). The 

most common index used for plant health is the normalized difference vegetation index (NDVI), which 

is directly used to acquire information on the physiological health status of crops and crop growth 

changes (Boken and Shaykewich, 2002; Gitelson et al., 2014). Particularly, chlorophyll specific VIs 

have proven to be more valuable than normalized VIs in some instances as they include a variety of 

combinations from bands which reflect highly in vegetation (Wu et al., 2014). Such indices include 

the canopy chlorophyll content index (CCCI) and the modified chlorophyll absorption ratio index 

(MCARI), which have shown significant correlations to crop chlorophyll content (Haboudane et al., 

2002; Raper and Varco, 2015). Furthermore, machine learning algorithms such as random forest, 

support vector machines and multiple linear regressions have proven to be instrumental in 

characterising crop chlorophyll content and health status (Abdel-Rahman et al., 2013; Guo et al., 2020; 

Han et al., 2019; Hassanijalilian et al., 2020). The random forest ensemble has been widely proven to 

outperform the other two aforementioned algorithms (Ramos et al., 2020; Yao et al., 2013). Hence, it 

is anticipated that the use of UAV-derived data (spectral bands and VIs) with robust random forest 

regression could produce accurate results to quantitatively assess the chlorophyll content of maize as 

an indicator of health in smallholder farms. 

 

Thus, with maize being one of the dominant food crops grown across South Africa, there is a need to 

assess its health in smallholder agricultural systems through a robust multispectral sensor. A 

multispectral sensor enables proximal remote sensing analysis of maize and can potentially predict 

chlorophyll content, which serves as an informant on the health status of the crop. In this regard, this 

study aims to investigate the potential of multispectral UAV-derived data to assess maize crop 

chlorophyll content using the random forest model simulation, for an improved understanding of crop 

health and productivity in smallholder agricultural systems. Therefore, the objectives of the study were 

to: (1) estimate chlorophyll content variations across the different maize phenological stages using 

UAV-derived data, (2) determine the optimal maize growth stage(s) for chlorophyll model prediction. 
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2.2. Materials and Methods  

2.2.1. Study site description  

 
The research was conducted over a period of four months from February 2021 to May 2021 in the rural 

area of Swayimane, KwaZulu-Natal (29°31’24’’S; 30°41’37’’ E). Swayimane is in the uMshwathi 

Local Municipality and is located approximately 55 km north-east of Pietermaritzburg. The small, 

communal area covers a geographical extent of approximately 36 km2, and land use is dominated by 

the smallholder farming systems of the local community. Common crops cultivated in the area include 

white and yellow maize, sugarcane, amadumbe (taro), and sweet potato. The smallholder farmers 

follow traditional farming methods of planting, maintaining, and manual harvesting of crops. Farm 

plots are rainfed, fertilized using livestock manure and hand-weeded by farmers. Alternatively, 

herbicide backpack sprayers are used by small growers to control weeds and grass. The area is 

predominantly characterized by semi-subsistence farming which is regarded as a form of food security 

and livelihood sustenance. The produce is sold at local markets for economic benefits, which sustain 

farmers’ livelihoods.  

 

Agriculture and crop production in Swayimane are supported by the favourable environmental 

conditions of the region. The climate is characterised by warm wet summers and cool dry winters, with 

an annual average air temperature of approximately 18 °C. The mean annual rainfall ranges between 

600 and 1200 mm, with the majority of rain occurring during the summer in the form of thunderstorms. 

During the research period, Swayimane had a maximum average air temperature of 24 °C and total 

rainfall of 242.8 mm, amongst other weather data (Figure 1). Weather conditions were continuously 

monitored by the automatic weather station installed at a Swayimane high school. Weather data was 

downloaded from the Swayimane weather website. The weather station is situated approximately 2 

km from the smallholder maize farm, and as such it is proximally adequate in capturing the weather 

conditions of the study site. The research was conducted on a 30 × 96 (2850 m2) smallholder maize 

field (Figure 2). The field was located on a slope that obtained a ranging field elevation of 

approximately 850 m to 839 m.  
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Figure 1: Swayimane weather conditions over the period of maize phenotyping 

 

 

Figure 2: Location of the Swayimane study area, study site, and smallholder maize field. 
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2.2.2. Maize phenotyping 

 
Maize seedlings were sown on the 8th of February 2021 and harvested on the 26th of May 2021 (Table 

1), having a total growth cycle of 108 days. Chlorophyll was examined at different growth stages of 

the maize phenological cycle. Maize growth is divided into vegetative stages (which range from 

emergence to tasseling based on the number of fully expanded leaves) and reproductive stages (which 

range from silking to physiological maturity based on kernel development) (Cakir, 2004; Zhao et al., 

2012). Within the various stages, certain transitions are important for monitoring and informing 

smallholder farmers. These are crop vegetative emergence (date of onset of photosynthetic activity, 

termed VE), tasseling (date when maximum leaf area is recorded and maize tassels emerge, termed 

VT), the beginning of senescence (date when green leaves visibly begin to become brown toned) (Du 

Plessis, 2003).  

 

It is worth mentioning that during the mid-vegetative stage, the western portion (lower elevation) of 

the field appeared unhealthy. This may have been due to the fact that this portion of the field was not 

weeded during the early vegetative growth stage with the rest of the field. However, the farmer applied 

herbicide during the mid-vegetative growth stage to remove grasses and weeds that were found 

between maize rows. Consequently, the herbicide impacted the health status of these crops and the 

maize suffered herbicide burn (see Appendix A, Figure 23 for images of this portion of the field).  

Table 1: Maize growth stages and characteristics 

Days after emergence Growth stage Description Pictures 

0 VE 

V
eg

et
at

iv
e 

G
ro

w
th

 S
ta

ge
s 

Germination and emergence. Planting depth 5-8 

cm. 

 

V2 

21 V5 Plant population established. Growth point 20-25 

mm below surface. Leaf sheath and blades. Tassel 

initiation. 
 32 V8 Ear initiation and early cob development. 

38 V10 

44 V12 Tassel at growth point begins to develop rapidly. 

Active growth of lateral shoots and cob 
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49 V14 development from the sixth to eighth node above 

surface. Brace root development.  

 

56 VT Tasseling stage. Silks are developing. The 

demand for water and nutrients is high. All leaves 

present. Pollination 5-10 days. 63 R1 

R
ep

ro
du

ct
iv

e 
G

ro
w

th
 S

ta
ge

s 

 

70 R2 - R3 Kernel development. Silking stage. 

77 

84 

91 R3 - R4 Grain filling. Nutrients are transported to cob.  

Sugars converted into starch.  

 

98 

105 

112 R5 - R6 Physiological maturity and drying of kernels. 

Starch in kernels. End of mass gain. 

 

119 

160 R+ Ready for harvest. Optimal moisture and 

nutrients. 

 

2.2.3. Field data collection, sampling, and survey 

 
Field data collection was conducted throughout the maize phenological cycle. A meteorological tower 

(Figure 3a) was installed in the center of the maize field monitoring NDVI through spectral reflectance 

sensors (SRS) (SRS sensors, Decagon Inc, Pullman, WA, USA). The SRS-NDVI sensors consist of a 

downward-facing and an upward-facing sensor. The upward-facing hemispherical sensor provided 

reference values of the sky radiance which normalized the downward-facing sensor values of maize 

foliar canopy irradiance. The SRS-NDVI measured wavelengths of 630 nm (red) and 800 nm (NIR) 

on a continuous basis at 10-minute intervals and 30-minute intervals (EM50G, Decagon, Pullman, 

WA, USA). To calculate upward reflected NDVI, the two-band radiometer measurements of incident 

radiation, within a 36° field of view (FOV), were used to measure the maize canopy reflected radiation 

(Figure 3b). The SRS data was calibrated using the information from the incident red and NIR radiation 

collected by the hemispherical SRS, and used to calculate a calibration constant α: 

                                                                         𝛼𝛼 = 𝐼𝐼𝐼𝐼/𝐼𝐼𝐼𝐼      (1) 

where, 𝐼𝐼𝐼𝐼 is the incident red radiation (630 nm) from above and 𝐼𝐼𝐼𝐼 the incident NIR radiation (800 

nm) from above, both obtained from the hemispherical sensor. Calibration of the values recorded by 

the Decagon sensors was then calculated: 
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                                                            SRS NDVI = 𝛼𝛼𝛼𝛼𝛼𝛼−𝑅𝑅𝑅𝑅
𝛼𝛼𝑅𝑅𝑛𝑛+𝑅𝑅𝑅𝑅

        (2) 

where, 𝑅𝑅𝑅𝑅 is the reflected NIR radiation and 𝑅𝑅𝑅𝑅 the reflected red radiation (Anderson et al., 2016). 

 

The data collected was downloaded from the datalogger to a laptop computer (ECH2O Utility, 

Decagon, Pullman, WA, USA) (Figure 3c). The SRS-NDVI data was used to monitor maize NDVI 

values through phenotyping. Importantly, the SRS-NDVI measurements of maize were used in 

conjunction with the multispectral UAV-derived NDVI imagery to assess the accuracy and reliability 

of the UAV-derived data. Since the SRS-NDVI sensor measures the NDVI of maize within its FOV, 

the average NDVI value of the same FOV was clipped and extracted from the multispectral UAV 

image. The SRS-NDVI measurements used for comparative correlation were taken at the same time 

as the UAV flight. Thus, environmental variance was assumed to be negligible.  

 
(a)   (b)    (c) 

Figure 3: (a) Automated in-field meteorological tower in the maize field, (b) meteorological tower 

mounted with SRS-NDVI and SRS-PRI sensors held 4-meters above the ground, (c) CR1000 data 

logger, Em50 datalogger and 12 V battery. 
In-field chlorophyll measurements of maize, at two-week intervals, were collected from the early 

vegetative (V5) growth stage to the late reproductive growth stages (R6). Pre-sampling of the maize 

smallholder field was conducted in Google Earth Pro where a polygon of the experimental field was 

digitized. The digitized polygon was then imported into ArcGIS 10.5 where it was used to generate 

sampling points. A total of 63 sample points were generated based on stratified random sampling 

within the digitised field boundary. These points were then uploaded onto a handheld Trimble Global 

Positioning System (GPS) with sub-meter accuracy. These locations were used to navigate to each 

sample point for field data collection. The maize plants at each sampling point were marked for 

consistent bi-weekly measurement.  
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A Konica Minolta soil plant analysis development (SPAD) 502 chlorophyll meter (Minolta 

corporation, Ltd., Osaka, Japan) was used to measure the chlorophyll content of maize leaves. SPAD 

meter readings are portable, non-destructive measurements of the of red (650 nm) and infrared (940 

nm) radiation leaf transmittance. The device instantly calculates a unitless SPAD value that is 

proportional to the chlorophyll concentration within the sample leaf (Sibanda et al., 2020; Uddling et 

al., 2007). Field measurements were conducted between 10:00 am to 2:00 pm, corresponding with the 

optimal period of the day for crop photosynthetic activity. During the early growth stages (where a six 

leaf was present), the SPAD readings were measured on the newest fully expanded leaf with an 

exposed collar. Subsequent to tasseling, the ear leaf (i.e., the leaf attached to the same node as the 

primary ear shank) was measured (Costa et al., 2003). Readings were taken on one leaf per plant. The 

different locations of leaf measurement included: (a) the midpoint of each leaf blade, next to the main 

leaf vein, (b) approximately /3 down from the leaf tip, and (c) approximately 1/3 of the way down 

from the leaf tip. The three measurements were averaged per leaf and subsequently recorded. When 

conducting the chlorophyll readings, the SPAD meter was shielded from direct sunlight. SPAD meter 

measurements were conducted simultaneously with UAV image acquisition. SPAD measurements 

were converted into chlorophyll content values using the equation derived by Markwell et al. (1995) 

that achieved an R2 = 0.94: 

 

𝐶𝐶ℎ𝑙𝑙 = 110𝒔𝒔0.0265 

 

Where Chl represents the total chlorophyll per unit leaf area in µmol m-2 and the S is the unitless SPAD 

value (Ling et al., 2011). The chlorophyll data was then added to the 63-sampling points map in a 

geographical information system (GIS). The point map was overlaid with the multispectral UAV 

image of the derived spectral reflectance values from each sampling point.  

2.2.4. UAV multispectral-thermal camera and platform 

 
The DJI Matrice 300 (DJI M-300) platform mounted with a MicaSense Altum camera and 

Downwelling Light Sensor 2 (DLS-2) was used to conduct aerial-based flights over the smallholder 

farms. The rotary-wing DJI M-300 series has vertical take-off and landing (VTOL) technology, 

making it well suited for small-scale agricultural crop imaging (Figure 4a). The DJI M-300 platform 

novelties include its 15 km transmission range, 7000 m maximum altitude, obstacle avoidance, 
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flightpath planning and locational position tracker. The maximum flight time of the M-300 is 55 

minutes (without payload) and can reach a maximum speed of 27 m/s, which surpasses most drone 

platforms on the market. Moreover, the MicaSense Altum camera is a multispectral and thermal 

imaging sensor that integrates five spectral high-resolution narrow bands (blue, green, red, red-edge, 

and near-infrared) with a radiometric longwave infrared thermal camera (Figure 4b). The high-

performance camera offers synchronized multispectral and thermal image capture and uses a global 

shutter that provides a one second capture rate for precise and aligned imagery (Hutton et al., 2020). 

The multispectral bands have a sensor resolution of 2064 × 1544 at 120 m (3.2 megapixels per 

multispectral band) and a ground sample distance (GSD) of 5.2 cm per pixel at a height of 120 m, 

suggesting the optimum flight altitude above the crop to receive high resolution images (Table 2). The 

camera also has a 48° × 37° FOV, with an 8 mm focal length.  

 

      (a)     (b) 

Figure 4: (a) DJI Matrice 300 platform and, (b) MicaSense Altum multispectral-thermal camera 

 

Table 2: MicaSense Altum camera specifications 

Band Spectral colour  Band center/range Ground sampling distance at 

flying height of 120 m 

1 

2 

3 

4 

5 

6 

Blue 

Green 

Red 

Red-edge 

Near-infrared 

Thermal infrared 

475 nm 

560 nm  

668 nm 

717 nm 

842 nm 

8000 nm – 14 000 nm 

5.2 cm per pixel 

5.2 cm per pixel 

5.2 cm per pixel 

5.2 cm per pixel 

5.2 cm per pixel 

81 cm per pixel 

Source : (https://micasense.com/altum/) 

https://micasense.com/altum/
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2.2.5. Image acquisition and processing  

 
A shapefile of the maize field was digitized in Google Earth Pro and imported into the DJI M-300 

smart console, where it was used to design a flight plan covering the study area (Figure 5a). The flight 

plan enabled a hands-free drone flight mission over the study field and adjacent areas. Before and after 

the flight, the UAV was calibrated using the MicaSense Altum calibrated reflectance panel (CRP). 

This included the user manually taking an unshaded image directly over the CRP to discern the lighting 

conditions of the specific flight date, time, and location (Figure 5b). UAV flights were conducted every 

2-weeks on selected days with clear sky conditions. UAV flights were conducted between 10:00 am 

and 12:00 pm as this is the time of optimal solar irradiance. This period also coincided with chlorophyll 

content measurements. Detailed flight conditions are presented in Table 3. 

 

(a)      (b) 

Figure 5: (a) DJI M-300 flight plan, (b) MicaSense Altum calibration reflectance panel 

Table 3: UAV flight specifications 

Parameters Specifications 

Altitude 

Ground sampling distance 

Speed 

Flight duration 

Composite images 

Image overlap 

100 meters 

7 cm 

16 m/s 

14 minutes 36 seconds 

321 

80 % 

 

A total of 3576 images were stitched together and radiometrically corrected (Pix4Dfields 1.8.0, Pix4d 

Inc., San Francisco, CA, USA). Radiometric correction was conducted in Pix4Dfields using all the 

captured images, including the before and after flight CRP images. The radiometric calibration target 

(the CRP) is a white balance card that provided the reflectance properties of the card across the 
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electromagnetic spectrum wavelengths of the camera. This enabled the software to calibrate and 

correct the reflectance of the images accordingly in line with the prevalent atmospheric conditions 

during the image acquisition. The CRP also had an absolute reference, which obtained the absolute 

reflectance values and made it possible to compare data from several flights. Once processed, a final 

orthomosaic and a digital elevation model (DEM) GeoTIFF image was generated. The orthomosaic 

was georeferenced in ArcGIS 10.5 with the use of ground reference points from Google Earth Pro. 

Images were referenced to the Universal Transverse Mercator (UTM zone 36S) projection. 

 

The maize reflectance data was extracted from the multispectral Altum image. This was done by 

overlaying the ground-truthed maize chlorophyll measurements and their GPS coordinates in the form 

of a point map with the UAV multispectral image. The reflectance values were extracted for each 

coordinate, and for each UAV spectral band. The image was then used to compute vegetation indices 

(VIs) detailed in Table 4. VIs selected included various combinations of the multispectral bands that 

were specific to vegetation health and chlorophyll, such as the NDVI, the canopy chlorophyll content 

index (CCCI) and the red-edge chlorophyll index (CIrededge). These vegetation indices were derived 

due to their performance in research literature (Haghighian et al., 2020; Naito et al., 2017; Xue and Su, 

2017; Zhang and Zhou, 2015). 

Table 4: Spectral UAV-derived vegetation indices used to predict chlorophyll content 

Vegetation index Abbreviation Equation Reference 

Normalized difference 
vegetation index 

NDVI (NIR − RED)/(NIR + RED) Xue and Su 
(2017) 

Green normalized 
difference vegetation 
index 

GNDVI NIR − GREEN
NIR + GREEN 

 

Naito et al. 
(2017) 

Red-green ratio index RGR RED
GREEN Qiu et al. 

(2020) 

Normalized difference 
red-edge index 

NDRE NIR − RED EDGE
NIR + RED EDGE 

 

Fitzgerald et 
al. (2010) 

Corrected transformed 
vegetation index 

CTVI NDVI + 0.5
NDVI + 0.5 ∗ (�NDVI + 0.5) Naito et al. 

(2017) 

Infrared percentage 
vegetation index 

IPVI 
�

NIR
NIR + RED

2 � ∗ (NDVI + 1) 
Haghighian 
et al. (2020) 
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Soil adjusted 
vegetation index 

SAVI 
�

NIR− RED
NIR + RED + L� ∗ (1 + L) 

L is a constant between 0 and 1. 

Xue and Su 
(2017) 

Optimized soil 
adjusted vegetation 
index 

OSAVI NIR− RED
NIR + RED + 0.16 Xue and Su 

(2017) 

Green chlorophyll 
index 

CIgreen (NIR/GREEN)−1 Zhang and 
Zhou (2015) 

Red-edge chlorophyll 
index 

CIrededge (NIR − RED EDGE)− 1 Zhang and 
Zhou (2015) 

Canopy chlorophyll 
content index 

CCCI NIR − RED EDGE
NIR + RED EDGE /

NIR− RED
NIR + RED Fitzgerald et 

al. (2010) 

Chlorophyll 
vegetation index 

CVI NIR ∗ (
RED

GREEN2) Vincini and 
Frazzi (2011) 

Modified chlorophyll 
absorption ratio index 

MCARI 1.5[2.5(NIR − RED)− 1.3(NIR− GREE
√[(2NIR +  1)2 − (6NIR − 5√(RED))−

 Wu et al. 
(2008) 

 

2.2.6. Statistical analysis  

 
The random forest algorithm was used to predict maize chlorophyll content since it is renowned for its 

simplicity, robust nature, and ability to perform well regardless of sample size (Dye et al., 2011; Luan 

et al., 2020). The random forest ensemble is a machine learning algorithm that uses bootstrap 

aggregation to construct multiple trees on a subset of samples derived from the training data (Abdel-

Rahman et al., 2013). Decision trees are grown to their maximum capacity with a randomised subset 

of predictors (UAV-derived spectral data), and each node is split using random subsets of input 

variables (Adam et al., 2012). Furthermore, the random forest regression has the ability to identify 

predictor variables that are influential in the prediction model based on the sum of the reduction in 

Gini impurity across the nodes of the feature (Sibanda et al., 2021).  

 

Specifically, the RGtk2 and rattle packages in RStudio software version 1.4.1564 were used to develop 

the random forest regression model through numerical inputs. The outputs of the random forest model 

were optimised using variable importance as they determine the most influential bands and VIs in 

prediction. Variables of low importance were removed throughout the analysis and the random forest 

model was continuously modified for optimal prediction. The process of variable selection reduces 

issues of variable redundancy and multicollinearity, which affect the performance of the regression 
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model. The model was user-defined and fine-tuned to an optimal 500 trees and 8 variables. These 

hyper-parameters were attained after numerous iterations. The map outputs of the random forest 

regression models are formulated using the linear equations from each of the regression graphs, 

therefore, accuracies of the graphs are the same as accuracies of the maps.  

2.2.7. Accuracy assessment  

 
Accuracy assessments were performed to evaluate the predicted chlorophyll regression models. The 

accuracy metrics used were the coefficient of determination (R2), root-mean-squared error (RMSE), 

and the relative root-mean-squared error (RRMSE). The R2 measured the variation between the 

measured and predicted: foliar temperature and stomatal conductance. The RMSE assessed the 

magnitude of error between the field measurements and modelled outputs of foliar temperature and 

stomatal conductance. While the RRMSE evaluated the accuracy of the model and was used to 

compare the performance of regression models across maize phenotyping. The RRMSE is calculated 

by normalising the mean of each variable RMSE value and expressed as a percentage, where lower 

percentages are considered more accurate (Taghizadeh-Mehrjardi et al., 2020).  

2.3. Results 

2.3.1. Descriptive analysis of UAV-derived data and ground-based maize data 

2.3.1.1. Maize SRS-NDVI growth cycle data 

 
The automated time series of daily SRS-NDVI data over the phenological cycle was generally a 

smooth curve with some fluctuations during the various vegetative growth stages, and a significant 

decline in NDVI values after an unanticipated hailstorm (Figure 6). NDVI values increased rapidly 

from 0.1 in the early vegetative growth stages (DOY 42) to a peak of approximately 0.7 in the early 

reproductive development stages (DOY 102). Thereafter, a strong decline in NDVI was observed from 

the early reproductive growth stage (DOY 102) to the mid-reproductive growth stage (DOY 118), 

declining from an NDVI of 0.7 to 0.5, respectively. During the transition from the early to mid-

reproductive stages, a hailstorm damaged the crop and resulted in a slight NDVI increase the day after 

the weather occurrence which, was subsequently followed by a rapid decrease in NDVI values for the 

following days. Subsequently, the NDVI during the late reproductive growth stages fluctuated between 

0.5 and 0.6. The SRS-NDVI data shows that there were significant changes throughout the growth 
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cycle of the maize crop, with increases corresponding to the time when rapid vegetative growth 

occurred and decreases corresponding to mid- to late maize productivity.   

 

Figure 6: Daily SRS-NDVI values of maize throughout the phenological cycle. Red points indicate 

the days of field visits to collect field data. Blue point indicates day of crop disturbance due to a 

hailstorm.  

2.3.1.2. Evaluation of UAV-derived data against ground-based NDVI and chlorophyll data 

 
The relationship between the ground-based SRS-NDVI data and the UAV-derived NDVI data for the 

various maize growth stages was found to be linear (Figure 7a). There was a strong positive correlation 

between the SRS-NDVI and UAV-derived NDVI (R2 = 0.98; p = 0.001). At low NDVI values such as 

0.30, the UAV-derived NDVI was higher than the SRS-NDVI. At mid-range NDVI values, i.e., 0.50, 

the UAV-derived NDVI and SRS-NDVI were almost identical. At higher NDVI values, such as 0.70, 

the SRS-NDVI was higher than the UAV-derived NDVI. Similarly, the average chlorophyll content 

measurements for each trip were compared against the UAV-derived NDVI data to better understand 

the relationship of NDVI with maize chlorophyll concentration. Figure 7b illustrates that SRS-NDVI 

values correlate well with a chlorophyll content values, attaining an R2 = 0.78. High UAV-derived 

NDVI values generally corresponded with high chlorophyll concentrations. 

 

Specifically, the early maize growth stages yielded low NDVI values of approximately 0.30 – 0.45 for 

day of year (DOY) 61. Similarly, the low NDVI value correlated with a low chlorophyll concentration 

of 74.5 µmol m-2 on DOY 61. However, as the maize developed, the measured and UAV-derived 
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NDVI values progressively increased to 0.54 on DOY 77, followed by 0.65 on DOY 90 and 0.67 on 

DOY 102. Likewise, maize chlorophyll concentrations increased to 461 µmol m-2 on DOY 77, 

followed by 573.6 µmol m-2 on DOY 90, and 651.8 µmol m-2 on DOY 102. Thereafter, the measured 

and UAV-derived NDVI values in the mid and late reproductive stages decrease to 0.55 – 0.57 on 

DOY 118 and 0.49 – 0.54 on DOY 134, respectively. Similarly, the measured chlorophyll 

concentrations in these stages decreased to 331.4 µmol m-2 on DOY 118 and 183.5 µmol m-2 on DOY 

134.  
 

(a)      (b) 

2.3.2. Descriptive statistics of chlorophyll content from SPAD 

 
The lowest chlorophyll concentration was attained during the early vegetative growth stage (V5 – V10) 

at 13.5 µmol m-2  (Table 5). The highest chlorophyll concentration was recorded during the early 

reproductive stage (R1 – R3) at 3765.4 µmol m-2. On average, the maize chlorophyll ranged from 

58.85 µmol m-2 to 2043.5 µmol m-2. The average and median of maize chlorophyll, across the growth 

stages were 362.9 µmol m-2  and 259 µmol m-2, respectively. The average standard deviation of 

chlorophyll values was 342.6, which indicated a large deviation of the measurements from the mean 

value of 362.9. 
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Table 5: Descriptive statistics of maize chlorophyll content throughout the various growth stages 

Day of year 

(DOY) 

Chlorophyll content at 

various growth stages  

Minimum 

(µmol m-2) 

Maximum 

(µmol m-2) 

Mean 

(µmol m-2) 

Median 

(µmol m-2) 

Standard 

deviation 

61 V5 – V10 13.51 

61.7 

130.4 

104.2 

26.8 

16.5 

255.5 

3242.6 

2792.4 

3765.4 

1555 

650.2 

74.5 

461 

573.6 

651.8 

331.4 

183.5 

60.2 

331.8 

390.2 

476.2 

234.1 

61.7 

54.2 

466.7 

497.7 

641.8 

301.8 

93.6 

77 V12 

90 V14 – VT 

102 R1 – R2 

118 R2 – R4 

134 R4 – R5 

Average value 58.85 2043.5 362.6 259 342.6 

 

2.3.3. Random forest models of maize chlorophyll content 

2.3.3.1. Optimized regression models of maize chlorophyll content over the various growth stages 

The relationship of measured (SPAD derived) and modelled (UAV derived) chlorophyll content varied 

across the various maize growth stages. The model was able to optimally estimate the chlorophyll 

content throughout the various growth stages; however, the prediction of chlorophyll proved more 

accurate during the vegetative growth stages. During the early vegetative growth stage (V5 – V10) the 

highest RMSE accuracy for the growth cycle achieved was 13.9 µmol m-2, with an R2 = 0.80 and 

RRMSE = 11 % (Figure 8a). The mid-vegetative growth stage (V12) RMSE = 78.2 µmol m-2, R2 = 

0.79 and RRMSE = 14 % (Figure 8b). Whereas the late vegetative growth stage (V14 – VT) produced 

the lowest RMSE = 96.2 µmol m-2, R2 = 0.85 but obtained a RRMSE model accuracy of 8 % (Figure 

8c). Similarly, the early reproductive development stage (R1 – R2) obtained a low RMSE = 87.4 µmol 

m-2, R2 = 0.89 but produced the highest RRMSE accuracy of 7 % (Figure 8d). The RMSE accuracies 

increased to 76.2 µmol m-2 and 31.3 µmol m-2 during the mid-reproductive (R2 – R4) and late 

reproductive (R4 – R5) growth stages, respectively. However, the model produced the lowest RRMSE 

and R2 accuracies during the R2 – R4 and R4 – R5 stages at a RRMSE of 28 %, R2 = 0.75 (Figure 8e) 

and a RRMSE of 25 %, R2 = 0.78 (Figure 8f), respectively. 
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2.3.3.2. Variable importance of maize chlorophyll content models over the various growth stages 

 
The early reproductive (R1 – R3) growth stage produced the most optimal model performance in 

general, with a RRMSE = 7 % and R2 = 0.85. The top VIs and spectral bands selected by the model 

for the early reproductive growth stage were the NDRE, NIR band, CIrededge and the NDVI (Figure 9d). 

The late vegetative (V14 – VT) growth stage also yielded a high model RRMSE = 8 % and R2 = 0.89 

based on the NIR band, CCCI, red-edge band and NDVI amongst others, in order of importance 

(Figure 9c). The aforementioned variables of importance for the R1 – R3 and V14 – VT stages were 

major contributors in modeling chlorophyll content, as there was a major step down in importance of 

the other VIs and bands. Similarly, the mid-vegetative (V12) and mid-reproductive (R4 – R5) have 

major stand out importance variables of CCCI, red-edge, green, NIR and NDVI, NIR, red-edge and 

CIrededge amongst others, respectively. On the other hand, the early vegetative (V5 – V10) and late 

reproductive (R5 – R6) stages have a gradual decrease in variable importance scores based on the 

Figure 8: Linear relationships between measured and predicted maize chlorophyll content for 

vegetative stages (a) V5 – V10, (b) V12, (c) V14 to VT, and reproductive stages (d) R1 – R3, (e) R3 – 

R4, (f) R5 – R6. 
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CIrededge, NDVI, NDRE, NIR and red-edge, NIR, MCARI, OSAVI amongst others, respectively. In 

general, the variables obtaining the highest importance scores were derived from the NIR, red-edge 

and red wavebands.  

 

2.4.3.3. Mapping the spatial distribution of maize chlorophyll content over the various growth stages 

 
The modelled chlorophyll concentrations ranged from 33 µmol m-2 to 126 µmol m-2 (Figure 10). The 

chlorophyll content of maize was low during the early vegetative growth stages (V5 – V10), and then 

progressively increased throughout the various growth stages. In the late vegetative (V14 – VT), early 

reproductive (R1 – R3), and mid-reproductive (R4 – R5) growth stages the chlorophyll concentrations 

were the highest. Subsequently, chlorophyll content was depleted during the late reproductive stage 

(R5 – R6). 

Figure 9: Variable importance scores of optimal chlorophyll content VIs and bands for vegetative stages 

(a) V5 – V10, (b) V12, (c) V14 to VT, and reproductive stages (d) R1 – R3, (e) R3 – R4, (f) R5 – R6 
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Figure 10: Spatial distribution of chlorophyll content over the maize field for vegetative stages (a) 

V5 – V10, (b) V12, (c) V14 to VT, and reproductive stages (d) R1 – R3, (e) R3 – R4, (f) R5 – R6. 

2.4. Discussion  

 
The aim of this study was to predict chlorophyll content variations across maize phenological stages, 

using UAV-derived VIs and the random forest algorithm. In doing so, the study attempted to determine 

the optimal maize growth stage(s) for chlorophyll prediction. It is evident that chlorophyll 

concentrations varied over the phenological stages, and the model was able to discern the optimal 

chlorophyll growth stages. The chlorophyll variations of maize over the growing season are useful for 

the estimation of the health and productivity status of the smallholder field.  

2.4.1. Estimating maize chlorophyll content across the growing season  

 
The findings of the study model performed well throughout the vegetative growth stages and showed 

that the earliest vegetative growth stage yielded the highest RMSE accuracy of 13.9 µmol m-2, R2 = 
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0.80 (RRMSE = 11 %) based on the CIrededge, NDVI, NDRE, NIR as the most influential variables (in 

order of importance). Specifically, the red-edge and NIR regions were detected as crucial wavelengths 

in the model’s prediction of chlorophyll content, due to their association with healthier plants. This is 

because the red-edge wavelength is sensitive to plants with high chlorophyll content, nitrogen content, 

and biomass, and thus are better predicted using the red-edge (Clevers and Gitelson, 2013; Delegido 

et al., 2011; Sibanda et al., 2020). Additionally, the NIR region strongly influences the prediction of 

chlorophyll content, as it is sensitive to the high foliar reflectance induced by the pigment 

concentrations of plant canopy structures (Broge and Leblanc, 2001; Sankaran et al., 2013). The studies 

of Sibanda et al. (2020) and Singhal et al. (2019) demonstrated a similar association between the red-

edge and NIR regions with chlorophyll content by achieving an R2 of 0.91 and 0.90, respectively. In 

this study, accurate chlorophyll concentrations were associated with crop emergence and development, 

as the leaf area index was low, resulting in more dynamic photosynthetic rates of the crop, which 

facilitates high reflectance in the red-edge and NIR sections. Nevertheless, during the early vegetative 

growth stage the chlorophyll content is measured low due to the high soil reflectance when there is a 

minimal maize canopy structure. Furthermore, red-edge and NIR derived VIs are notable regions that 

surpass the effects of atmospheric interferences, visible irradiance, variable background effects, and 

geometrical arrangement of a scene when compared to conventional bands (Curran et al., 1990; 

Goodbody et al., 2020). Thus, the red-edge and NIR wavelengths facilitated optimal maize chlorophyll 

prediction, as the low foliage density of the early vegetative growth stage did not saturate and cause 

spectral confusion of the sensor during image acquisition. 

 

Meanwhile, high chlorophyll concentrations are also associated with the late vegetative and early 

reproductive growth stages, as maize reaches photosynthetic maturity and requires high productivity 

to begin fruit production (Rostami et al., 2008). Results from this study showed a similar trend, and 

the model prediction accuracies were most optimal during the late vegetative and early reproductive 

with a RRMSE accuracy of 8 % and 7 % and R2 values of 0.85 and 0.89, respectively. Such results are 

attributed to the fact that the reflectance of maize leaf chlorophyll content during the late vegetative 

and early reproductive stages is stronger than at other stages of phenotyping, due to the high leaf area 

index and full canopy closure characterized by these stages (Walker et al., 2018; Walker and Schulze, 

2006). It has been documented in studies by Walker et al. (2018), Dahms et al. (2016) and Costa et al. 

(2001) that during the stages of tasseling, silking and pollination, maize is characterised by a fully 

developed leaf canopy structure with a high leaf area index that promotes the detection of higher 

chlorophyll content. Hence, the dense canopy architecture and absence of soil background effect 
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created a homogenous scene of green pigment reflectance, which was optimal in the prediction of 

chlorophyll content over the smallholder field. 

 

Similarly, to the early vegetative stages, the NIR and red-edge bands were significant variables in 

maize chlorophyll prediction, due to the favourable detection in high chlorophyll reflectance by these 

regions. The biochemical properties of a dense foliar canopy such as the thick waxy cuticle, air cavities, 

chloroplasts and mesophyll cell thickness all contribute to the high NIR ad red-edge reflectance, which 

is directly correlated with chlorophyll content (Mutanga et al., 2012; Sibanda et al., 2021). Thus, the 

high chlorophyll concentrations associated with these stages in the study are also associated with a 

healthier crop, and further coincided with the SRS-NDVI values of approximately 0.65. In this regard, 

the high levels of chlorophyll content were favourable in model prediction, hence these stages being 

the most accurate in estimation.  

 

During the mid-reproductive and late reproductive stages, the model prediction accuracies were lowest 

with an RRMSE of 28 % and 25 % and R2 values of 0.75 and 0.78, respectively. The low model 

prediction accuracies could be attributed to the adverse effects of a hailstorm that damaged the maize 

canopy structure (see Appendix A, Figures 24 and 25 for images of maize crop hail damage), resulting 

in a lower crop chlorophyll content. The physical damage to the maize canopy exposed the underlying 

soil surface that consisted of damaged and decayed maize leaves. This resulted in spectral confusion 

due to the hybrid of soil and senescing leaf reflectance imaged by the MicaSense Altum camera, 

resulting in the failure of the model to discern the apparent chlorophyll variations. This is because the 

predominant brown tone of the senescing leaves and soil resulted in most bands and VIs being absorbed 

due to the low chlorophyll concentrations, whereas wavelengths such as the red band reflected much 

higher. Nevertheless, an apparent decline in NDVI values prior to the hailstorm was evident and 

associated with a decline in chlorophyll. This may be due to the fact that at this point in phenotyping, 

the crop channels its nutritional resources and energy towards fruit production (Walker et al., 2018), 

resulting in a reduction of chlorophyll concentration, which is also apparent in the results.  

2.4.2. Implications of the study  

 
Smallholder farmers are constantly striving to maximise their small-scale crop production and produce 

healthy and productive yields. However, they are seldom the focus of innovation and lack resources, 

as it is always assumed that their scale of operations does not necessitate such. Thus, such findings 
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demonstrate the use of precision agricultural technologies (i.e., UAVs), which can facilitate improved 

smallholder agricultural management. Specifically, UAV-derived data is captured in almost near real-

time, which enables for quick and effective management that may improve crop health and 

productivity. Moreover, the quick turnaround time data is particularly useful when there are erratic 

weather conditions, such as the hailstorm occurrence. Such agrometeorological effects prove how 

South African smallholder farmers are subjected to the variability of weather and climate, which has 

consequences on crop growth, health, and the overall productivity of their farms. In such instances, 

UAV-derived data could be used to perform a rapid assessment of likely hail damage with a quick 

turnaround time, allowing farmers to make informed and effective decisions on agricultural 

management and provide advance warning for food insecurity. Therefore, the quick turnaround time 

of UAV technology is beneficial in smallholder agricultural systems as it allows for rapid and informed 

decisions to limit further crop health issues.  

2.5. Conclusion  

 
Smallholder farming systems tend to lack the required resources to maximise their productivity and 

monitor croplands for healthy growth and development. In recent years, the synergistic use of UAV 

remotely sensed technology and crop health proxies such as chlorophyll content have been used to 

facilitate a deeper understanding of crop dynamics. In this regard, the study tested the use of UAV-

derived multispectral data through the estimation of maize chlorophyll content over the various stages 

of phenotyping. This was done through the use of a random forest prediction model, which estimated 

the chlorophyll concentrations of maize in smallholder farms in Swayimane. Therefore, premised on 

the findings of the study, it is concluded that:  

• Optimal chlorophyll content prediction accuracies were produced during early vegetative 

growth stages (V5 – V10 and V12), late vegetative growth stages (V14 – VT) and early 

reproductive growth stages (R1 – R3), 

• Maize chlorophyll content was optimally estimated through UAV derived NIR and red-edge 

wavelengths.  

Since, chlorophyll content has been widely illustrated to be a proxy of crop health, the findings of the 

study imply that UAV-derived data could be optimally utilised to characterise the general state of 

maize health in smallholder cropping lands, with significantly improved spatial accuracies. Such 

precision technology advancements are a low-cost, objective, and accurate technique that smallholder 



31 

 

farmers can adapt to inform decision-making and agricultural management. Specifically, multispectral 

UAV technology is spatially explicit and provides almost near real-time data for understanding crop 

health through the biochemical indicator of chlorophyll. This technology potentially overcomes some 

of the limitations associated with satellite imagery, however the study could have benefited from 

higher spectral resolution data and additional testing data to improve the model performance. 

Nevertheless, the random forest model performed relatively well at predicting the chlorophyll content 

in the smallholder farms. Therefore, multispectral UAV technology is a beneficial solution to 

smallholder agriculture as it provides farmers with information on crop dynamics at user-defined 

spatial and temporal scales for improved management and overall productivity. 
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***** 

Lead into Chapter 3 

 

While previous studies on the assessment of maize in commercial farms of South Africa have displayed 

significant progress in terms of technological advances, rural smallholder farms lack such innovative 

and objective tools, and thus are subjected to crop issues. Such issues include unproductive crop 

growth and water stress throughout phenotyping. Chapter 2 provided an analysis on the maize health 

of a smallholder farm using the indicator of chlorophyll content, where a random forest regression 

model predicted the chlorophyll concentrations through the various phenological stages. Conclusions 

on the maize crop health of the smallholder farm were drawn using the prediction models and in-situ 

NDVI measurements, which illustrated how UAV-derived data can be a useful tool to inform 

smallholder farmers on improving management practices throughout phenology. Chapter 3 takes this 

further by assessing a frequent issue South African smallholder farmers face, being crop water stress. 

Specifically, maize crop water stress is determined using the indictors of foliar temperature and 

stomatal conductance, where random forest prediction models are run for each indictor throughout 

maize phenotyping. Additional in-situ measurements of temperature enhance the conclusions on maize 

crop water stress over the maize phenological cycle. This chapter also identifies the most optimal 

growth stages for the prediction of foliar temperature and stomatal conductance.  
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CHAPTER 3: ESTIMATION OF FOLIAR TEMPERATURE AND STOMATAL 
CONDUCTANCE VARIABILITY AS A PROXY FOR MAIZE WATER STRESS 

USING UNMANNED AERIAL VEHICLE BASED PHENOTYPING IN 
SMALLHOLDER FARMS (PAPER 2) 

Abstract  

 
Climatic variability and extreme weather phenomena impact agricultural production, especially in sub-

Saharan smallholder cropping systems that are commonly rainfed. Hence, the development of early 

warning systems on moisture content can facilitate planning, mitigation of losses and optimization of 

yields through moisture augmentation. Precision agricultural practices facilitated by unmanned aerial 

vehicles (UAVs) with very high-resolution cameras are useful for monitoring farm scale dynamics at 

near real-time and have become an important agricultural management tool. Considering these 

developments, the utility of multispectral and thermal infrared UAV imagery was evaluated in 

combination with a random forest machine learning algorithm to estimate the maize foliar temperature 

and stomatal conductance as indicators of potential crop water stress and moisture content over the 

entire phenological cycle. The results illustrated that the thermal infrared waveband was the most 

influential variable during the vegetative growth stages, whereas the red-edge and near-infrared 

derived vegetation indices, were fundamental during the reproductive growth stages, for both 

temperature and stomatal conductance. The results also suggested mild water stress during vegetative 

growth stages and after a hailstorm that occurred during the mid-reproductive stage. Furthermore, the 

random forest model optimally estimated the maize crop temperature and stomatal conductance over 

the various phenological stages. Specifically, maize foliar temperature was best predicted during the 

mid-vegetative growth stage and stomatal conductance during the early reproductive growth stage. 

Resultant maps of the modelled maize growth stages captured the spatial heterogeneity of maize foliar 

temperature and stomatal conductance within the maize field. Overall, the findings of the study 

demonstrated that the use of UAV multispectral and thermal imagery in concert with prediction-based 

machine learning is a useful tool available to smallholder farmers for informed management decisions 

that include optimal implementation of irrigation schedules. 

 

Keywords: drones, machine learning, maize monitoring, precision agriculture 
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3.1. Introduction 

 
In recent decades, agricultural production in sub-Saharan Africa has been threatened by water scarcity, 

unpredictable weather, and arid conditions (Lickley and Solomon, 2018; Nhamo et al., 2019). In South 

Africa, smallholder agriculture (less than two hectares in size) is predominantly rainfed, which often 

results in crops experiencing water stress and moisture shortages due to inadequate rainfall (Adisa et 

al., 2018; Rockstrom, 2000; Ubisi et al., 2017). However, there are limited spatially explicit evidence-

based frameworks and instruments for monitoring crop water stress in smallholder croplands, 

especially in those cultivating maize (Zea mays L.) predominantly for subsistence (Andersson et al., 

2009; Lu et al., 2017). Since maize is a staple grain crop and one of the most widely cultivated crops 

on South African smallholder farms (Walker and Schulze, 2006), there is a need for spatially explicit 

methods to characterise maize water stress to prevent yield losses and optimise the productivity of 

smallholder farmers. 

 

Maize requires between 450 to 600 mm of water per season as it is sensitive to water stress, especially 

during the tasseling, silking, and pollination stages (Taghvaeian et al., 2014). At physiological 

maturity, a single maize crop requires approximately 250 litres of water to produce approximately 15 

kilograms of grain for each millimeter of water consumed (Du Plessis, 2003). Although, additional 

factors like soil nutrients, light and humidity may affect growth, water stress is often the major limiting 

factor. The high variability of rainfall in South Africa often results in less water available to sustain 

optimal crop growth and productivity (Carroll et al., 2017; Haarhoff et al., 2020). These water deficits 

result in stomatal closure to reduce moisture loss through transpiration, resulting in increased leaf 

temperatures due to limited moisture conductance to cool the leaf surface (Saseendran et al., 2015; 

Zhang and Zhou, 2019). Hence, the determination of foliar temperature and stomatal conductance are 

often used as proxies for an almost near real-time detection of crop water stress (Dai et al., 2004; 

Gerhards et al., 2019; González-Dugo et al., 2006; Jackson et al., 1981; Yun et al., 2020). Accurate 

quantification of maize foliar temperature and stomatal conductance across the growing season can 

therefore assist smallholder farmers in adopting measures to mitigate losses and optimise yield. 

 

Traditionally, crop water stress has been determined using in-situ plant measurements, soil moisture 

content, or meteorological variables (González-Dugo et al., 2006). However, these approaches are 

time-consuming, costly, laborious, (Jackson et al., 1981), and in South Africa, prone to vandalism and 

theft, and thus not suitable for continuous and real-time monitoring of crop water stress. Recently, 
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studies have demonstrated that remote sensing techniques using multispectral or thermal imagery can 

be used to monitor crop water stress (Jamshidi et al., 2021; Sepulcre-Cantó et al., 2005; Veysi et al., 

2017; Zhang et al., 2019a; Zhang et al., 2019b). According to El-Hendawy et al. (2019), several 

multispectral sections of the electromagnetic spectrum are indirect water stress indicators and are 

useful for quantifying crop water content through the leaf biochemical attributes (El-Hendawy et al., 

2019). Specifically, the visible (blue, green, and red) and the near-infrared (NIR) wavelengths hold 

great potential for the prediction of water due to their absorption of water through leaf pigments such 

as chlorophyll (Pasqualotto et al., 2018). Moreover, the thermal infrared portion of the spectrum is 

directly correlated to water content proxies, such as temperature and stomatal activity, and is thus 

proficient in the analysis of temperature attributes. The thermal infrared radiation ranges from 8 µm to 

14 µm on the electromagnetic spectrum, and its utility in remote sensing enables the detection of water 

stress due to its non-destructive and low labour inputs (Gerhards et al., 2019).  

 

While traditional satellite-based remote sensing techniques have proven useful in quantifying water 

stress, several constraints limit their suitability for monitoring temperature and stomatal conductance 

at a farm-scale. The spatial resolution of satellite earth observation data is generally too coarse to 

capture the spatial heterogeneity within smallholder farms. Moreover, broad-band thermal satellite 

imagery results in geometrical inaccuracies when co-registering to other portions of the 

electromagnetic spectrum that have higher spatial resolutions (Prakash, 2000). Thus, alternate 

approaches that can adequately capture the spatial heterogeneity at localized levels are required to 

facilitate precision agricultural applications within smallholder farms. 

 

In recent years, unmanned aerial vehicles (UAVs) have become a popular farm phenotyping platform 

for precision agricultural applications (Hoffmann et al., 2016; Hu et al., 2021; Messina and Modica, 

2020). Very high resolution (VHR) cameras attached to UAV platforms offer advanced crop image 

throughput analytics and are effective in overcoming the limitations of satellite imagery (Maes and 

Steppe, 2019; Nhamo et al., 2020). The spatially explicit UAV images acquired by VHR cameras offer 

a quick turnaround of spectral information that is useful for detecting changes in crop phenology, foliar 

temperature, and moisture content (Park et al., 2017; Zhang et al., 2019a). UAV images can be 

continuously acquired under user-defined ground sampling distances and temporal intervals, which 

limit atmospheric perturbations such as cloud cover (Cucho-Padin et al., 2020; Nhamo et al., 2020). 

Therefore, accurate mapping and analysis of agricultural maize fields using a multispectral and thermal 
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infrared UAV holds significant potential for providing data that informs smallholder farmers on 

potential crop water stress. 

 

Foliar temperature and stomatal conductance can be optimally assessed using a robust machine 

learning algorithm that can derive a relationship using spectral bands and vegetation indices (VIs) to 

predict temperature and conductance (Houshmandfar et al., 2021). VIs are mathematical combinations 

of image bands that are ratioed for the extraction of spectral properties such as canopy cover, plant 

vigour and phenology dynamics (Kayet et al., 2016; Xue and Su, 2017). VIs, such as the normalized 

difference water index (NDWI) and the normalized difference vegetation index (NDVI) have been 

identified as particularly useful in directly or indirectly quantifying water stress within vegetation (El-

Hendawy et al., 2019; Liang et al., 2018; Zarco-Tejada et al., 2012; Zhang and Zhou, 2019). 

Furthermore, the use of these VIs in combination with machine learning algorithms have proven to be 

useful in characterizing crop temperature and water stress (Liang et al., 2018; Noi et al., 2017). 

Considering the potential of utilizing UAV-derived data with machine learning, this study aimed to 

analyze the utility of the UAV-derived data to predict foliar temperature and stomatal conductance. 

Specifically, the study sought to predict maize foliar temperature and stomatal conductance using 

UAV-derived spectral variables (bands and VIs) to quantify potential water stress throughout the 

growing season on a smallholder farm. 

3.2. Materials and Methods 

3.2.1. Study site description  

 
Data for this study was collected over a four-month period from February 2021 to May 2021 in the 

rural area of Swayimane, KwaZulu-Natal, South Africa (29°31’24’’S; 30°41’37’’ E) (Figure 1). 

Swayimane is situated in the uMshwathi Local Municipality and is located approximately 55 km north-

east of Pietermaritzburg. The small, communal area covers a geographical extent of approximately 36 

km2. Common crops cultivated in the area include white and yellow maize, sugarcane, amadumbe 

(taro), and sweet potato. The smallholder farmers follow traditional farming methods of planting, 

maintaining, and manual harvesting of crops. Farm plots are rainfed, fertilized using livestock manure, 

and hand weeded. Weeds and grass are also controlled using backpack herbicide sprayers. This study 

examined a 30 × 96 (2850 m2) smallholder maize field that was located on a slope, with a field 

elevation ranging from 850 m to 839 m.  
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The area is predominantly characterised by semi-subsistence farming which is regarded as a form of 

food security and livelihood sustenance. Agriculture and crop production in Swayimane is supported 

by the favourable environmental conditions of the region. The climate is characterized by warm wet 

summers and cool dry winters, with an average temperature ranging between 12 ℃ and 24 ℃. Mean 

annual rainfall ranges between 600 and 1200 mm, with the majority of rain occurring during the 

summer occasioned by thunderstorms. During data collection, Swayimane had a maximum daily 

average air temperature of 24 °C and total rainfall of 242.80 mm, amongst other weather data (Figure 

2). Weather conditions were monitored continuously by the automatic weather station installed at a 

Swayimane high school. Weather data was downloaded from the Swayimane weather website. The 

weather station was situated approximately 2 km from the smallholder maize farm, it was considered 

proximally adequate in capturing the weather conditions of the study site.  

 

Figure 11: Location of the Swayimane study area, study site, and smallholder maize field. 
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Figure 12: Daily weather conditions in Swayimane over the period of maize phenotyping 

3.2.2. The maize growth cycle and characteristics 

 
Maize seedlings were sown on the 8th of February 2021 and harvested on the 26th of May 2021 (Table 

1), having a total growth cycle of 108 days and temperature and stomatal conductance examined at the 

various stages of phenotyping. The maize growth cycle is split into vegetative stages (emergence to 

tasseling based on the number of fully developed leaves) and reproductive stages (silking to 

physiological maturity based on the degree of kernel growth) (Cakir, 2004; Zhao et al., 2012). Within 

the various stages, certain transitions are significant for monitoring the potential occurrence of water 

stress. These being the emergence of crop growth (first day of photosynthetic activity, termed VE), 

tasseling (day when maximum leaf area is recorded and tassels appear, termed VT) and, 

commencement of senescence (day when green leaf visibly loses colour) (Du Plessis, 2003).  

 

It is worth mentioning that during the mid-vegetative stage, the western portion (lower elevation) of 

the field appeared unhealthy. This may have been due to the fact that this portion of the field was not 

weeded during the early vegetative growth stage with the rest of the field. However, the farmer applied 

herbicide during the mid-vegetative growth stage to remove grasses and weeds that were found 

between maize rows. Consequently, the herbicide impacted the health status of these crops and the 

maize suffered herbicide burn (see Appendix A, Figure 23 for images of this portion of the field).  
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Table 6: Maize growth stages 

Days after emergence Growth stage Description Pictures 
0 VE 

V
eg

et
at

iv
e 

G
ro

w
th

 S
ta

ge
s 

Germination and emergence. Planting depth 5-8 

cm. 

 

7 V2 

21 V5 Plant population established. Growth point 20-25 

mm below surface. Leaf sheath and blades. Tassel 

initiation. 
 32 V8 Ear initiation and early cob development. 

38 V10 

44 V12 Tassel at growth point begins to develop rapidly. 

Active growth of lateral shoots and cob 

development from the sixth to eighth node above 

surface. Brace root development.   

49 V14 

 

56 VT Tasseling stage. Silks are developing. The demand 

for water and nutrients is high. All leaves present. 

Pollination 5-10 days. 
63 R1 

R
ep

ro
du

ct
iv

e 
G

ro
w

th
 S

ta
ge

s 

 

70 R2 - R3 Kernel development. Silking stage. 

77 

84 

91 R3 - R4 Grain filling. Nutrients are transported to cob.  

Sugars converted into starch.  

 

98 

105 

112 R5 - R6 Physiological maturity and drying of kernels. 

Starch in kernels. End of mass gain. 

 

119 

160 R+ Ready for harvest. Optimal moisture and nutrients. 

 

3.2.3. Field data collection, temperature, and stomatal conductance measurements 

 
Field data was collected throughout the maize phenological cycle. A 4-meter meteorological tower 

was installed at the center of the maize field with two infrared radiometers (IRR) (Apogee SI-111, 

Apogee Instruments Inc., Logan, UT, USA) (Figure 3). The SI-111 IRR measures surface temperature 
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by converting the thermal energy radiated from the surface. The SI-111 IRR obtains a spectral range 

from 8 µm to 14 µm, with measurement ranges from -60 °C to 110 °C, and a manufacturer accuracy 

of ±0.5 °C (Aragon et al., 2020). The two IRR sensors were attached at a 23 and 45° half-angle field 

of view (FOV), with one cantered on maize and the other obtaining an azimuth view that was 

perpendicular to the row direction. The datalogger was programmed (CR1000, Campbell Scientific, 

Logan Utah, USA) to output average foliar canopy temperature, from 10 second measurements at the 

following intervals: 5-minutes, 10-minutes, 30-minutes, 60-minutes. IRR measurements were also 

aggregated to acquire a daily average temperature using the 10-minute data. 

 

The SI-111 radiometers were calibrated in a temperature-controlled chamber with a blackbody cone 

for the radiation source. This was conducted by holding the SI-111 IRRs in a fixture at the opening of 

the blackbody cone. The IRR sensors were thermally insulated from the cone and the temperature of 

each was independently controlled. The IRRs are held at a constant temperature while the cone was 

controlled at temperatures below 12 °C, above 18 °C and equal to the IRR temperature. IRR 

temperature data was collected at every 10 °C, until the IRRs and blackbody cone reach constant 

temperatures. Every 10 °C IRR temperature data was collected until the IRRs and blackbody cone 

reached a constant temperature. Moreover, the IRR measurements were used to assess the thermal 

infrared UAV-derived temperature.  

 

 
(a)     (b)    (c) 

Figure 13: (a) Automated in-field meteorological tower in the maize field, (b) meteorological tower 

mounted with SI-111 Apogee IRR sensors held 4-meters above the ground, (c) CR1000 data logger, 

Em50 datalogger and 12 V battery 
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In-field maize temperature and stomatal conductance measurements were collected from the early 

vegetative (V5) growth stage to the late reproductive growth stages (R6), at two-week intervals. Pre-

sampling of the maize smallholder field was conducted in Google Earth Pro where a polygon of the 

experimental field was digitized. The digitised polygon was then imported into ArcGIS 10.5 and used 

to generate sampling points. A total of 63 sample points were generated based on stratified random 

sampling within the digitized field boundary. These points were then uploaded onto a handheld 

Trimble Global Positioning System (GPS) with sub-meter accuracy. These locations were used to 

navigate the field to each sample point during data collection. The maize plants at each sampling point 

were marked for consistent bi-weekly measurement. The 63 maize points were sampled on six 

occasions over phenotyping. 

 

A digital laser infrared GM320 handheld thermometer (IRT) was used to measure selected maize foliar 

temperature. IRT measurements can range from approximately -50 °C to 330 °C. During the vegetative 

growth stages (where a sixth leaf was present) and during the tasseling stage, the IRT temperature 

readings were measured on the newest fully expanded leaf with an exposed collar. After the tasseling 

stage, the ear leaf (i.e., the leaf attached at the same node as the primary ear shank) was measured 

(Costa et al., 2003). Three foliar temperature measurements were taken and subsequently averaged per 

sampling point.  

 

Stomatal conductance was measured using a SC-1 leaf porometer (Decagon Devices, Inc., Pullman, 

WA, USA). Stomatal conductance is the measure of gaseous exchange (i.e., carbon dioxide intake) 

and transpiration (i.e., water vapour loss) through the leaf stomata, and is a function of the size, density 

and opening of the leaf stomata (Handiganoor et al., 2018). Leaves with open stomata allow for higher 

levels of conductance and indicate productive photosynthetic and transpiration rates. While closed leaf 

stomata indicate potential plant stress. 

 

The SC-1 leaf porometer calibration was done prior to measurements under field conditions. as the 

leaf clip must be in thermal equilibrium with the environment. This included wetting the filter paper 

with the distilled water provided in the sensor kit, and then placing the filter paper over the hole of the 

calibration plate. The sensor head was then attached to the calibration plate where a 30-second 

measurement started. After the measurement, the sensor was equilibrated, and the sensor head was re-

attached for another measurement.  
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Calibration measurements were repeated up to 10 times until a stable measurement was achieved. Leaf 

porometer readings were carried out on the same leaf as the IRT temperature readings. During the mid 

and late reproductive stages, a fully matured maize leaf in full exposure to the sunlight was selected, 

and the sensor was placed in the middle of the leaf blade perpendicular to the midrib when conducting 

measurements. The SC-1 leaf porometer automatically measured the leaf stomatal conductance (in 

mmol m-2 s-1) for a measurement period of 30 seconds, whilst also providing measurements of air 

temperature and relative humidity. Stomatal measurements approaching 0 mmol m-2 s-1 indicate stress, 

whereas values close to 500 mmol m-2 s-1 indicate no stress.  

 

At each stage of the maize phenological cycle, IRT (temperature) and SC-1 leaf porometer (stomatal 

conductance) measurements were consistently taken between 10:00 am and 2:00 pm. The temperature 

and stomatal conductance data were then added to the 63 sampling points map in a geographical 

information system (GIS). The point map was then overlaid with the multispectral and thermal UAV 

imagery of the derived spectral reflectance values from each sampling point. 

3.2.4. UAV: DJI Matrice 300 and MicaSense Altum  

 
The DJI Matrice 300 (DJI M-300) platform mounted with a MicaSense Altum camera and 

Downwelling Light Sensor 2 (DLS-2) was used for aerial-based flights over the smallholder farms. 

The rotary-wing DJI M-300 series has vertical take-off and landing (VTOL) technology, making it 

well suited for small-scale agricultural crop imaging (Figure 5a).  

 

The DJI M-300 platform novelties include its 15 km transmission range, 7000 m maximum altitude, 

obstacle avoidance, flightpath planning and locational position tracker. The maximum flight time of 

the M-300 is 55 minutes (without payload) and it can reach a maximum speed of 27 m/s, which 

surpasses most drone platforms on the market. Moreover, the MicaSense Altum camera is a 

multispectral and thermal imaging sensor that integrates five spectral high-resolution narrow bands 

(blue, green, red, red-edge, and near-infrared) with a radiometric longwave infrared thermal camera 

(Figure 5b). The high-performance camera offers synchronised multispectral and thermal image 

capture and uses a global shutter of up to a one-second capture rate for precise and aligned imagery 

(Hutton et al., 2020). The multispectral bands have a 2064 × 1544 at 120 m (3.2 megapixels per 

multispectral band) sensor resolution and a ground sample distance (GSD) of 5.2 cm per pixel at a 

height of 120 m. The thermal infrared camera has a 160 × 120 sensor resolution and a GSD of 81cm 
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per pixel at 120 m (Table 2). The multispectral camera has a 48° × 37° FOV, with an 8 mm focal 

length. While the thermal camera has a 57° × 44° FOV, with a 1.7 mm focal length. 

 
(a)      (b) 

Figure 14: (a) DJI Matrice 300 UAV platform and, (b) MicaSense Altum multispectral-thermal 

camera  

Table 7: MicaSense Altum camera specifications.  

Band Spectral colour Band center/range Ground sampling distance 

at flying height of 120 m 

1 Blue 475 nm 5.2 cm per pixel 

2 Green 560 nm 5.2 cm per pixel 

3 Red 668 nm 5.2 cm per pixel 

4 Red-edge 717 nm 5.2 cm per pixel 

5 Near-infrared 842 nm 5.2 cm per pixel 

6 LWIR thermal infrared 8000 nm – 14000 nm  81 cm per pixel 

3.2.5. Image acquisition and processing  

 
A shapefile of the maize field was created in Google Earth Pro and imported into the DJI M-300 smart 

console, where it was used to design a flight plan covering the study area (Figure 6a; Table 3). The 

flight plan enabled a hands-free drone flight mission over the study field and adjacent areas. Before 

and after the flight, the UAV was calibrated using the MicaSense Altum calibrated reflectance panel 

(CRP). This included the user manually taking an unshaded image directly over the CRP to discern 

the lighting conditions of the specific flight date, time, and location (Figure 6b). UAV flights were 

conducted every 2-weeks on days with clear sky conditions. UAV flights were conducted between 
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(a)     (b) 

Figure 15: (a) DJI M-300 flight plan, (b) MicaSense Altum calibration reflectance panel 

Table 8: UAV flight specifications 

Parameters Specifications 

Altitude 

Ground sampling distance (multispectral) 

Ground sampling distance (thermal infrared) 

Speed 

Flight duration 

Composite images 

Image overlap 

100 meters 

7 cm 

109 cm 

16 m/s 

14 minutes 36 seconds 

321 

80 % 

 

A total of 3576 images (per flight) were collected, mosaicked and radiometrically corrected 

(Pix4Dfields 1.8.0, Pix4d Inc., San Francisco, CA, USA). Radiometric correction was conducted in 

Pix4Dfields using all the captured images, including the before and after flight CRP images. The 

radiometric calibration target (the CRP) is a white balance card that provided the reflectance properties 

of the card across the electromagnetic spectrum wavelengths captured by the camera. This enabled the 

software to calibrate and correct the reflectance of the images accordingly in line with the prevalent 

atmospheric conditions during the image acquisition. The CRP also obtained an absolute reflectance, 

which made it possible to compare data from several flights. Once processed, a final orthomosaic and 

a digital elevation model (DEM) GeoTIFF image was generated. The orthomosaic was georeferenced 

in ArcGIS 10.5 with the use of ground reference points from Google Earth Pro and referenced to the 

Universal Transverse Mercator (UTM zone 36S) projection. 
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The LWIR thermal infrared band was converted to absolute temperature values in Pix4Dfields, using 

the following equation: 

Temperature =  LWIR Thermal Infrared (B6)
100

− 273.15    (1) 

 

The maize reflectance data was extracted from the multispectral and thermal infrared Altum image. 

This was done by overlaying the ground-truthed maize IRT temperature and stomatal conductance 

measurements and their GPS coordinates in the form of a point map with the UAV multispectral-

thermal image. The reflectance values were extracted for each coordinate, and for each UAV band. 

The image was then used to compute vegetation indices (VIs) detailed in Table 4. VIs selected included 

direct and indirect water-related indices. These VIs were chosen based on their performance in research 

literature (Panigrahi and Das, 2018; Yang and Du, 2017; Zhang and Zhou, 2019). 

3.2.6. Statistical Analysis 

 
The sampled data was randomly partitioned into training (70 %) and testing (30 %) datasets that were 

used to develop the predictive regression models. A random forest regression algorithm was used to 

predict maize foliar temperature and stomatal conductance (from spectral bands and VIs), since it is 

renowned for its simplicity, robust nature, and ability to perform well regardless of sample size (Dye 

et al., 2011; Luan et al., 2020). The random forest ensemble is a machine learning algorithm that uses 

bootstrap aggregation to construct multiple trees on a subset of samples derived from the training data 

(Abdel-Rahman et al., 2013). Decision trees are grown to their maximum capacity with a randomized 

subset of predictors (UAV-derived spectral data), and each node is split using random subsets of input 

variables (Adam et al., 2012). Furthermore, the random forest regression has the ability to identify 

predictor variables that are influential in the prediction model based on the sum of the reduction in 

Gini impurity across the nodes of the feature (Sibanda et al., 2021).  

 

Specifically, the RGtk2 and rattle packages in RStudio software version 1.4.1564 were used to develop 

the random forest regression model through numerical inputs. The outputs of the random forest model 

were optimized using the variable importance scores as they determine the most influential bands and 

VIs in prediction. Variables of low importance were removed throughout the analysis and the random 

forest model was continuously modified for optimal prediction. The process of variable selection 
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reduces issues of variable redundancy and multicollinearity, which affect the performance of the 

regression model. The model was optimized and fine-tuned by the user to hyper-parameters of 500 

trees and 6 variables for temperature and 500 trees and 10 variables for stomatal conductance. These 

hyper-parameters were attained after numerous iterations.   

 

Table 9: Spectral vegetation indices utilized to predict foliar temperature and stomatal conductance  

Vegetation index Abbreviation Equation Reference 

Direct water-related indices 

Normalized difference 
water index 

NDWI GREEN−NIR
GREEN + NIR Yang and Du 

(2017) and Gao 
(1996) 

Indirect water-related indices 

Normalized difference 
vegetation index 

NDVI NIR− RED
NIR + RED Panigrahi and 

Das (2018) 

Transformed 
normalized difference 
vegetation index 

TDVI 
�NIR− RED

NIR + RED + 0.5 
Castellanos-
Quiroz et al. 
(2017) 

Normalized difference 
red-edge index 

NDRE NIR − RED EDGE
NIR + RED EDGE Song et al. 

(2010) 

Normalized green-red 
difference index 

NGRDI GREEN− RED
GREEN + RED Song et al. 

(2010) 

Green chlorophyll 
index 

CIgreen 
�

NIR
GREEN�− 1 Zhang and Zhou 

(2019) 

Red-edge chlorophyll 
index 

CIrededge 
�

NIR
RED EDGE�− 1 Zhang and Zhou 

(2019) 

Green NDVI GNDVI NIR − GREEN
NIR + GREEN Song et al. 

(2010) 

Canopy chlorophyll 
content index 

CCCI NIR− RED EDGE
NIR + RED EDGE

NIR− RED
NIR + RED

 
Fitzgerald et al. 
(2010) 

Chlorophyll 
vegetation index 

CVI NIR ∗ (
RED

GREEN2) Vincini and 
Frazzi (2011) 

Enhanced vegetation 
index 

EVI 2.5(NIR − RED)
NIR + 6RED− 7.5BLUE + 1 Wiratmoko et 

al. (2018) 
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Soil adjusted 
vegetation index 

SAVI (NIR− RED)(1 + L)
NIR + RED + L  Sishodia et al. 

(2020) 

Optimized soil-
adjusted vegetation 
index 

OSAVI 1.16 (NIR − RED)
NIR + RED + 0.16 

 

Sishodia et al. 
(2020) 

 

3.2.7. Accuracy assessment  

 
Accuracy assessments were conducted to assess the regression models performance of the predicted 

foliar temperature and stomatal conductance. The accuracy metrics used were the coefficient of 

determination (R2), root-mean-squared error (RMSE), and the relative root-mean-squared error 

(RRMSE). The R2 measured the variation between the measured and predicted: foliar temperature and 

stomatal conductance. The RMSE assessed the magnitude of error between the field measurements 

and modelled outputs of foliar temperature and stomatal conductance. While the RRMSE evaluated 

the accuracy of the model and was used to compare the performance of regression models across maize 

phenotyping. The RRMSE was calculated by normalizing the mean of each variable RMSE value and 

expressed as a percentage, where lower percentages are considered more accurate (Taghizadeh-

Mehrjardi et al., 2020).  

3.3. Results 

3.3.1. Descriptive analysis of UAV-derived data and SI-111 IRR maize temperature data 

3.3.1.1.  Maize temperature data over phenotyping 

 
The IRR time-series data was used to plot the difference between IRR foliar canopy temperature (Tc) 

and air temperature (Ta) (Figure 7). The foliar canopy to air temperature difference (Tc – Ta) fluctuated 

throughout maize phenotyping, as foliar canopy temperatures were influenced by ambient conditions 

of air temperature, solar radiation, and rainfall. Hence, a similar fluctuation trend was observed for 

solar radiation and Tc – Ta. Days of low solar radiation or rainfall were associated with a lower Tc – 

Ta, and days of high solar radiation were generally associated with a higher Tc -Ta.  
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The trendline through Tc – Ta over the maize growth season shows that a higher Tc – Ta was associated 

with the early vegetative stages, such as DOY 43 at 3.1 °C, as well as mid-reproductive and late 

reproductive growth stages, such as DOY 115 at 3 °C and DOY 130 at 2.7 °C, respectively. The 

maximum Tc – Ta was measured at 3.4 °C during the mid-reproductive stage of DOY 116. This was 

subsequent to a hailstorm that occurred on DOY 113, which increased the Tc – Ta, and also resulted 

in Tc – Ta to remaining relatively high for the duration of phenotyping at approximately 1.9 °C. A 

lower Tc – Ta was associated with the mid-vegetative and late vegetative growth stages, such as DOY 

85 at -0.8 °C and DOY 90 at -7.3 °C, respectively. DOY 92 had the lowest Tc – Ta at -8.6 °C was 

recorded during the late vegetative stage on DOY 92 at -8.6 °C.  

 

Generally, the solar radiation and air temperature decreased as the winter season approached. 

However, the Tc – Ta increased as the winter season approached, suggesting reduced transpiration as 

a result of water stress during the mid-reproductive and senescence stages of the late reproductive 

growth stages. 

 

Figure 16: Daily average Tc – Ta, solar radiation, and rainfall throughout the maize phenological 

cycle.  

3.3.1.2. Evaluation of UAV thermal imagery against in-field SI-111 IRR temperature sensors  

 
The thermal UAV-derived temperature had a strong positive linear relationship (R2 = 0.94; p = 0.001) 

with the in-field IRR temperature sensors over the various maize growth stages (Figure 8), for the days 
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UAV imagery was collected. During the early vegetative growth stage, DOY 61, the IRR and UAV 

temperatures recorded a satisfactory correlation of approximately 29.7 °C to 30.8 °C, respectively.  

DOY 77, the mid-vegetative stage, had a significant correlation of 22.2 °C and 21.2 °C between IRR 

and UAV temperatures.” 

 

Furthermore, maize IRR and UAV temperatures correlated significantly during the late vegetative 

stage (DOY 90) and the early reproductive stage (DOY 102), with temperatures recorded at 

approximately 27 °C and 24 °C, respectively. However, correlation during the mid-reproductive and 

late reproductive stages, DOY 118 and DOY 134, deviated from the trendline, due to the maize canopy 

disturbance by the hailstorm on DOY 113. Hence, IRR and UAV temperatures were recorded at 24 °C 

and 26 °C for the mid-reproductive stage and 24 °C and 23 °C for late reproductive stage. 

 

Figure 17: Correlation of in-field IRR sensors and UAV-derived temperature throughout the maize 

phenological cycle 

3.3.2. Descriptive statistics of in-situ maize temperature and stomatal conductance measurements 

 
The IRR and IRT minimum and maximum temperatures of the 63-sampling points were used to 

illustrate the descriptive temperature statistics (Table 5). The average maximum IRR temperature for 

the entire phenological cycle was 32.2 °C, and the average IRT temperature for the maize growth cycle 

was 32.6 °C. This suggested an average temperature offset of 0.4 °C between the IRR and IRT 

temperature measurements. The highest recorded IRR temperature was 35 °C during the late vegetative 

growth stage of V14–VT, and the highest recorded IRT temperature was 39.1 °C during the V14–VT 

growth stage.  
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The average minimum IRR temperature for the entire phenological cycle was 18.3 °C, and the average 

IRT temperature for the maize growth cycle was 20.9 °C” This suggested an average temperature 

offset of 2.6 °C between the IRR and IRT temperature measurements. 

 

The lowest IRR temperature value occurred during the R3 – R4 growth stage at 16 °C, whereas the 

lowest IRT temperature value occurred during the V12 growth stage at 15.5 °C. The IRR maximum 

values were within 1.7 standard deviations of the mean, whereas the IRT maximum values were within 

5.1 standard deviations of the mean. Similarly, with the minimum values, the standard deviation of the 

IRR and IRT temperatures were 1.9 and 3.2, respectively. The total mean co-efficients of variation for 

the maximum IRR was 5.2 %, whereas the maximum co-efficients of variation for the IRT was 15.7 

%. Moreover, the minimum IRR and IRT temperatures, had co-efficient of variations of 10.4 % and 

15.5 % respectively. The IRR values suggest precise temperature estimates that are close to the mean 

value.  

Table 10: Descriptive statistics of IRR and IRT foliar temperature throughout the maize growth stages 

Maize foliar temperature at the 
various growth stages 

Maximum (°C) Minimum (°C) 
IRR IRT IRR IRT 

DOY 61 V5 – V10 34 32.7 17 21.5 
DOY 77 V12 33 23.4 20.5 15.5 
DOY 90 V14 – VT 35 39.1 17.1 23.1 
DOY 102 R1 – R3 34 33.7 18.9 21.4 
DOY 118 R3 – R4 33 34.3 16 19.3 
DOY 134 R5 – R6 30 32.3 20.4 24.8 

Mean 33.2 32.6 18.3 20.9 
Median 33.5 33.2 18 21.5 

Standard deviation 1.7 5.1 1.9 3.2 
Co-efficient of variation 5.2 15.7 10.4 15.5 

 

The measured maize stomatal conductance varied at the different stages of maize phenotyping (Table 

6). The average stomatal conductance over the maize phenotyping was 206.9 mmol m-2 s-1. The lowest 

conductance value occurred during the early vegetative growth stage (V5 – V10) at 42 mmol m-2 s-1, 

and the highest stomatal conductance occurred during the early reproductive development stage (R1 – 

R3) at 556.5 mmol m-2 s-1. Reproductive stages were characterised by higher stomatal conductance 

values compared to the vegetative stages. However, the average stomatal conductance for the mid-

reproductive stage (R2 – R4) decreased to 172.6 mmol m-2 s-1 due to the crop stress from the hailstorm 

that occurred on DOY 113. Furthermore, the median value of maize stomatal conductance across the 
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growing season was 194.6 mmol m-2 s-1 and the average stomatal conductance values were within 79.3 

standard deviations of the mean value.  

Table 11: Descriptive statistics of stomatal conductance throughout the maize phenological cycle 

Maize stomatal 
conductance at the 
various growth stages 

Minimum 
(mmol m-2 s-1) 

Maximum 
(mmol m-2 s-1) 

Mean  
(mmol m-2 s-1) 

Median  
(mmol m-2 s-1) 

Standard 
deviation 

DOY 61 V5 – V10 42 245.1 121.8 112.9 49.25 
DOY 77 V12 86.6 556.5 248.5 238.1 113.3 
DOY 90 V14 – VT 44.2 404.8 166.5 157.6 73.7 
DOY 102 R1 – R2 182.7 480.1 298.9 290.1 79.3 
DOY 118 R2 – R4 100.2 373.6 172.6 160.3 55.6 
DOY 134 R4 – R5 74.3 483.1 233.3 208.5 104.8 
Average value 88.3 423.9 206.9 194.6 79.3 
 

Importantly, foliar temperature and stomatal conductance had a significant inverse relationship, 

producing an R2 = 0.72 (Figure 9). The negative relationship of stomatal conductance and temperature 

further enhanced the identification between potential crop water stress. Such a relationship illustrated 

that when stomatal conductance was low, foliar temperatures were high, i.e., hot canopy. Furthermore, 

high stomatal conductance was associated with low foliar temperatures i.e., a cool canopy, suggesting 

optimal maize water productivity. 

 

For example, on DOY 77, the maize temperature was low at 20 °C and the stomatal conductance was 

high at 396 mmol m-2 s-1, illustrating potentially optimal crop conditions. DOY 61 had a higher maize 

temperature of 28 °C and a lower stomatal conductance of 122 mmol m-2 s-1, indicating potential 

water stress.”. Thus, the inverse relationship between foliar temperature and stomatal conductance was 

useful in estimating crop water stress.  
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Figure 18: Correlation of foliar temperature and stomatal conductance throughout the maize 

phenological cycle 

3.3.3. UAV-derived data: estimation of maize temperature and stomatal conductance  

3.3.3.1. Optimized regression models of maize foliar temperature and stomatal conductance over the 

phenological stages 

 
For the prediction of maize temperature, the mid-vegetative stage (DOY 77 (V12)) yielded the most 

optimal modelled RMSE = 0.59 °C and R2 = 0.81 (RRMSE = 2.9 %) (Figure 10 b). The optimal 

variables for this model were the thermal infrared, followed by red, NGRDI, CVI and NDVI, in order 

of importance (Figure 11 b). The mid-reproductive stages had a RMSE of 1.24 °C, an R2 of 0.76, and 

the worst maize phenology had a RRMSE of 6.20%. Model prediction accuracy improved moderately 

in the late vegetative stages (DOY 90 (V14–VT)) and early reproductive stages (DOY 102 (R1–R3), 

with RMSEs of 1.14 °C, R2 = 0.79 (RRMSE = 4%), respectively. The model from the late reproductive 

stage (DOY 134 (R5 – R6)) obtained a RMSE = 0.7 °C and R2 = 0.78 (RRMSE = 2.6 %) based on 

NDRE, OSAVI, CCCI, thermal infrared, and EVI, in order of importance (Figure 10e). The early 

vegetative stage (DOY 61(V5 – V10)) exhibited a RMSE = 1.29 and R2 = 0.69 (RRMSE = 4.7 %). 

 

In estimating stomatal conductance, the early reproductive stage (DOY 102 (R1 – R3)) produced the 

most accurate model with a RMSE = 25.9 mmol m-2 s-1, the highest R2 = 0.85 (and the best RRMSE = 

11.5 %) based on NIR, NDRE, Thermal, CIrededge, and red-edge, in order of importance (Figure 11 d). 

Poor stomatal conductance accuracies were attained during the late reproductive stage (DOY 134 (R5 

– R6)) with a RMSE = 52.6 mmol m-2 s-1 and R2 = 0.78 (RRMSE = 23.8 %) using the thermal infrared, 
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CCCI, blue, CIrededge, and CVI in order of importance (Figure 11f). In addition, the late vegetative 

stages (DOY 90 (V14 – VT)) also yielded a poor model with a RMSE = 51.2 mmol m-2 s-1 and R2 = 

0.64 (poorest RRMSE = 28.7 %). The mid-reproductive stage (DOY 118 (R3 – R4)) model produced 

a RMSE = 44.6 mmol m-2 s-1 and R2 = 0.7 (RRMSE = 25.6 %). The mid-vegetative stage (DOY 77 

(V12)) produced the best model accuracies with a RMSE = 34.8 mmol m-2 s-1 and the worst R2 = 

0.58 (RRMSE = 20.1%), while the early vegetative stage (DOY 61 (V5 – V10) produced the best 

RMSE of 26.5 mmol m-2 s-1 and R2 = 0.73 (RRMSE = 22.9%. The early and mid-reproductive stages 

were characterised by the red-edge band and the CIrededge, respectively, where the red-edge and NIR 

bands were a clear stand out and optimal model contributors. However, the model achieved higher R2 

values during the reproductive stages and the more optimal RMSE values during the vegetative stages. 



54 

 

Figure 19: Regression models displaying the relationships between measured and predicted IRT 

foliar temperature and stomatal conductance throughout the maize phenological cycle: (a) V5 – 

V10, (b) V12, (c) V14 to VT, (d) R1 – R3, (e) R3 – R4, (f) R5 – R6 
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Figure 20: Variable importance scores of optimal foliar temperature and stomatal conductance bands 

and VIs throughout the phenological cycle: (a) V5 – V10, (b) V12, (c) V14 to VT, (d) R1 – R3, (e) R3 

– R4, (f) R5 – R6 
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3.3.3.2. Mapping the spatial distribution of maize temperature and stomatal conductance over the 

various phenological stages. 

 
The modelled maize temperature ranged from 8 to 57 °C (Figure 12). It is evident that the maize field 

temperatures were high during the early vegetative growth stage. Subsequently, during the mid-

vegetative growth stage, the field temperature moderately decreased, and further decreased during the 

late vegetative stage to have the lowest field foliar temperatures. Likewise, in the early reproductive 

stage, the field was characterised by a generally low temperature, with the exception of the eastern 

edge (high elevation) of the field. The maize temperature during the mid-reproductive stage increased 

as a result of the hailstorm damage. During the late reproductive stage, the hailstorm effects increased, 

which resulted in a further escalation of field temperatures. 

 

 

Figure 21: Foliar temperature of maize over the smallholder field for vegetative stages (a) V5 – V10, 

(b) V12, (c) V14 to VT, and reproductive stages (d) R1 – R3, (e) R3 – R4, (f) R5 – R6. 
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The spatial distribution of stomatal conductance was estimated based on the optimal models for each 

maize phenological stage. The stomatal conductance values ranged from 82.2 mmol m-2 s-1 to 683.4 

mmol m-2 s-1 (Figure 13). It can be observed that the stomatal conductance of maize was relatively low 

throughout the maize fields. However, high levels of stomatal conductance were identified during the 

early vegetative stage towards the southern portion of the field, the eastern part of the field during the 

late vegetative stage, and the eastern section during the mid-reproductive stage. The remainder of the 

stages, being the mid-vegetative, early reproductive, and late reproductive, were characterised by 

lower levels of stomatal conductance. Due to the hailstorm stress and crop senescence, the late 

reproductive stage had the lowest conductance 

 

 

Figure 22: Maize stomatal conductance over the smallholder field for vegetative stages (a) V5 – 

V10, (b) V12, (c) V14 to VT, and reproductive stages (d) R1 – R3, (e) R3 – R4, (f) R5 – R6. 
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3.4. Discussion 

 
The objective of this study was to predict maize temperature and stomatal conductance over the various 

maize growth stages using UAV-derived data in combination with the random forest algorithm. In this 

regard, the study aimed to determine the most optimal maize growth stage(s) for temperature and 

stomatal conductance model estimation. It was evident that maize foliar temperatures and stomatal 

conductance differed throughout phenotyping, and the UAV-derived data could discern the optimal 

growth stages for the characterization of temperature and stomatal conductance as proxies for crop 

water stress. For this purpose, the foliar temperature and stomatal conductance data were used to 

understand the potential crop water stress and moisture status of the smallholder field throughout the 

growing stages.  

3.4.1. Prediction of maize water stress using foliar temperature and stomatal conductance  

 
The regression models were set to predict maize foliar temperature and stomatal conductance using 

the thermal infrared and multispectral UAV data. Generally, the random forest model performed 

relatively well in predicting both maize foliar temperature and stomatal conductance over the various 

growing stages. Specifically, the random forest model achieved stronger prediction accuracies for 

foliar temperature in comparison to stomatal conductance over maize phenotyping.  

 

The maize foliar temperature was optimally predicted during the mid-vegetative growth stage (RMSE 

= 0.59 °C, R2 = 0.81 and RRMSE = 2.9%) based on the thermal infrared, followed by the NIR, NGRBI, 

EVI and NDVI, in order of importance. It has been illustrated in literature that the water content of 

crop leaves is directly associated with the foliar reflectance across the electromagnetic spectrum 

(Gerhards et al., 2019; Mangus et al., 2016). Specifically, foliar temperature was strongly detected by 

the thermal infrared as it can sense emitted radiant energy; hence, it is commonly used for evaluating 

crop water stress (Brenner et al., 2017; Prakash, 2000; Zarco-Tejada et al., 2012). Moreover, the NIR 

region was valuable in quantifying crop water status due to its strong water absorption ability that can 

detect crop water stress based on reflectance variation (Das et al., 2021). Thus, the crop surface 

temperatures were strongly detected by the thermal infrared and NIR wavebands, hence their crucial 

role in predicting the maize temperature variability during vegetative growth stages.  
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Specifically, during the vegetative stages, the maize canopy structure is in development, thus exposing 

the underlying soil surface, which absorbs and retains thermal radiation (Zhang et al., 2019a). As a 

result, the high ambient soil temperatures influence the maize temperature, especially during early 

vegetative growth when there is maximum soil exposure. However, as the canopy structure develops, 

soil influence is reduced, and crops generally experience lower leaf temperatures. Since, stomata are 

generally more numerous on the underside of the leaf, they are influenced by the heat of the soil which 

reaches the underside due to convection (Göbel et al., 2019; Nejad, 2011). This reduces the stomatal 

conductance levels, as the crop closes the stomata to retain moisture and subsequently experiences 

higher foliar temperatures (van der Vyver and Peters, 2017). Hence, the thermal infrared section was 

a strong predictor variable of foliar temperature due to its ability to overcome the influence of soil 

temperature during the stages of minimal canopy closure.  

 

Nevertheless, the temperature of a leaf, relative to the surrounding air temperature, is primarily 

influenced by the plant’s photosynthetic capacity, as well as the productivity of the internal structural 

leaf components such as the air cavities, chloroplasts, and mesophyll cell thickness (Peñuelas et al., 

1993; Ustin and Jacquemoud, 2020). Thus, when a crop is water-stressed, the molecular leaf networks 

transmit a signal to initiate physiological and biochemical changes that regularly result in increased 

foliar temperatures relative to the air temperatures (Bonada et al., 2013; Hasanuzzaman et al., 2013; 

Osakabe et al., 2014). However, when there is optimal water present, the Tc – Ta remains low as there 

are productive rates of transpiration and photosynthesis. Therefore, the sustained influence of the 

thermal infrared and chlorophyll-based VIs during vegetative growth stages, suggested that the crop 

was optimally transpiring, with no water stress. However, the relatively high maize leaf temperatures 

measured in combination with the high Tc – Ta during the early vegetative stage suggested slight water 

stress at crop emergence.  

 

During the reproductive stages, the importance of the thermal infrared waveband decreased and 

spectral wavelengths such as the red-edge and NIR, as well as VIs derived from these sections, were 

found to be more important in facilitating the prediction of foliar temperature. This could be attributed 

to the fact that there was minimal soil exposure due to the fully developed canopy structure. More 

specifically, the red-edge borders the absorption of photosynthetic pigments such as chlorophyll, 

which tend to be more vigorous in fully developed canopies (Bano et al., 2015; Ciganda et al., 2012). 

Generally, the change in chlorophyll affects the photosynthetic rates which indirectly alters the 
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temperature tolerance and further the stomatal conductance of the crop, inherently indicating crop 

water productivity (Yordanov et al., 1997). Additionally, during these stages, there is a higher leaf area 

index, facilitating multiple leaf scattering and reduced transmittance through the leaf due to stronger 

chlorophyll concentrations optimally identified by the NIR region (Sibanda et al., 2021; Ustin and 

Jacquemoud, 2020). Hence, the significant contribution of chlorophyll-based indices from the red-

edge and NIR sections, such as the CCCI, NDRE, and GNDVI, during the reproductive stages of 

temperature prediction. However, the hailstorm occurrence during the mid-reproductive stage 

damaged the maize canopy structure and exposed underlying soil, causing poorer model prediction 

due to the spectral confusion between soil and foliar temperatures (see Appendix A, Figures 24 and 25 

for images of crop hail damage). Subsequent to the hailstorm, the Tc – Ta increased due to the canopy 

damage that caused increased crop temperatures. This increase indicated potential crop water stress 

during the mid-reproductive and late reproductive stages.  

 

Meanwhile, maize stomatal conductance was optimally predicted during the early reproductive stage 

(RMSE = 25.9 mmol m-2 s-1, R2 = 0.85 and RRMSE = 11.5%) based on the red-edge, followed by the 

NIR, green, OSAVI and blue band, in order of importance. Literature has confirmed that the red-edge 

region is renowned for its relation to plant water stress and evapotranspiration (Ballester et al., 2019; 

Niu et al., 2019; Vitrack-Tamam et al., 2020). This is because the red-edge is layered with 

physiological and chemical processes that reflect the photosynthetic activity of the crop, which indicate 

stomatal conductance and the potential for crop water stress (Dobrowski et al., 2005; Zarco-Tejada et 

al., 2003). Specifically, during photosynthesis, the red-edge overlaps the fluorescence emission, which 

affects the degree of reflection and corroborates the dependence of stomatal conductance on 

photosynthetic activity (Vitrack-Tamam et al., 2020). Moreover, denser canopies are known to provide 

increased accuracy in estimates of photosynthetic capacity and stomatal conductance through the NIR 

region (Carter, 1998; Waring and Landsberg, 2011). Optimal stomatal activities are also associated 

with rapid chlorophyll development, which reflects highly in the red-edge and NIR (Ballester et al., 

2019). Hence, the optimal influence of the red-edge and NIR wavebands, as well as indices derived 

from these sections in estimating the stomatal conductance of maize in smallholder farms, especially 

during the reproductive stages. 

 

During the early reproductive stage, the crop was almost at peak biomass and obtained a high leaf 

surface area that promoted faster rates of photosynthesis and conductance to support fruit development 
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(Dai et al., 2004; Yordanov et al., 1997). The measured stomatal activities were most prominent during 

this stage as a high foliar surface area was generally associated with the presence of more stomata on 

the leaf (Li et al., 2004). Hence, transpiration rates are more dynamic, and the leaf stomata open, 

facilitating high levels of productivity through optimal foliar conductance and cooling of crop 

temperatures (Gerhards et al., 2019). Such processes, during the early reproductive stage, indicate crop 

productivity and optimal moisture content, which influence the strong reflectance of the leaf tissue in 

the red-edge and NIR regions. Even though during these stages the crop was undergoing 

developmental processes that required high amounts of water (tasseling, silking, and kernel 

development), the maize measured an optimal foliar temperature and high stomatal conductance, 

suggesting crop water productivity and minimal crop water stress for the smallholder farm. However, 

the hailstorm, during the mid-reproductive stage disturbed the maize canopy structure and resulted in 

low measured stomatal conductance. Subsequently, this resulted in the thermal infrared being an 

important predictor due to damage for the canopy and exposure of soil. Furthermore, the high Tc – Ta 

indicated that the hailstorm damage initiated crop water stress, as foliar temperatures increased and 

stomatal conductance was reduced in the mid-reproductive and later reproductive stages. Similarly, 

this was also the case during the early vegetative stage, as stomatal conductance was fairly low and Tc 

– Ta measured high. 

 

Finally, the prediction model proved that a combination of UAV multispectral and thermal wavebands, 

as well as UAV-derived VIs, can accurately predict maize foliar temperature and stomatal 

conductance. The variables of importance for both foliar temperature and stomatal conductance were 

fairly similar in their contributions towards the model development throughout maize phenotyping. 

Thus, this indicates that foliar temperature and stomatal conductance are independent, yet interrelated 

functions, which holistically can be used to understand the potential of crop water stress. Therefore, 

timeously predicting maize foliar temperature and stomatal conductance allows for smallholder 

farmers to make decisions at almost near real time that aids in water related crop productivity. 

3.4.2. Implications of the study  

 
Smallholder farming systems often lack the resources to initiate successful farming practices, as 

commercial agriculture tends to be the focus of contemporary innovation and development. Thus, the 

findings of this study imply that the incorporation of multispectral and thermal infrared UAV 
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technology could facilitate in-depth analysis of crop water stress, through temperature and stomatal 

conductance as proxies. In this regard, the findings of the study are useful to inform smallholder 

agriculture management by suggesting the potential implementation of irrigation schedules at crucial 

water stages (i.e., tasseling, silking, and pollination). Moreover, the UAV-derived data identified 

stages of high temperatures and low stomatal conductance (i.e., early vegetative stage), suggesting a 

potential moisture deficit and, thus, the need for necessary interventional irrigation schedules to ensure 

optimal crop productivity and development. Specifically, irrigation during vegetative stages may aid 

optimal productivity and the prevention of early crop water stress.   

 

The hailstorm during the mid-reproductive stages caused damage to the maize canopy structure and 

led to adverse effects on crop growth as well as premature senescence. Subsequent in-field 

measurements of stomatal conductance reflected potential stress, as stomatal conductance values were 

much lower than typical values expected during this growth stage. Additionally, foliar temperature 

measurements were also relatively high and indicated mild stress, especially during the late 

reproductive stage. Such agrometeorological effects prove how South African smallholder farmers are 

susceptible to weather events that have major consequences on crop water productivity. Thus, the use 

of UAV-derived data enables the identification of such occurrences in almost near real-time, allowing 

farmers to make rapid, informed, and effective decisions on the subsequent management of the crop. 

This is crucial as it affects the food security and socio-economic growth of smallholder farmers who 

rely on healthy and moisture-filled crop yields. Therefore, smallholder farmers benefit from the quick 

turnaround analysis of the UAV data and can ensure prompt remedial measures to prevent further crop 

stress.  

3.5. Conclusion 

 
Premised on the findings of the study, it can be concluded that foliar temperature and stomatal 

conductance are adequate indictors to quantify proxies of water stress throughout the growing period. 

Foliar temperature yielded higher prediction accuracies as compared to stomatal conductance. 

Nevertheless, the random forest regression model optimally predicted both indicators throughout 

maize phenotyping. Specifically:  

• The UAV-derived multispectral data and thermal infrared waveband optimally estimated maize 

temperature during the mid-vegetative stage to a RMSE = 0.59 °C and R2 = 0.81 (RRMSE = 
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2.9%) based on the thermal infrared, followed by the NIR, NGRBI, EVI and NDVI, in order 

of importance, 

• The multispectral and thermal infrared data optimally predicted stomatal conductance during 

the early reproductive stage to a RMSE = 25.9 mmol m-2 s-1 and R2 = 0.85 (RRMSE = 11.5%) 

based on the red-edge band, followed by the NIR, green, OSAVI and blue band, in order of 

importance. 

Considering the results of the study, UAV technology is a plausible, flexible, and accurate earth 

observation technique useful for small-scale farming applications. This is because UAV-derived data 

provides information at improved spatial resolutions to help smallholder farmers understand their crop 

dynamics and further make informed, farm management decisions. Specifically, the use of 

multispectral and thermal infrared UAV-data is a step towards the attainment of an agroclimatic smart, 

near real-time and high spatial resolution technology for assessing crop water stress through foliar 

temperature and stomatal conductance. However, the study could have benefitted from higher spectral 

resolution data and additional measured testing data for an improved model performance. 

Nevertheless, the random forest model performed relatively well at estimating maize leaf temperature 

and stomatal conductance in the Swayimane area. Therefore, the implementation of low-cost, 

evidence-based and almost near real-time solutions to smallholder agriculture is beneficial in 

facilitating improved interventions in these agricultural systems. 

 



64 

 

CHAPTER 4: SYNTHESIS AND CONCLUSIONS  

4.1. A reflection of using UAV-derived data for crop health and water stress 

 

Smallholder agricultural systems are major contributors to agricultural production, food security and 

socio-economic growth in South Africa. However, smallholder farmers often face challenges related 

to crop water stress due to climatic variability, crop damage due to erratic weather events, and a lack 

of resources that are generally found in commercial agriculture. Consequently, their productivity 

potential is often not realized, and they tend to face issues of unhealthy and water-stressed crops with 

reduced yields. Recently, precision technologies in the form of UAVs have become an effective, low-

cost, and almost near real-time solution in smallholder farming systems, as such technology assists in 

the optimisation of crop productivity. Specifically, in rural smallholder agricultural systems, farmers 

rely on healthy and productive maize crop yields, as productive yields generate more revenue. Thus, 

high resolution UAV-derived data paired with a robust machine learning algorithm provides an in-

depth analysis of crop dynamics of chlorophyll content, foliar temperature, and stomatal conductance. 

Such insights on crop health and water-related indicators, across the maize phenological cycle facilitate 

improved agricultural management within smallholder farms. 

 

This study aimed to demonstrate the utility of multispectral and thermal infrared UAV-derived data to 

estimate maize crop health and potential water stress on smallholder farms. The results of these 

investigations demonstrated that UAV-derived data can predict maize health and water stress, 

specifically through indicators of chlorophyll content, foliar temperature, and stomatal conductance. 

These indicators were optimally predicted across maize phenotyping and can be utilized to inform 

smallholder farmers on the health status of their crops. The model was most accurate in the prediction 

of foliar temperature stage (RRMSE = 2.6 %, R2 = 0.81, RMSE = 0.59 ºC), followed by chlorophyll 

content reproductive (RRMSE = 7 %, R2 = 0.89, RMSE = 87.4 µmol m-2) and the stomatal conductance 

(RRMSE = 11.5 %, R2 = 0.85, RMSE = 25.9 mmol m-2 s-1), respectively. Specifically, the optimal 

growth stages for prediction were the early reproductive stage (chlorophyll), the mid-vegetative stage 

(foliar temperature), and the early reproductive stage (stomatal conductance). Predicted chlorophyll, 

foliar temperature, and stomatal conductance results were mapped over the maize growth cycle. Such 

findings could be optimally utilised to characterise the general state of maize health and water stress 

on smallholder farms. Finally, continuous time-series NDVI and canopy foliar temperature data, as 

well as metrological data were recorded to observe seasonal fluctuations in NDVI and canopy foliar 
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temperatures in contrast to the snapshots of the UAV data. The overall results demonstrated that such 

technology provides smallholder farmers with important in-field information on crop biophysical 

factors, allowing them to make informed, tactical decisions for improved interventions on crop 

management through various stages of phenotyping. 

 

4.2. Limitations and recommendations for future research  

 
Although the UAV on-board sensor provided a high spatial resolution, the spectral resolution of the 

sensor limited the multispectral bands and derived vegetation indices choices. Specifically, a spectral 

sensor attaining the shortwave infrared section would have been particularly useful to this study, as 

these wavelengths are instrumental in identifying plant water stress and deriving direct water-related 

indices. The use of higher spectral resolution data may allow for more precise spectral extraction, 

especially during the early growth stages when the crop foliar canopy has not yet developed. 

Furthermore, this may have also resulted in improved model performance and more detailed map 

outputs of foliar temperature and stomatal conductance across the study area. It is therefore 

recommended that future crop water stress studies explore the use of a camera with additional 

wavebands, although this needs to be weighed up against the additional cost of the camera sensor.  

 

The measured chlorophyll, IRT and stomatal conductance data were limited by the study area, and 

thus, the study used two independent sets of data to train and test the model. Some studies achieved 

improved results through the incorporation of a third set of independent data to test the model. For 

example, total evapotranspiration data may have benefitted the study, especially towards the 

quantification of potential maize water stress. Thus, it is recommended that further analysis of model 

performance is undertaken in the future when more data becomes available. Finally, this study 

specifically examined a maize crop; therefore, it is recommended that research should focus on 

alternative crops cultivated by smallholder farmers. In addition, consideration of different climatic 

conditions and at different UAV temporal scales would be beneficial.  
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APPENDIX A 

During the mid-vegetative growth stage, the lower portion of the field had not been weeded with the 

rest of the field which was weeded during the early vegetative stage. As a result, the maize crop in this 

portion of the field became visibly unhealthy and stressed. Figure 23a shows how the lower portion of 

the maize field appears more yellow in colour, due to the presence of grasses and weeds, as well as 

due to weed competition. Additionally, the soil found in the lower region of the field comprised of 

coarser sediment, which was a result of leaching and run-off deposition. Furthermore, the lower 

regions of slopes have been documented to obtain less nutrients and have less fertile soil. 

 

(a)       (b) 

      (c)      (d) 

Figure 23 (a – d): Photographs of western portion of maize field (lower slope) where weeds/grasses 

were still present during mid-vegetative growth. 
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Furthermore, an unforeseen hailstorm on 23 April 2021 (DOY 114) damaged the maize foliar canopy 

structure. This resulted in foliar loss as leaves broke off the plant and began to senesce. The hail 

damage also introduced soil background exposure. 

(a)          (b)   

 
 

Figure 24: Photographs of maize (a) before the hailstorm, and (b) after hailstorm damaged the crop 

Figure 25: Additional photographs of damaged maize foliar canopy due to the hailstorm 
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