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Autónoma de San Luis Potośı, Álvaro Obregón 64, Col. Centro CP.
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Abstract: This work shows the generation of multi-scroll attractors in R
3 by controlling the

equilibrium point of an unstable dissipative system. The switching control signal that governs
the position of the equilibrium point changes according to the number of scrolls that is displayed
in the attractor. Thus, if two systems display a different number of scrolls they have different
control signals. The analysis of their Lyapunov exponents along with some bifurcation diagrams
are presented. The possibility of hyper-chaos in R

3 is considered.
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1. INTRODUCTION

Switched systems have acquired a great deal of attention
recently and they have been considered for a wide range
of applications mostly in electrical engineering. These
systems consist on a set of subsystems and a switching
control signal which is activated or fixed at some values
through some intervals of time. Among all the uses they
may present, the generation of multi-scrolls and chaos
has been of great interest for the scientific community.
Chaos has been an extremely studied area in last decades.
One of the most remarkable developments is that simpler
nonlinear deterministic equations can have unpredictable
(chaotic) long-term solution.

Despite of the fact that there is no unique definition
of chaos that all the international scientific community
may adopt, there are several basis and theorems that we
can seize in order to characterize the behavior of any
system throughout nature. Characterization of dynamical
behavior can be achieved by means of the Lyapunov
exponents (LE). With the aid of their diagnostic, one can
measure the average exponential rates of divergence or
convergence of nearby orbits in the phase space, overall
with their signs, a qualitative picture of the variety of
dynamics that the systems may exhibit, ranging from fixed
points via limit cycles and tori to more complex chaotic
and hyperchaotic attractors.

⋆ This works was sponsored by the Doctoral scholarship of Conacyt.

Whereas chaos can arise in discrete-time systems with only
a single variable (which must be positive), at least three
variables are required for chaos in continuous-time systems
(Hirsch & Smale, 1974). Such systems are characterized
by one positive (LE) in the Lyapunov spectrum. The
behaviors described previously in Wolf, Swift, Swinney &
Vastano (1985) can be defined with the sign of their LE
as follows:

• In the presence of one positive LE, one negative and,
one zero (+, 0,−), the resulting attractor is “strange”
or “chaotic”.

• With a negative LE , and two zero (−, 0, 0), the
attractor is a two-torus.

• With a zero LE, and two negatives (0,−,−), the
attractor is a limit cycle.

• With three negative LE’s (−,−,−), is a fixed point.

A natural question is the following: Is there any system
with the sign of their LE (+,+,−) in R

3?

A zero Lyapunov exponent indicates that the system is in
some sort of steady state mode (Haken, 1983). A physical
system with this exponent is conservative, so it is possible
to construct a system that always presents stretching
and folding. However, to obtain hyper-chaos, the system
must be characterized by the presence of two or more
positive LE’s. The reason is that the trajectory has to be
nonperiodic and bounded to some finite region, and yet
it cannot intersect itself because every point has a unique
direction of the flow. Hyperchaos in R

4 has been reported
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in several papers for the last 40 years (Rössler, 1979;
Chua, 1994; Matsumoto, Chua & Kobayashi, 1986; Baier
& Klein, 1990), but it is posible to generate hyperchaos in
R

3.

There have been different approaches to yield multi-scroll
chaotic attractors some of them modify the Chua’s system
(Chua, Komuro & Matsumoto, 1986; Madan, 1993) by
replacing the nonlinear part with different nonlinear fun-
ctions (Suykens & Vandewalle, 1993; Suykens , Huang &
Chua, 1997). Some others are created by using nonsmooth
nonlinear functions such as, hysteresis (Lü , Han, Yu. &
Chen, 2004), saturation (Lü , Chen & Yu, 2004), step fun-
ctions (Yalçin, Suykens, Vandewalle & Ozoguz, 2002) and
inducing multi-scroll attractors by switching piecewise sys-
tems (Campos-Cantón, Campos-Cantón, González-Salas
& Cruz-Ordaz, 2008) and controlling the stability of its
equilibria.

Although multi-scroll attractors that have been generated
by an autonomous hyperchaotic system were presented
recently in Ahmad (2006). This approach comprises a
system with canonical structure, one control parameter,
and a switching-type nonlinearity. Besides the approaches
mentioned above about Chua’s system, there have been
also some researches (Yu, Lü & Chen, 2007; Yalçin ,
Suykens & Vandewalle, 2000) that obtained multi-scrolls
from the hyperchaotic Chua system.

In this work, we analyze a chaotic time series of a class
of 3-D dynamical systems having multiple scrolls based
on unstable dissipative systems (UDS) (Campos-Cantón,
Barajas-Ramı́rez, Soĺıs-Perales & Femat, 2010). This class
of systems is constructed with a switching control signal
to display various multi-scroll strange attractors. The
multi-scroll strange attractors result from the combination
of several unstable “one-spiral” trajectories by means of
switching. The study of the LE is also added showing that
the system presented here is hyperchaotic.

2. SWITCHING CONTROL SIGNAL FOR
MULTI-SCROLL ATTRACTORS IN R

3

In the same spirit that Campos-Cantón, Barajas-Ramı́rez,
Soĺıs-Perales & Femat (2010), we consider the class of
linear system given by

χ̇ = Aχ+B (1)

where χ = [x1, x2, x3]
T ∈ R

3 is the state variable, B =
[β1, β2, β3]

T ∈ R
3 stands for a real vector, A = [αij ] ∈

R
3×3 denotes a linear operator and the equilibrium point

is located at χ∗ = −A−1B.

Using the approach of the linear ordinary differential
equation(ODE) written in the jerky form

...
x+α33ẍ+α32ẋ+

α31x+β3 = 0 we can represent the dynamics of the system
in the state space as (1) where the matrix A and the vector
B are found to be:

A =

(

0 1 0
0 0 1

−α31 −α32 −α33

)

;B =

(

0
0
β3

)

, (2)

Here the coefficients α31, α32, α33 ∈ R may be any arbi-
trary scalar that assures the system as a UDS, this is

that Tr(A) =
∑3

i=1
λi < 0, and that the characteristic

polinomial of A given by g(λ) = λ3 + α33λ
2 + α32λ+ α31

present one real negative root, and two complex roots
with their real part positive. For this we are setting the
coefficients as α31 = a, α32 = 1, α33 = 1, where a = 1.5
unless told otherwise.

−2 −1 0 1 2
−2

0

2

x
2

a)

−1 −0.5 0 0.5 1
−0.5

0

0.5
b)

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

x
1

x
2

c)

−1.6 −0.8 0 0.8 1.6
−0.5

0

0.5

x
1

d)

Fig. 1. The projection onto the plane (x1, x2) of the chaotic
attractors generated by different switching control
signal:(a) (3), (b) (4),(c) (5) and (d) (6), with a = 1.5

A switching control signal β3 commutated in two values,
S1 and S2, makes the system in the form (1) to present
two equilibria and a double scroll is yielded. This signal
is defined as a piecewise-linear function (PWL). Adding
more PWL functions Si to the control signal for β3, it
is possible to produce multi-scroll proportionally to the
number of signals Si. For simplicity, a switching control
signal is given in terms of only one state, which defines
the borders of domains as hyperplanes parallel to one axe.
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Fig. 2. Roots of the characteristic polynomial of A in
system (2), with 0 < a < 5. Mark with triangles the
real root, with circle and dots the positive real part
of the two complex roots. The gray area shows the
values of 0.8 > a > 2.6 for which the system (1) is
stable.

The following switching control signal β3 can generate a
double-scroll and is given as follows:

β3 =

{

S1 = 1.8, if x1 ≥ 0.3;
S2 = −0.9 otherwise.

(3)

The equilibrium points of the system (1) using the matrix
A and vector B defined in (2) and the control signal (3)
are χ∗

1
= (0.6, 0, 0)T and χ∗

2
at the origin (0, 0, 0)T .
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Figure 1 (a) depicts the projection of the double-scroll
chaotic attractor on the plane (x1, x2) generated by the
β3 switching control signal (3) under equations (1)-(2).
Modifying the switching control signal then it is possible
to generate an attractor with triple-scroll. Therefore the
β3 switching control signal is given as follows:

β3 =

{

0.9, if x1 ≥ 0.3;
0 if −0.3 < x1 < 0.3;
−0.9, if x1 ≤ −0.3.

(4)

Notice that χ∗

3 = −χ∗

1. This issue is intentionally defined
to illustrate the symmetry in scrolls. Figure 1 (b) shows
the projection of triple-scroll chaotic attractor on the plane
(x1, x2) generated by the switching control signal (4) under
equations(1)-(2).

So, quadtuple and quintuple scroll chaotic attractors are
yielded by controlling β3 switching control signal as fo-
llows:

β3 =











1.8, if x1 ≥ 0.9;
0.9, if 0.3 ≤ x1 < 0.9;
0, if −0.3 < x1 < 0.3;
−0.9, if x1 ≤ −0.3.

(5)

β3 =



















1.8, if x1 ≥ 0.9;
0.9, if 0.3 ≤ x1 < 0.9;
0, if −0.3 < x1 < 0.3;
−0.9, if −0.9 < x1 ≤ −0.3;
−1.8, if x1 ≤ −0.9;.

(6)

The β3 switching control signals given by (5) and (6) intro-
duce other equilibrium points located at χ∗

4 = (1.2, 0, 0)T

and χ∗

5
= (−1.2, 0, 0)T , respectively. Figures 1 (c) and 1 (d)

show the projection of the quadtuple-scroll and quintuple-
scroll chaotic attractors given by the β3 switching control
signals (5) and (6), respectively.
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Fig. 3. Bifurcation diagram for system (2) with the swit-
ching control signal (5), for 0.8 < a < 2.6.

Changing the value of the parameter a makes the system
(1) in (2) to exit the UDS state, also the number of scrolls
is affected. There are certain values for a in which the
system may loose the number of scrolls without regarding
the switching control signal applied. This may be shown
in Figure 3 and 4, where bifurcation diagrams of the
parameter 0.8 < a < 2.6 are depicted for the system
(2) with the switching control signals (5) and (6) which
correspond to 4 and 5 scrolls accordingly. It can be seen
that for some values the system change from a periodic

orbit to 2, 4, 3, 2 hyperchaotic scrolls in Figure 3, and from
a periodic orbit to 1, 2, 5, 3 and again 2, 1 hyperchaotic
scrolls. For greater or lower values of a, the system becomes
unstable and the solution goes to infinity.
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Fig. 4. Bifurcation diagram for system (2) with the swit-
ching control signal (6), for 0.8 < a < 2.6.

The LE for the system (1) were calculated by the algorithm
describe by Wolf, Swift, Swinney & Vastano (1985), and
they are shown in Figure 5 depicting the following values
(0.10233, 0.10055,−1.2029). We can observe that there
are two positive exponents along with one negative, this
exponents are the same for any number of scrolls. The
orders of magnitude between this two positive exponents
is not enough to consider the asymptotic value attained
by the mandatory zero exponent. In Haken (1983) it was
prove, that there must be a zero exponent, or else the
system will tend to collapse on a fixed point. In contrast
with our system this is not true, there is no fixed point
reached by the flow of the attractor.
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Fig. 5. Lyapunov Spectra for system (1) in (2), with
a = 1.5

Calculating the exponents for different values of a as
shown in Figure 6, outcome in no value for a where we
may find a single zero exponent. We know that there is
an exponential divergence of the trajectories because of
the positive exponents therefore according to Wolf, Swift,
Swinney & Vastano (1985) the system is hyperchaotic, and
we can also check that the system is dissipative due to the
sum of the three exponents.
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Fig. 6. Lyapunov Spectra for system (1) in (2), with 0 <
a < 5. The gray area shows the values of 0.8 > a > 2.6
for which the system (1) is stable.

3. CONCLUSIONS

We have proposed an approach to generate an hyper-
chaotic system based on unstable dissipative systems and
control their equilibrium points. The proposed systems
have been demonstrated via numerical simulations to ex-
hibit hyper-chaotic behavior for certain switching control
signals. The hyperchaoticity was verified by checking the
Lyapunov spectrum of the output data series, were we
found that the system in R

3, contains two positive LE.
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Lü J., Chen G. & Yu X. (2004). Design and analysis of
multiscroll chaotic attractors from saturated function
series, IEEE Trans. Circuits Systems, Part I, 51(12).

Madan R. N. (1993). Chua’s Circuit: A Paradigm for
Chaos. World Scientific: Singapore.

Matsumoto T., Chua L. O. & Kobayashi K. (1986). Hy-
perchaos: laboratory experiment and numerical confir-
mation, IEEE Transactions on Circuits and Systems,
CAS-33 (11), 1143-1147.
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