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Abstract

Let G be a graph. Denote by W (G) its Wiener index and denote by Li(G) its i-
iterated line graph. Dobrynin and Mel’nikov proposed to estimate the extremal values for
the ratio Rk(G) = W (Lk(G))/W (G) for k ≥ 1. Motivated by this we study the ratio for
higher k’s. We prove that among all trees on n vertices the path Pn has the smallest value
of this ratio for k ≥ 3. We conjecture that this holds also for k = 2, and even more, for
the class of all connected graphs on n vertices. Moreover, we conjecture that the maximum
value of the ratio is obtained for the complete graph.
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1 Introduction
Let G be a graph. We denote its vertex set and edge set by V (G) and E(G), respectively.
For any two vertices u, v let d(u, v) be the distance from u to v. The Wiener index of G,
W (G), is defined as

W (G) =
∑
u6=v

d(u, v),
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cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



2 Art Discrete Appl. Math. 1 (2018) #P1.09

where the sum is taken over all unordered pairs of vertices of G. Wiener index was intro-
duced by Wiener in [17]. Since it is related to several properties of molecules (see [7]),
it is widely studied by chemists. The interest of mathematicians was attracted in 1970’s,
when it was reintroduced as the transmission and the distance of a graph, see [16] and [5],
respectively. For surveys and some up-to-date papers related to the Wiener index of trees
and line graphs see [15, 18] and [2, 8, 13], respectively.

By definition, if G has a unique vertex, then W (G) = 0. In this case, we say that the
graph G is trivial.

The line graph of G, L(G), has vertex set identical with the set of edges of G and two
vertices of L(G) are adjacent if and only if the corresponding edges are incident in G.
Iterated line graphs are defined inductively as follows:

Li(G) =

{
G if i = 0,

L(Li−1(G)) if i > 0.

Observe that W (Pn) = ((n−1) + · · ·+ 1)+((n−2) + · · ·+ 1)+ · · ·+1 =
(
n+1

3

)
. In

the case when a tree contains a small number of branching vertices (i.e., vertices of degree
at least three), then it is suitable to use the theorem of Doyle and Graver [4] for computing
its Wiener index:

Theorem 1.1. Let T be a tree on n vertices. Then

W (T ) =

(
n + 1

3

)
−

∑
v∈V (T )

∑
1≤i<j<k≤p

n(Ti)n(Tj)n(Tk) ,

where T1, T2, . . . , Tp are the components of T − v.

Wiener index of the line graph of a tree T can easily be computed from W (T ) by using
the following result of Buckley [1]:

Theorem 1.2. Let T be a tree on n vertices. Then W (L(T )) = W (T )−
(
n
2

)
.

In [6] (see also [3]) Gutman proposed a problem to find an n-vertex graph G whose
line graph L(G) has the maximum Wiener index.

Dobrynin and Mel’nikov [3] proposed to estimate the extremal values of the ratio

Rk(G) =
W (Lk(G))

W (G)
. (1.1)

Notice that

W (L(Sn))

W (Sn)
=

n− 2

2(n− 1)
,

W (L(Pn))

W (Pn)
=

n− 2

n + 1
, and

W (L(Kn))

W (Kn)
=

(
n− 1

2

)
.

In [14], this problem was solved for the minimum in the case k = 1:

Theorem 1.3. Among all connected graphs on n vertices, the fraction R1(G) is minimum
for the star Sn.

The problem for the maximum remains open:



K. Hriňáková et al.: On a conjecture about the ratio of Wiener index in iterated line graphs 3

Problem 1.4. Find n-vertex graph G with the maximum value of R1(G).

The line graph of Kn has the greatest number of edges and the smallest Wiener index,
and henceforth, it may attain the maximum value. For higher iterations k ≥ 2, we expect
that the minimum should be at Pn, as it is the only graph whose line graph decreases in
size. Thus, we believe the following holds:

Conjecture 1.5. Let n be a large number and k ≥ 2. Among all graphs G on n vertices,
W (Lk(G))/W (G) attains the maximum for Kn, and it attains the minimum for Pn.

In what follows we support this conjecture for the minimum. In a series of papers
[10, 9, 12, 11, 8] (see [11, Corollary 1.4]), where the equality W (Lk(T )) = W (T ) is
solved for trees and k ≥ 3, the following result was obtained:

Theorem 1.6. Let T be a tree and k ≥ 4. Then we have

W (Lk(T )) = W (T ) if T is trivial,
W (Lk(T )) < W (T ) if T is a nontrivial path or the claw K1,3,
W (Lk(T )) > W (T ) otherwise.

The above result gives an immediate support to Conjecture 1.5:

Corollary 1.7. Let k ≥ 4. In the class of trees on n vertices, Rk attains the minimum value
for Pn.

In this paper we extend the above corollary to the case k = 3. Let H be a tree on six
vertices, two of which have degree 3 and the other four have degree 1. Recall that two
graphs G1 and G2 are homeomorphic if and only if there is a third graph F , such that both
G1 and G2 can be obtained from F by means of edge subdivision. In the proof we will use
the following result [9, Corollary 1.6]:

Theorem 1.8. Let T be a tree which is not homeomorphic to a path, claw K1,3 or H , and
let k ≥ 3. Then W (Lk(T )) > W (T ).

By Theorem 1.8, to solve the case k = 3, it is sufficient to consider the ratios for paths
and trees homeomorphic to the claw K1,3 and H .

Note that L3(Pn) = Pn−3 if n ≥ 4, and we have

R3(Pn) =

(
n−2

3

)(
n+1

3

) =
(n− 2)(n− 3)(n− 4)

(n + 1)n(n− 1)
.

In Section 2 we prove the following two results:

Theorem 1.9. Let T be a tree on n vertices homeomorphic to K1,3. Then

R3(T ) > R3(Pn).

Theorem 1.10. Let T be a tree on n vertices homeomorphic to H . Then

R3(T ) > R3(Pn).

These two results together with Theorem 1.8 and Corollary 1.7 give us the following:

Corollary 1.11. Let k ≥ 3. Then the path Pn attains the minimum value of Rk in the class
of trees on n vertices.
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2 Proofs of Theorems 1.9 and 1.10
Proof of Theorem 1.9. Let Ca,b,c be a tree homeomorphic to the claw K1,3, such that the
paths connecting the vertices of degree 1 with the vertex of degree 3 have lengths a, b and
c, where a ≥ b ≥ c ≥ 1. The tree Ca,b,c has exactly n = a+b+c+1 vertices, see Figure 1
for C4,3,2.

Figure 1: The graph C4,3,2.

Further, for i ∈ {1, 2, 3} let Vi be the set of vertices of V (L(Ca,b,c)) of degree i. This
naturally splits the problem into four cases according to the size of V1.

Denote
∆ = W (L3(Ca,b,c))−W (Ca,b,c). (2.1)

In [8], the value of ∆ for each of these four cases is evaluated. For the sake of simplicity,
let W0 = W (Ca,b,c) and W3 = W (L3(Ca,b,c)). Then ∆ = W3 −W0 and

R3(Ca,b,c) =
W3

W0
=

W0 + ∆

W0
= 1 +

∆

W0
.

By Theorem 1.1 we have

W0 = (a + b + c + 2)(a + b + c + 1)(a + b + c)/6− abc. (2.2)

We prove that when |V (Ca,b,c)| = |V (Pn)|, that is when n = a + b + c + 1, then
R3(Ca,b,c) > R3(Pn). This inequality is equivalent to

1 +
∆

W0
>

(n− 2)(n− 3)(n− 4)

(n + 1)n(n− 1)

and after multiplying by denominators also to

∆(n + 1)n(n− 1) + W0

(
(n + 1)n(n− 1)− (n− 2)(n− 3)(n− 4)

)
> 0. (2.3)

Since 3 ≥ |Vi| ≥ 0, there are four cases to consider.

Case 1: a, b, c ≥ 2. That is, |V1| = 3. In [8] we have

∆ = (a+b+c)2 − 5(ab+ac+bc) + (a+b+c) + 21. (2.4)

After substituing (2.4) and (2.2) into (2.3), we get that the left-hand side of (2.3) is equal to
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the following expression

1.5abc
(
(a− b)2 + (a− c)2 + (b− c)2

)
+ 44a + 65a2 + 25.5a3 + 7a4 + 2.5a5 +

44b + 130ab + 66.5a2b + 13a3b + 7.5a4b + 65b2 + 66.5ab2 + 12a2b2 + 10a3b2 +

25.5b3 + 13ab3 + 10a2b3 + 7b4 + 7.5ab4 + 2.5b5 + 44c + 130ac + 66.5a2c +

13a3c + 7.5a4c + 130bc + 117abc + 18a2bc + 3a3bc + 66.5b2c + 18ab2c +

13b3c + 3ab3c + 7.5b4c + 65c2 + 66.5ac2 + 12a2c2 + 10a3c2 + 66.5bc2 + 18abc2 +

12b2c2 + 10b3c2 + 25.5c3 + 13ac3 + 10a2c3 + 13bc3 + 3abc3 + 10b2c3 + 7c4 +

7.5ac4 + 7.5bc4 + 2.5c5.

Since a, b, c ≥ 2, the expression 1.5abc
(
(a− b)2 + (a− c)2 + (b− c)2

)
and all the isolated

terms are nonnegative. Moreover some of the terms, such as 44a for example, are strictly
positive. Hence, (2.3) is satisfied, which means that R3(Ca,b,c) > R3(Pa+b+c+1).

Observe that the above long expression was obtained from the left-hand side of (2.3)
by subtracting 1.5abc

(
(a − b)2 + (a − c)2 + (b − c)2

)
, which is nonnegative, and then

by expanding the difference. Since all the parameters a, b, c are nonnegative, all the co-
efficients in the expanded expression are positive and at least one of the terms is strictly
positive, (2.3) is satisfied. We will use this way of reasoning especially in the proof of
Theorem 1.10, where the expanded expressions are extremely long.

Case 2: a, b ≥ 2, c = 1. That is, |V1| = 2. In [8] we have

2∆ = (a+b)2 − 8ab− 5(a+b) + 30. (2.5)

After substituing (2.5) and (2.2) into (2.3) and expanding the expression, we get that the
left-hand side of (2.3) is equal to

96 + 170a + 97a2 + 32a3 + 11a4 + 2a5 + 170b + 164ab + 43a2b + 11a3b + 6a4b +

97b2 + 43ab2 + 8a3b2 + 32b3 + 11ab3 + 8a2b3 + 11b4 + 6ab4 + 2b5.

Hence (2.3) is satisfied and so R3(Ca,b,1) > R3(Pa+b+2).

Case 3: a ≥ 2, b = c = 1. That is, |V1| = 1. In [8] we have ∆ = −6a + 6. After
substituing this value of ∆ and (2.2) into (2.3) and expanding the expression, we get that
the left-hand side of (2.3) is equal to

1.5a5 + 12a4 + 26.5a3 + 60a2 + 300a + 240.

Hence (2.3) is satisfied and so R3(Ca,1,1) > R3(Pa+3).

Case 4: a = b = c = 1. That is, |V1| = 0. In this case Ca,b,c = K1,3 has 4 vertices and
L3(K1,3) is a cycle of length 3. Since W (L3(P4)) = 0, we have

R3(C1,1,1) > 0 = R3(P4),

which establishes this small case, and also the proof of the theorem.
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Proof of Theorem 1.10. Denote by Ha,b,c,d,e a tree homeomorphic to H defined as follows:
In Ha,b,c,d,e, the two vertices of degree 3 are joined by a path of length e + 1, e ≥ 0.
Hence, this path has e vertices of degree 2. Further, at one vertex of degree 3 there start
two pendant paths of lengths a and b, where a, b ≥ 1, and at the other vertex of degree 3
there start another two pendant paths of lengths c and d, where c, d ≥ 1. Thus Ha,b,c,d,e

has n = a+ b+ c+ d+ e+ 2 vertices, out of which two have degree 3, four have degree 1
and the remaining vertices have degree 2, see Figure 2 for H3,3,4,2,2. By symmetry, we
may assume that a ≥ b, c ≥ d, and b ≥ d. That is, we assume that the shortest pendant
path in Ha,b,c,d,e has length d.

Figure 2: The graph H3,3,4,2,2.

We proceed analogously as in the proof of Theorem 1.9. Denote

∆ = W (L3(Ha,b,c,d,e))−W (Ha,b,c,d,e). (2.6)

For the sake of simplicity, let W0 = W (Ha,b,c,d,e) and W3 = W (L3(Ha,b,c,d,e)). Then
∆ = W3 −W0 and again

R3(Ha,b,c,d,e) = 1 +
∆

W0
.

By Theorem 1.1 we have

W0 =

(
a + b + c + d + e + 3

3

)
− ab(c + d + e + 1)− cd(a + b + e + 1). (2.7)

If e = 0, then we have one vertex of degree 4 in L(Ha,b,c,d,e), while if e ≥ 1, then the
greatest degree of a vertex in L(Ha,b,c,d,e) is 3. Analogously as in [8], by symmetry we
distinguish eleven cases. Five cases with at least one of a, b, c, d greater than or equal to 2
have e ≥ 1, five cases with at least one of a, b, c, d greater than or equal to 2 have e = 0,
and the last case has all a, b, c, d equal to 1. First we consider the cases with ∆ > 0.

Claim 1. If ∆ > 0, then R3(Ha,b,c,d,e) > R3(Pa+b+c+d+e+2).

Proof. Observe that |V (Ha,b,c,d,e)| = |V (Pa+b+c+d+e+2)|. If ∆ > 0, then
R3(Ha,b,c,d,e) = 1 + ∆

W0
> 1. However, R3(Pn) is always smaller than 1.

By [8], there are 8 cases (out of the 11) for which in [8] it was proved that ∆ > 0 (we
remark that P is used instead of ∆ in [8]). These are the cases:

1. (case 3 in [8]) a, c ≥ 2, b = d = 1, e ≥ 1;

2. (case 4 in [8]) a, b ≥ 2, c = d = 1, e ≥ 1;
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3. (case 5 in [8]) a ≥ 2, b = c = d = 1, e ≥ 1;

4. (case 7 in [8]) a, b, c ≥ 2, d = 1, e = 0;

5. (case 8 in [8]) a, c ≥ 2, b = d = 1, e = 0;

6. (case 9 in [8]) a, b ≥ 2, c = d = 1, e = 0;

7. (case 10 in [8]) a ≥ 2, b = c = d = 1, e = 0;

8. (case 11 in [8]) a = b = c = d = 1, e ≥ 0.

By Claim 1 it suffices to consider the remaining three cases.
We proceed analogously as in the proof of Theorem 1.9. Hence, we prove that when

|V (Ha,b,c,d,e)| = |V (Pn)|, that is when n = a + b + c + d + e + 2, then R3(Ha,b,c,d,e) >
R3(Pn). This inequality is equivalent to

1 +
∆

W0
>

(n− 2)(n− 3)(n− 4)

(n + 1)n(n− 1)

and after multiplying by denominators also to

∆(n + 1)n(n− 1) + W0

(
(n + 1)n(n− 1)− (n− 2)(n− 3)(n− 4)

)
> 0. (2.8)

Now we consider the remaining three cases.

Case 1: a, b, c, d ≥ 2, e ≥ 1. In [8] we have

2∆ = 7(a+b+c+d+e)2 − 20(ab+ac+ad+bc+bd+cd)− 10(ae+be+ce+de)

+ 5(a+b+c+d) + 65e + 234. (2.9)

Denote

D = 11
(
cd(a− b)2(a + b) + bd(a− c)2(a + c) + ad(b− c)2(b + c)

+ bc(a− d)2(a + d) + ac(b− d)2(b + d) + ab(c− d)2(c + d)
)
.

Observe that D ≥ 0. Now substitute (2.9) and (2.7) into the left-hand side of (2.8) and
delete D. When we expand the resulting expression, all the coefficients will be posi-
tive. Since the constant term is 708, which is strictly positive, (2.8) is satisfied and so
R3(Ha,b,c,d,e) > R3(Pa+b+c+d+e+2).

Case 2: a, b, c ≥ 2, d = 1, e ≥ 1. From [8] we have

∆ = 3(a2+b2+c2+e2)− 3(ab+ac+bc) + (ae+be) + 2ce− 2(a + b)− c + 28e + 97.

In [8] it was shown that if e ≥ 2 then ∆ > 0. By Claim 1,

R3(Ha,b,c,1,e) > R3(Pa+b+c+e+3)

in this subcase, so it suffices to restrict ourselves to e = 1. For e = 1 we obtain

∆ = 3(a2+b2+c2)− 3(ab+ac+bc)− a− b + c + 128. (2.10)
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Now substitute (2.10) and (2.7) with e = 1 into the left-hand side of (2.8). When we expand
the resulting expression, all the coefficients will be positive. Since the constant term is
8280, which is strictly positive, (2.8) is satisfied and so R3(Ha,b,c,1,1) > R3(Pa+b+c+4).

Case 3: a, b, c, d ≥ 2, e = 0. In [8] we have

∆ = 4(a+b+c+d)2 − 11(ab+ac+ad+bc+bd+cd) + 3(a+b+c+d) + 137. (2.11)

Denote

D = 10
(
cd(a− b)2(a + b) + bd(a− c)2(a + c) + ad(b− c)2(b + c)

+ bc(a− d)2(a + d) + ac(b− d)2(b + d) + ab(c− d)2(c + d)
)
.

Observe that D ≥ 0. Now substitute (2.11) and (2.7) into the left-hand side of (2.8)
and delete D. When we expand the resulting expression, all the coefficients will be pos-
itive. Since the constant term is 828, which is strictly positive, (2.8) is satisfied and so
R3(Ha,b,c,d,0) > R3(Pa+b+c+d+2). This completes the proof.
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