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Abstract: We present a systematic study of group-velocity-dispersion
properties in photonic crystal fibers (PCF’s). This analysis includes a
thorough description of the dependence of the fiber geometrical dis-
persion on the structural parameters of a PCF. The interplay between
material dispersion and geometrical dispersion allows us to established
a well-defined procedure to design specific predetermined dispersion
profiles. We focus on flattened, or even ultraflattened, dispersion be-
haviors both in the telecommunication window (around 1.55µm) and
in the Ti-Za laser wavelength range (around 0.8µm). We show the dif-
ferent possibilities of obtaining normal, anomalous, and zero dispersion
curves in the above frequency domains and discuss the limits for the
existence of the above dispersion profiles.
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1 Introduction

One of the most appealing features of photonic crystal fibers (PCF’s) is their high
flexibility based on the particular geometry of their refractive index distribution. The
transverse section of a PCF is a two-dimensional (2D) silica-air photonic crystal in which
an irregularity of the refractive index, or defect, is generated. In PCF’s guidance occurs
in the region where the defect is located, which determines an effective PCF core. Anal-
ogously, one can define an effective PCF cladding constituted by the region surrounding
the core, or defect area, that has the form of a perfectly periodic 2D photonic crystal.
As compared to conventional fibers, it is apparent that PCF’s enjoy a more complex
geometrical structure because of their 2D photonic crystal cladding. This fact allows us
to manipulate the geometrical parameters of the fiber (e.g., the air-hole radius a and
the lattice period, or pitch, Λ of a 2D triangular photonic crystal cladding) to generate
an enormous variety of different configurations.

The peculiarities of the guidance in the core depend on the nature of the defect,
which can generate donor or acceptor guided modes by an analogous mechanism lead-
ing to impurity states in electronic crystals [1]. On the other hand, the functional form
of the dispersion relation of guided modes is very sensitive to the 2D photonic crystal
cladding. For this reason, one expects to be able to control, at least to some extent, the
dispersion properties of guided modes by manipulating the geometry of the photonic
crystal cladding. It was soon realized that PCF’s exhibited dispersion properties very
different than those corresponding to ordinary fibers. As an example, some PCF configu-
rations presenting a point of zero dispersion well below the characteristic zero dispersion
point of silica at 1.3µm where found [2, 3, 4], as well as some other showing flattened
dispersion profiles [5, 6, 7]. Since the number of different photonic crystal configurations
is significant, one can deduce that it must be possible to elaborate a procedure to tailor
the dispersion of PCF modes in an efficient way. The success in the achievement of such
a procedure, that has to be necessarily smart and cannot be based on pure guesses,
will ideally provide a useful design tool to determine the PCF geometrical parameters
necessary to obtain a desired dispersion profile with specific characteristics. A first ap-
proach to design the dispersion properties of PCF’s using a systematic procedure has
been already suggested in Ref.[7].

The calculation of the dispersion properties of PCF modes requires a highly efficient
numerical method. The dispersion coefficient D is proportional to the second derivative
of the modal effective index with respect to the wavelength λ. For this reason, it is very
sensitive to the precision with which the dependence of neff with λ is calculated. On
the other hand, the calculation method has to provide a reasonable computational time
for evaluating the dispersion curves of different configurations. Ideally, it should also be
flexible to accommodate divers geometric proposals (such as different photonic-crystal
lattice geometries, non-perfect lattices and holes, asymmetries, different materials, and
so on) with a little effort. Here, we use a full-vector modal method developed by our own
group to describe electromagnetic propagation in general systems with translational in-
variance [8], supplemented by the use of periodic boundary conditions for the transverse
electromagnetic field [9]. Periodic boundary conditions, together with the fact that the
propagation problem is formulated in a purely 2D framework, turn out to be crucial
for the simplification of the method and the achievement of a versatile and efficient
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Fig. 1. Transformations of the lattice structure with the dimensionless parameters
f and M : (a) two structures with different filling fraction f and same magnification
M (a/Λ �= a′/Λ); (b) two structures with different magnification M and same filling
fraction f (a/Λ = a′/Λ).

algorithm [10]. At the same time, our approach permits to introduce the chromatic dis-
persion of the material in a natural way, without an extra cost in time or in precision. In
this sense, this method provides a very reasonable balance between precision and com-
putational time that makes it a perfect companion for the design procedure described
in this paper, as we shall see.

2 Designing Procedure

In this paper, we will focus on the dispersion properties of triangular silica-air PCF’s
with circular holes, although our procedure can be easily adapted to other geometries
and materials. Geometrically, a triangular lattice is characterized by the air-hole radius a
and the lattice period, or pitch, Λ. However, in the design procedure we have recognized
that it is more convenient to consider two alternate dimensionless parameters instead.
First, we consider the so-called filling fraction f , defined as f = (4π/3)(a/Λ)2, that
involves the dimensionless ratio a/Λ and provides the proportion of air with respect
to silica in the photonic crystal structure. A change in f produces a variation of the
amount of air in the structure, as shown in Fig. 1(a). The second parameter we take
into account is the magnification M , which simply consists in a simultaneous scale
transformation of both a and Λ in the same amount, as shown in Fig. 1(b). In order to
define M operatively, it is convenient to select a reference value of the pitch (in our case,
we choose Λ = 2.3µm). The magnification M has also an appealing practical interest.
In the pulling process during the fabrication of the fiber, M is the parameter that can
be controlled in a natural way. This is so because, under optimal conditions, the pulling
process should preserve the proportions of the original structure.

The definition of the dispersion coefficient of a PCF is

D ≡ −λ

c

d2neff

dλ2
, (1)
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where the effective refractive index of the mode is given by neff = β[λ, nm(λ)]/k0, β is the
propagation constant, k0 = 2π/λ is the free-space wave number, and nm = nm(λ) is the
chromatic dispersion of the material, silica in this case. According to the above equation,
there are two different sources of obtaining non-zero dispersion due to the existence of
two different types of dependence of β on λ. One of them is originated by the explicit
dependence of the propagation constant of the mode on λ and it occurs even if the
material is, or it can be considered, non-dispersive (nm(λ) = const). Since the dispersion
generated in this way is not produced by the chromatic dispersion of the material but
by the geometry of the PCF refractive index distribution that determines the dispersion
relation of the guided mode, β = β[λ,nm(λ) = const], we call it geometrical dispersion.
Its definition is, accordingly, the same as in Eq. (1) but supplemented with the condition
that the material is non-dispersive; Dg ≡ D|nm(λ)=const. The second source of dispersion
is certainly given by the implicit dependence of β on λ through the chromatic dispersion
of the material, nm = nm(λ). Consequently, this type of dispersion is called material
dispersion, Dm, and we calculate it as in Eq. (1) by substituting neff(λ) by nm(λ).

Our design procedure is based on the possibility to approximate the real dispersion
D by a sum of the geometrical and material dispersion [11];

D(λ) ≈ Dg(λ) +Dm(λ). (2)

The problem of designing the dispersion of a PCF becomes clearer when D is written
in this way. The virtue of Eq. (2) is that permits to split both sources of dispersion into
two different terms explicitly.

Since we consider air-silica PCF’s, the chromatic dispersion of silica nm(λ) is an
input of the problem and consequently, so is Dm. All the design power is stored in
the geometrical dispersion, In this sense it is very important to recognize the following
fact. The effective refractive index of a guided mode neff , for the calculation of which
we assume no material dispersion, explicitly depends on the photonic crystal cladding
parameters, a and Λ, and the wavelength λ. Inasmuch as neff is a dimensionless function,
this dependence can only occur through dimensionless ratios of these three parameters.
For our discussion, it is convenient to take as independent parameters a/λ and Λ/λ,
so that neff = neff(a/λ,Λ/λ). This property determines the dependence of Dg on M
completely. According to the definition of the geometrical dispersion, it is clear that
under a scale transformation of λ, we obtain

Dg(λ;M, f) =
1
M

Dg(
λ

M
; f). (3)

Consequently, it is enough to calculate the dispersion curve for one reference con-
figuration (fixing the filling fraction f and setting M = 1, or equivalently, fixing a and
Λ = 2.3µm) to analytically obtain all the family of dispersion curves parametrized by
M , as shown in Fig. 2(a). The linear part of these curves modifies its slope and it is
simulteanously shitfed when M is changed.

On the contrary, there is no simple analytical approach to predict the behavior of
Dg with the filling fraction f . In practice, the only way to determine this dependence is
by calculating Dg numerically. We thus start with a reference configuration, e.g. M = 1
(i.e., with Λ = 2.3µm) and evaluate the geometrical dispersion curves for different filling
fractions f simply by changing a. The result is represented in Fig. 2(b). The remarkable
feature of these curves is that, besides they are shifted, the slope of their linear part is
approximately preserved when the filling fraction is changed. This property will show
to be very helpful in the design process.

The design procedure is better visualized by means of a graphical representation of
the geometrical, material and total dispersion. For convenience, the total dispersion is
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Fig. 2. Dependence of the geometrical dispersion curves on: (a) the magnification
M ; and (b) the filling fraction f .
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Fig. 3. The total dispersion D (red curve) is, in a first-order approximation, the
result of substracting the sign-changed material dispersion −Dm (black curve) from
the geometrical dispersion Dg (blue curve). A typical case exhibiting positive ultra-
flattened dispersion in the 1.55µm window is obtained.

calculated using Eq. (2), but written in a slightly different form,

D(λ) ≈ Dg(λ) − (−Dm(λ)). (4)

In Fig. 3, the curves corresponding to the geometrical dispersionDg, the sign-changed
material dispersion −Dm, and the total dispersion D, are represented in blue, black and
red, respectively. According to Eq. (4), the red curve corresponding to total dispersion
is obtained by subtracting the values of the black curve from the blue one.

With the previous ingredients, we can give a well-defined prescription to design
PCF’s with ultraflattened dispersion profiles. Ultraflattened dispersion possess a point
with zero fourth-order dispersion located between the two consecutive extremes. Up to
date, this behavior has been predicted to exist only in PCF’s resulting in extremely
wide nearly zero flattened dispersion profiles [7].

The key factor to achieve this particularly interesting dispersion property is the
control of the slope of the linear part of Dg. The sign-changed material dispersion −Dm

is a smooth curve in most of the infrared region, so that it can be well approximated by
a linear function around different λ’s belonging to this region over pretty wide intervals.
It is clear, in view of Fig. 3, that in the region of λ’s in which the linear part of both
the black and blue curves can be set parallel, the total dispersion will achieve an ideally
perfect flattened behavior.

The strategy to obtain such a behavior is then straightforward. We start by deter-
mining the slope of the black curve at some specific wavelength. In the region where
the material dispersion curve is smooth, this slope is approximately the same for a rea-
sonably wide neighborhood around the specified wavelength. Once the slope of the Dm

curve is fixed, we perform a scale transformation of Dg parametrized by the magnifi-
cation M in such a way that provides an scaled Dg curve having a linear region with
the same given slope. If the wavelength region (centered at the specified λ) where Dm

behaves linearly overlaps the wavelength region of linear behavior of Dg, we will obtain
an ultraflattened total dispersion curve in the overlapping wavelength range.

This process fixes the value of M . However, it remains still one degree of freedom to
play with, the filling fraction f . As shown in Fig. 2(b), note that a change in f does not
alter the value of the slope of the linear part of Dg. Therefore, if we proceed to change
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the value of f preserving the value of M obtained above, the difference between both
curves will change, and also the overlapping range, but the parallelism condition will
remain unaltered. This means that one simultaneously modifies the value of the total
dispersion D and the width of the wavelength window where ultraflattened behavior
occurs by acting on the filling fraction f . Since these two properties are not independent,
one has the choice to select f either to obtain a desired value of D or to maximize the
range of ultraflattened dispersion operation. In both cases, all possible configurations
will provide ultraflattened dispersion profiles.

This ends the design procedure that gives the values of M and f providing a pre-
viously established ultraflattened dispersion behavior at a reference wavelength. The
design procedure does not supply us with the exact parameters because it is based on
an approximate expression for D (see Eq. (2)). If one is interested in a more accurate
evaluation of M and f , one can undertake a second fine-tuning search of the actual pa-
rameters starting from their approximate values. This search is performed by calculating
the real dispersion exactly, that is, by including the chromatic dispersion of the material
explicitly in the determination of the dispersion relation of the mode (see Eq. (1)). Since
the starting values are pretty close to the real ones, the fine-tuning process converges
rapidly.

The previous scheme to select the PCF parameters to tailor a ultraflattened dis-
persion profile can be easily formulated in terms of an optimization algorithm. Current
work is being developed to automatize both the design and the fine-tuning processes
into a fully integrated software optimization tool.

3 Some Specific Designs

We start by studying of configurations designed to have ultraflattened dispersion in
the region around 1.55µm. Using the procedure described in the previous section, it is
possible to systematically obtain ultraflattened dispersion configurations using 1.55µm
as the reference wavelength providing the magnification M . These configurations can
be designed to show positive, negative or nearly-zero D just by properly adjusting the
value of the filling fraction f . However, despite the dispersion profiles obtained this
way are certainly ultraflattened, they are not necessarily optimized. This means that
they will not provide the widest windows of ultraflattened behavior. Nevertheless, they
constitute a good starting point to search configurations with optimal width at a given
D.

Even without a sophisticated optimization algorithm, we can take advantage of the
non-optimized profiles provided by the procedure described in the previous sections to
obtain improved ultraflattened profiles. In Fig. 4 we show three curves characterized
for having negative, nearly-zero, and positive dispersion coefficient D. We would like
to point out that it is easier to achieve broader wavelength windows for ultraflattened
curves with positive dispersion. This feature can be understood by analyzing the way
they are obtained in the design process. If we look at the material dispersion in Fig.
3, we see that it is precisely in this region where −Dm behaves more smoothly, thus
providing a larger wavelength interval of linear behavior. On the other hand, we need
Dg curves with the same slope as the −Dm curve at the reference wavelength but, and
this is the crucial point, that simultaneously remain above it. This means we need to use
curves corresponding to higher filling fraction in Fig. 2(b) to achieve increasingly higher
positive values of D. This is so because the larger f is, the more shifted to higher λ’s
these curves are, and, consequently, the higher the total dispersion becomes. However,
this is not the only effect that occurs as f increases. It turns out that the linear part
of these curves also increases when shifted to higher λ’s, as depicted in Fig. 2(b). As
a consequence, the overlapping region of linear behavior of the −Dm and Dg curves
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Fig. 4. Ultraflattened dispersion behavior for three different PCF configurations
near the communication window with: (a) positive dispersion (a = 0.4µm and
Λ = 3.12µm); (b) nearly-zero dispersion (a = 0.316 µm and Λ = 2.62µm); and (c)
negative dispersion (a = 0.27 µm and Λ = 2.19 µm). The ultraflattened behavior
bandwidth, that corresponds to an allowed dispersion variation of 2 ps nm−1 km−1,
is 668 nm, 523 nm, and 411 nm, respectively.

potentially becomes larger as D increases. The final outcome is a wider ultraflattened
dispersion profiles for higher positiveD’s, as shown in Fig. 4. An analogous, but opposite,
argument can be used to show why the wavelength windows of ultraflattened dispersion
behavior get reduced as we search configurations with increasingly negative dispersion,
as it is apparent in Fig. 4 as well. In any case, notice the remarkably wide windows of
ultraflattened dispersion behavior. These windows are defined according to the usual
criterion used to define flattened dispersion, namely, that the maximum of the dispersion
variation in the given window has to be lesser than a fixed small amount (in our case,
2 ps nm−1 km−1).

The reduction of the ultraflattened dispersion window for shorter wavelengths has
its main origin in the −Dm curve behavior that becomes less and less smooth as we
decrease λ due to its growing curvature. The slope of this curve increases quickly yielding
smaller wavelength regions where the overlap of the intervals of linear behavior of −Dm

and Dg can occur. So, it is clear that there exist a limit for ultraflattened behavior as
we move toward shorter wavelengths. If λ is small enough, the behavior of the material
dispersion is so badly represented by a linear approximation that there is not even the
possibility to work with the same design procedure explained in the previous section
to obtain ultraflattened dispersion profiles. This is the case of the Ti-Za wavelength
window centered at 0.8µm.

The strategy to pursue in such a situation has to be necessarily different altough
based on similar ideas. This strategy is based upon the two following observations. The
first one is that the value of −Dm for silica at 0.8µm is approximately 120 ps nm−1 km−1,
a high value to compensate with Dg if one is looking for positive or nearly zero total
dispersion. The second one is that, in this wavelength range, the curvature of the geo-
metrical and material curves, unlike in the 1.55µm region, has always opposite signs.
This fact is clearly appreciated in Fig. 2, where the curvature of Dg is negative around
0.8µm in all cases, whereas, according to Fig. 3, the curvature of −Dm remains positive
even for values of λ beyond the zero material dispersion point at 1.3µm. The issue now
is not to play with the slope of Dg, as before, but to be able to achieve values of the ge-
ometrical dispersion large enough to compensate for the high value of the sign-changed
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Fig. 5. As in Fig. 3 but for a typical case exhibiting positive flattened dispersion in
the 0.8µm window.

material dispersion at this wavelength. Our strategy will consist in finding configura-
tions whose geometrical dispersion around 0.8µm exceeds the value of −Dm in the same
wavelength region, as shown in Fig. 5. Because of the opposite sign of the curvature of
these two curves, it is granted that the profile of the total dispersion will have the form
shown by the red curve in Fig. 5. It will include one point of zero third-order dispersion,
located at the wavelength for which the difference between the Dg and −Dm curves
reaches a maximum, or, equivalently, at the point for which the negative slopes of both
curves are equal. This type of behavior has been already proven to exist in PCF’s,
although in a different wavelength window and only for nearly-zero dispersion [5].

We start with our reference configuration curve (that with M = 1, or Λ = 2.3µm, in
Fig. 2 (a)), whose maximum occurs close to 0.8µm. At this wavelength, the geometrical
dispersion has a small value (Dg ≈ 25 psnm−1 km−1) as compared to that of −Dm at
the same wavelength. The properties depicted in Fig. 2 for Dg will guide us in increasing
the values of the geometrical dispersion. According to Fig. 5, we will focus on the region
of these curves that have negative slope and near maximum. It is clear from Fig. 2(b)
that, as we increase f , the maximum of the Dg curve moves upwards and simultaneously
is shifted to the right. Despite that we are able to increase the value of the maximum of
the Dg curve, this maximum moves away from the 0.8µm window. We can relocate the
Dg curve in such a way the region near maximum moves back to the desired window
by acting now on the magnification M . By reducing M , we simultaneously displace
the maximum to shorter wavelengths and increase its value, as depicted in Fig. 2(a).
The global effect on the value of the dispersion of this twofold operation is additive, so
that we can considerably increase the value of the geometrical dispersion in the 0.8µm
window by a suitable selection first of f (increase) and then of M (decrease). The high
value of −Dm at 0.8µm can be in fact overcome, as shown by the positive dispersion
curve in Fig. 6.

We have already shown the existence of configurations that exhibit ultraflattened
dispersion behavior in regions including 1.5µm (Fig. 5). Another complementary ques-
tion we can formulate now is whether it is possible to obtain also flattened dispersion
configurations in windows centered at 1.5µm. The answer to this question is certainly
yes. It is not surprising because, according to what it has been discussed before for the
0.8µm window, the requirement for flattened dispersion behavior is less demanding than
that necessary to achieve an ultraflattened dispersion profile. Therefore, it is possible
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Fig. 6. Flattened dispersion behavior for three different PCF configurations centered
near the Ti-Za window at 0.8µm: (a) with positive dispersion (a = 0.28µm and Λ =
0.88µm); (b) with nearly-zero dispersion (a = 0.27µm and Λ = 0.90µm); and (c)
with negative dispersion (a = 0.255µm and Λ = 0.91µm). The allowed variation of
the flattened dispersion profiles is 2 ps nm−1 km−1 and their corresponding flattened
dispersion bandwidths are 58 nm, 57 nm, and 59 nm, respectively.

to analyze the interesting technological issue of the tunableness of flattened dispersion
in the telecommunication window centered at 1.5µm. In another words, we search all
type of flattened dispersion configurations that can have positive, negative, or nearly-
zero dispersion centered at this wavelength. In this way, we will be able to identify the
PCF’s geometrical parameters that permit to tailor an specified flattened dispersion
profile in this window. This is precisely the analysis depicted in Fig. 7. We can appreci-
ate here that there is a considerable range of tunableness in the dispersion of a PCF in
this window. This range extends from configurations owning positive dispersion (up to
+45 psnm−1 km−1) to configurations with similar but negative value of dispersion (up
to −43 psnm−1 km−1). In all cases, the wavelength extension of the flattened dispersion
behavior is around or above 200 nm.

4 Conclusions

We have demonstrated how a smart utilization of the geometry of the photonic crystal
cladding of a triangular PCF permits an outstanding control of the dispersion properties
of the fiber. The fact that the geometrically-induced dispersion of a PCF has remark-
able properties and it is highly tunable in terms of the geometrical parameters of the
fiber can be used to properly compensate the inherent dispersion of the silica in many
different ways. The key point is the understanding of the interplay between both type
of dispersions, which is easily achieved by means of a suitable graphical representation
and the use of the approximate equation for the total dispersion given in Ref. (2). As a
result, we have been able to establish a well-defined prescription to design a wide variety
of dispersion behaviors in the telecommunication and the Ti-Za windows. We have fo-
cused on a specially technologically interesting type of dispersion profiles, namely, that
corresponding to configurations owning constant dispersion over wide wavelength win-
dows. In this direction, we have formulated two different design procedures depending
on whether we are interested to achieve flattened dispersion (one point of zero third-
order dispersion) or ultraflattened dispersion (one point of zero fourth-order dispersion).
In all cases, the basic triangular geometry of the PCF cladding has proven to be very
rich in yielding configurations covering a large dispersion spectrum, ranging from rather
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Fig. 7. Four flattened dispersion curves corresponding to different values of
the dispersion centered near 1.55 µm. With positive dispersion: (a) D ≈
+45ps nm−1 km−1 with a = 0.49µm and Λ = 2.32µm, and (b) D ≈
+22ps nm−1 km−1 with a = 0.40 µm and Λ = 2.71µm. With negative disper-
sion: (c) D ≈ −23 ps nm−1 km−1 with a = 0.28 µm and Λ = 2.16µm, and (d)
D ≈ −43 ps nm−1 km−1 with a = 0.27µm and Λ = 1.93µm. The allowed variation
of the flattened dispersion profiles is 2 ps nm−1 km−1 and their corresponding flat-
tened dispersion bandwidths are 270 nm, 294 nm, 259 nm, and 195 nm, respectively.

large positive values to equally large negative values of dispersion. The final conclusion
of our systematic analysis on PCF dispersion is that, despite the enormous size of the
parameter space, a good comprehension of the guidance mechanism permits an extreme
simplification of the search procedure, resulting in the implementation of a successful
design prescription to achieve constant dispersion configurations.
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