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Abstract
A simple solution to the Behrens–Fisher problem based on Bayes factors is presented, and its
relationwith theBehrens–Fisher distribution is explored. The construction of theBayes factor
is based on a simple hierarchicalmodel, and has a closed formbased on the densities of general
Behrens–Fisher distributions. Simple asymptotic approximations of the Bayes factor, which
are functions of the Kullback–Leibler divergence between normal distributions, are given,
and it is also proved to be consistent. Some examples and comparisons are also presented.

Keywords Behrens–Fisher problem · Bayes factor · Hierarchical models

1 Introduction

The Behrens–Fisher problem is that of testing the equality of the means of two independent
normal populations with unknown and arbitrary variances. The problem arises when the
quotient between the variances is unknown. If this quotient is known, the problem is easily
solved from both the frequentist and Bayesian approaches.

More specifically, suppose that we have two samples x1 = (x11, . . . , x1n1) and x2 =
(x21, . . . , x2n2) of the populations N (μ1, σ

2
1 ) and N (μ2, σ

2
2 ), respectively. The problem is

then to test the hyphotesis H0 : μ1 = μ2 vs. H1 : μ1 �= μ2 with unknown variances.
Under a frequentist point of view, the Behrens–Fisher problem has the difficulty that

standard homoscedastic normal theory cannot be applied due to the presence of the two
unrelated variances, so that there is no an exact p-value. Following this approach and trying
to find an approximate solution to the problem, two different but closely related methods
have been addressed: the Neyman-Pearson theory of significance tests (Bartlett [1] , Welch
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[21], Wald [19], Scheffé [17]) and that based on the notion of generalized p-values (Tsui and
Weerahandi [18], Weerahandi [20] and Witkovsky [22]). An extensive bibliography of such
frequentists methods appears in Kim [12].

In a Bayesian approach, the problem has been studied as one of interval estimation of
the difference of μ1 − μ2. In this way, as Lindley [13] proposes, Jeffreys [11] provides a
credible interval for μ1 − μ2 based on the posterior distribution of the difference, using as a
prior π J (μ1, μ2, σ1, σ2) ∝ (σ1σ2)

−1. It is well known that the posterior distribution of this
difference is a Behrens–Fisher distribution (Behrens [2], Fisher [6,7], Box-Tiao [4], Girón et
al. [9]).

There is not an agreed Bayesian solution to the Behrens–Fisher testing problem based on
Bayes factors. This is mainly due to the fact that as the priors commonly used—generally,
reference priors—are improper, the Bayes factor to compare the null and the alternative
hypotheses cannot be computed. To overcome this difficulty, inMoreno et al. [14] andMoreno
and Girón [15], the problem is formulated as one of Bayesian model selection, and intrinsic
and fractional prior distributions are generated in order to compute a proper Bayes factor.

In this paper the Behrens–Fisher problem is approached as a true testing problem based on
the Bayes factor. To this end, the problem is presented as a problem of testing the homogene-
ity of the means of two normal populations and a simple solution is provided by formulating
a hierarchical model under the alternative hypothesis of the problem. The use of such hier-
archical model will allow us to derive a proper Bayes factor, thus avoiding the impossibility
that arises in its calculation when only improper distributions are used to compare models of
different dimensions. The most important fact in the paper is that the solution provided here
is simpler than the one obtained with the use of intrinsic priors distributions, since it only
involves one-dimensional integrals, and the numerical results of the Bayes factors obtained
are very similar in both cases.

In addition to the simplicity of the solution obtained, it is important to note that the prior
distributions considered for the hierarchical model parameters imply that they are basically
the same as those in Jeffreys [11], which shows an interesting relationship between the
proposed testing approach and the estimation approach. This fact possibly explains the fact
that it is possible to obtain an expression for the proposed Bayes factor using the density of
the Behrens–Fisher distribution.

The article is structured as follows. In Sect. 2, the problem is posed as a homogeneity test
and a hierarchical model under the alternative hypothesis is formulated to derive a proper
Bayes factor. In Sect. 3, relationship between the Bayes factor and the Behrens–Fisher dis-
tribution is considered. In Sect. 4, a simple asymptotic approximation of the Bayes factor,
related to the Kullback–Leibler divergence is given, and the consistency of the Bayes factor
is proven when both sample sizes grow to infinity at the same rate. Section 5 provides several
examples and comparison with other Bayesian and frequentist approaches.

Finally, Sect. 6 discusses some of the findings in the paper and suggests a more general
solution in line with other approaches like the one based on intrinsic priors. Possible exten-
sions of the presented results to the case of more than two samples and to the problem of
comparison, i.e., testing the homogeneity of regression coefficients under heteroscedasticity
are also addressed.

123



A Bayesian solution to the Behrens–Fisher problem Page 3 of 15 158

2 The Behrens–Fisher problem

In this section, the Behrens–Fisher problem is formulated as a problem of homogeneity of
the means of two independent normal distributions with unknown and unequal variances.

Suppose that we have two independent samples x1 = (x11, . . . , x1n1) and x2 =
(x21, . . . , x2n2) of populations N (μ1, σ

2
1 ) and N (μ2, σ

2
2 ), respectively. An homogeneity test

for the means of the two sample problem can be stated as that of comparing the hypotheses

H0 : μ1 = μ2 = μ; σ 2
1 and σ 2

2 arbitrary vs. H1 : μ1 �= μ2; τ 21 and τ 22 arbitrary,

where the null hypothesis H0 represents the equality of the mean parameters, whilst the alter-
native hypothesis states that the population means are different, irrespective of the variances
of the normal populations, which are treated as nuisance parameters.

Thus, we have, in principle, seven unknown parameters μ,μ1, μ2, σ
2
1 , σ 2

2 , τ 21 and τ 22 to
assign prior information. Under H0, reference priors are considered, whereas the use of a
hierarchical model only for the means, and objective priors for the common mean parameter
μ, and the unknown variances τ 21 , τ 22 is proposed under H1.

The general form of the likelihood function for the data x1 and x2 with means μ1 and μ2

and variances σ 2
1 and σ 2

2 is

L(x1, x2;μ1, μ2, σ
2
1 , σ 2

2 ) =
2∏

i=1

(2πσ 2
i )−ni /2exp

[
− 1

2σ 2
i

(
νi s

2
i + ni (μi − x̄i )

2)
]

,

where x̄1, x̄2 are the sample means, s21 and s22 are the unbiased estimates of the variances σ 2
1

and σ 2
2 , respectively, and ν1 = n1 − 1 and ν2 = n2 − 1, the degrees of freedom.

Under H0, the marginal of the data x1, x2, conditional on μ, σ 2
1 and σ 2

2 is the likelihood
function substituting μ1 and μ2 by μ, that is

f0(x1, x2|μ, σ 2
1 , σ 2

2 ) =
2∏

i=1

(2πσ 2
i )−ni /2exp

[
− 1

2σ 2
i

(
νi s

2
i + ni (μ − x̄i )

2)
]

.

This conditional marginal density of the data only depends on the nuisance parameters μ,
σ 2
1 and σ 2

2 , which are regarded to be independent and they are assigned reference priors, i.e.,

μ ⊥⊥ σ 2
1 ⊥⊥ σ 2

2 and h(μ, σ 2
1 , σ 2

2 ) = c0c1c2(σ
2
1 )−1(σ 2

2 )−1,

where ⊥⊥ means independence or conditional independence.
Therefore,

f0(x1, x2) = c0c1c2

∫

R+

∫

R+

∫

R

f0(x1, x2|μ, σ 2
1 , σ 2

2 )(σ 2
1 )−1(σ 2

2 )−1dσ 2
1 dσ 2

2 dμ.

Integrating first with respect to σ 2
1 and σ 2

2 , and then with respect to μ, the marginal under
H0 turns out to be

f0(x1, x2) = c0c1c2

∫

R

2∏

i=1

π−ni /2Γ
(ni
2

) (
νi s

2
i + ni (μ − x̄i )

2)−ni /2 dμ.

Note that the integrals with respect to the population variances are analytic but the integral
with respect μ has not a closed form formula.

Under H1, the hierarchical model is given by setting the first hierarchy

μ1|μ, τ 21 ⊥⊥ μ2|μ, τ 22 and μi |μ, τ 2i ∼ N (μi |μ, τ 2i ),
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the second is that

τ 21 |σ 2
1 ⊥⊥ τ 22 |σ 2

2 and τ 2i |σ 2
i ∼ s(σ 2

i ) where s is any scale density function

and the thirth, and last, hierarchy is, as before, that

μ ⊥⊥ σ 2
1 ⊥⊥ σ 2

2 and h(μ, σ 2
1 , σ 2

2 ) = c0c1c2(σ
2
1 )−1(σ 2

2 )−1.

Note that the first hierarchy is related to the g-priors of Zellner and Ziow [23] in the
one-dimensional case when gi = ni , with the important difference that they are centered at
μ, as the intrinsic priors, instead of 0, as is usually done.

According to the following Lemma 1, and taking into account the second and third hier-
archy of the model, it is easy to deduce that the prior distribution of τ 2i is the same reference
prior as that of σ 2

i for i = 1, 2, with the same constant ci .

Lemma 1 If the prior density of σ 2
i is h(σ 2

i ) = ci/σ 2
i (i = 1, 2), with ci any positive constant,

and the distribution of τ 2i |σ 2
i ∼ s(σ 2

i ), where s(.) is any scale density function, then the prior
distribution of τ 2i is h(τ 2i ) = ci/τ 2i .

Proof If s0 is the density generator of the scale family, then

s(τ 2i |σ 2
i ) = 1

σ 2
i

· s0
(

τ 2i

σ 2
i

)
.

If we do the change of variables y = τ 2i /σ 2
i in the integral, then, after some obvious simpli-

fications

h(τ 2i ) =
∫

R+
s0(y)

ci
τ 2i

dy = ci
τ 2i

∫

R+
s0(y)dy = ci

τ 2i
.

��
Lemma 1 implies that the second and third hierarchy of the proposed model are

μ ⊥⊥ τ 21 ⊥⊥ τ 22 and h(μ, τ 21 , τ 22 ) = c0c1c2(τ
2
1 )−1(τ 22 )−1.

In this way, the computation of the marginal under H1 runs as follows

f1(x1, x2|μ,μ1, μ2, τ
2
1 , τ 22 ) =

2∏

i=1

(2πτ 2i )−ni /2exp

[
− 1

2τ 2i

(
νi s

2
i + ni (μi − x̄i )

2)
]

,

g(μ1, μ2|μ, τ 21 , τ 22 ) =
2∏

i=1

(2πτ 2i )−1/2exp

[
− 1

2τ 2i

(
μi − μ)2

)
]

,

h(μ, τ 21 , τ 22 ) = c0c1c2
τ 21 τ 22

.

Multiplying the three equalities and rearranging the quadratic forms of the exponent, we
get

f1(x1, x2|μ,μ1, μ2, τ
2
1 , τ 22 ) = c0c1c2

2∏

i=1

(2π)−(ni+3/2)(τ 2i )−(ni+3/2)/2

×exp

[
− 1

2τ 2i

(
νi s

2
i + (ni + 1)(μi − x̄i )

2 + ni
ni + 1

(μ − x̄i )
2
)]

.
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Now, the marginal of the data is obtained by integrating out this expression, first with respect
to μ1 and μ2 and, then, with respect to τ 21 and τ 22 . The last integral, with respect to μ has not
an analytical closed form. Therefore, after computing all the integrals, the marginal turns out
to be

f1(x1, x2) = c0c1c2

×
∫

R

2∏

i=1

1√
ni + 1

π−ni /2Γ
(ni
2

)(
νi s

2
i + ni

ni + 1
(μ − x̄i )

2
)−ni /2

dμ.

Finally, after simplifying common terms, the Bayes factor for testing H0 vs. H1 turns out
to be

B01(x1, x2) =
2∏

i=1

√
ni + 1

∫ ∏2
i=1

(
νi s2i + ni (μ − x̄i )2

)−ni /2 dμ

∫ ∏2
i=1

(
νi s2i + ni

ni+1 (μ − x̄i )2
)−ni /2

dμ

,

which can be written in simplified form as

B01(x1, x2) =
2∏

i=1

√
ni + 1

∫ ∏2
i=1

(
1 + ni

(μ−x̄i )2

νi s2i

)−ni /2

dμ

∫ ∏2
i=1

(
1 + ni

ni+1
(μ−x̄i )2

νi s2i

)−ni /2

dμ

. (1)

It can be remarked that the application of the Lemma1,would have allowed us to formulate
the hypothesis test —by abusing the notation just a little—with the same variances in both
hypotheses, i.e., in the form

H0 : μ1 = μ2 = μ; σ 2
1 and σ 2

2 arbitrary vs. H1 : μ1 �= μ2; σ 2
1 and σ 2

2 arbitrary.

An interesting point that we would like to make to conclude this Section is that μ1 and μ2

have the same improper marginal as μ, as it is easily proved. Therefore, we can establish a
close relationship between the proposedBayesian approach and the one given by Jeffreys [11]
as far as prior distributions are concerned. This is possibly the reason why an expression of
the Bayes factor in (1) can be obtained in terms of the density function of the Behrens–Fisher
distribution, which we will study in the next section of the paper.

3 Relation with the Behrens–Fisher distribution

It is interesting to see that the integrands in both the numerator and the denominator of
the Bayes factor in (1) are proportional to the product of the densities of two Student t
distributions. In this section, we will prove that these integrals can be evaluated through the
general formof aBehrens–Fisher distribution. To do this, we begin by recalling the definitions
of the standard and generalized Behrens–Fisher distributions.

Definition 1 Arandomvariateb0 follows a standardBehrens–Fisher distributionwith degrees
of freedom f1 > 0, f2 > 0 and angle φ ∈ [0, π/2] if b0 = t1 sin φ − t2 cosφ, where t1 and
t2 are independent random variates following Student t distributions with f1 > 0 and f2 > 0
degrees of freedom, respectively. It will be denoted by

b0 ∼ Be-Fi( f1, f2, φ).
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The extension of this distribution to a location-scale family is defined in Girón et al. [9]
as follows.

Definition 2 A random variate b is said to be distributed as a generalized Behrens–Fisher
distribution with location μ ∈ (−∞,∞), scale σ > 0, degrees of freedom f1 > 0, f2 > 0
and angle φ ∈ [0, π/2] if b = μ + σb0. It will be denoted by

b ∼ Be-Fi(μ, σ 2, f1, f2, φ).

The following theorems are given in Girón et al. [9]. Theorem 1 shows that the generalized
Behrens–Fisher distribution is a convolution of two general Student t distributions. Note that
the general form t(μ, σ 2, ν) corresponds to a Student t distribution with location parameter
μ, scale parameter σ 2 and degrees of freedom ν. Theorem 2 states that the generalized
Behrens–Fisher distribution is a location mixture of Student’s t distributions with mixing
distribution a Student t .

Theorem 1 If ti ∼ t(μi , σ
2
i , fi ), i = 1, 2 and t1, t2 are independent, then

b = t1 ± t2 ∼ Be-Fi(μ1 ± μ2, σ
2
1 + σ 2

2 , f1, f2, φ),

where φ ∈ [0, π/2] is such that tan2 φ = σ 2
1 /σ 2

2 .

Theorem 2 If

x |μ ∼ t(μ, σ 2
0 , f1)

μ ∼ t(m0, τ
2
0 , f2)

then x ∼ Be-Fi(m0, σ
2
0 + τ 20 , f1, f2, φ) where φ is such that tan2 φ = σ 2

0 /τ 20 .

As a consequence of Theorem 2, the probability density function of x can be expressed
as

fx (x) =
Γ

(
f1+1
2

)
Γ

(
f2+1
2

)

πΓ
(

f1
2

)
Γ

(
f2
2

)√
f1 f2σ 2

0 τ 20

×
∫

R

(
1 + (x − μ)2

f1σ 2
0

)− f1+1
2

(
1 + (μ − m0)

2

f2τ 20

)− f2+1
2

dμ (2)

Once we have introduced the above definitions and results, let us consider again the Bayes
factor in expression (1).

Defining d = x̄2 − x̄1, the integral of the numerator in (1) is

∫

R

(
1 + n1

(μ − x̄2 + d)2

ν1s21

)−n1/2 (
1 + n2

(μ − x̄2)2

ν2s22

)−n2/2

dμ.

From a simple change of variable δ = μ − x̄2 + d , the last equality can be written as

∫

R

(
1 + n1

δ2

ν1s21

)−n1/2 (
1 + n2

(δ − d)2

ν2s22

)−n2/2

dδ.

Taking into account formula (2), the preceding last formula is, up to constants, the proba-
bility density function evaluated at zero of a random variable distributed as a Behrens–Fisher
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distribution with location x̄2 − x̄1, scale s21/n1 + s22/n2, degrees of freedom ν1, ν2 and angle

φ such as tan2φ = s21/n1
s22/n2

.

Thus, the integral can be written as

πΓ
(

ν1
2

)
Γ

(
ν2
2

)

Γ
(

ν1+1
2

)
Γ

(
ν2+1
2

)

√

ν1ν2
s21
n1

s22
n2

· fb1(0),

where fb1 is the probability density function of a random variable b1 distributed as

b1 ∼ Be-Fi

(
x̄2 − x̄1,

s21
n1

+ s22
n2

, ν1, ν2, φ

)
.

Following the same reasoning, the integral of the denominator in expression (1) can be
expressed as

πΓ
(

ν1
2

)
Γ

(
ν2
2

)

Γ
(

ν1+1
2

)
Γ

(
ν2+1
2

)

√

ν1ν2
(n1 + 1)s21

n1
· (n2 + 1)s22

n2
· fb2(0),

where fb2 is the probability density function of a random variable b2 distributed as

b2 ∼ Be-Fi

(
x̄2 − x̄1,

(n1 + 1)s21
n1

+ (n2 + 1)s22
n2

, ν1, ν2, ψ

)
,

where ψ is an angle such that tan2ψ = (n1 + 1)s21/n1
(n2 + 1)s22/n2

.

Finally, (1) turns out to be

B01(x1, x2) = fb1(0)

fb2(0)
. (3)

4 Asymptotic behavior: approximations and consistency

In this section wewill study some asymptotic properties of the proposed Bayes factor in order
to know its behavior when sample sizes tend to infinity. We will also prove its consistency
for the case where the sample sizes grow towards infinity at the same rate.

We will begin by giving an approximation of the Behrens–Fisher distribution when its
degrees of freedom grow indefinitely, which will allow us to derive an approximation of the
Bayes factor studied in this article for large sample sizes. Taking into account Theorem 1
and the well known result that the Student t distribution asymptotically follows a normal
distribution if the degrees of freedom are large enough, the following theorem holds.

Theorem 3 If b ∼ Be-Fi(μ, σ 2, f1, f2, φ) and f1, f2 tends to ∞, then the distribution of b
is approximately N (μ, σ 2).

Considering last theorem, the distribution of the random variate b1 in (3) can be approxi-
mated by a normal with mean x̄1 − x̄2 and variance s21/n1 + s22/n2, if the sample size is large
enough, whilst the distribution of the random variate b2 can be approximated by a normal
with mean x̄1 − x̄2 and variance s21 + s22 .
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Thus, if n1 → +∞ and n2 → +∞, an approximation of the Bayes factor in (3) is given
by

B01(x1, x2) �
√
s21 + s22√
s21
n1

+ s22
n2

exp

{
− 1

2(s21/n1 + s22/n2)
(x̄1 − x̄2)

2

}

× exp

{
1

2(s21 + s22 )
(x̄1 − x̄2)

2

}
.

An interesting fact about the asymptotic Bayes factor is that it can be expressed as a
function of the Kullback–Leibler divergences of normal distributions. In fact, if we take into
account that the Kullback Leibler divergence between the probability distributions of two
normal distributions X ∼ N (m1, v

2
1) and Y ∼ N (m2, v

2
2) is

δK L ( fX || fY ) = 1

2v22

[
(m1 − m2)

2 + (v1 − v2)(v1 + v2) + 2v22 log

(
v2

v1

)]
,

then, the above asymptotic expression of the Bayes factor can be written as

B01(x1, x2) �
exp

{
1

2
(
s21/n1+s22/n2

)
}

exp

{
1

2
(
s21+s22

)
} exp {δK L( fZ || fX ) − δK L( fZ || fY )} ,

where fX , fY and fZ are the probability density functions of the random variates X , Y and
Z normally distributed as follows

X ∼ N
(
x̄1 − x̄2, s

2
1 + s22

)

Y ∼ N

(
x̄1 − x̄2,

s21
n1

+ s22
n2

)

Z ∼ N (0, 1)

One important property of the Bayes factor for the Behrens–Fisher is that it is consistent
in the sense that, as n1 and n2 tend to infinity at the same rate, then, under the null hypothesis,
the probability of the true model goes to 1, or equivalently, the Bayes factor goes to infinity,
and under the alternative hypothesis it goes to 0. Next theorem states this result in a more
precise form. As a byproduct, we also obtain a simple approximation to the Bayes factor for
large values of n1 and n2 when the growing rate is of the same order.

Theorem 4 The Bayes factor is consistent under the null and the alternative hypotheses, in
the sense that if the model we are sampling from is the true one, the Bayes factor goes to
infinity, in probability. More precisely:

lim
n1,n2→+∞ B01(x1, x2) =

{∞ if μ1 = μ2

0 if μ1 �= μ2.
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Proof Assuming that the convergence towards infinity of n1 and n2 is of the same order, i.e.,
n1 = m y n2 = a · m, (a > 0), the Bayes factor can be written as

B01(x1, x2) �
√
am

√
s21 + s22√

as21 + s22

exp

(
− am

2(as21 + s22 )
(x̄1 − x̄2)

2

)

× exp

(
1

2(s21 + s22 )
(x̄1 − x̄2)

2

)
.

Considering that s21 and s22 are consistent estimators of σ 2
1 and σ 2

2 , respectively; the fol-
lowing expectation

E

⎡

⎣
√
am

√
s21 + s22√

as21 + s22

exp

(
−am(x̄1 − x̄2)2

2(as21 + s22 )

)
exp

(
(x̄1 − x̄2)2

2(s21 + s22 )

)⎤

⎦ ,

can be approximated for large values of m by

√
am

√
σ 2
1 + σ 2

2√
aσ 2

1 + σ 2
2

E

[
exp

(
− am

2(aσ 2
1 + σ 2

2 )
(x̄1 − x̄2)

2 + O

(
1√
m

))

× exp

(
1

2(σ 2
1 + σ 2

2 )
(x̄1 − x̄2)

2 + O

(
1√
m

)) ]
.

Taking into account that the distribution of the difference of means is approximated by

x̄1 − x̄2 ∼ N

(
μ1 − μ2,

aσ 2
1 + σ 2

2

am

)

then, under the null hyphotesis H0 : μ1 = μ2,

x̄1 − x̄2 ∼ N

(
0,

aσ 2
1 + σ 2

2

am

)
.

Thus,

lim
m→∞

{√
am

√
σ 2
1 + σ 2

2

aσ 2
1 + σ 2

2

E

[
exp

(
− am

2(aσ 2
1 + σ 2

2 )
(x̄1 − x̄2)

2 + O

(
1√
m

))

× exp

(
1

2(σ 2
1 + σ 2

2 )
(x̄1 − x̄2)

2 + O

(
1√
m

))]}

= lim
m→∞

{√
am

√
σ 2
1 + σ 2

2

aσ 2
1 + σ 2

2

√
am(σ 2

1 + σ 2
2 )

a(2m − 1)σ 2
1 + (2am − 1)σ 2

2

}
= ∞.

On the other hand, under the alternative hyphotesis H1 : μ1 �= μ2,

lim
m→∞

{√
am

√
σ 2
1 + σ 2

2

aσ 2
1 + σ 2

2

E

[
exp

(
− am

2(aσ 2
1 + σ 2

2 )
(x̄1 − x̄2)

2 + O

(
1√
m

))
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× exp

(
1

2(σ 2
1 + σ 2

2 )
(x̄1 − x̄2)

2 + O

(
1√
m

))]}

= lim
m→∞

{√
am

√
σ 2
1 + σ 2

2

aσ 2
1 + σ 2

2

√
am(σ 2

1 + σ 2
2 )

a(2m − 1)σ 2
1 + (2am − 1)σ 2

2

× exp

[
− am(μ1 − μ2)

2

4

(
1

aσ 2
1 + σ 2

2

− 1

a(2m − 1)σ 2
1 + (2am − 1)σ 2

2

) ]}
= 0

��

5 Examples: simulation study and calibration curves

If we define the statistic d = x̄2 − x̄1 as in Sect. 3, then the Bayes factor of equation (1),
after a simple change of variable, can be rewritten as a function of d and the rest of sufficient
statistics n1, n2, s21 , s

2
2

B01(d, n1, n2, s
2
1 , s

2
2 )

=
2∏

i=1

√
ni + 1

∫ (
1 + n1

δ2

ν1s21

)−n1/2 (
1 + n2

(δ−d)2

ν2s22

)−n2/2

dδ

∫ (
1 + n1

n1+1
δ2

ν1s21

)−n1/2 (
1 + n2

n2+1
(δ−d)2

ν2s22

)−n2/2

dδ

(4)

and, the posterior probability of the null hypothesis, assuming that both hypotheses are equaly
likely, is

Pr(H0|d, n1, n2, s
2
1 , s

2
2 ) = B01(d, n1, n2, s21 , s

2
2 )

1 + B01(d, n1, n2, s21 , s
2
2 )

.

From these formulas, it follows an interesting property of the Bayes factor and, conse-
quently, of the posterior probability of the null hypothesis, which is that both are symmetric
and unimodal functions of d = x̄2 − x̄1, irrespective of the values of the sample sizes n1 and
n2, and the unbiased estimates of the variances s21 and s22 . This implies that the acceptance
regions of the Bayes test, as functions of the statistic d , are always symmetric intervals around
0. Thus, the acceptance region is A(d; n1, n2, s21 , s22 ) = {d : B01(d, n1, n2, s21 , s

2
2 ) ≥ 1} or,

equivalently, A(d; n1, n2, s21 , s22 ) = {d : Pr(H0|d, n1, n2, s21 , s
2
2 ) ≥ 1/2)}.

This behavior is illustrated with a well known example taken from Box and Tiao [4,
pp 107-109]: In a spinning modification experiment involving independent data from two
normal distributions, the following results for the sufficient statistics were obtained:

x̄1 = 50 n1 = 20 s21 = 12

x̄2 = 55 n2 = 12 s22 = 40
(5)

The value of the observed statistic d = x̄2 − x̄1 = 55 − 50 = 5. It then follows, from
formula (4), that the numerical value of Bayes factor is

B01(x̄1, n1, s
2
1 , x̄2, n2, s

2
2 ) = 0.306118,

and the posterior probability of the null hypothesis is

Pr(H0|x̄1, n1, s21 , x̄2, n2, s22 ) = 0.234373,
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Fig. 1 Bayes factors and posterior probabilities of the null hypothesis as functions of the d statistic for the
Box and Tiao example with n1 = 20, s21 = 12, n2 = 10 and s22 = 40. The point located at the horizontal lines
corresponds to the observed value of the d statistic, which is outside of the acceptance interval

Table 1 Posterior probabilities of
the null hypothesis for the
proposed hierarchical model
(PH (H0|x1, x2)), for the
intrinsic approach
(P I (H0|x1, x2)) and Welch’s
p-value for the Box and Tiao
example with n1 = 20, s21 = 12,

n2 = 10 and s22 = 40 and
different values of the d statistic

d PH (H0|x1, x2) P I (H0|x1, x2) p-value

0.00 0.79 0.83 1.00

2.20 0.68 0.75 0.30

4.22 0.37 0.46 0.06

5.00 0.23 0.32 0.03

10.00 0.005 0.008 0.002

meaning that the null hypothesis is rejected.
On the other hand, the acceptance intervals for the d statistic are obtained from the inter-

section of the Bayes factor or the posterior probability of the null hypothesis—regarded as
functions of d—with the horizontal lines located at 1 and 1/2 values, respectively, as shown
in Fig.1. The acceptance interval is A(d; n1, n2, s21 , s22 ) = (−3.47197, 3.47197). As the
observed value of d = 5 does not belong to the acceptance interval, the null hypothesis is
rejected.

Next, we will establish a comparison of the proposed hierarchical Bayes factor with both
the intrinsic Bayes factor, appearing in Moreno et al. [14] and Moreno and Girón [15], and
the most commonly used frequentist test based on the Welch statistic.

The only common statistic to the intrinsic, the hierarchical Bayes factors and the p-values
is d . For this, Table 1 displays, for the values of s21 , s

2
2 , n1 and n2 considered in (5), the

posterior probabilities of the null hypothesis obtained through them and the resulting p-
value of the Welch’s t-test for the values of the d statistic reported in Moreno and Girón
[15].

From Table 1 we can conclude that the two Bayesian procedures produce very similar
results, with the intrinsic ones being slightly higher than the hierarchical ones. It seems to
indicate that the intrinsic Bayes factor slightly favors the null hypothesis, but there is a general
agreement between the report provided by both procedures about accepting or rejecting the
null hypothesis.More extensive analysis on the comparison of the three procedures for various
sample sizes and different variance estimates should be carried out to have more evidence
about their behavior.

A striking difference of the intrinsic and hierarchical based Bayes factors for the Behrens–
Fisher problem with the corresponding ones for the two-sample normal homoscedastic
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problem is that, in the latter case, both Bayes factors are simple functions of the standard t
statistic. This does not happen for the Behrens–Fisher problem. In fact, the test statistic for
the Welch tests is

t = d
√

s21
n1

+ s22
n2

.

Nevertheless, the asymptotic approximation of tour Bayes factor does depend on t but also
depends on the following statistic

u = d√
s21 + s22

and the ancillaries.
Only in the case of equal sample sizes, there is a one-to-one relationship between the

asymptotic Bayes factor and the Welch statistic.
Next, we will try to further explore how an increase in sample sizes can influence the

possible disagreements provided by the frequentist and Bayesian approaches presented in
this article.

We know that the t Welch statistic is distributed as a Student distribution with approxi-
mately ν degrees of freedom, where

ν =
(
s21
n1

+ s22
n2

)2

s41
n21ν1

+ s42
n22ν2

.

However, a calibration curve—the one that measures the relationship between p-values
and posterior probabilities of the null—which was introduced for the normal linear models
in Girón et al. [10], can be extended to the Behrens–Fisher problem using the common d
statistic. Usually, the calibration curves vary with the sample sizes of the two samples—the
ancillary statistics—, and the values of the unbiased estimates of the variances, s21 and s22 .
This implies that calibration curves for the Behrens–Fisher problem, depend on too many
parameters. Thus, to illustrate their form and behavior, we have chosen to compute only those
that depend on the common varying sample size n = n1 = n2 for fixed values of s21 and s22 .

Figure 2 illustrates the shapes of the calibration curves for s21 = 1 and s22 = 25 and
increasing values of n = 5, 10, 30 and 100. It also points out to the fact that, as the sample
size grows to infinity, the calibration curve converges to a constant equal to 1 for all p-values
in (0, 1], except for p = 0, meaning that the posterior probability of the null hypothesis goes
to 1 when sampling from it.

One important conclusion from the plot is, that for the same value of the posterior proba-
bility, the p-values decrease with the sample size. This fact has very important consequences
in the usual statistical practice: in order to match Bayesian and frequentist procedures, the α-
level for accepting/rejecting the null hypothesis, the sample size should be taken into account,
in the direction that for very large sample sizes, the α-level should be substantially decreased.

6 Extensions and conclusions

This paper provides a simple Bayesian solution to the Behrens–Fisher problem based on
Bayes factors. A simple hierarchical model for testing homogeneity of the means under
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Fig. 2 Calibration curves for different values of the common sample size n = 5, 10, 30 and 100, for fixed
values of the statistics s21 = 1 and s22 = 25

heteroscedasticity is considered to obtain a Bayes factor which is shown to be closely related
to the densities of the general Behrens–Fisher distributions.

A comparison with the Bayes factor for intrinsic priors shows minor differences which
basically produce the same Bayesian answers to the Behrens–Fisher problem. The inclusion
of the calibration curve for the hierarchical Bayes factor shows disagreement with frequentist
p-values when the sample sizes increase, a common characteristic of many Bayes factors.

Another possible Bayes factor that could be envisaged, following the steps suggested in
Subsection 4.9.1 of [8], would involve a modification of the hierarchical model presented
by introducing a certain hyperparameter σ 2 in the model and a new hierarchy by linking the
variances with this hyperparameter bymeans of a weakly informative prior scale distribution,
say s(·), an approach related to the one considered in Berger et al. [3] and similar to that of
Moreno et al. [16], as follows: The hierarchy of the means μi given μ and their respective
variances remains as before, and we add the following hierarchy of the variances given the
common parameter σ 2:

σ 2
i ⊥⊥ σ 2

2 | σ 2 and σ 2
i |σ 2 ∼ s(σ 2

i |σ 2),

τ 2i ⊥⊥ τ 22 | σ 2 and τ 2i |σ 2 ∼ s(τ 2i |σ 2).

In this way, the parameters on which to assign improper reference priors would be μ and
σ 2 under both hypotheses, so the resulting Bayes factor would be proper. This solution is a
little less simple than the one proposed in this paper since the the Bayes factor expression
obtained involves the computation of two-dimensional integrals. Simulation studies carried
out using Gamma, Inverted Gamma, Half normal and Half Cauchy distributions as links
show robustness in the results obtained and a high degree of similarity with those obtained
with the Bayes factor described here. This new Bayes factor would be more in line with other
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objective or default Bayes factors, but the one presented here has the merit of being simple
and does not differ much numerically from other possible solutions.

Finally, some possible extensions of the the simple hierarchical Bayes factor obtained in
the paper could be easily applied to the problem of comparing the means of more than two
samples of normal populations with unequal and unknown variances, and to the problem
of comparing the regression coefficients of two, and more than two, heteroscedastic normal
linear models.
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