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A B S T R A C T   

Optimal water allocation on a seasonal basis is generally a decision taken with uncertainty regarding seasonal 
crop needs (unknown yield, precipitation and other environmental factors). Decision criteria, such as “irrigating 
for the good years of production” and "applying a little extra water just in case it is needed by the plant", are 
consistent with the rational behaviour of stochastic profit maximization. The motivation behind an increase in 
water allocation (acquiring water rights or reserving water for certain crops) is that of self-protection: it is better 
to maintain an extra allocation of water than to face potential yield losses due to water constraints on production 
in those years when potential yields exceed average levels. The stochastic optimization model presented herein is 
applied to maize in Spain showing that in current economic and technical conditions, the optimal stochastic 
water allocation under yield uncertainty is 10% higher than the irrigation dose required under certainty (his-
torical average yield), which leads to an 8% higher expected profit than that obtained for an average-yield water 
application.   

1. Introduction 

Irrigation accounts for 70% of total global water withdrawals 
(Alexandratos and Bruinsma, 2012; Pereira and Marques, 2017) and is 
predicted to rise by up to 80% in many river basins and aquifers in arid 
regions by 2030. The reduction of water withdrawals together with an 
increase in efficiency in water use constitute a priority in many devel-
oped and developing regions, with metering and water pricing 
employed as the principal instruments to achieve the policy goal of 
sustainable water use (World Bank-OECD, 2018). 

Water pricing has featured in the policy agenda of many institutions, 
such as the OECD, the World Bank, and the European Union, as an 
economic instrument towards inducing water saving, and increasing 
productivity by inducing reallocation from low- to high-value uses, as 
well as towards preventing wasteful water practices, while simulta-
neously increasing financial resources for the operation of water ser-
vices. Specifically, the Water Framework Directive (European 
Commission, 2000) promotes the use of water pricing and the recovery 
of all costs. Nevertheless, the effectiveness of water pricing is subject to 
the implementation of volumetric metering and reliable governance 
systems, and the impact on water saving is related to the elasticity of 

demand. Scheierling et al. (2006) carried out a meta-analysis of price 
elasticity of agricultural water demand and reported a mean elasticity of 
− 0.48 with higher values for high-value crops. More recently, Zuo et al. 
(2015) found demand elasticity for high-security entitlements to water 
rights in Australia at approximately − 0.57, which lies in the lower range 
of elasticities reported in Australia (from −0.52 to −1.9). Therefore, 
estimation results show that the effectiveness of water pricing remains 
very limited, especially in the case of high-value crops with very in-
elastic water demands (Berbel and Expósito, 2020). 

Low price elasticities of water irrigation demand help to explain 
over-allocation (holding water resources for the next campaigns) and 
water over-use (applying water in excess to crop needs) by farmers. This 
research focuses on ex-ante over-allocation understood as water ac-
quired or reserved to be applied to the crop during the growing stage in 
the attempt to minimize potential yield losses. Decision criteria for the 
over-allocation of water, such as “irrigating for the good years of pro-
duction” and "applying a little extra water just in case it is needed by the 
plant", are consistent with the expected behaviour of profit maximiza-
tion. The motivation behind over-allocation is that of self-protection 
against yield uncertainty, in that it is deemed better to support an 
excessive water cost than to face potential yield losses due to water 
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constraints on production in those years when potential yields exceed 
average levels. 

Uncertainty constitutes a factor in almost every aspect of irrigation 
and agricultural activity, as driven by unpredictable climate conditions, 
yield variability, prices and changing economic and policy conditions. 
Mathematical programming applications to consider this uncertainty 
have seen a significant development in the last decade, including sto-
chastic, inexact, fuzzy, and interval-based programming (Archibald and 
Marshall, 2018). As argued by Linker (2021), stochastic approaches 
constitute the most adequate instrument to explain risk-adverse 
behaviour in famers’ decision making and are therefore more likely to 
be of practical interest. Nevertheless, these techniques have been mostly 
applied to uncertainty in climate conditions and water availability, with 
the aim to offer optimized irrigation schedules (Anvari et al., 2017; 
Pereira and Marques, 2017; Linker, 2021; Yan et al., 2021). Addition-
ally, most stochastic water-allocation decision support models applied in 
the literature either come from mathematical programming with 
mean-variance or similar approaches, or apply stochastic dynamic pro-
gramming to irrigation scheduling in order to decide water application 
according to varying rain, temperature, crop growing stage, etc, though 
not considering yield uncertainty. To the best of our knowledge there is 
not a similar model for water allocation as the one presented in this 
paper and literature has not yet explored this type of farmer behaviour 
regarding irrigation water management. 

A greater use of inputs under production uncertainty is compatible 
with previous analyses of the impact of risk on the demand of agricul-
tural inputs. Several authors, such as Sandmo (1971), Anderson et al. 
(1977), and Just and Pope (1979), have documented the impact of un-
certainty in input and output prices. They indicate that uncertainty in 
prices and the exact elicitation of the production function reduces input 
usage following a line of reasoning like that of Magnusson (1969). 
Magnusson develops a model for risk-aversion behaviour when the 
production function is subject to uncertainty and concludes that factor 
demand is defined by the point when expected factor marginal pro-
ductivity is equal to its “price minus a marginal risk deduction", and thus 
input use would be lower than in a certainty context. This result assumes 
that the manager is a risk averter and that the co-variance between the 
output and the input is positive. However, most of the theoretical models 
listed above refer to price uncertainty and input productivity, while the 
model presented in this paper assumes risk neutrality, the production 
function is known, and the stochastic variable is the maximum achiev-
able yield. 

In summary, this paper aims to explore the optimal strategy for 
allocation of seasonal water quota to an annual crop that maximizes 
stochastic profit under yield uncertainty. Our model has a ‘normative’ 
nature, aiming to maximize stochastic profit and offer a decision support 
model. The hypothesis that farmers use a similar optimizing strategy 
requires further research, which is out of this paper’s scope. Neverthe-
less, we believe that our model may serve as an illustration for policy 
making regarding impact of yield uncertainty in the potential over- 
allocation of water. Water allocation is defined in this work as the de-
cision to assign a certain volume of water in either the long term (over 
several years) or at seasonal level (for the current year). Specifically, this 
paper explores the microeconomic implications of the potential over- 
allocation of irrigation water based on an agro-economic model, 
whereby no assumptions are made regarding the stochastic distribution 
function of yields, and the risk attitude of farmers is taken as neutral for 
the simplicity of this research. 

The rest of the paper is structured as follows. The following section 
presents the agro-economic model in a step-by-step manner. The third 
section shows the results of the application of the proposed model to a 
specific case in a water-abundant context. Finally, a brief discussion and 
concluding remarks are provided. 

2. Model 

Our model is based upon the well-known Food and Agriculture Or-
ganization of the United Nations (FAO) model that can be found in 
Steduto et al. (2012). This model has shown to illustrate in a very 
accurately way the crop responses to water and evapotranspiration. 
Additionally, this model is used in the majority of crop growth models 
(e.g. AQUACROP) and there is a wide consensus in the agronomic field 
about its use in the case of herbaceous crops, which is the focus of this 
paper. In the literature we can find some empirical water response 
functions in quadratic or other functional forms for olives (Vita Serman 
et al., 2021) or almonds (Moldero et al., 2021), but they are mainly used 
in the case of perennials (orchards). 

The proposed model is presented in a step-by-step manner to facili-
tate readers’ comprehension and to introduce factors, such as expected 
yield, that represent the actual situation faced by the farmer in the field 
with water-allocation decisions. To this end, the model considers 
initially constant irrigation efficiency (E = 1), though the efficiency will 
be later defined as a parameter (e.g., E = 0.8) as illustrated in Section 3. 
Additionally, the model considers the water-yield response function 
(demand function) under alternative stochastic distribution functions, 
thereby analysing the impacts of yield uncertainty on these various 
alternative function specifications. 

2.1. The agronomic model with constant irrigation efficiency 

The response of any crop to water supply has been well established in 
agronomy science. Yield response to crop evapotranspiration (ET) may 
be expressed as defined by Doorenbos and Kassam (1979): 
(

1− Y
Ym

)
= Ky

(
1− ET

ETm

)
(1)  

where Ym and Y are the respective maximum and actual yields, ETm and 
ET are the respective maximum and actual evapotranspiration, and Ky is 
a yield response factor representing the effect of a reduction in evapo-
transpiration on yields. A complete review of the present knowledge 
regarding Ky coefficients and crop response to water availability can be 
found in Steduto et al. (2012). 

ET can be calculated as: 

ET = R+E⋅W (2)  

where R is the effective rainfall plus the variations in soil water storage 
during the crop growing cycle (mm), W is the applied irrigation (mm), 
and E is the irrigation efficiency (dimensionless), understood as the 
irrigation water that is stored in the soil ready to be evapotranspired by 
the crop divided by the applied irrigation. 

When Eqs. (1) and (2) are combined, the result is: 
(

1− Y
Ym

)
= Ky

(
1−E⋅W + R

Wm + R

)
(3)  

where Wm is the irrigation requirement for a maximum yield (also 
known as full irrigation). 

This equation gives a response to water with a complex relation. 
Specifically, we will focus on the production function segment that is 
close to the maximum yield (full irrigation) and hence we may assume a 
constant irrigation efficiency. As subsequently discussed, the consider-
ation of constant efficiency does not significantly affect the results. 
Therefore, we have following expressions: 

Y
Ym = 1 − Ky

(
1 − E⋅W + R

Wm + R

)
= 1 − Ky + Ky

R
Wm + R + Ky

E⋅W
Wm + R (4) 

This conducts to. 

Y = Ym

(
1 − Ky + Ky

R
Wm + R

)
+ YmKy

E⋅W
Wm + R (5) 
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For the sake of simplicity, to derive solutions, the first and second 
terms are substituted with parameters a0 and a1: 

Y = a0 + a1W (6)  

a0 = Ym

(
1 − Ky + Ky

R
Wm + R

)
(7)  

a1 =
Ym Ky E
Wm + R (8) 

The interpretation of these parameters is shown in Fig. 1. 

a0 = rainfed (non − irrigated) yield;

a1 = marginal physical water productivity 

These parameters are constant for each crop as they depend on 
specific crop and location characteristics and are known ‘ex-ante’ by 
farmers. Although water is obviously not the only factor related to yield 
(e.g., fertilizing and other environmental conditions also affect final 
yield), our proposed model focuses on water as production factor, thus 
assuming that other factors are applied at an optimal level. This 
assumption can be realistic in contexts where water is the most limiting 
production factor since other inputs (e.g., fertilizers) are usually avail-
able in the market. 

The actual yield may be equal to Ym when applied water is equal to or 
greater than full irrigation (Wm), but it can be lower according to the 
linear production function when applied water (W) is lower than the 
irrigation requirement for a maximum yield (Wm). Therefore, Eq. (9) 
represents our production function. 

Y = min(a0 + a1(W);Ym) (9) 

In the case that the farmer moves in a world of certainty, then the 
value of the maximum attainable yield Ym is known and defined by Eq. 
(10) and represented as a continuous line in Fig. 1. 

Ym = a0 + a1(Wm) (10)  

2.2. Water demand model 

In a certainty context under the assumption of a linear plateau pro-
duction function as assumed by the standard agronomic model, the 
response is illustrated by Fig. 1 where the optimization problem implies 
that the solution to maximum yield is reached exactly when water uti-
lization reaches Wm (considering that irrigation efficiency equals 1). 

Optimal water use is obtained by maximizing profit (π) as shown in 
Eq. (11) where ‘c′ is the water cost and ‘p′ the price of crop. 

π = p⋅Y(W) − c W (11) 

One consequence of the linear nature of the crop response is the 
solution to this equation that gives the optimal irrigation water as zero 
or Wm, as stated by Eq. (12). 

W(year‘j’)

⎧
⎨

⎩
Wj =

Ymj − a0
a1

if p⋅a1 > c

0, otherwise

⎫
⎬

⎭ (12) 

Therefore, in a certainty context with linear response (E = 1) when 
the marginal value of water (as given by ′p⋅a1

′) is greater than the cost 
‘c’, the optimal solution implies that farmers apply the exact water dose 
(Wj) to reach the maximum yield (Ymj). This solution implies perfect 
knowledge of the production function, the net available rain ‘R′ and 
yield certainty, hypothesis that are unlikely to be present in real decision 
context. Nevertheless, the proposed ‘ex-ante’ model assumes average 
values of parameters (i.e., Ym, Ky, R, p, c) as the most likely values for the 
profit function formulation, being yield Y and W the only variables in the 
model. The linear nature of the production function implies that water 
beyond optimum will have a null marginal productivity and a negative 
marginal value (defined by ‘c′). 

2.3. The agro-economic model under yield uncertainty 

In the real world, maximum potential yield (Ym,j) varies from yearly 
’j’ to year ‘k′ and from farmer to farmer due to uncontrollable factors 
linked to the weather such as temperature, humidity, and radiation, 
pests, and decision mistakes, among others. This is represented in Fig. 2 
by the dotted lines above and below the continuous line that represents 
our production function where the deterministic maximum yield 
(named Ya) is now defined by the historical average maximum yield (μm)
and converted into the stochastic maximum potential yield for year ‘j′

(Ŷmj), as represented in Eq. (13). 

Ŷmj = μm + ε (13) 

Ŷm,j stands for the ‘ex-post’ potential maximum yield (year ‘j′) subject 
to full irrigation for the year (decision variable ‘W′). This potential 
maximum yield (as expected by the farmer for next year) can be higher 
or lower than historical average depending upon the growing condi-
tions. When growing conditions are favourable, an upper yield level (Yh) 
may be reached; in contrast, when growing conditions are adverse, a 
lower yield level (Yl) is reached, as shown in Fig. 2. 

Fig. 2 is adapted from the Babcock (1992) who modelized nitrogen 
application under yield uncertainty (uniform yield distribution). Fig. 2 
aims to represent the yield response under varying water allocation 
(which is the limiting factor in our specific case). Let us imagine that 
farmer always expect average yield (Ya) and consequently always allo-
cates average water (Wa), though the real outcome for the current 

Fig. 1. Deterministic water response function (being Y = a0+ a1W;a0 =

Ym

(
1− Ky + Ky R

Wm+R

)
;a1 = YmKyE

Wm+R; Ky = cropcoefficient;W= appliedwater;R=

effectiverail;Ym = Maximumyield;Wm = Irrigationneedsformaximumyield;E= 1). 

Fig. 2. Stochastic water response function where Yh= maximum ex-ante po-
tential yield; Yl= minimum ex-ante potential yield; μm = Ya = historical 
average yield; Wh; Wa; Wl, water required respectively for reaching the yield Yh, 
Ya,Yl. 
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campaign might be either lower (Yl) or higher (Yh). When ex-post yield 
is lower (Yl), the required water dose would be lower too, as given by 
‘Wl’. Thus, when farmer applies the historical average dose (Wa) there 
would be an over-allocation of water (Wa - Wl) and an economic loss (as 
given by the excess in applied water and its cost [c⋅(Wa - Wl)]. On the 
contrary, when the ex-post yield is higher (Yh) and farmer applies the 
average historical dose (Wa) (instead of the required ‘ex post’ higher 
dose ‘Wh’), the farmer would face an “opportunity cost” (achieved yield 
will be Ya, below the potential Yh). This result implies a loss of potential 
profit, as represented by [p⋅(Yh-Ya)-c⋅(Wh-Wa)]. 

It is worth noting that, in the model, all parameters are defined and 
exogenous: (i) crop response to water (Ky), (ii) irrigation system effi-
ciency (e.g., E = 1) and (iii) rainfed conditions (R), which are assumed 
constant in our model. Our interest focuses on the decision variable ‘W′

with the aim to maximize expected profit. Thus, with ‘D′ as the optimal 
water allocation in year ‘j′ (known ‘ex-post’ and obtained from Eq. (12)) 
and with ‘W′ (ex-ante water allocated by the farmer) as the decision 
variable, the equation of expected profit could be obtained. The ex-
pected profit expression is given by Gallego and Moon (1993) where the 
value of production is equal to the minimum of the value of the water 
used (W, decision variable) or the stochastic value of optimal water use 
that year (D, stochastic variable) determined by the stochastic yield. 
Thus, profit can be represented by Eq. (14): 

π(W) = p a1 E(min{W,D}) − cwW (14) 

This decision scenario is like the inventory management decision 
problem known as ‘newsvendor’ where there is a shortage penalty case 
when ex-post potential yield for year ‘j′ (Ymj) requires a larger volume of 
water than the allocated ex-ante by the farmer and therefore there is a 
loss of profit due to the below-optimum supply of water. The news-
vendor problem constitutes a classic problem in the literature on in-
ventory management (Arrow et al., 1951). 

Regarding Eq. (14), it is worth noting that it assumes that marginal 
value of production is positive [p⋅dY(W)/dW > c], implying that irri-
gation is profitable and greater than ‘zero’ (see Eq. (12)). 

Let f(D) be the probability density function (PDF) of D, whereby 
F(D) = Prob(D ≤ W) =

∫ x
0 f(D)dD is the cumulative distribution function 

(CDF) of D. It is assumed that f(D)is continuous in[0,∞] in the following 
proof. Therefore: 

E[min(D,W)] =
∫ ∞

0
min(w,D)f (D)dD =

∫ w

0
Df (D)dD+W

∫ ∞

w
f (D)dw

(15)  

π(W) = (pa1 − cw)
(∫ w

0
Df (D)dD+W

×
∫ ∞

w
f (D)dD

)
− cw

∫ w

0
(W −D)f (D)dD (16) 

To find the maximum of π(W), a ‘W′ is required that satisfies dπ(W)
dW =

0. By using the fundamental theorem of calculus: 

dπ(W)
dW = (pa1 − cw)

∫ ∞

w
f (D)dD− cw

∫ w

0
f (D)dD  

= (pa1 − cw)(1−F(W))− cwF(W) (17) 

By setting dπ(W)
dW = 0, it is found that W* must satisfy Eq. (18) as 

given by: 

F(W∗) = p⋅a1 − cw

p⋅a1
(18) 

The solution in Eq. (17) is known as the “critical fractile” for the well- 
known mathematical newsvendor problem formulated by Arrow et al. 
(1951). In our specific case, this ratio balances the cost of irrigation 
below optimum (lost income) versus the costs of excess irrigation (water 
cost). 

3. Results 

Using the software Mathematica, this section applies the model to a 
specific case in a water abundant context, such as that of irrigated maize 
in certain regions of Spain. The following parameters are based official 
statistics of the Spanish Ministry of Agriculture (years 2008–2018), and 
Ky is taken from Steduto et al. (2012). 

μy = 10, 000;
Ky = 1.25;

ETmax = 800 mm;
R = 250 mm;
wm = 550 mm 

Assuming E = 0.8, as representative value of sprinkler system effi-
ciency (most frequent system for maize cultivation in Spain), the values 
of a0 and a1 are: 

a0 = 1, 406 kg
ha ; a1 = 12.50 kg

mm⋅ha 

The proposed model is tested by using various stochastic distribu-
tions of the demand function to explore the effect of yield variability in 
optimal irrigation water use. 

Uniform Yield (9000, 11000);

Triangular (9000; 10000; 11000);

Beta (α = 1; β = 0.6; 9000; 11000);

N(10000; 1000)

Additionally, the water demand function for a water cost in the range 
(0; pa1) has been estimated. Assuming a price of 0.20 EUR/kg of maize 
(average value in the period 2008–2018) and parameterizing water cost 
‘c′, Fig. 3 shows the demand function for irrigation under the alternative 
stochastic distributions compared to the “certainty decision” based on 
historical average yield (vertical dotted line). Constant efficiency is 
assumed (E = 0.8), which can be realistic when irrigation approaches 
the maximum yield. 

Fig. 3 illustrates the impact of various probability distributions on 
water demand. Beta, triangular and uniform distributions show a similar 
behaviour meanwhile normality assumption leads to a higher over- 
allocation. In this respect, there is strong evidence against assuming 
normality in the yield distribution (Just and Weninger, 1999). 

The cost of irrigation in the regions producing maize in Spain usually 
lies within the range of 0.02–0.05 EUR/m3 (0.20–0.50 EUR/mm⋅ha) 
(MIMAM, 2008). Fig. 3 shows that water allocation in the normal range 
of prices for this crop (maize), between 0 and 1,0 EUR/m3, will give an 

Fig. 3. Irrigation water demand for stochastic yield distribution (crop price 0.2 
EUR/kg; Average yield=10,000 kg/ha; Ky =1.25; R=250 mm; E = 0.8). 
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optimal stochastic allocation above the “certainty decision based on 
historical average”. Table 1 summarizes the model results compared to 
certainty conditions. 

Table 1 shows that assuming parameters given in Fig. 3 (crop price =
0.2 EUR/m3, average yield = 10,000 kg/ha; water cost = 0.5 EUR/m3), 
using the beta distribution function as reference and assuming a water 
cost of 0.05 EUR/m3, farmer optimal allocation of water will be 
757 mm, versus the “certainty” value based upon historical average 
yield (688 mm). This overallocation implies that in 80% of the years 
(probability defined by the critical fractile [(p⋅a1 − c)/(p⋅a1)]) allocated 
water will be above the required dose. Expected profit will be 8% over 
the result when applied water is the average-yield dose. When water is 
considered a limiting factor, results confirm that farmer’s rational 
behaviour would be to irrigate ‘for the good years’ as the expected profit 
would significantly increase. Thus, the model predicts that rational 
behaviour under yield uncertainty leads to water over-allocation. The 
model is designed for ‘ex-ante’ decision support but, as the world is 
uncertain and observed yields are only known ‘ex-post’, real marginal 
benefit of resource allocation would be only revealed after the season is 
finished. 

The impact of altering parameters in the model is straightforward. 
An increase in the variance will increase the demand at low water prices 
compared to the same CDF with a smaller variance. The increase in 
irrigation efficiency to simulate different systems what may illustrate a 
change of the irrigation method from furrow E = 0.60; sprinkler 
E = 0.80 to drip irrigation E = 0.95 will lead to an augmentation of the 
a1 value (marginal productivity of water), thereby modifying the de-
mand function (Fig. 4). The illustration of the impact of three different 
irrigation system efficiencies on the water demand function is shown in 
Fig. 4 for the case of a triangular stochastic distribution. 

Finally, it is worthy of note that the drawing of conclusions regarding 
the price elasticity of demand may prove problematical since the de-
mand function may take any of a variety of functional forms. By using 
alternative stochastic distribution functions, this work has aimed to offer 
the reader a wide analysis of the potential impacts of the selected 
functional form on the irrigation decision under uncertainty. In our 
example, representative of maize in Spain, elasticity for water prices in 
the range from 0.02 to 0.05 EUR/m3 (generalized in Spain for maize 
cultivation) remains low falling in the range from − 0.04 to − 0.27 falls 
inside found by Scheierling et al. (2006). 

The advantage of the presented model is that it determines with 
precision the profit maximizing optimum under yield uncertainty. Yield 
uncertainty may act as a ‘proxy’ to integrate many sources of crop- 
growth uncontrollable factors such as climate variables (e.g., precipi-
tation, temperature, solar radiation) that influences yield and biological 
factors such as pest and diseases. All these variables may act as yield- 
limiting factors, including the available soil water ‘R′ which is also 
subject to uncertainty and constitutes a critical variable in our model. 
Moreover, it is the main yield-limiting factor in rainfed systems. Further 
developments of our model will focus on the integration with other 
theoretical developments such as the work of Adamson and Loch (2021) 
that incorporates uncertainty in irrigation water supply and includes 

perennials in the formulation, or the work of Xie and Zilberman (2018) 
that includes supply augmentation and water saving investment to 
optimize stochastically farm profits. 

4. Brief discussion and concluding remarks 

The farmer’s decision on irrigation water allocation under yield 
uncertainty presented in this paper does not consider the farmer’s utility 
and assumes risk neutrality. Our model shows that water demand, as a 
critical production input, increases with variance under various sto-
chastic distribution functions, especially in the low range of water pri-
ces. Obviously, irrigation water allocation planning is a complex system, 
which contains multiple uncertainties that goes beyond yield uncer-
tainty (the focus of our model) and include irrigation water supply un-
certainty, soil water (‘R′ in our model), temperature, wind, solar 
radiation that influences ET, commodity price uncertainty, and many 
other production factors that influence final yield. By isolating a specific 
factor (such as yield uncertainty as a confluence of many variables 
mentioned previously) we can focus on the influence of this factor in ex- 
ante seasonal water allocation. 

Our results show that the impact of yield uncertainty on water de-
mand will lead to an increase in water allocation compared to that 
required for historical average, thus following a behaviour characterized 
by “watering for the good years”. Additionally, the example illustrated 
in Table 1 has shown that optimal allocation improves expected profit 
(by 8% over water allocation based upon average historical level). This 
improvement might be considered moderate and following the argu-
ment of Pannell (2006) it might be argued that “optimizing techniques are 
sometimes of limited practical relevance for decision support”. Nevertheless, 
we believe that water is a critical input for crop production and any 
optimization attempt is valuable, especially in water scarce areas. In our 
opinion, the main policy implication is the need not only to implement 
modern precision technology capable of reducing yield uncertainty, but 
also to enhance input efficiency (Scott et al., 2014). Quantitative and 
qualitative impacts of over-irrigation on water resource management 
depend on the location of the field, since water resulting from irrigation 
applied in excess may return to the catchment, thereby reducing the 
quantitative impact of over-irrigation. Additionally, agricultural diffuse 
pollution should be considered as an undesirable effect that can be 
prevented by reducing water applied in excess. In this respect, empirical 
evidence shows that the implementation of irrigation technologies to 
enhance water efficiency (e.g., drip irrigation) may reduce the pollution 
load of return flows (García-Garizábal and Causapé, 2010; Lecina et al., 
2010). In any case, overallocation represents a challenge for water au-
thorities and water managers as it increases demand and quantitative 
pressure on the resources, that can be illustrated by the recent evolution 
of water trade prices analysed by Loch et al. (2021). 

Table 1 
Results optimization model (being p = 0,20 EUR/kg; c = 0.05 EUR/m3).   

Water 
use (m3/ 
ha) 

Maximum 
potential yield 
(Kg/ha) 

Expected 
profit 
(EUR/ 
ha) 

[1] Historical average yield 
(certainty scenario) 

6,880 10,000 1,100 

[2] Stochastic yield Beta 
(α = 1;β = 0.6;9000;11000) 

7,570 10,863 1,191 

Increase [3] = [2] - [1] 690 863 91 
Variation (%) [3]/[1] + 10% + 9% + 8% 

Source: own. 

Fig. 4. Irrigation water demand for stochastic yield distribution and varying 
irrigation efficiency (E = 0.6, E = 0.8, E = 0.95). [Triangular CDF 
(9000;10000;11000); crop price= 0.20 €/kg; Average yield= 10,000 kg/ha; Ky 
= 1.25; R= 250 mm]. 
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The limitations of the model presented in this paper include: (1) the 
need to investigate the link between over-allocation and potential over- 
irrigation; (2) the requirement for a deeper analysis into the functional 
form of the farmer subjective CDF of yields; and (3) an expansion of the 
theoretical model by removing the assumption of constant irrigation 
system efficiency, and also by including the possibility of applying 
deficit irrigation, (4) the existence of many other sources of uncertainty 
that affect farmer decision regarding water allocation as we have 
focused exclusively on yield uncertainty. The proposed model focuses on 
yield uncertainty and is applied to herbaceous crops. Therefore, it does 
not consider water supply uncertainty (either irrigation water or soil 
water ‘R′). This represents a shortcoming of our model as illustrated by 
the recent increases of water price in water rights markets in Australia 
(MDB) are potentially caused by “prudent (.) irrigators trying to prevent 
potential downside losses (.) as a response to perceptions of future supply 
shortages” (Loch et al., 2021). Finally, impacts of over-allocation (as 
explored in this paper) and potentially related over-irrigation behaviour 
should be considered by policy-makers in the design of water manage-
ment plans for river basins and aquifers, in order to introduce innovative 
management instruments, such as markets of irrigation rights, a new 
design of the irrigation rights system by including uncertainty and risks, 
and a more effective water-pricing policy, among others, to minimize 
undesirable impacts on increasingly scarce water resources. 
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[The use of water in the Spanish economy. Spanish Ministry for the Environment],, 
Madrid.  
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