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A B S T R A C T

The detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric
identification or fatigue detection in driving assistance systems. Current commercial and research systems
use software frameworks that require a dedicated computer, whose power consumption, size and price are
significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time.
From an algorithmic point-of-view, the popular Viola–Jones approach has been redesigned to enable highly
parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable
System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking
the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris
recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital
imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images.
Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in
the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is
100%.
1. Introduction

Relevant tasks such as iris and face recognition, gaze tracking,
behaviour and expression interpretation, or detection of driver fatigue,
are based on the previous estimation of the position of the eyes of
the person. Depending on the application, this estimation must be
performed in high-resolution and distortion-free images and at a high
frame rate. For instance, this is the case when we need to capture
iris images while the person is in motion. With a need to have at
least a 70-pixel radius for the iris (Daugman, 2004), the system will
need to handle large images if it is to capture a field of view of a
certain size. The shallow depth of field of this system will also require
a large number of images per second to be captured if one or two
iris images with the required level of contrast are to be available. In
such a scenario, the eye detection task cannot be underestimated (Ji
et al., 2005). As it has been pointed out, the initial eye localization
stage can be the most consuming stage on the whole iris recognition
framework (Kumar et al., 2018).

Given the importance of this task, several detection approaches have
been proposed. All these approaches take into account that a person’s
eyes have very significant distinguishing attributes. Thus, the behaviour
of the eye under infrared (IR) illumination (e.g. the red-eye effect)
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has been the basis for the development of active methods, in which
different light sources and/or cameras are used. For instance, Quan
et al. (2013) use two groups of lights which all lie on the camera axis.
One of these clusters utilizes 850 nm IR LED and the other 950 nm
IR LED. The approach matches the two images and, based on the
property of the retina to reflect only about 40 per cent of the incident
light at 950 nm while about 90 per cent at 850 nm, the differences
in brightness between the two images allow the pupils of the eyes
to be located. Other approaches use passive lighting, and rely on the
construction of a model of the eye. Then, they use this model to locate
the eyes in the input image. Several authors have suggested extending
this model to include facial landmarks, but this can be a problem
when the image include partial faces (Nsaif et al., 2021). With the
advances in computing ability, eye detection task has been dominated
by the use of deep learning. The manual definition of the model can be
now automated using deep learning via condensed data and frequent
training (Krafka et al., 2016). Although deep convolutional neural
networks (CNNs) have given state-of-art results when addressing many
computer vision tasks, their use in eye search is limited to a certain
extent. Nsaif et al. (2021) pointed out that this can be due to a lack
vailable online 19 January 2022
957-4174/© 2022 The Authors. Published by Elsevier Ltd. Th

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.eswa.2022.116505
Received 10 July 2021; Received in revised form 30 December 2021; Accepted 1 J
is is an open access article under the CC BY-NC-ND license

anuary 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:ruizbeltran@gmail.es
mailto:argarces@uma.es
mailto:martin@uma.es
mailto:aspedraza@gmail.com
mailto:jarodriguez@uma.es
mailto:ajbandera@uma.es
https://doi.org/10.1016/j.eswa.2022.116505
https://doi.org/10.1016/j.eswa.2022.116505
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.116505&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert Systems With Applications 194 (2022) 116505C.A. Ruiz-Beltrán et al.
of large data sets. However, the major problem is related with the
efficiency of these approaches. As aforementioned, several applications
such as iris recognition require very high resolution, and this demands
large images if we want to cover the whole face. The use of CNNs
requires then a large amount of computer resources and time if the
approach must perform a global search in the image. The solution
is to include a quick and effective approach for proposing candidate
regions such that only these regions will be fed into the CNNs (Li & Fu,
2018). Eye attributes are used for guiding this preliminary step. For
instance, Li and Fu (2018) make use of the pupil and iris being darker
than other parts of the eye. Thus, the locations of the local extreme
points in the image are more likely to be the rough centre positions
of the eyes. Choosing the top 𝑁 extreme points, they ensure that the
candidate regions can completely cover the eye region.

This paper presents a highly optimized eye detector that works
in real time over high-definition videos. The proposal is stated over
two major premises. On the one hand, we believe that the geometry
of the eye is sufficiently distinguishable in the image that algorithms
already proposed in the literature have achieved high performance.
This is the case for the popular Viola–Jones approach (Viola & Jones,
2001). For instance, Raja et al. (2019) report a 100% of accuracy
rate when using this approach as eye detector with the CASIA-Iris-
distance V4 database. On the other hand, we consider that a highly
parallel, single-pass image-processing implementation is possible for
the characterization and classification processes. To achieve this result,
a parallelized version of the Viola–Jones algorithm is proposed and
synthesized and implemented in the programmable logic part of an All-
Programmable System-on-Chip (AP SoC). In this implementation, both
feature extraction and classification are carried out in parallel. Instead
of trying to reduce the number of weak classifiers to be evaluated,
our proposal will run all the classifiers simultaneously. The result is
a classifier whose central core can process up to 752 fps. When a final
labelling stage is added, this result is reduced to 88 fps.

The rest of the paper is organized as follows: Section 2 discusses
related work on passive illumination-based eye detection. This Section
presents the basis of the Viola–Jones approach. The proposed approach
is described in Section 3. Section 4 provides details about our hard-
ware implementation. Experimental results are presented in Section 5.
Finally, conclusions and future work are drawn in Section 6.

2. Related work

Object detection is an important research topic within the field of
computer vision. From a perspective considered nowadays as conven-
tional, this task is approached by estimating features and adjusting
classifiers, in a more or less supervised way, through a certain training
process. In this way, these algorithms usually have three parts: deter-
mining the type of detection window, the selection of the features to
be estimated, and the construction of the classifier. The first step, the
selection of the detection window, will determine the scale or size of
the object, in our case the eye, to be detected. For the second step,
there are different options, among which we find the histogram of
oriented gradients (HOG), the local binary patterns (LBP), etc. (Saif
et al., 2017). As for the classifier, many object detection systems use
a decision tree or Support Vector Machine (SVM) (Benrachou et al.,
2015). Moreover, depending on the features used, these methods are
based on the appearance or geometry of the eye, or on the use of a
model of the eye itself. In the latter case, it is a matter of defining this
model of the eye, with the classifier being responsible for searching
the image for an appropriate correspondence between the image data
(regions or edges) and the defined model. The proposal can combine
some of these techniques. For instance, Kawaguchi and Rizon (2003)
detects the face region in the image and then extracts intensity valleys
from this region. Using a feature template and a separability filter, they
extract iris candidates from these valleys. And finally, using the costs
for pairs of iris candidates, the algorithm selects a pair of iris candidates
2

Fig. 1. Examples of feature prototypes of simple Haar-like and centre-surround
features.

corresponding to the irises. These costs are computed by using Hough
transform, separability filter and template matching.

Since a couple of decades, eye detectors using machine learning
techniques have become much more common. These methods can be
divided into two groups. The first involves initial feature extraction
following a conventional scheme, followed by a cascading classifier.
Thus, for example, D’Orazio et al. (2004) propose an initial geometric
feature extraction followed by a neural classifier to detect eye regions.
With the popularity of deep learning algorithms (Xie et al., 2017), some
researchers have proposed using convolution neural network (CNN) to
train eye detectors, which is the second group. The scheme includes
feature extraction and feature classification in the same network. Deep
learning-based methods have demonstrated high robustness and detec-
tion accuracy compared to traditional methods. However, efficiency
remains an issue (Li & Fu, 2018). Facial images are usually larger than
640 × 480 pixels, and this requires a large number of computational
resources when the CNN has to perform a global search on the image.
The solution proposed by some authors is to include a fast and efficient
method to propose candidate regions, so that only selected candidate
regions are fed to the CNN. For instance, the Faster R-CNN (Ren et al.,
2017) can be divided into three sections: a feature extractor, a region
proposal network (RPN), and a classifier. The RPN and the feature
extractor of the Faster R-CNN detector share the same convolution
layers. They are encoded in a network of fully convolutional layers
that is used to identify candidate regions with a wide range of aspect
ratios and scales. Then, the classifier is employed to filter the set of
candidates. Nsaif et al. (2021) combine this Faster R-CNN with Gabor
filters and the naive Bayes model for determining the final eye regions.

2.1. The Viola–Jones method and implementation improvements

Using the Haar-like features and a variant of the AdaBoost proce-
dure, Viola and Jones (2001) proposed a fast and robust object detec-
tion algorithm, which was successfully applied to this scenario (Thon-
gleng & Kaewapichai, 2018). The Haar-like features are a reminiscent
of the Haar basis function and can detect edges or line features (Fig. 1).
Subsequent work has augmented the original set of features to include
rotated versions (Fig. 1b) (Lienhart & Maydt, 2002). On the other
hand, AdaBoost is a supervised learning scheme employed to boost
the classification performance of a simple learning algorithm. The
proposal from Viola and Jones works as follows: first, the sum of pixel
values within the white or black regions in each Haar-like feature are
computed respectively, and then the difference of the weighted sum of
these regions is calculated. The so-called Integral Images are employed
to speed up the sum of pixel values within a rectangle (or a rotated one)
(Viola & Jones, 2001). Once each difference is computed, it is compared
with a predefined threshold. If the difference exceeds the threshold
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Fig. 2. Different classifier structures for encoding the Viola–Jones approach: (a) cascade classifier; (b) multiple cascade classifiers; and (c) tree classifier. The scheme at (c) differs
from the original proposal by Lienhart and Maydt (2002). Each weak classifier (𝑆(1), 𝑆(2)...) implies the evaluation of one specific feature and uses a threshold to determine if the
next branch to evaluate is the left or the right one. Several branches are not associated to new evaluations, but to score values (𝑣1 , 𝑣2 ,… on the figure). The result of the tree is
one score value that is then compared with a threshold (classifier 𝑆). This last classifier determines the detection result.
value, the weak classifier outputs true. If not, the weak classifier
outputs false. These weak classifiers are then combined to generate
a boosted strong classifier. The cascade of classifiers is originally a
sequence of stage (weak) classifiers (see Fig. 2). The cascade structure
reduces processing times as the classifier is trained to reject non-objects
in the first stages, spending more time on promising object-like images.
Finally, the procedure is applied on a rectangle-shaped region (sub-
window), which scans the whole input image. When all sub-windows
in one image are evaluated, the whole procedure can be repeated using
a different sub-window size (multiscale detection).

As it was pointed out by Lienhart et al. (2003), there are significant
advantages on the use of decision trees instead of sequential cascades
or multiple cascades. In this implementation, the classifier is encoded
using several sequential stages, each one of them consists of multiple
decision trees. Trees are arranged according to the scheme at Fig. 2c.
Thus, each tree is composed by eight nodes, which evaluate one Haar-
like feature and use a threshold value for directing the execution to
the right or left branch. When one of these branches have associated
a specific score value (see Fig. 2c), the execution on the tree finishes
and the value is provided. When the chosen branch redirects to a new
node, the evaluation and thresholding procedures are repeated. In each
stage it is typical to find one to three trees. Score values obtained from
all trees on the stage are added and the result is compared with a stage
threshold value. According to the result of this comparison the window
is rejected or passes for evaluation to the next stage.

Much work has been performed in attempts to speed up the Viola–
Jones approach. Software solutions use optimized implementations
on OpenCV (Open Source Computer Vision Library), the library for
image processing originally developed by Intel; or have translated the
algorithms to GPUs (Fredj et al., 2020; Jain & Patel, 2016). How-
ever, the optimized code does not provide good results on embedded
platforms (Kim et al., 2015). An alternative to exploit paralleliza-
tion is to use a hardware approach that speeds up the computa-
tions using an application-specific design. To increase the processing
speed, Theocharides et al. (2006) encoded the proposal on an ASIC
platform. They use a grid array processor as the structure of their
architecture, the so-called CDTU (Collection and Data Transfer Unit),
for exploiting parallelism. The simulation results in their paper reported
3

that they obtained a rough estimate of 52 fps targeting 500 MHz clock
cycle. However, the proposal requires a large processor array, which is
identical to the input image size. For reducing development time and
cost, the popular alternative to ASIC are FPGAs. Wei et al. (2004) pro-
posed an architecture on a Xilinx Virtex™-II FPGA for simulating only a
part of the whole algorithm. They report rates up to 15 fps at 91 MHz
for small images with 120 × 120 pixels. They scale the input image and
use fixed-point expressions to achieve fast processing with less circuit
area. They only use non-rotated features and parallelize the estimation
of all the features obtained from AdaBoost training. The synthesized
detector divides the cascade into three sequential stages containing
9, 16, and 200 Haar-like features respectively. The parallelization of
the computations within the stages that compose the single cascade
(Fig. 2a) has been repeated by other subsequent work (Kim et al.,
2015; Lai et al., 2007). Taking into consideration that only former weak
classifiers on the cascade are almost always executed, Hiromoto et al.
(2007) proposed a partially parallel approach. Parallel modules are
assigned to these former stages while the latter ones are mapped into
sequential modules. The number of former classifiers is determined in
consideration of a trade-off for circuit area and processing performance.
The main disadvantage is that the separation of the parallel and se-
quential stages requires additional hardware resources as it is necessary
to hold the integral image values for current subwindow to process
in sequential stages while parallel stages compute a new subwindow.
Other solution to increase the computation speed is to simplify the
classifier. Thus, Lai et al. (2007) proposed a architecture which uses
a piped register module for computing the integral image and only
employs 52 classifiers in a single stage. It can achieve 143 fps detection
using images of 640 × 480 pixels. But the performance is significantly
poorer than the one provided by the OpenCV’s implementation (lower
detection rate and higher false alarm rate). Another implementation
that sacrifices the performance was reported by Yang et al. (2006).
This low-cost architecture was implemented on an inexpensive ALTERA
Cyclone-II FPGA. Their architecture achieves 13 fps but the detection
rate falls to about 75% (in the original method by Viola and Jones
(2001) it is more than 90%). To avoid the large number of resources
needed to synthesize and implement the integral image computing, Gao
and Lu (2008) suggested to only implement the classifiers in the
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FPGA, computing this integral image in a host microprocessor. Nair
et al. (2005) described a solution for people detection based on the
Microblaze softcore processor from Xilinx. They achieve 2.5 fps for
image sizes of 216 × 288.

. The proposed scheme

The structure of the proposed classifier for eye detector is shown
n Fig. 3. Initially, we can consider that the scheme is the same than
he one proposed by other researchers (Lai et al., 2007; Wei et al.,
004): after estimating the integral and tilted integral images, and
he standard deviation (for brightness normalization), for a detection
indow (all these elements are calculated as the input image is read),

he whole set of required Haar-like features are computed in par-
llel. A unique scale is considered here, and the evaluated features
re associated to this specific detection window. Then, all stages are
xecuted in parallel, and the results are combined for obtained the
entative positions of the eyes in the image. There are however two
ajor differences with respect to previous contributions. Firstly, the

tructure does not resemble a cascade classifier, but to the decision
rees shown in Fig. 2c. This scheme has the advantage of reducing
he number of Haar-like features to evaluate in the whole classifier.
n the contrary, it manages more parameters (left and right values)

han the single or multiple cascades. The relative complexity of this
cheme is possibly the reason why it has not been the chosen option
or hardware implementation. Thus, previous approaches described at
ection 2 choose as Viola–Jones model the cascade of classifiers and put
he emphasis on adding more features/weak classifiers for increasing
he performance. As commented in this Section, when they reduce the
umber of features, the performance rate also decreases. Secondly, the
esponses of all nodes in a stage are grouped into index values, which
llows us to search the final result using Lookup tables (LUTs). This
s the basis of the parallelization of the decision trees and is detailed
elow. The score value obtained from the LUT is compared with a
hreshold. The comparison returns a Boolean value, being 1 if the
valuated window is a candidate region to be an eye. In the structure
n Fig. 2c, this encodes the 𝑆 classifier. As aforementioned, this new

scheme has made it possible to parallelize the execution of decision
trees, reducing the time but also the resources needed to synthesize
and implement them.

As Fig. 3 shows, the structure implemented in our classifier consists
of five stages. Each stage includes a maximum of three trees, each one
of them including eight nodes. Each of these nodes evaluates a Haar-
like feature. Briefly, the idea is to do not travel the trees for obtaining
the final score value but to always evaluate the eight nodes, to obtain
the eight ’greater/lesser than’ decisions, and to use these eight Boolean
values for assigning a specific score value to the tree. Fig. 4 schematizes
how the score value is obtained. Each stage has an internal LUT, which
is addressed with a 10-bit vector (2 bits for encoding the tree and 8 bits
associated to the evaluated nodes). As we have three trees per stage,
the LUTs have a size of 256 × 3 = 768 values. The computation of
the stage value is encoded in three search processes in the LUT and a
final summation. This allows us to compute the final value in only two
steps: one for evaluating all nodes and an additional one for assigning
a score value to the obtained feature vectors. Finally, the result value
is compared with a stage threshold. Thus, the stage evaluation does not
provide a score value but a Boolean one: 1 for positive evaluation of
the detection window and 0 for rejection.

The classification ends when all detection windows are evaluated.
As aforementioned, in our proposal, a single scale is used and then the
classification results can be summarized within a matrix whose size
is equal to (𝑀 − 𝑚 + 1) × (𝑁 − 𝑛 + 1), being 𝑀 × 𝑁 the size of the
input image and 𝑚 × 𝑛 the size of the evaluated detection window.
Due to the pixel-to-pixel shift of the window, it is typical that positive
4

detection values result on clouds of points on the evaluation matrix
around a single, real presence of the desired object. Similar to the post-
processing step employed on OpenCV, we use a masking procedure
to merge points associated to positive detection values, filtering the
evaluation matrix (the Detection group module in Fig. 3). Briefly, the
values within a given window are added and thresholded with a specific
value to determine whether it is a positive detection (1) or not (0).
Fig. 5 shows the final cloud of positive detection values obtained after
filtering the output of a classification process.

Our aim is to achieve the same accuracy rate that the software
proposal implemented in the OpenCV library (Raja et al., 2019). Thus,
the internal parameters of our design are obtained from training tools
based on the ones employed by the OpenCV framework. This training
phase is then encoded in C++ language and is executed off-line on a
personal computer. The only significant difference with respect to the
OpenCV implementation is the use of 16.16 fixed-point representation
for encoding those parameters that do not need more fine precision
(threshold values). The training phase is bounded to manage our fixed
structure (five stages, with a maximum of three trees per stage, and
with eight nodes per tree). It could be modified if required, but it
provides very good result for eye detection. For instance, this structure
allows the system to obtain a 100% success ratio when tested in the
CASIA-Iris-distance V4 database.

4. Hardware implementation

This Section describes the effort doing for optimizing the speed of
the eye detector. The classifier realization is done in a Ultrascale+
XCZU4EV micromodule from Trenz and the synthesis and implementa-
tion is performed by Xilinx Vivado. Fig. 6 shows the logical architecture
of our first implementation. As described below, it has been modified
for improving the efficiency and resource consumption, but this image
provides a clearer view of how it works. The integration of the classifier
within a complete framework is described in Section 5.

The classifier takes the image from the RAM and feeds it into the
data stream through Video Direct Memory Access (VDMA), then the
axis_Haar_Preprocess core generates an integral image, a tilted integral
image, and the standard deviation of the detection window. After that
the data is fed simultaneously to the five axes_haar_stage cores. Each
stage provides a Boolean result, all of them must be true in order to
mark this detection window as true. The accuracy is improved by means
of the axis_detection_group core that groups the true detections within a
window using a threshold. Finally, the data is stored on the RAM using
another VDMA.

Most of the modules of the classifier core are synthesized using
High-level synthesis (HLS). In Fig. 6, they are marked with the Vivado
HLS logo inside. The HLS tool provides directives to allocate resources,
define the latency and determine how to pipeline the modules. One
of the major limitations is the memory allocation. To address this,
the Ultrascale+ XCZU4EV offers 128 block RAM (BRAM) modules and
48 Ultra RAM (URAM) modules. Each BRAM module has 18 Kb of
memory, and each URAM has 288 Kb. Nevertheless, the election of each
module for our application entails advantages and drawbacks. Thus,
using BRAM allows us a faster execution at the cost of more resources,
conversely using URAM reduces resource usage at the cost of more
latency. In order to optimize the efficiency, the scheme presented in
Fig. 6 has been modified. Basically, our aim was to merge all the cores
of the classifier into a single one, allowing the synthesis and imple-
mentation tool to further optimize and share resources. Firstly, the five
Haar stages were merged into only one core. This allows us to remove
the haarStagesResultRead_0 and the axis_broadcaster_0 cores from the
design. This resulted in significant resource savings and reduced com-
plexity. In a second step, the axis_Haar_Preprocess, the stages, and the
axis_detection_group cores have been merged. This saves even more
resources. Finally, the functionality of the axis_detection_group core
was modified so that, instead of giving as a result 1 or 0, the result

is the number of points grouped in each window. This will allow the
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Fig. 3. Proposed classifier structure.

Fig. 4. Design of a complete stage of the classifier.
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Fig. 5. (Left) Input image; (Middle) Positive detection values; and (Right) Final detection values obtained using the Detection group module. The obtained images are slightly
smaller than the input one (see text for details).
Fig. 6. Block diagram of the first version of the classifier implementation.
system to choose as eyes the most valuated windows when all the frame
is processed.

Table 1 illustrates the resource consumption associated to the syn-
thesis and implementation of the proposed classifier. The table shows
the values for two implementations of our final proposal. In these im-
plementations, we have tried to either optimize resource consumption
or reduce latency. Thus, in the first implementation (Opt1), the latency
was 270,085 clock cycles. This provides a speed of 555 frames per
second (fps) using an input clock frequency of 150 MHz. The Opt1
proposal uses 67 BRAM. The second implementation (Opt2) uses 81
BRAM. In this second case, the latency is only 74,242 clock cycles, and,
with the clock frequency of 150MHz, the proposal should provide 2020
fps. However, the VDMA channels limit this value and the real speed
is 752 fps. If we were able to maintain this speed by adding the rest
of the cores of the system, we could process each frame in 1.33 ms. As
described in Section 5, this has not been possible, and the speed will
decrease due to the constraints imposed by the image sensor and the
post-processing stage and final sending of eye captures.

5. Experimental evaluation

5.1. Experimental setting

The proposed framework was designed for an iris recognition system
where subjects walk through an access control point. They are walking
6

Table 1
Total resource usage for the classifier.

Name BRAM_18K DSP48E FF LUT URAM

Opt1 - Total 67 579 34780 25714 0
Opt1 - Utilization (%) 26 79 19 29 0

Opt2 - Total 81 582 34645 25740 0
Opt2 - Utilization (%) 31 79 19 29 0

Available 256 728 175680 87840 48

at normal speed (approx. 1–2 m/s) and should be able to wear normal
eyeglasses or contact lenses. The camera system is about 2 metres in
front of the subject,

The vision module employs a 16MP EMERALD high-speed image
sensor from Teledyne e2v. This sensor can provide up to 47 FPS through
16 LVDS lanes. It is mounted in a specific board (the Sensor board). Our
hardware implementation is synthesized for an Ultrascale+ XCZU4EV
micromodule from Trenz. The micromodule is mounted in a carrier that
exposes the GPIO and that provides Ethernet connectivity, SD card,
HDMI, debug interface and FPGA Mezzanine Card (FMC) connector.
An adaptation board is needed to adequate the signals between the
sensor board and the carrier one. Fig. 7 shows all boards employed in
the vision module.

Taking the classifier in Fig. 6 as the core, the whole framework
needs to add the deserializer for capturing the input frames from the
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Fig. 7. Boards involved in the vision module.
Fig. 8. Overview of the proposed framework.
LVDS channels and the postprocessing module, for quantifying the
relevance as an eye of each tentative detection and notifying the eye
positions to the software part of the AP SoC. Fig. 8 shows the logical
architecture of our evaluation system.

The proposed design was synthesized and implemented using Xilinx
Vivado. As aforementioned, our target device was the Ultrascale+
XCZU4EV micromodule from Trenz. Sensor calibration and image cap-
ture are implemented on the Programmable Logic (PL) and Processing
Subsystem (PS) of the AP SoC. Briefly, the EMERALD deserializer core
is the responsible of managing all control signals of the sensor (reset,
stop, trigger...). It is also in charge of the correct wake up of the sensor
and LVDS calibration. This calibration process is commanded from the
ARM core through this module. Due to the high-speed characteristic of
the 16 LVDS lanes some delays can occur on PCB traces or in the input
buffers of the FPGA, therefore each lane must be calibrated by means
of adding or removing delays in order to synchronize the all.

Deserialized signals are processed into a video stream using the
EmeraldFrameVideo core on the FPGA. Briefly, it captures the data to
generate frames and sends them into a video stream, which is used by
a VDMA channel to store up to 8 16MP frames in the onboard DDR3
RAM. Simultaneously, the stream is resized into a 256 × 256 video
stream, which is also stored on RAM through another VDMA.
7

The 256 × 256 video stream is used by the HAAR CLASSIFIER core,
and it is processed into a video stream on which white dots are positive
detections (Fig. 5). This stream is then processed by the EYE NOTIFIER
core to provide the frame number and detected coordinates to the ARM
processor.

The HDMI interface allows viewing a video stream in real time.
Since there are various video streams within the framework, a SELEC-
TOR core is included to select which one to display. This selection is
made using jumpers. We can choose to display the full captured frame,
the resized frame, or the detections provided by the HAAR CLASSIFIER
CORE.

On the PS part, the ARM is working in AMP (Asymmetric Mul-
tiprocessing) mode, so that one core is for capturing eye windows
and the other core is for collecting these windows (640 × 480 pixels)
and sending them via Ethernet for recognition. The core 1 oversees
configuring all the peripherals, among these, the direct accesses to
memory of the sensor frames, the resized images, and the processed
images of the eye detection. Finally, it configures the mechanism for
being informed of a window detection (interrupt controller) and waits
for a valid image to be detected. When a valid image is detected, the
processor stores the resized version of the input frame and the detection
window/s in a shared memory with the second core.
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Fig. 9. Example images from CASIA-Iris-Distance v4.0 database.
Core 2 takes care of communication, configures the entire Ethernet
stack using the LWIP library, and configures a UDP server to which an
external computer can connect. Finally, it keeps checking the shared
memory and sends the images found in the shared memory via UDP.

5.2. Obtained results

The whole framework has been successfully integrated in the iris
recognition system. The detection system sends a stream of eye images
of 640 × 480 pixels to a host computer managing the iris pattern
extraction and identification. However, for providing qualitatively com-
parable results, we evaluated our method on the CASIA-Iris-Distance,
version 4.0 database.1 This database contains 2567 images of 142
people, most of them graduate students of the Chinese Academy of
Sciences’ Institute of Automation (CASIA). The age of the people spans
from 19 to 61. The database was captured indoor, with a distance of
more than 2 m, and using a self-developed long-range multi-modal
biometric image acquisition and recognition system (LMBS). Detailed
specifications of the physical system, magnification factor and focal
length of the camera lens are not unveiled. Fig. 9 shows some examples
of images. The size of the images is 2352 × 1728, and they include
both eyes in a facial image. The pixel diameter of the iris area is less
than about 170 pixels. In addition, in order to consider the various
capturing environments along the long Z-distance, various noise factors
such as severe off-angle, specular reflection on glasses, low illumination
and hair occlusion were considered. Using this database, this section
presents experimental results for the precision and efficiency of the
proposed approach. The classifier was calibrated (Haar features and
threshold values) using images out of this database. Thus, all images
were used as the test data set.

Table 2 shows the results obtained on this database by different
methods. These methods used a 3.6 GHz Intel i7-7700 CPU, NVIDIA
GeForce GTX 1070 (1920 CUDA cores and 8 GB of memory) and
16 GB of memory (Nsaif et al., 2021). In the table, we can find the
proposal by Kawaguchi and Rizon (2003) that uses the brightness of
the image to detect the face and, in this, uses pattern matching and
the geometry associated with the two eyes to detect them. Following a
similar scheme (considering face and eyes), the proposal of Uhl and

1 http://biometrics.idealtest.org/
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Wild (2012) uses completely different features and classifier, based
on the proposal of Viola–Jones and Lienhart and Maydt (Lienhart &
Maydt, 2002). The algorithm of Chai et al. (2019) starts with a Gaussian
filtering of the image, which reduces the effect of possibly different
lighting conditions. Next, iris candidates associated with the detection
of iris reflections are generated. A cost is then calculated for each iris
candidate using how the area is matched to a generic eye template,
the intensity variation factor, the circularity factor and the reflection
factor. Finally, a matching process is used to determine the actual
iris pair in order to locate both irises. The other three methods with
which this proposal is compared in Table 2 are Deep Learning methods
using CNNs. In general, all three methods employ algorithms that
propose regions where eyes can be located. These detection networks
are slow but proposals such as SPPnet and Fast R-CNN have reduced
the execution time. We have described the Faster R-CNN (Ren et al.,
2017) in Section 2. In this proposal, a Region Proposal Network (RPN)
is introduced that shares the convolutional characteristics of the full
image with the detection network, allowing them to perform region
proposals at almost no cost. The RPN is a fully convolutional network
that simultaneously predicts object boundaries and ‘‘objectivity’’ scores
at each position. The regions proposed by the RPN are used by a Fast
R-CNN for detection. Significantly, the RPN and Fast R-CNN are merged
into a single network, sharing their convolutional characteristics. Using
the recently popular fusion of neural networks with attention mech-
anisms, the RPN component will inform the unified network where
to look. This same scheme is found in the FR-CNN-NB and FR-CNN-
GNB (Nsaif et al., 2021). Basically, these methods use Faster R-CNN to
determine the features and provide a first estimation of the position
of the eyes, which are then improved using a Bayesian model (FR-
CNNN-NB) that can be complemented with the use of Gaussian Filters
(FR-CNNN-GNB).

For conducting these tests, we must slightly change our design.
Thus, the image capture from sensor was disabled and a single image
loaded from the SD card was used. The load into the frame buffer of
the sensor VDMA is addressed by the ARM (PS part), which is also
the responsible of launching the trial. Several video analyser cores
were included on the video stream from which information about video
resolution and rate (fps) were extracted. During the test it is possible
to see the resulting image through HDMI and receive the eye crops
through Ethernet. Therefore, it is possible to evaluate the resulting

image and analyses if it matches the expected result. The system runs

http://biometrics.idealtest.org/
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Table 2
Comparison of the accuracy and time of eye detection of the proposed
approach with state-of-art algorithms, on the CASIA v4 Distance database.
Approach Success rate Time (s)

Kawaguchi and Rizon (2003) 92.91% –
Uhl and Wild (2012) 96.4% 1.28
Chai et al. (2019) 95.61% –
Faster R-CNN (Ren et al., 2017) 98.21% 0.59
FR-CNN-NB (Nsaif et al., 2021) 99.1% 0.59
FR-CNN-GNB (Nsaif et al., 2021) 100% 0.59
Proposed 100% 0.011

Table 3
Total resource usage.
Resource Utilization Available %

LUT 64190 87840 73.1
LUTRAM 3437 57600 6
FlipFlop 59678 175680 34
BRAM 72 128 56.2
URAM 1 48 2.1

at 88 fps when the eye notifier core is reporting the coordinates to
the processor and reached the aforementioned 752 fps when the eye
notifier core is disabled.

Table 3 illustrates the implementation results and resource utiliza-
tion of our proposal based on the logic elements of the target device.
Scale images and detection window have a size of 256 × 256 and
25 × 20 pixels, respectively. The classifier implements the Opt1 version
(see Section 4). Obtained detection images are provided at 640 × 480
pixels.

6. Conclusions and future work

This work proposed an effective redesign for embedding the Viola–
Jones approach in an AP SoC to detect the eye location in a video
sequence. The proposed approach estimates the eye region directly,
without requiring localization of the human face. It is also resistant
to reflection by glasses or occlusion, as the evaluation with the CASIA
v4 Distance database has shown. Although our approach makes use of
machine learning techniques to set up the internal parameters of our
classifier, we do not rely on CNNs for feature extraction. As we stated
in Section 1, the appearance and geometry of the eye is distinguishable
and feature extractors, such as the one based on Haar-like features,
can successfully solve the problem (Raja et al., 2019). Our effort has
been to design a highly parallel, single-pass image-processing approach
that includes the characterization and classification processes. The
classification step in the Viola–Jones approach was originally designed
to be sequentially executed, prioritizing that a negative response of
one weak classifier allows to abort the whole identification process.
This idea of reducing the number of evaluated weak classifiers is also
inherent to the tree implementation. In our design, all weak classifiers
are always evaluated, but this is not the problem for achieving a
high efficiency value as these evaluations are all of them addressed in
parallel. It is important to note that our classifier can process up to 752
fps, without reducing the success ratio of the Viola–Jones approach for
eye detection.

Future work focuses on improving the final post-processing step on
our detection system. It reviews all the detection image for marking the
most relevant eye locations and then it sends the notifications to the PS
part in the AP SoC with the coordinates of the eye images. When this
final stage is added, the result is reduced to 88 fps. Another line of
research is to use the free resources in the AP SoC. We have designed
an approach for evaluating the contrast index of the eye images before
sending to the host computer for iris identification. Poorly focused
images can then be discarded. We are now evaluating to integrate
9

a presentation attack detection (PAD) module to distinguish between
authentic iris images (perhaps wearing clear contact lenses) and irises
with textured contact lenses. Binary Statistical Image Features (BSIF)
for extracting PAD-related features and Support Vector Machine (SVM)
classifiers can be implemented in the AP SoC.
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