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ABSTRACT

With the adoption of the semantic web, interest in technologies and theory about formal-
izing the representation of knowledge, and automated reasoning has increased. Ontologies
are concrete instances of knowledge representation and logical reasoners play an important
role during the creation of ontologies, since they can find logical errors during design.

One of these logical reasoners is FaCt++, which implements an optimized analytical
tableaux algorithm. The specific implementation of tableaux in FaCt++ includes a set
of priority queues to handle and expand the different operators that can be found during
reasoning, these queues have an order for applying the different operators, which in this
work will be referred as priority configurations.

It was proved by the authors of FaCt++ that there is not a single priority configuration
that has the best performance for all types of ontologies. Recently it was suggested that
machine learning models can be successfully applied to find the best heuristic for every
specific ontology.

In this work is presented the process to build a machine learning model to find the best
priority configuration for every ontology in detail. The model proposed in this work uses
fewer features than the one shown previously and creates a simpler model with similar or
better accuracy on the resulting classification.
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RESUMEN

Con la adopción de la web semántica, el interés por las tecnologías y teoría sobre la
formalización de la representación del conocimiento y el razonamiento automático ha in-
crementado. Las ontologías son instancias concretas de la representación del conocimiento
y los razonadores lógicos juegan un papel importante en su creación, porque pueden en-
contrar errores lógicos durante el diseño.

Uno de estos razonadores lógicos es FaCt++, el cual implementa un algoritmo tableaux
optimizado. La implementación específica de tableaux en FaCt++ incluye un conjunto de
colas de prioridad que manejan y expanden los diferentes operadores que pueden ser en-
contrados durante el razonamiento, estas colas tienen un orden para aplicar los diferentes
operadores, a las cuales en este trabajo se les referirá como configuraciones de prioridad.

Los autores de FaCt++ demostraron que no hay una única configuración de prioridad que
tenga el mejor desempeño para todos los tipos de ontologías. Recientemente se sugirió que
los modelos de aprendizaje automático pueden ser aplicados exitosamente para encontrar
la mejor heurística para cada ontología específica.

En este trabajo se presenta un proceso a detalle para construir una serie de modelos de
aprendizaje automático y encontrar una mejora en la predicción de la configuración de
prioridad para cada ontología. El modelo propuesto en este trabajo utiliza menos carac-
terísticas que el mostrado previamente y crea un modelo más sencillo con una precisión
similar o mejor en la clasificación resultante.
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INTRODUCTION

This work shows the implementation of a series of machine learning models that predict
the best heuristic for reasoning a given ontology with the ToDo List architecture imple-
mented in FaCt++. This introductory chapter explains the problem and importance of
selecting the most suitable heuristic when reasoning an ontology with FaCt++ and how
the proposal of this work can help to solve it.

1.1 Justification

Tsarkov and Horrocks introduced the ToDo List architecture for FaCt++, which it is
implemented as a set of queues where every queue is dedicated to a type of expansion rule
of the tableaux algorithm (e.g. u and ∃) and a priority is assigned to the queue [1]. The
tableaux algorithm takes an entry of a non-empty queue with the highest priority and
handles it according to its expansion rules. Tsarkov and Horrocks stated in their work
two relevant aspects of this architecture:

- Selecting a correct set of priorities for the queues is paramount on the reasoner’s
performance.

- There is not a single set of priorities that works the better for all ontologies.

Later Tsarkov and Horrocks showed a series of heuristics that lead them to set the default
priority configuration in FaCt++ but stated that it might not be the best heuristic for
all ontologies [2]. They concluded that choosing a suitable heuristic becomes of critical
importance for the performance of the reasoning task.

In a later dissertation, Mehri et al. [3] found that by applying a machine learning model for
selecting a heuristic order, reasoning tasks in JFact speed up by two orders of magnitude
when compared to the worst order. JFact is a Java implementation of the FaCt++
reasoner, and they share the ToDo List architecture [4].

The work by Mehri et al. presents the techniques used to build the machine learning
model and what considerations they took to collect and process the data from a corpus of
ontologies. They concluded the paper showing a benchmark for a sample of the ontologies,
with the default priority configuration and the one proposed by their machine learning
model.

Based on the conclusions showed in the previous work it is proposed that implementing
a machine learning model to predict the better heuristic order for FaCt++ can improve
the performance of reasoning tasks and prevent timeouts. The proposal of this work is
to implement a machine learning model to predict a suitable priority configuration for
FaCt++ reasoner to improve the performance of reasoning tasks and prevent timeouts.
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INTRODUCTION

1.2 Problem

The semantic reasoner FaCt++ uses the TODO architecture [2] to process the different
operators that can be found during reasoning, the configuration of the TODO architecture,
i.e. the order on which the operators are handled, impacts the performance of the reasoner
directly.

Tsarkov and Horrocks proved that there is not a unique priority configuration that ensure
a good performance for all the ontologies [2], based on heuristics and an empirical exper-
iment the authors set a priority configuration by default that worked well with most of
the analyzed ontologies.

However there are some ontologies that when reasoned using the default priority config-
uration ends with timeout. An evidence of this scenario can be seen in the results of the
Ontology reasoner evaluation competition (ORE) [5], where 76% of the reasoning errors
were caused by timeouts, see table 1.1.

Track Correctly evaluated Total Errors Timeouts
OWL DL consistency 276 of 306 30 16
OWL DL classification 200 of 306 106 87
OWL DL realization 172 of 264 92 58
OWL EL consistency 270 of 298 28 22
OWL EL classification 244 of 298 54 51
OWL EL realization 79 of 109 30 27

Table 1.1: Errors and timeouts by FaCt++ in ORE 2015.

The main cause of the poor performance for certain ontologies is the order on which the
operators are processed by the tableaux algorithm, that’s why the TODO architecture
was introduced in FaCt++. Although FaCt++ has the ability to use a different priority
configuration, there is no an easy way to know which priority configuration to use instead.

Even with the possibility to change the priority configuration, it is not guaranteed that
editors of ontologies had the tools or knowledge to find a suitable replacement.

1.3 Hypothesis

Knowing how the structure of an ontology impacts the performance of the tableaux al-
gorithm is a complicated task. To solve this problem it is suggest to apply a machine
learning model that takes into consideration the main characteristics of ontologies and
propose suitable priority configurations.

3



INTRODUCTION

The proposal is to use the ORE ontology corpus [6] to train a machine learning classifier
that recommends a priority configuration for a given ontology.

To test the improvement in performance, a sample of the ORE corpus and a snapshot
of ontologies from Bioportal [7] will be used to gather an updated benchmark on the
current version of FaCt++ [2]. After building the machine learning model that predicts
a prioritization configuration, a new benchmark will be constructed for comparison.

It is expected that predicting prioritization configurations based on the ontology to be
reasoned will show improved results in the benchmark and completion of reasoning tasks
will be increased.

1.4 Objective

After building an initial benchmark of the performance of FaCt++, the objective of this
work is to increase the number of correctly evaluated ontologies by means of proposing
suitable priority expansion configurations for the FaCt++ reasoner.

The specific objectives this work achieves are:

- Extract and report common features of OWL ontologies useful for training machine
learning models.

- Build a machine learning model to choose suitable priority expansion configuration
for the tasks queues in FaCt++.

1.5 Contribution

Create machine learning models that can suggest a suitable priority configuration for
FaCt++ to reason a given ontology, with the intention of preventing long reasoning times
that can be classified as timeouts. By preventing reasoning timeouts, the experience of
ontology editors can be improved.

Applying machine learning models and the work done with the data to prepare it for
classification, will help to find the ontology characteristics that influence the performance
of the tableaux algorithm, and therefore the performance of FaCt++. Knowing these
relevant characteristics will help for future work on this topic.
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PRELIMINARIES AND THEORETICAL BACKGROUND

This chapter is an overview of the relevant theory and technologies that will help to
understand this work. This background starts with the concept of formal logic and the
search of efficient automated reasoning. Following the concepts of ontology and semantic
reasoner will be introduced.

This chapter will also explore the common use cases for ontologies at the time of writing
this work and it will expose the importance of having a reasoner with good performance.

Finally it will present an overview of machine learning concepts and the specific techniques
that are used during this work.

2.1 Ontologies and automated reasoning

Ontologies are a formal representation of knowledge that have been adopted recently by
different areas of research including biology and health sciences [8]. The adoption of these
technologies by the W3C for the implementation of the semantic web [9] has caused a
new interest in ontologies and automated reasoning.

Ontologies have a focus on modeling tractable reasoning. For instance, satisfiability allows
one to determine whether the definition of a concept is not contradictory within the
ontology. Automated reasoning studies algorithms that can infer implicit knowledge from
the explicitly represented knowledge in an ontology [10].

2.1.1 Formal logic and reasoning

Logic is the study of the rules of inference, that allows to follow a conclusion from a
set of propositions. Although the scope and limits of logic are inexact and sometimes
controversial, some examples might help to understand what logic is.

It is attributed to Aristotle the introduction of syllogism [11], which is a logical argument
that consist of inferring a conclusion from exactly two propositions which are assumed to
be true. see Fig. 2.1.

Another scenario where logic is involved is in the study of fallacies. A fallacy [12] is the
incorrect use of reasoning, where the logical argument is incorrectly constructed following
to invalid conclusions. It is common the use of fallacies during debates and discussions,
in this case fallacies have clear classifications.

This work will focus on symbolic logic, a set of logical systems which are subject of study
in the present. This logical systems make use of operations and quantified variables to
create a more general use of logical reasoning.

6



PRELIMINARIES AND THEORETICAL BACKGROUND

Fig. 2.1: Valid syllogism.

It is important to make a distinction between a valid argument and a sound argument.
The first one means that a logical arguments follows the rules of inference in a valid way,
but it does not mean that the propositions are true. A sound argument means that is a
valid argument and that propositions are true.

The previous argument about Socrates being a mortal man, is a valid and sound argument.
But the syllogism in Fig. 2.2, though a valid argument is not sound, since the second
proposition is not true.

Fig. 2.2: Valid but not sound syllogism.

It is trivial for a person to determine if the previous syllogisms are valid, both consist of
two propositions. But arguments of hundreds or thousands of propositions can be formed
in an intricate way, which is non-viable for a human to validate.

With that problem in mind and the introduction of computational systems, the interest of
building an automatic reasoning system surged. Several approaches have been tested for
achieving this purpose, from focusing in algorithms to data structures, and from networks
to description logic.

This work will focus on description logic [13] as the way to achieve automated reasoning.

7



PRELIMINARIES AND THEORETICAL BACKGROUND

2.1.2 Ontologies and reasoners

An ontology is an explicit specification of a conceptualisation [14], the usual way to
represent an ontology is using an ontology language such as web ontology language (OWL),
then an ontology takes the form of an extensible markup language (XML) document that
explicitly states the concepts, their properties and their relationships of a domain of
knowledge.

Ontologies as well as formal logic support operations, e.g. conjunction, disjunction, and
others. The more operations an ontology supports, it is said that it has greater expres-
siveness. Expressiveness is directly related to the complexity of reasoning on an ontology,
the more expressive the language, the harder the reasoning [15].

Reasoning is what it has been shown with the previous syllogism about Socrates: find
the validity of a logic argument. The basic reasoning task in an ontology is sumbsuption.
Determining subsumption is the problem of checking whether the concept denoted by D
(the subsumer) is considered more general than the one denoted by C (the subsumee)[13],
in other words subsumption checks if the first concept is a subset of the second one.

A key reasoning task is satisfiability. When an ontology is being constructed, concepts
and relations are introduced, during the process is important to see if the new concept
makes sense. Logically a concept makes sense if there is an interpretation of the ontology
that denotes a non-empty set for the concept. E.g. An ontology declares that pizza is food
with dough, tomato sauce and cheese, a new concept claiming that a pizza is also food
with dough, cheese but another kind of sauce will not be considered a pizza according to
this ontology, that concept is not satisfiable.

Finding satisfiability with such a simple ontology is trivial, but ontologies are formed by
thousands of propositions sometimes described in an intricate manner and with additional
restrictions. For that case automated reasoning is necessary to reason over an ontology.

2.1.3 Ontologies use cases

In recent years the semantic web has been proposed as a way to enrich the content on the
web with description and semantic relations that allow automated agents to understand
and process in a broader way the public content of the web [9]. A clear example is to
give semantic meaning to hours and dates of events, such a concert, agents can process
unequivocally what the hours mean considering different formats and time zones and use
the data in a more accurate manner.

The semantic web makes use of ontologies to describe concepts and relations and establish
a formal system to let the agents process semantic information.

8



PRELIMINARIES AND THEORETICAL BACKGROUND

Ontologies are also used in biology and other health sciences, ontologies are being used to
classify experimental data, centralize concepts and reason about organs, tissues and cells
[8].

The complexity of these knowledge domains is such that a human can not process all
the concepts at once. Using an ontology is paramount to achieve the formalization of
this domain. Reasoners play a big role on formalizing the domains of biology, with the
complexity of the ontology reasoning is important to check the validity of the ontology
while working on it.

2.1.4 Relevance of reasoner performance

It is fair to state that the role of a reasoner is important while working with ontologies.
Ontologies are created collaboratively, one contributor could introduce a logical contra-
diction without noticing, reasoners are used to test the validity of the whole ontology even
after minor changes.

Reasoners are a working tool, that are constantly used during the creation and modifica-
tion of an ontology, in the same way a compiler is used during coding to check for syntax
errors.

Therefore it can be concluded the importance of reasoners being as fast as possible, since
they are part of the daily process and not simply a tool that is run at the end of the whole
edition effort.

2.1.5 Priority queues architecture in FaCt++

The most widely used technique to reason over ontologies is the method of analytic
tableaux [16]. Tableaux is an algorithm that describes how to form a tree to detect
logical contradictions using a set of rules that applies to logical operators [17].

Tableaux builds a tree where each node is a logical proposition. The set of rules showed
in formulas (2.2, 2.3, 2.4, 2.5, 2.6 and 2.7) explains how to process a node and split it into
simpler components. The tree becomes larger by splitting nodes. The idea is to find two
nodes that causes an obvious logical contradiction, which marks the end of the algorithm.

There is not an explicit order to apply the different rules and can be easily intuited that the
order affects performance, e.g. a common heuristic is to apply rules that creates branches
once all other rules have been applied. Let proposition 2.1 be a logical proposition with
P and Q as premises, to prove if it is true or false, the tableaux algorithm can be used.

∀xPx ∨ ∀xQx⇒ ∀x(Px ∨Qx) (2.1)

9
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Proposition (2.1) includes a non-deterministic operator ∨, i.e. causes branching. The
tableaux algorithm could assign a low priority to ∨ and branch later, like in formula
2.3, or it could assign a high priority and branch sooner, like in formula 2.4. Note that
branching sooner causes a more extensive tree.

¬¬X
X (2.2)

X∧Y
X

Y

¬(X ∧ Y )

¬X ¬Y (2.3)

X∨Y

X Y

¬(X ∨ Y )

¬X
¬Y (2.4)

X ⇒ Y

¬X Y

¬(X ⇒ Y )

X

Y (2.5)

(∀x)Px
Pa

¬(∀x)Px
¬Pa

for fresh a (2.6)

(∃x)Px
Pa

for fresh a
¬(∃x)Px
¬Pa (2.7)

Ontologies are a subset of first order logic [16] therefore can be expressed and treated
using the rules showed in formulas (2.2 - 2.7) and tableaux trees will look like a much
more complex tree than formula 2.3 but using the same rules.

It is important to note that Tsarkov and Horrocks proved in [1] that there is not a single
priority configuration that is suitable to reason all kind of ontologies.

The order of priorities in FaCt++ is expressed as a set of 7 digits that define the order
of the following operators: id, and, or, exists, for all, less than or equal, greater than or
equal. The string is known as IAOEFLG as shown in table 2.1 and the possible values
are strings of 7 digits from 0 to 6 specifying which operator has a higher priority.

10
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∀xPx ∨ ∀xQx⇒ ∀x(Px ∨Qx)
¬(∀xPx ∨ ∀xQx⇒ ∀x(Px ∨Qx))

∀xPx ∨ ∀xQx
¬(∀x(Px ∨Qx))
¬(Pa ∨Qa)
¬Pa
¬Qa

∀xPx
Pa

∀xQx
Qa

× ×

Fig. 2.3: Apply branching at the end.

∀xPx ∨ ∀xQx⇒ ∀x(Px ∨Qx)
¬(∀xPx ∨ ∀xQx⇒ ∀x(Px ∨Qx))

∀xPx ∨ ∀xQx
¬(∀x(Px ∨Qx))

∀xPx
¬(Pa ∨Qa)
¬Pa
¬Qa
Pa

∀xQx
¬(Pb ∨Qb)
¬Pb
¬Qb
Qb

× ×

Fig. 2.4: Apply branching sooner.

Serve as an example the default configuration set by Tsarkov and Horrocks for FaCt++:
1263005. For all and less than or equal have the highest priority and or has the
lowest priority, see table 2.2 for a better visualization.

Since there are seven different positions and they can share priorities, it can be 77 possible
priority configurations. With that number of label classifications is not viable to build
models for everything, to make it more feasible some adjustment are suggested in [3].
Basically, operators are grouped according to its behavior in the tableaux algorithm.
Id and u are grouped together since they do not cause non-determinism or expansion
(creation of new nodes). Operators ≥ and ∃ are grouped together because they cause
expansion, ≤ and t are grouped together since they cause non determinism, and finally
∀ is by itself since it is deterministic and it must be applied to all its successors.

During the development of this work it was found that the priority configuration where
every operator has the same priority configuration (0000000) is recommended for a neg-

11
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I Id
A u
O t
E ∃
F ∀
L ≤
G ≥

Table 2.1: Different priority queues in FaCt++.

F, L ∀, ≤ 0
I Id 1
A u 2
E ∃ 3
G ≥ 5
O t 6

Table 2.2: Ordered default configuration for FaCt++.

ligible number on ontologies, therefore that priority configuration is not considered. Also
the default priority configuration suggested by Tsarkov and Horrocks [1] is included.

After these considerations, the seven priority configurations that are going to be evaluated
in this work are shown in table 2.3.

Priority configuration Order of operators
0012312 ∪ ≤ ∃ ≥ ∀
0013213 ∪ ≤ ∀ ∃ ≥
0021321 ∃ ≥ ∪ ≤ ∀
0023123 ∀ ∪ ≤ ∃ ≥
0031231 ∃ ≥ ∀ ∪ ≤
0032132 ∀ ∃ ≥ ∪ ≤
1263005 ∀ ≤ ∃ ≥ ∪

Table 2.3: Priority configurations in the benchmark.

In this work those candidate priority configurations will serve as labels in a series of binary
classification models. The models will be used to suggest the best priority configuration
for a given ontology.

2.2 Supervised classification

Supervised learning is the machine learning task of learning a function that maps an input
to an output, based on example input-output pairs [18]. This process needs a set of data

12
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which includes a label or class for every sample of the input, it is called supervised in the
sense that the expected output has been previously defined.

Classification is the task of finding a function to map input to a specific discrete label, e.g.
this is a cat, or a dog or a bird. Supervised classification needs a training data set that
includes n number of samples with x features or predictors, and a label with the possible
values previously assigned.

In this work three kind of classification models will be tested: Support vector machines
K-nearest neighbors and Decision trees.

The support vector machine is a generalization of a simple and intuitive classifier called
the maximal margin classifier. Though maximal margin classifier is an elegant classifier it
can not be applied to most of the data sets since the classes must be separable by a linear
boundary. Support Vector Machines is a further extension in order to accommodate no
linear boundaries. Support vector machines are intended for binary classification and the
basic idea is to separate the feature p-dimensional space with a p-1 dimensional hyperplane
[19], e.g. a simple feature plane of two features can be represented by the cartesian plane
and the corresponding hyperplane is a one dimensional line, samples on one side of the
plane correspond to label α and on the other side samples labeled β. For non linear
separable classes Support vector machines enlarge the feature space using kernels, in this
work linear and radial basis function kernels are considered.

K-nearest neighbors are memory-based classifiers and require no model to be fit. Given
a query point k nearest points closest in distance are considered as training points, the
classification is the majority vote among the k neighbors [20]. K-nearest neighbors is
a non-parametric method, hence it does not make assumptions about the form of the
target function [19]. Being a non-parametric method, it is often successful in classification
situations where the decision boundary is very irregular.

Decision trees segments the feature space into non-overlapping regions. The response
of the observation is the mode of the samples in every region [19]. Trees are easy to
explain to people, even non-technical people. Trees can be easily displayed graphically
but unfortunately they tend to lack the accuracy of other models. Random forest are
a model based on decision trees that have shown an improvement in accuracy [19], the
idea is to prevent some features to be considered in deeper levels of the tree causing a
decorrelation of predictors and increasing the chance of create trees with a higher variance.

2.2.1 Feature engineering

With the intention of increasing the performance of certain classification models, mainly
support vector machines, some feature engineering techniques were applied to the training
data set. The theory to understand the basics of each technique is treated in this section.
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Models such as k-nearest neighbors and support vector machines are susceptible to prob-
lems found in continuous features, for example a skewed distribution and outliers. To
prevent a skewed distribution, the training data set will be transformed using Box-Cox
transformation [21]. Box-Cos transformation originally intended as a transformation of a
model’s outcome uses maximum likelihood estimation to find a transformation parameter
λ in the equation 2.5.

x∗ =

{
xλ−1
λx̃λ−1 , λ 6= 0

x̃ log x, λ = 0

Fig. 2.5: Box-Cox transformation equation.

where x̃ is the geometric mean of the predictor data. Because the parameter of interest
is in the exponent, this type of transformation is called power transformation [21].

Decision trees have an implicit feature selection technique built in the way a tree works.
As it was explained before decision trees look for the most useful features that can help
to predict an outcome, therefore features that are not relevant are implicitly discarded,
or not taken into consideration. It can be said that there is an implicit feature selection.
This kind of selection is faster as is part of the model itself.

A different feature selection technique is based on the calculation of variance for each
feature in the training data set. A threshold is selected and features whose variance is not
over that threshold are discarded [21], intuitively features with similar values and that do
not offer a clear distinction between classes are discarded.

Although trees discard irrelevant features, variance feature selection is applied to the
training data set to improve the performance of support vector machine models.

Oversampling is a technique to adjust the distribution of label in a data set. Using statistic
methods as SMOTE new samples are created to balance a otherwise unbalanced set [21].
A unbalanced set is one that have significantly more samples of a given label that another
one, e.g. a set with two labels with 100 samples for label α and 30 samples for label β.
An unbalanced data set affects a classification model, favoring the majority label.

2.3 Conclusions

In this chapter it was exposed how the tableaux algorithm works in essence, and how the
different logical operators impact in the performance of reasoning tasks. It is important
to understand what the reasoner is doing during reasoning, to effectively improve its
performance.
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With this in mind it was also shown how the reasoner is a significant part of the day to
day workflow of an ontology editor, and how poor reasoning performance impacts daily
work.

The TODO list architecture implemented by FaCt++ provides a way to improve perfor-
mance but it is dependant of selecting a proper priority configuration. There is where
machine learning can help to recommend a suitable priority configuration by doing an
analysis on existing ontologies and their performance using candidate configurations.
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3.1 Data procurement

With the adoption of web technologies for the development and distribution of ontolo-
gies, there have been an increase in the number of ontologies. The OWL format has
allowed the emergence of tools that makes easy to create and test ontologies, moreover
the standardization of the format has made possible team collaboration.

The very nature of ontologies to express relationships between concepts encourage on-
tology editors to search for existing ontologies than can be reused as a base for a new
ontology. Many ontologies depends on others to be defined.

Consequently there has been a need to facilitate publishing and sharing ontologies. None
of this is a coincidence, Berners-Lee had it in mind since the conception of a semantic
web, where ontologies and semantic markup could easily be edited by everyone [9], such
as is done with current web technologies.

The need of a repository of library of ontologies is consequence of these previously exposed
scenarios. Ontology libraries are the systems that collect ontologies from different sources
and facilitate the tasks of finding, exploring, and using these ontologies [22].

For testing the performance of FaCt++ a corpora of ontologies that challenge the reasoner
capabilities is desired. It is not enough to have simple ontologies that FaCt++ will process
quickly no matter the priority configuration set, to have meaningful results in a benchmark
for different priority configurations, big complex ontologies are needed.

The biggest consulted library was the corpora of the OWL reasoner evaluation competi-
tion. The OWL Reasoner Evaluation is an annual competition that tests the performance
of different OWL2 reasoners [5][6], among them is FaCt++. The event consists of a
competition among reasoners completing three reasoning tasks on a corpora of OWL2
ontologies. The corpora consist of 1,920 ontologies, it is a sampling of 3 sources:

- A January 2015 snapshot of Bioportal, with 330 biomedical ontologies.

- The Oxford Ontology Library, with 792 ontologies.

- A MOWLCorp 2014 snapshot of a web crawl.

For more up to date ontologies a June 2021 snapshot of Bioportal [7] is used as well, 627
ontologies were collected from this site. Bioportal has a collection of ontologies related to
biomedical topics, it can be found ontologies about allergies, infectious diseases, anatomy,
proteins and others. Ontologies in Bioportal have different sizes, some ontologies have
half a million classes meanwhile others have just a couple dozen of classes.

The total 2,547 ontologies will be processed, measured and evaluated.

17



METHODOLOGICAL DEVELOPMENT

3.2 Data preparation

For building the classification models, features and labels are needed. Features describe
the individuals, in this case ontologies. Labels in the case of this work is if it is rec-
ommended or not to use a given priority configuration. The features extracted from
ontologies are based on the ones extracted in [3].

In this work features can be classified in two categories: counters and ratios. Counters
count the number of appearances of a given OWL tag, ratios are calculated using a simple
formula that will be discussed later.

The possible tags for OWL are well documented in [23], to ease the extraction of the tags
a script was written as part of this work. Tags outside the OWL specification are out of
scope, since it is not viable to know how all of them impact the tableaux algorithm and
anyway not many custom tags are defined in the corpus.

Class Datatype DatatypeProperty
NamedIndividual ObjectProperty Restriction
allValuesFrom assertionProperty cardinality
complementOf disjointUnionOf disjointWith
distinctMembers domain intersectionOf

inverseOf maxCardinality maxQualifiedCardinality
members minCardinality minQualifiedCardinality
oneOf propertyChainAxiom propertyDisjointWith

qualifiedCardinality range someValuesFrom
subClassOf subPropertyOf unionOf

withRestrictions

Table 3.1: List of counter features.

axioms classes_with_existential
classes_with_universal classes_with_subclasses

Table 3.2: Additional counter features.

OWL ontologies are parsed as XML documents and tags are counted. With this first
step counter features are extracted, see table 3.1. Four additional counter features were
extracted, total number of axioms, number of classes with existential, universal and sub-
classes axioms inside them, table 3.2.

Ratio features represent a proportion of certain operators over others. The operators are
not arbitrary, in the TODO architecture of FaCt++ introduced in [2], these operators
represent the available priority queues, see table 2.1.

The ratio features are calculated using the formulas 3.1, 3.2, 3.3 and 3.4, e.g. formula 3.3
for ratio_disjunction, is the ratio between the number of axioms that apply disjunc-
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ratio_min_universal =
N≤ +N∀

N≤ +N∀ +N≥ +N∃ +N∪ +N∩
(3.1)

ratio_max_existential =
N≥ +N∃

N≤ +N∀ +N≥ +N∃ +N∪ +N∩
(3.2)

ratio_disjunction =
N∪

N≤ +N∀ +N≥ +N∃ +N∪ +N∩
(3.3)

ratio_conjunction =
N∩

N≤ +N∀ +N≥ +N∃ +N∪ +N∩
(3.4)

tion, and the sum of all axioms that apply minimum cardinality, universal qualifications,
maximal cardinality, existential qualifications, union and disjunction. These ratios are
included to represent the proportion between the operators that have an impact in the
Tableaux algorithm.

With these 4 ratio features there is a total of 39 features, these features are extracted for
all ontologies in the corpus and exported as a csv file.

To create the classification labels it was needed to measure the reasoning time for every
ontology in the corpora. With that purpose it was used a machine with the following
specifications:

- Kernel: 5.4.0-48-generic x86_64.

- Compiler: gcc v: 9.3.0.

- Linux Distribution: Ubuntu 20.04 LTS (Focal Fossa).

- CPU topology: Dual Core model Intel Core i5-2450M.

- CPU speed: 2190 MHz min/max: 800/3100 MHz Core speeds (MHz): 1: 1570 2:
1629 3: 1398 4: 2737.

The library to load a OWL ontology into the reasoner was owl_cpp v.0.3.3 [24] with
some minor changes for working with the used version of FaCt++, these changes do
not affect performance, but are for adjust the syntax to a more recent C++ standard.
Since owl_cpp only supports RDF/XML it was needed to convert the ontologies to the
RDF/XML syntax to process them, for this purpose a utility named robot was used,
which is a tool that helps with common tasks when working with ontologies [25]. Both
owl_cpp and FaCt++ were compiled in the same machine described above.

Every ontology was reasoned with FaCt++ in satisfiability service. And for every config-
uration of a set of 7 priority configurations, see table 3.3. Every priority configuration was
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Priority configuration Order of operators
0012312 ∪ ≤ ∃ ≥ ∀
0013213 ∪ ≤ ∀ ∃ ≥
0021321 ∃ ≥ ∪ ≤ ∀
0023123 ∀ ∪ ≤ ∃ ≥
0031231 ∃ ≥ ∀ ∪ ≤
0032132 ∀ ∃ ≥ ∪ ≤
1263005 ∀ ≤ ∃ ≥ ∪

Table 3.3: Priority configurations in the benchmark.

run 5 times using a utility called hyperfine [26], the machine was not running anything
else but the benchmark.

A table with the times per priority configuration was obtained. For training purposes
only ontologies which presents at least one time out in one of the configurations were
considered. Most of the ontologies do not have large differences among their times with
different priority configurations, for those ontologies is not required to propose an optimal
priority configuration since any of them would work.

After processing the results of the benchmark, classification labels were obtained. The
priority configuration is considered as not recommended if it takes 2 or more seconds
than the fastest priority configuration or if after 10 minutes reasoning has not finished,
what it is called a timeout. The ontology is considered as recommended otherwise. These
timeouts thresholds are based on what has been observed by Mehri as convenient and
published in their work [3].

3.3 Building the classification models

Due to the small number of samples for training, 171 ontologies, it was decided that it
is a better approach to build multiple binary classifiers instead of a single multi label
classifier, as it is suggested in the work published by Mehri [3].

Ontologies have a label for each priority configuration, each of these labels have a binary
value 1 if the priority configuration is recommended to use it to reason the ontology, or
0 otherwise. Labels are based on the results of the performance benchmark done as part
of this work.

There are 7 priority configurations being evaluated, hence 7 classifications models will be
trained. First for each class we build a data set with all the features extracted from the
ontologies plus the label that represents the priority configuration.

Features can be cataloged in two kinds:
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1. Counters are the number of occurrences of certain OWL tags. The scale is unknown,
and

2. Ratios are calculated with a simple division. It is known the scale goes from 0 to 1.

Features that are on a continuous scale are subject to certain problems due to be on
different scales, skewed distributions or outliers. Some models like trees are not affected
by these problems but others like k-nearest neighbors and support vector machines are
much more sensitive to predictors with skewed distributions or outliers [21].

(a) Not transformed. (b) With Cox-Box transformation.

Fig. 3.1: Distribution of number of classes.

To help the classification algorithms counter features are transformed using the Box-Cox
transformation to have a more gaussian distribution. Although is not guaranteed the
improvement of the model after applying the transformation, a skewed distribution has
harmful effect on models that utilize polynomial calculations such as linear models and
support vector machines [21]. Figure 3.1 shows an example of distribution before and
after Cox-Box transformation.

Counter features are OWL tags and, as previously noted, it is intended to extract all of
the possible OWL tags based on standard documentation. This lead to the case that
some tags are not present for any of the ontologies in the training data set. It is helpful to
remove these features that do not contribute to the training of the models and decrease
the number of features to train with.

A simple way to remove these features is to discard features with low variance. With
this purpose a feature selection technique to remove features with low variance is applied.
Again only counters features are considered for this selection technique, since the range
of ratio features is [0, 1] by definition all of them would be discarded, this is not desired.
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Priority configuration Recommended Not recommended
0012312 78 93
0013213 90 81
0021321 17 154
0023123 95 76
0031231 29 142
0032132 41 130
1263005 55 116

Table 3.4: Ratio of number of recommended to recommended.

For some priority configurations there is a bigger number of ontologies for which the con-
figuration is not recommended, with the worst mismatch of 1:9 for priority configuration
0021321, see table 3.4. This scenario impacts the classification models, obtaining a high
accuracy but a low f1-score that takes precision and recall into account.

This phenomenon is known as class imbalance learning [27] and affects classification,
intuitively the classification model favors the class with the larger number of samples.
To fight imbalance learning new samples can be created. In this work new samples are
created using the SMOTE technique [21].

Once the data has been prepared, four models are trained using the data set. The con-
sidered models are: support vector classification with linear and radial basis function
kernels and decision tree and random forest classifiers. In [3] it is proposed that support
vector machine classifiers are a very accurate model for this classification, for this reason
both support vector classifiers are considered. Finally with the premise than most of the
classification can be made using only ratio features with a simple threshold validation,
both decision tree and random forest are tested.

Another advantage of using decision tree classifier is that the simplicity of the model allows
to see what decisions are taken, e.g. a tree can be visualized with the considerations the
model took to classify. This visualization can also help to further study the relevance of
ontology features.

The results of training with the described data set and which models were finally selected
as the most accurate is shown in the following chapter.

3.4 Conclusions

The accuracy of the classification models was broadly influenced by the quality and pre-
sentation of the training data. It was important to dedicate most of the effort to study
and adapt the available data to prevent known issues caused by the characteristics of the
data, e.g. a skewed distribution.
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It was important to build mechanisms that could be easily used in an iterative exper-
imentation, with this in mind preprocessing of data was split in reusable procedures,
without side effects and easily repeatable. Another relevant aspect was the application of
oversampling techniques, proving the need of a larger corpus of data.

Lastly, although no new classification models were implemented, it was significant to take
time to understand the inner mechanism of the models to improve the training data for
its use.
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4.1 Results

To build the binary classifiers the corpus from ORE 2015 was used. Not all the ontologies
in the corpus were used, after performing the benchmark it was found that most of the
ontologies did not show a relevant difference between times when using different priority
configurations, it is then considered that the order of logical operators does not have an
impact on performance.

Ontologies that presents at least one timeout in any priority configuration are consid-
ered to be part of the training set. The intention is to recommend a suitable priority
configuration that do not cause a timeout.

Finally, ontologies with timeouts for all of the evaluated priority configurations are also
discarded. The timeout used for this work is 15 minutes.

Class Best model Accuracy F1-score
0012312 Random Forest 0.885 0.840
0013213 SVC RBF 0.678 0.696
0021321 SVC RBF 0.639 0.302
0023123 Random Forest 0.684 0.719
0031231 Random Forest 0.894 0.733
0032132 Random Forest 0.905 0.799
1263005 Random Forest 0.888 0.845

Table 4.1: Best model for every configuration.

After these considerations the training data set consists of 171 ontologies. This training
data set was used to build seven binary classifiers. Models are cross validated using k-fold
with 5 partitions, and two metrics: accuracy and f1-score are gathered. The results of
training the models are presented in table 4.1.

To evaluate the accuracy of the classifiers, 15 ontologies from bioportal are used. These
ontologies are evaluated using the same benchmark that was used for the training data set
and the same considerations are observed to obtain the final ontologies used for evaluation.

Algorithm 1 Recommend a priority configuration.
1: procedure RecommendPC
2: Order binary classifiers based on F1-Score.
3: select :
4: Select the classifier with highest F1-Score that has not been marked as used.
5: Predict the recommendation using the selected classifier.
6: Report if the priority configuration is recommended.
7: Mark as used the selected classifier.
8: goto select.
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Recommendation of the priority configuration is done using the procedure described in
Algorithm 1. It is important to remember that only one priority configuration is required
to work with the ontology, hence it is relevant which is the first priority configuration
recommended by the classifiers.

ore_ont_16444.owl Real Predicted
0012312 True True
0013213 True False
0021321 False False
0023123 True True
0031231 False False
0032132 False False
1263005 False False

Table 4.2: Predicting order for ontology.

For example for ontology ore_ont_16444.owl from ORE2015 corpus [6], the prediction
process will start with the classifier with highest f1score which will suggest to use the
priority configuration or do not use it for reasoning. See table 4.2.

With binary classification four scenarios are possible, first the best scenarios:

1. The priority configuration is suitable and the classifier marks it as suitable as well.
(True Positive).

2. The priority configuration is not suitable and the classifier marks it as not suitable
as well. (True Negative).

The following cases are classification errors:

1. The priority classification is suitable but the classifier does not recommend it. This
classification is still an error but it can be tolerable because it is expected than the
following classifier can suggest a suitable configuration. (False Negative).

2. The priority classification is not suitable but the classifier recommends it. This is
the worst case scenario since causes the reasoner to take the most time reasoning
even causing a timeout. (False Positive).

The recommendation results for the 15 ontologies from bioportal are shown in table 4.3.
First recommended PC is the first priority configuration that is recommended to be used
to evaluate the given ontology, second recommended PC is the second recommended prior-
ity configuration by the classifiers. For the 73% of the evaluation ontologies the classifiers
recommended a suitable priority configuration. Since the algorithm can recommend sev-
eral priority configurations if after a bad prediction it is used a second recommendation,
93% of the evaluation ontologies are successfully evaluated.
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Ontology Real PC First recommended PC Result Second recommendation
aero 1263005 1263005 Good
allergydetector 1263005 1263005 Good
bipom-ecmet-int 1263005 1263005 Good
bt 1263005 0031231 Bad Good
cmpo 0031231 0031231 Good
fb-cu 0031231 0031231 Good
flopo 0031231 0012312 Bad Good
hoipo 0013213 None Bad Bad
ico 0031231 0031231 Good
mhc 1263005 1263005 Good
neurofma 0012312 0012312 Good
obi-fged 0031231 0031231 Good
ontokbfc 0031231 0031231 Good
plantso 0031231 0031231 Good
ppo 0012312 1263005 Bad Good

Accuracy 73% 93%

Table 4.3: Results of recommended a priority configuration.

4.1.1 Decreasing timeouts

A sample from ORE 2015 corpus [6] of 20 ontologies excluded from training the resulting
models was used to measure the effectiveness of decreasing timeouts. The criteria to
select the ontologies for this evaluation was that the default configuration resulted in a
timeout, hence requiring a different priority configuration to reason over given ontology
in an acceptable time.

Using algorithm 1 a priority configuration was suggested for every one of the 20 ontologies,
resulting in correctly predicting a suitable priority configuration other than the default
for 70% of the ontologies.

Meaning that 70% of the timeouts could be prevented by using the models presented on
this work.

4.2 Conclusions

Applying the recommendations to select a suitable priority configuration to reason over
a given ontology can prevent timeouts. It is important to remember that reasoning over
an ontology is done periodically during the editing process, which can lead to a unusable
creation environment.
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During the development of this work it was observed that there is no many cases where
ontology evaluation lead to a timeout, which in a way hinders statistical analysis like the
one presented in this work. With proliferation of semantic web it is expected that new
ontologies will be created which could help to enrich the ecosystem of tools and statistical
analysis around this topic.
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CONCLUSIONS

During the development of this work it was found that the ontologies that ends with
a timeout for a particular priority configuration are a special case. The most popular
ontologies used in the semantic web, such as foaf and goodrelations, can be reasoned with
any priority configuration without noticing a penalty in performance.

The heuristic that there is a set of ontology features that help to predict what priority
configuration is the most suitable to reason it, it is correct in most of the cases. However,
there are still some particular ontologies that are a problem to predict, such as the cellular
microscopy phenotype ontology (CMPO) and the informed consent ontology (ICO) found
in bioportal.

With the final utility created on this work to predict the most suitable priority configu-
ration to be used by FaCt++, reasoning timeouts can be avoided. Avoiding timeouts will
result in a better experience while designing ontologies.

5.1 Future work

Exploring other features that impacts reasoning performance is suggested, during the
development of this work two options were noted:

- The order of the axioms itself can impact performance. It can be useful to explore
the relation between the order on which the axioms are handled by the tableaux
algorithm and the performance, and if there is an optimal order to reason an ontol-
ogy.

- How the structure of the axioms impacts the performance of the reasoner, e.g. in
this work was intended to capture how many classes are impacted by the use of
existential quantifiers.
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