
Instituto Tecnológico

y de Estudios Superiores de Occidente
Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018,

publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

Especialidad en Sistemas Embebidos

Beyond State Machine: Modular Software Reference Architecture

Design based on RTOS – An Industrial Experience Report

TRABAJO RECEPCIONAL que para obtener el DIPLOMA de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: ALDO ALONSO CORONADO MÉNDEZ

Asesor: M. Sc. SERGIO NICOLÁS SANTANA SÁNCHEZ

Tlaquepaque, Jalisco. julio de 2021

Beyond State Machine: Modular Software

Reference Architecture Design based on

RTOS – An Industrial Experience Report
Aldo Coronado

Departamento de Electrónica, Sistemas e Informática

Especialidad en Sistemas Embebidos

Tlaquepaque, México

xe730053@iteso.mx

 Abstract - Technology based industry is characterized

by the accelerated need for innovation to meet market

requirements, therefore, it is important to harness a solid

framework for a faster and improved new product

development. This article presents a novel reference

architecture design to support applications with complex

embedded software workflows. The design is focused on

context management in the application layer and

handling input data from peripherals. The architecture

was successfully implemented in an electronic smart safe

custom embedded hardware; however, it can be used in

any embedded product with task concurrency and

complex software workflow.

 Index Terms – reference architecture, embedded,

RTOS.

I. INTRODUCTION

In modern technology companies, it is a common

practice to develop new projects based on previous

generation products to reduce time-to-market and

costs [1] [2]. Therefore, there is a need to create a

shared reference architecture between several products

with similar features, such as hardware components,

software modules, or the application. However, over

the years this architecture might become naturally

obsolete. For this reason, the development of a

reusable up-to-date architecture using modern

technologies is fundamental for product evolution.

At Venteks, a company dedicated to developing

vending and cash embedded solutions [3], the

reference software architecture used in almost all

products consists of a cooperative bare metal

scheduler (without an operating system), and software

modules based on state machines. Over time, the

product design requirements regarding complexity and

reliability increased, making it more difficult to

sustain the legacy architecture. Consequently,

maintaining, escalating, bug fixing, and new feature

implementation processes may become inefficient.

Alternatively, the broad range of modern and varied

technologies, like Real-Time Operating Systems

(RTOS) and communication protocols, provide more

options to tackle these problems implementing an

improved reference architecture.

The key features of Venteks’ product portfolio are the

user interface (e.g., screen and keyboard) and cloud

connectivity. Therefore, the proposed reference

architecture in this paper focuses on these two

features. To the best of our knowledge, there are no

design software guidelines using RTOS to date, in

which state machines are an inherent part of the

application context control and device drivers. For this

reason, the design depicted in this paper is a novel

pattern to run several context functionalities in an

embedded application.

The product selected for this case study is an electronic

Smart Safe considering the software involves a

significant number of features, such as sensors for

temperature, presence and vault instrusion, among

others, in addition to human-machine interface

through a screen and touch keypad, point-of-sale

sofware connectivity over Local Area Network

(LAN), cloud connectivity, bluetooth connection to a

mobile app, and cash acceptors communication.

II. DESIGN METHODOLOGY

The design process for the architecture was first

applied through a single existing product re-design,

and this architecture is planned to roll-out over new

products. With the objetive of tailoring the

architecture to the available RTOS and conectivity

tools, the RTOS and cloud conectivity protocol were

selected before the architectural design process. Once

these components had been determined, the main

purpose of the architecture is the migration from the

finite state machine paradigm to a pattern compatible

with the RTOS features.

A. RTOS Selection

From the RTOS available in the market, both

propietary and open source, real-time and safety-

critical hallmark characteristics are not a requirement

in any of Venteks’ products. For this reason, the RTOS

selection was based on cost, usability and support.

Furthermore, the system’s main custom hardware

operates under the STM32 microcontroller (ARM

Cortex-M4 kernel), which incorporates readily

accesible and well tested HAL modules, and the

STM32 Cube Integraded Development Enviroment

(IDE) provides direct integration and RTOS-aware

debugging for Azure® ThreadX and Amazon

FreeRTOS™ Kernel [4], owned and supported by

cloud services market-leaders. Most notably,

FreeRTOS is also supported by a large community of

colaborators because of its open source nature [5].

B. Cloud Connectivity Protocol selection

Regarding cloud connectivity, there are more than

1500 smart safe units installed in the field and the

forecast is predicted to reach three times this amount

in the next couple of years; therefore, the need for a

reliable, cost-effective, and scalable internet protocol

is imperative. Cloud connectivity was formerly

provided with a basic binary M2M protocol of small

data packets (20 bytes in average) using the

GPRS/LTE Quectel® BG96 module to connect to a

socket server with simple reliability mechanism. The

BG96 module supports a rich set of internet protocols,

such as TCP/IP, HTTP and MQTT [6]. In comparison

with the former protocol, HTTP and MQTT have a

significant message overhead, which translates

directly to data usage and thus cost increase. The

selected cloud communication stack was MQTT,

considering it is the growing market-leader in IoT

applications [7], due to its lightweightness, and

embedded Quality of Service.

C. Architectural Design

The smart safe functionalities available to users can be

accessed through input peripherals and the activation

of some sensors. The system workflow is modelled in

a state-machine diagram, where state transitions are

triggered by inputs or the system events. The proposed

design is a 5-layer architecture (HAL, RTOS, Device

Drivers, Services/Middleware, and Application

Layer). Using event-driven and producer-consumer

paradigms, a single event queue is used to control

peripheral inputs, messages, and system transitions.

1. Applets and Scenes

Each smart safe functionality is represented in the

form of an applet, using the same criteria applied to

the state definition in a finite state-machine, and may

internally incorporate any number equal or greater

than 2 scenes in an array form. The concept of an

applet is a context routine that can somewhat

independently exist from the rest of the program.

Likewise, applets are further divided into scenes,

which is the smallest system portion able to receive

and process events, acting as the consumer. The

purpose of scenes is to abstract and define behavior of

each screen inside the system context. The elements

associated to the scene definition are:

• Scene ID

• Variable Element Enable (e.g., Time banner)

• Associated Screen Print Function

• Scene to go after timeout

• Events Subscription Array

If necessary, the applet module could contain entry

and exit routines to configure applet inner context

before execution. Additionally, to provide context

control for the system workflow, previous and current

applet-scenes are contained in a structure used by the

event handler for state transitions. Scenes cannot be

executed concurrently, therefore, the applet-scene

code is executed from the event handler task context.

2. Event Handler

The available event in the queue is compared to the

current scene subscriptions and if the subscription is

correct, the event type and data is then delivered to the

scene to be processed. After processing, the scene will

reply if the event can be discarded or should be

retained in the queue with the objective of being

propagated to the next executing applet-scene. The

scene can also send an event if a state transition is

required and specify which applet-scene will execute

next. These special applet events are only processed

by the event handler.

3. System Diagnostic

The mission of this software component is to perform

a periodical check for system errors (e.g., bill jam,

keyboard disconnection). These errors are provided as

driver error flags, and to deliver an event if the system

cannot operate normally anymore, in other words, go

out of service. If the system recovered from the error,

it could then send the event to inform that the system

can operate normally again.

4. Input Events

Software modules such as peripheral drivers send

notifications (e.g., key pressed, door opened, bill

inserted) through events to the executing applet-scene

as shown in Figure 1, acting as producers. These

events can be discarded or processed depending on the

scene subscription list.

Fig. 1. Event handling method

III. EXPERIMENTAL RESULTS

This section portrays the experimental results of

implementing the modular architecture in the smart

safe embedded software development process. We

present the modular architecture of the smart safe

software implementing the applet partition paradigm

and then, the result of an event propagation instance

within the smart safe software. Finally, the

development process improvement due to the

reference architecture implementation.

A. Software Architecture

The reference architecture was applied to the smart

safe embedded software, containing originally 4

applets: Main Menu, Money Insertion, Password

Validation, and Open Vault State as shown in Figure

2. To increase portability, the software modules that

can generate events were located on driver wrappers,

or the middleware layer. This way, it is possible to

migrate to another cloud connectivity protocol or bill

validator technology and keep the application layer

unaffected.

Fig. 2. Smart Safe layered architecture

B. Event Propagation Results

An instance of event propagation in the smart safe

software was necessary under the following condition:

while the main screen is active (main menu applet), a

numeric key is pressed on the keyboard. The

processing of this event generates the applet transition

request onto password validation applet. This applet

transition event is then sent back to the event handler

in combination with the signal to propagate the last

received event (numeric key pressed), so the first

number can be printed on the display while typing the

password. This propagation scenario sequence is

shown in Figure 3 in numbered order.

Fig. 2. Event propagation sequence

C. Modularity and time-to-market

Although the integration of HAL and RTOS layers

accounts for a significant program footprint increase,

since the implementation of the application-layer

modular architecture, the number of written lines of

code necessary for this project were notably reduced

and consequently, achieving a time-to-market cut in

approximately 40%.

While the smart safe project development was under

way, the reference architecture was successfully tested

in another product development. Remarkably, 35% of

software components from the smart safe project were

able to be reused seamlessly, particularly driver stacks

such as cash validation and telemetry, among others.

Therefore, successful outcome for the reference

architecture regarding portability and reusability was

proven.

CONCLUSION

This article presented a novel modular reference

architecture for the design of embedded systems with

a complex workflow within the product software. The

architecture was proven successful, particularly, in the

application layer, where the abstraction of context

through applets and scenes interacting with events sent

from inputs, allows a solid and reliable method for the

software to take actions only derived from relevant

events within the application current context.

REFERENCES

[1] B. Graaf, H. v. Dijk and A. v. Deursen, "Evaluating an

embedded software reference architecture - industrial

experience report," IEEE, 2005.

[2] M. Galster, "Software reference architectures: related

architectural concepts and challenges," in 1st International

Workshop on Exploring Component-based Techniques for

Constructing Reference Architectures (CobRA), Montreal,

QC, Canada, 2015.

[3] Venteks, Venteks, 2016. [Online]. Available:

www.venteks.com. [Accessed 01 07 2021].

[4] STMicroelectronics, ST, 2021. [Online]. Available:

https://www.st.com/en/development-

tools/stm32cubeide.html. [Accessed 01 07 2021].

[5] Amazon Web Services, Inc., [Online]. Available:

https://www.freertos.org/partners/overview.html.

[Accessed 07 07 2021].

[6] Quectel, "LTE BG96 Cat M1/NB1/EGPRS," [Online].

Available: https://www.quectel.com/product/lte-bg96-cat-

m1-nb1-egprs/. [Accessed 13 07 2021].

[7] A. K. Biswajeeban Mishra, "The Use of MQTT in M2M

and IoT Systems: A Survey," IEEE Access, pp. 201071 -

201086, 4 November 2020.

