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Hipothesis: There exists a set of conditions under which a cross-validation process can be defined and conducted in order to achieve Out-Of-Sample and Out-Of-Distribution Generalization when performing a Predictive
Modeling Process using Financial Time Series Data.
Dataset: Continuous futures prices of the UsdMxn (U.S. Dollar Vs Mexican Peso), extracted from CME group MP Future Contract. Prices are Open, High, Low, Close in intervals of 8 Hours, OHLC data. GMT
timezone-based and a total of 66,500 from 2010-01-03 18:00:00 to 2021-06-14 16:00:00.
Experiment: A classification problem is formulated as to predict the target variable, COt+1, which is defined as the sign(Closet+1 −Opent+1). For the explanatory variables, the base definition is to use only those of
endogenous nature, that is, to create them using only OHLC values.

A discrete representation
Let Vt be the value of a financial asset at any given
time t, and St as a discrete representation of Vt if
there is an observable transaction Tst. Similarly,
if there is a set of discrete Tst observed during
an interval of time T of n = 1, 2, ..., n units of
time, {ST}nT=1, can be represented by OHLCT :
{Opent, Hight, Lowt, Closet}. The frequency of
sampling T , can be arbitrarly defined.

OHLC data
Timestamp: The date and time for each interval.
Open: The first price of the interval.
High: The highest price during the interval.
Low: The lowest price during the interval.
Close: The last price of the interval

Intra-day micro-information:
volatility: HLt , price-change: COt

uptrend: HOt , downtrend: OLt

Candlestick Visual Representation (Figure 1)

The base calculations are:

HLt = Hight − Lowt
OLt = Opent − Lowt
COt = Closet −Opent
HOt = Hight −Opent

T-Fold-SV (Steps)

1.- Folds Formation
Depends on labeling, can be calendar based.
2.- Target and Feature Engineering
In-Fold exclusive or Global and then divide.
3.- Information matrix
To asses information sparsity among Folds.
4.- Predictive Modeling
Hyperparameter optimization Train-Val sets.
5.- Generalization Assesment
Out-Of-Sample and/or Out-Of-Distribution.

1: Folds Formation (Figure 2) 2: Target Variable (labeling)
A continuous variable prediction (regression prob-
lem), into a discrete variable prediction (classification
problem), a time-based labeling can be stated as:

ŷt = sign {COt}

Interesting enough, this target variable never had an
imbalace of classes more than 5.5%

2: Feature Engineering
with {OL}t−k, {HO}t−k, {HL}t−k, {CO}t−k for
values of k = 1, 2, ...K, with K as a proposed mem-
ory parameter. Then perform some fundamental op-
erations: Simple Moving Average SMAt, lag: LAGt,
Standard Deviation: SDt and Cumulative Sumation:
CUMSUMt.

Then symbolic variables where generated using Ge-
netic Programming.

3.1: Information Representation and Sparsity
A gamma distribution to fit the PDF of two set of variables, and the
Kullback-Leibler Divergence to measure the similarity between the
two:

f (x) = βα

Γ(α)
xα−1e−βx for x > 0 α, β > 0 (1)

Γ(α): The gamma function ∀ α ∈ Z+ and the DKL(P ||Q): Kullback-
Liebler Divergence, which for unknown continuous random variables,
P,Q, or for p, q as empirically adjusted Probability Density Functions
(PDF) is denoted by:

DKL(P ||Q) = ∫∞
−∞ p(x)log

p(x)
q(x)

dx (2)

3.2: Information matrix
An Information Matrix (IM) represents the similarity in information,
for the target varible, among every Fold.

IM =
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DKL(1,1) DKL(1,2) . . . DKL(1,n)
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...
... . . . ...
... . . . DKL(n−1,n)

DKL(n,1) . . . DKL(n,n−1) DKL(n,n)



DKL is a non-conumtative operation, henceDKL(P ||Q) 6= DKL(Q||P ).
That means the Information Matrix (IM), is not symmetric, but has
0’s in its diagonal.

3.3: Matrix Characterization
If an Information Threshold is defined, and then applied to every
value in IM, then the latter can be characterized according to a counting
of following:

- Sparse:
All the elements of IM are sufficient disimilar among each other.
- Weakly Sparse:
There exists one or more very similar pairs of elements.
- Non-sparse:
ALll elements are highly similar to each other.

The ideal in theory is to have a Sparse Information Matrix to train
any model, so to use non-repeated data.

4.1: Cost Function and Regularization
One common component of the predictive modeling process is binary-logloss cost
function with elasticnet regularization:

J(w) = J(w) + C
λ

m

n∑
j=1
‖wj‖1 + (1− C) λ

2m
n∑
j=1
‖wj‖2

2

Where ∑n
j=1 ‖wj‖1 = L1 and ∑n

j=1 ‖wj‖
2
2 = L2 are also known as Lasso and Ridge

respectively, with C as the coefficient to regulate the effect between the two.

4.2: Model’s Params
Logistic Regression
- L1_L2_Ratio = 1.0 (Lasso) - Inverse of
regularization (C): 1.5 - Parameter repe-
titions (Stability): Yes

ANN-MLP
- Hidden Layers: 2, 80 neurons each
- Activations: ReLU
- Dropout: 10% all layers

4.3: Results
Two models were defined, Logistic-Regression and Multi-layer Feedforward Perceptron.

Metric ann-mlp logistic
acc-train 0.9155 0.8311
acc-val 0.8245 0.7368
acc-weighted 0.4486 0.4061
acc-inv-weighted 0.4213 0.3778
auc-train 0.9924 0.9300
auc-val 0.8401 0.8017

Metric ann-mlp logistic
auc-weighted 0.4810 0.4521
auc-inv-weighted 0.4353 0.4137
logloss-train 0.2290 5.8333
logloss-val 6.0595 9.0892
logloss-weighted 0.6975 3.2422
logloss-inv-weighted 2.4467 4.2190

Train-Logistic Validation-Logistic Train-NeuralNet Validation-NeuralNet

ROCs-Train-Logistic ROCs-Validation-Logistic ROCs-Train-NeuralNet ROCs-Validation-NeuralNet
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