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Hipothesis: There exists a set of conditions under which a cross-validation process can be defined and conducted in order to achieve Out-Of-Sample and Out-Of-Distribution Generalization when performing a Predictive

Modeling Process using Financial Time Series Data.

Dataset: Continuous futures prices of the UsdMxn (U.S. Dollar Vs Mexican Peso), extracted from CME group MP Future Contract. Prices are Open, High, Low, Close in intervals of 8 Hours, OHLC data. GMT

timezone-based and a total of 66,500 from 2010-01-03 18:00:00 to 2021-06-14 16:00:00.

Experiment: A classification problem is formulated as to predict the target variable, COy, 1, which is defined as the sign(Close; 1 — Openy,1). For the explanatory variables, the base definition is to use only those of

endogenous nature, that is, to create them using only OHLC values.

A discrete representation OHLC data Candlestick Visual Representation (Figure 1)

Let V; be the value of a financial asset at any given — T@mestamp: The date and time for each interval.

The base calculations are:

time ¢, and S; as a discrete representation of V; if ~ Open: The first price of the interval.

there is an observable transaction T's;. Similarly,  High: The highest price during the interval.

HL, = High; — Lowy,
OL; = Open; — Low;
C'O; = Close; — Openy
HO; = Highy — Open,

if there is a set of discrete T's; observed during  Low: The lowest price during the interval.

an interval of time 7" of n = 1,2,....,n units of = Close: The last price of the interval
time, {Sr}r_,, can be represented by OHLCy
{Openy, Highy, Low;, Close;}. The frequency of

sampling T’ can be arbitrarly defined.

Future Prices USD/MXN

Intra-day micro-information:
volatility: HL, , price-change: C'O;
uptrend: HO,; , downtrend: OL,

T-Fold-SV (Steps) 1: Folds Formation (Figure 2)

1.- Folds Formation

Training / Validation

Depends on labeling, can be calendar based.
2.- Target and Feature Engineering
In-Fold exclusive or Global and then divide.
3.- Information matrix

7 = sign {CO;}

To asses information sparsity among Folds.
4.- Predictive Modeling
Hyperparameter optimization Train-Val sets.

imbalace of classes more than 5.5%

5.- Generalization Assesment
Out-Of-Sample and/or Out-Of-Distribution.

3.1: Information Representation and Sparsity

3.2: Information matrix

An Information Matriz (IM) represents the similarity in information,

A gamma distribution to fit the PDF of two set of variables, and the
Kullback-Leibler Divergence to measure the similarity between the

for the target varible, among every Fold.
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That means the Information Matriz (IM), is not symmetric, but has
0’s in its diagonal.
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4.2: Model’s Params
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A continuous variable prediction (regression prob-
lem), into a discrete variable prediction (classification
problem), a time-based labeling can be stated as:

Interesting enough, this target variable never had an
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2: Feature Engineering

with {OL}, ., {HO}, ., {HL}, 1, {CO},_, for

values of k = 1,2, ... K, with K as a proposed mem-

ory parameter. Then perform some fundamental op-
erations: Simple Moving Average SM Ay, lag: LAGy,
Standard Deviation: S D; and Cumulative Sumation:

CUMSU M;.

Then symbolic variables where generated using Ge-
netic Programming.

3.3: Matrix Characterization

If an Information Threshold is defined, and then applied to every

value in IM, then the latter can be characterized according to a counting
of following:

- Sparse:

All the elements of IM are sufficient disimilar among each other.
- Weakly Sparse:

There exists one or more very similar pairs of elements.

- Non-sparse:

ALIl elements are highly similar to each other.

The ideal in theory is to have a Sparse Information Matrixz to train
any model, so to use non-repeated data.

4.1: Cost Function and Regularization

One common component of the predictive modeling process is binary-logloss cost

Logistic Regression

Two models were defined, Logistic-Regression and Multi-layer Feedforward Perceptron.

function with elasticnet regularization: - L1_L2 Ratio = 1.0 (Lasso) - Inverse of

\ P , regularization (C): 1.5 - Parameter repe- Metric ann-mlp logistic Metric ann-mlp logistic
Jw)=Jw)+C - & Jlwll, + (1= C) & [lwll; titions (Stability): Yes acc-train 0.0155 08311  auc-weighted 04810  0.4521
acc-val 0.8245 0.7368 auc-inv-weighted — 0.4353 0.4137
Where =_; |Jw;||, = L1 and =%_, ijHg = L, are also known as Lasso and Ridge ANN'MLP acc-weighted 0.4486 0.4061 logloss-train 0.2290 5.8333
respectively, with C' as the coefficient to regulate the effect between the two. - Hidden Layers: 2, 80 neurons each acc-inv-weighted 0.4213 0.3778 logloss-val 6.0595 9.0892
- Activations: ReL.U auc-train 0.9924 0.9300 logloss-weighted 0.6975 3.2422
- Dropout: 10% all layers ac-val 0.8401  0.8017  logloss-inv-weighted 2.4467  4.2190
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<7} subset/Feature-Lag | - Prediction Success = Prediction Error <7} subset/Feature-Lag |- Prediction Success =} Prediction Error

<7} subsetFeature-Lag |- - Prediction Success =2 Prediction Error

7} subsetFeature-Lag | - Prediction Success =2 Prediction Error
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