# **T-Fold Sequential Validation Technique for Out-Of-Distribution Generalization with Financial Time Series Data**

#### Juan Diego Sánchez-Torres<sup>1</sup> Juan Francisco Muñoz-Elguezabal<sup>1</sup>

<sup>1</sup>Mathematics & Physics Department - Western Institute of Technology and Higher Education (ITESO)

Hipothesis: There exists a set of conditions under which a cross-validation process can be defined and conducted in order to achieve Out-Of-Sample and Out-Of-Distribution Generalization when performing a Predictive Modeling Process using Financial Time Series Data.

**Dataset:** Continuous futures prices of the UsdMxn (U.S. Dollar Vs Mexican Peso), extracted from CME group MP Future Contract. Prices are Open, High, Low, Close in intervals of 8 Hours, **OHLC** data. GMT timezone-based and a total of 66,500 from 2010-01-03 18:00:00 to 2021-06-14 16:00:00.

**Experiment:** A classification problem is formulated as to predict the target variable,  $CO_{t+1}$ , which is defined as the sign( $Close_{t+1} - Open_{t+1}$ ). For the explanatory variables, the base definition is to use only those of endogenous nature, that is, to create them using only **OHLC** values.

#### A discrete representation **OHLC** data Candlestick Visual Representation (Figure 1) *Timestamp*: The date and time for each interval. Let $V_t$ be the value of a financial asset at any given The base calculations are: time t, and $S_t$ as a discrete representation of $V_t$ if **O**pen: The first price of the interval. there is an observable transaction $Ts_t$ . Similarly, **H**igh: The highest price during the interval. 24.2697 if there is a set of discrete $Ts_t$ observed during Low: The lowest price during the interval.



an interval of time T of n = 1, 2, ..., n units of time,  $\{S_T\}_{T=1}^n$ , can be represented by  $OHLC_T$ :  $\{Open_t, High_t, Low_t, Close_t\}$ . The frequency of sampling T, can be arbitrarly defined.

Close: The last price of the interval

Intra-day micro-information: volatility:  $HL_t$ , price-change:  $CO_t$ uptrend:  $HO_t$ , downtrend:  $OL_t$ 

# T-Fold-SV (Steps)

#### **1.-** Folds Formation

Depends on labeling, can be calendar based.

2.- Target and Feature Engineering

In-Fold exclusive or Global and then divide.

#### **3.-** Information matrix

To asses information sparsity among Folds.

**4.-** Predictive Modeling

Hyperparameter optimization Train-Val sets.

**5.-** Generalization Assessment

Out-Of-Sample and/or Out-Of-Distribution.

# 1: Folds Formation (*Figure 2*)



# 2: Target Variable (labeling)

A continuous variable prediction (regression problem), into a discrete variable prediction (classification problem), a time-based labeling can be stated as:

 $\hat{y}_t = sign\left\{CO_t\right\}$ 

Interesting enough, this target variable never had an imbalace of classes more than 5.5%

## 2: Feature Engineering

with  $\{OL\}_{t-k}, \{HO\}_{t-k}, \{HL\}_{t-k}, \{CO\}_{t-k}$  for values of k = 1, 2, ..., K, with K as a proposed memory parameter. Then perform some fundamental operations: Simple Moving Average  $SMA_t$ , lag:  $LAG_t$ , Standard Deviation:  $SD_t$  and Cumulative Sumation:  $CUMSUM_t$ .

Then symbolic variables where generated using Genetic Programming.

# **3.1: Information Representation and Sparsity**

A gamma distribution to fit the PDF of two set of variables, and the Kullback-Leibler Divergence to measure the similarity between the two:

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \quad \text{for} \quad x > 0 \quad \alpha, \beta > 0 \tag{1}$$

 $\Gamma(\alpha)$ : The gamma function  $\forall \alpha \in \mathbb{Z}^+$  and the  $D_{KL}(P||Q)$ : Kullback-Liebler Divergence, which for unknown continuous random variables, P, Q, or for p, q as empirically adjusted Probability Density Functions(PDF) is denoted by:

# **3.2: Information matrix**

An Information Matrix (IM) represents the similarity in information, for the target varible, among every Fold.

$$IM = \begin{bmatrix} D_{KL(1,1)} & D_{KL(1,2)} & \dots & D_{KL(1,n)} \\ D_{KL(2,1)} & & & \vdots \\ \vdots & \ddots & & & \vdots \\ \vdots & & \ddots & D_{KL(n-1,n)} \\ D_{KL(n,1)} & \dots & D_{KL(n,n-1)} & D_{KL(n,n)} \end{bmatrix}$$

# 3.3: Matrix Characterization

If an *Information Threshold* is defined, and then applied to every value in IM, then the latter can be characterized according to a counting of following:

#### - Sparse:

All the elements of IM are sufficient disimilar among each other. - Weakly Sparse:

There exists one or more very similar pairs of elements.

#### - Non-sparse:

 $D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) log\left(\frac{p(x)}{q(x)}\right) dx$ 

 $D_{KL}$  is a non-conumtative operation, hence  $D_{KL}(P||Q) \neq D_{KL}(Q||P)$ . That means the *Information Matrix* (IM), is not symmetric, but has 0's in its diagonal.

ALl elements are highly similar to each other.

The ideal in theory is to have a *Sparse Information Matrix* to train any model, so to use non-repeated data.

### 4.1: Cost Function and Regularization

One common component of the predictive modeling process is binary-logloss cost function with *elasticnet* regularization:

 $J(w) = J(w) + C\frac{\lambda}{m} \sum_{j=1}^{n} \|w_j\|_1 + (1-C)\frac{\lambda}{2m} \sum_{j=1}^{n} \|w_j\|_2^2$ 

Where  $\sum_{j=1}^{n} \|w_j\|_1 = L_1$  and  $\sum_{j=1}^{n} \|w_j\|_2^2 = L_2$  are also known as *Lasso* and *Ridge* respectively, with C as the coefficient to regulate the effect between the two.

#### 4.2: Model's Params

Logistic Regression - L1\_L2\_Ratio = 1.0 (Lasso) - Inverse of regularization (C): 1.5 - Parameter repetitions (Stability): Yes

#### **ANN-MLP**

- Hidden Layers: 2, 80 neurons each
- Activations: ReLU
- Dropout: 10% all layers

### 4.3: Results

Two models were defined, Logistic-Regression and Multi-layer Feedforward Perceptron.

| Metric           | ann-mlp | logistic | Metric               | ann-mlp | logistic |
|------------------|---------|----------|----------------------|---------|----------|
| acc-train        | 0.9155  | 0.8311   | auc-weighted         | 0.4810  | 0.4521   |
| acc-val          | 0.8245  | 0.7368   | auc-inv-weighted     | 0.4353  | 0.4137   |
| acc-weighted     | 0.4486  | 0.4061   | logloss-train        | 0.2290  | 5.8333   |
| acc-inv-weighted | 0.4213  | 0.3778   | logloss-val          | 6.0595  | 9.0892   |
| auc-train        | 0.9924  | 0.9300   | logloss-weighted     | 0.6975  | 3.2422   |
| auc-val          | 0.8401  | 0.8017   | logloss-inv-weighted | 2.4467  | 4.2190   |



(2)



#### References

- Lopez de Prado, Marcos M (2018), Advances in Financial Machine Learning, Wiley.
- Pezeshki et al (2020). Gradient Starvation: A Learning Proclivity in Neural Networks, Mohammad Pezeshki, Sekou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup, Guillaume Lajoie, arXiv:2011.09468.
- Goddfellow et al (2017), *Deep Learning*, Ian Goodfellow, Yoshua Bengio, Aaron Courville, MIT Press