T-Fold Sequential Validation Technique for Out-Of-Distribution Generalization with Financial Time Series Data

Juan Francisco Muñoz-Elguezabal ${ }^{1}$ Juan Diego Sánchez-Torres ${ }^{1}$

${ }^{1}$ Mathematics \& Physics Department - Western Institute of Technology and Higher Education (ITESO)

Hipothesis: There exists a set of conditions under which a cross-validation process can be defined and conducted in order to achieve Out-Of-Sample and Out-Of-Distribution Generalization when performing a Predictive Modeling Process using Financial Time Series Data.
Dataset: Continuous futures prices of the UsdMxn (U.S. Dollar Vs Mexican Peso), extracted from CME group MP Future Contract. Prices are Open, High, Low, Close in intervals of 8 Hours, OHLC data. GMT timezone-based and a total of 66,500 from 2010-01-03 18:00:00 to 2021-06-14 16:00:00
Experiment: A classification problem is formulated as to predict the target variable, $C O_{t+1}$, which is defined as the sign $\left(\right.$ Close $\left._{t+1}-O p e n_{t+1}\right)$. For the explanatory variables, the base definition is to use only those of endogenous nature, that is, to create them using only OHLC values.

A discrete representation

Let V_{t} be the value of a financial asset at any given time t, and S_{t} as a discrete representation of V_{t} if there is an observable transaction $T s_{t}$. Similarly, if there is a set of discrete $T s_{t}$ observed during an interval of time T of $n=1,2, \ldots, n$ units of time, $\left\{S_{T}\right\}_{T=1}^{n}$, can be represented by $O H L C_{T}$ $\left\{\right.$ Open $_{t}$, High $_{t}$, Low $_{t}$, Close $\left._{t}\right\}$. The frequency of sampling T, can be arbitrarly defined.

T-Fold-SV (Steps)

1.- Folds Formation

Depends on labeling, can be calendar based 2.- Target and Feature Engineering In-Fold exclusive or Global and then divide. 3.- Information matrix

To asses information sparsity among Folds.
4.- Predictive Modeling

Hyperparameter optimization Train-Val sets 5.- Generalization Assesment

Out-Of-Sample and/or Out-Of-Distribution

OHLC data

Timestamp: The date and time for each interval. Open: The first price of the interval. High: The highest price during the interval. Low: The lowest price during the interval. Close: The last price of the interval

Intra-day micro-information: volatility: $H L_{t}$, price-change: CO_{t} uptrend: $H O_{t}$, downtrend: $O L_{t}$

Candlestick Visual Representation (Figure 1)

The base calculations are
$H L_{t}=H i g h_{t}-$ Low $_{t}$
$O L_{t}=O$ pen $_{t}-$ Low $_{t}$
$\mathrm{CO}_{t}=$ Close $_{t}-$ Open $_{t}$
$H O_{t}=$ High $_{t}-$ Open $_{t}$

2: Target Variable (labeling)

A continuous variable prediction (regression problem), into a discrete variable prediction (classification problem), a time-based labeling can be stated as:
$\hat{y}_{t}=\operatorname{sign}\left\{C O_{t}\right\}$
Interesting enough, this target variable never had an imbalace of classes more than 5.5%

2: Feature Engineering

with $\{O L\}_{t-k},\{H O\}_{t-k},\{H L\}_{t-k},\{C O\}_{t-k}$ for values of $k=1,2, \ldots K$, with K as a proposed memory parameter. Then perform some fundamental operations: Simple Moving Average $S M A_{t}$, lag: $L A G_{t}$ Standard Deviation: $S D_{t}$ and Cumulative Sumation CUMSUM
Then symbolic variables where generated using Genetic Programming.

3.1: Information Representation and Sparsity

A gamma distribution to fit the PDF of two set of variables, and the Kullback-Leibler Divergence to measure the similarity between the two:

$$
\begin{equation*}
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \quad \text { for } \quad x>0 \quad \alpha, \beta>0 \tag{1}
\end{equation*}
$$

$\Gamma(\alpha)$: The gamma function $\forall \alpha \in \mathbb{Z}^{+}$and the $D_{K L}(P \| Q)$: KullbackLiebler Divergence, which for unknown continuous random variables, P, Q, or for p, q as empirically adjusted Probability Density Functions (PDF) is denoted by

$$
\begin{equation*}
D_{K L}(P \| Q)=\int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) d x \tag{2}
\end{equation*}
$$

3.2: Information matrix

An Information Matrix (IM) represents the similarity in information, for the target varible, among every Fold

$$
I M=\left[\begin{array}{cccc}
D_{K L(1,1)} & D_{K L(1,2)} & \cdots & D_{K L(1, n)} \\
D_{K L(2,1)} & \ldots & & \vdots \\
\vdots & \cdots & \cdots & D_{K L(n-1, n)} \\
\vdots & & \cdots & D_{K L(n, n-1)} \\
D_{K L(n, n)}
\end{array}\right]
$$

$D_{K L}$ is a non-conumtative operation, hence $D_{K L}(P \| Q) \neq D_{K L}(Q \| P)$, That means the Information Matrix (IM), is not symmetric, but has 0 's in its diagonal.

3.3: Matrix Characterization

If an Information Threshold is defined, and then applied to every value in IM, then the latter can be characterized according to a counting of following:

- Sparse:

All the elements of IM are sufficient disimilar among each other.

- Weakly Sparse

There exists one or more very similar pairs of elements.

- Non-sparse:

ALll elements are highly similar to each other.
The ideal in theory is to have a Sparse Information Matrix to train any model, so to use non-repeated data

4.1: Cost Function and Regularization

One common component of the predictive modeling process is binary-logloss cost function with elasticnet regularization:

$$
J(w)=J(w)+C \frac{\lambda}{m} \sum_{j=1}^{n}\left\|w_{j}\right\|_{1}+(1-C) \frac{\lambda}{2 m} \sum_{j=1}^{n}\left\|w_{j}\right\|_{2}^{2}
$$

Where $\Sigma_{j=1}^{n}\left\|w_{j}\right\|_{1}=L_{1}$ and $\Sigma_{j=1}^{n}\left\|w_{j}\right\|_{2}^{2}=L_{2}$ are also known as Lasso and Ridge respectively, with C as the coefficient to regulate the effect between the two.

4.2: Model's Params

Logistic Regression

- L1_L2_Ratio = 1.0 (Lasso) - Inverse of regularization (C): 1.5 - Parameter repe titions (Stability): Yes
ANN-MLP
- Hidden Layers: 2, 80 neurons each

Activations: ReLU
Dropout: 10% all layers

4.3: Results

Two models were defined, Logistic-Regression and Multi-layer Feedforward Perceptron

Metric	ann-mlp	logistic	Metric	ann-mlp	logistic
acc-train	0.9155	0.8311	auc-weighted	0.4810	0.4521
acc-val	0.8245	0.7368	auc-inv-weighted	0.4353	0.4137
acc-weighted	0.4486	0.4061	logloss-train	0.2290	5.8333
acc-inv-weighted	0.4213	0.3778	logloss-val	6.0595	9.0892
auc-train	0.9924	0.9300	logloss-weighted	0.6975	3.2422
auc-val	0.8401	0.8017	logloss-inv-weighted	2.4467	4.2190

ROCs-Train-Logistic

ROCs-Validation-Logistic

1

References

- Lopez de Prado, Marcos M (2018), Advances in Financial Machine Learning, Wiley
- Pezeshki et al (2020). Gradient Starvation:A Learning Proclivity in Neural Networks, Mohammad Pezeshki, Sekou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup, Guillaume Lajoie, arXiv:2011.09468.
- Goddfellow et al (2017), Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville, MIT Press

