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Abstract—One of the newest research and development trends 

in the technology sector involves self-driving vehicles. However, 

failures and security problems are a main concern in autonomous 

driving. The aim of this paper is to build a real-time Kalman Filter 

that collects and fuses sensor data from vehicles to provide more 

accurate information of the car’s position and orientation. This 

research work uses the Carla simulator as the platform to simulate 

a real environment. For the sensor fusion, two groups were 

selected: 1) GPS and acceleration to obtain a better estimation of 

the position; and 2) magnetometer and gyroscope for a better 

estimation regarding the car’s orientation. For the data processing 

phase, an ARM Cortex-M4 microcontroller was used. The 

Kalman filter produced a noise-free estimation of the position and 

orientation of the vehicle. This implementation is useful for 

detecting a car’s estimated position in a tunnel when GPS signals 

are weak. 

Keywords—Autonomous, Carla Simulator, Kalman Filter, 
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I. INTRODUCTION 

The research and development of autonomous driving is a 

growing trend in the automotive industry. According to 

Mordor Intelligence, the autonomous driving industry was 

valued at USD 19.46 billion in 2020 [1]. Nonetheless, 

autonomous driving can create new problems, for instance, 

the most relevant and impactful event occurred in 2018 when 

an autonomous car of the Uber company ran over and killed a 

pedestrian [2]. As a result, safety in self-driving vehicles 

became a top priority for researchers.  

      A new tool that has been used to in this field is the Kalman 

Filter. This algorithm uses measurements of known variables 

to produce an estimate of unknown variables, which tend to 

be more accurate than a single measurement variable. The 

goal of the algorithm is to produce an accurate reading of the 

position and velocity of the car in situations where it is 

difficult to obtain a precise measurement, such as passing 

through a tunnel. In 2019, Dhongade and Khandekar 

implemented a GPS and an Inertial Measurement Unit (IMU) 

integration using a Kalman Filter and the LabView Tool [3] 

to increase reliability in a self-driving vehicle. Although this 

implementation was successful, it was not implemented in an 

embedded system, thus making its application difficult in a 

real-time environment.  

This paper aims to develop an embedded implementation of a 

Kalman Filter using an ARM Cortex-M4 microcontroller and 

Carla, a real-time environment simulator. The selected 

sensors for the fusion process were a GPS and an 

accelerometer to have a more accurate estimate of the car’s 

position; and a magnetometer and a gyroscope to have a more 

accurate estimate of the direction of the car.  

II. METHODOLOGY 

The implemented system was a closed-loop connection 

between Carla Simulator and the microcontroller. Carla is a 

free, open-source simulator for autonomous driving research. 

The software has multiple built-in examples. The 

manual_control example code enables a virtual environment 

with a single car that can be manually driven with selected keys 

of the keyboard. The vehicle is equipped with multiple sensors, 

including GPS and IMU, which are the target sensors. The 

source code was modified to add Gaussian Noise to the virtual 

sensors to simulate a real-life noisy sensor. The modified sensor 

information was sent through the serial port of the computer 

connected to the microcontroller.  

Once the necessary information was received in the 

microcontroller, the actual Kalman Filter was implemented. 

The Kalman Filter algorithm uses time steps to compute 

measurements at a given point in time called states. A state of 

the system is represented by two variables: 

𝑥̂ 𝑘  - a posteriori state estimate at timestep k 

       𝑃𝑘  - a posteriori estimate covariance matrix 

      For the Kalman Filter to calculate these states, a modeled 

system needs to be given. This model includes the following 

matrices: 

𝛢 – state-transition model 

Β – control-input model 

∁ - observation model 

R – covariance of the observation noise 

𝑄 - covariance of the process noise 

      The process to compute these states is divided into two 

phases. Phase 1 is called prediction. The prediction phase uses 

the previous time step estimate to produce a new estimate of the 

state at the current time step. The computed estimate for phase 

1 is known as a priori state estimate. To compute the a priori 
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state estimate and a priori estimate covariance matrix, the 

following formulas are followed, respectively: 

                           𝑥̂ 𝑘
− = 𝐴𝑥̂ 𝑘−1 + 𝐵𝑢𝑘   (1) 

                          𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄              (2) 

where the k-1 subindex represents the previous time step 

estimates and the 𝑢𝑘 represents the input value of the desired 

sensor at the current time. 

      After phase 1 estimate is calculated, the process continues 

to phase 2, known as update. In the update phase, the predicted 

state is compared with the current observation from the sensors, 

and the difference is multiplied by an optimal Kalman gain to 

refine the prediction phase. The computed estimate for phase 2 

is known as a posteriori state estimate.   To calculate the 

optimal Kalman gain and both a posteriori state estimate 

variables, the following formulas must be computed: 

                            𝐾𝑘 =
𝑃𝑘
−𝐶𝑇

𝐶𝑃𝑘
−𝐶𝑇+𝑅

                            (3) 

                    𝑥̂ 𝑘 = 𝑥̂ 𝑘
− + 𝐾𝑘(𝑦𝑘 − 𝐶𝑥̂𝑘

−)                 (4) 

                           𝑃𝑘 = (𝐼 − 𝐾𝑘𝐶) 𝑃𝑘
−                     (5) 

where 𝑦𝑘represents the input value of the desired second sensor 

that is being fused and I represents an identity matrix of the 

same size as the number of input variables. [4] 

      A general state-space analysis was performed for the 

sensors that were used in the project: GPS, accelerometers, 

gyroscope, and magnetometer. Based on the fact that the 

acceleration is the double derivative of the position, the state 

space model for the GPS and accelerometer sensors was 

represented by the following matrixes: 

𝐴 =  [
1 𝑇
0 1

] 

 

𝐵 = [
0
𝑇
] 

𝐶 =  [0 1] 
 

𝑅 =  0.1 

 

𝑄 =  [

𝑅

100
0

0
𝑅

100

] 

 

      T represents the sampling time. The state estimate variables 

are then transferred through the serial port connection and back 

to the PC for comparison. 

 

 

 

III. RESULTS 

      Virtual GPS and IMU sensors were extracted from Carla 

through the serial port and into the microcontroller to 

implement the filtering process. In the following figure, the 

Carla simulator user view is shown. Sensor data is visible to the 

user in the left-hand side of the screen. 

 

 
Figure 1. Carla simulator user view 

 

      The first experiment used the x and y coordinates of the 

GPS sensor along with the x and y components of the 

accelerometer sensor to produce a better estimation of the car’s 

position in real time. Both sensors had Gaussian noise added to 

the output value beforehand being sent out through the serial 

port. Several R (covariance) values were tested. Fig. 2 - Fig. 4 

show the difference between the noisy coordinates (red line) 

compared with the noise-free output of the Kalman filter 

algorithm (blue line) with their respective R value being tested. 

 

  
Figure 2. Noisy vs Filtered X coordinate (left). Noisy vs Filtered Y coordinate 

(right). Using R as 0.05. 

 

 
Figure 3. Noisy vs Filtered X coordinate (left). Noisy vs Filtered Y coordinate 

(right). Using R as 0.5. 

 

 



 
 

Figure 4. Noisy vs Filtered X coordinate (left). Noisy vs Filtered Y coordinate 

(right). Using R as 1. 

 

      As it can be seen in the figures above when the covariance 

value is set as 0.05 the difference between the noisy and 

filtered values is almost imperceptible. The difference is 

clearer when R value is increased to 0.5. Finally, the best 

result is achieved when R is increased to 1. Figure 4 shows a 

clear difference between a noise red graph compared to a 

smooth filtered blue graph. Therefore, for the final experiment 

the R value was set at 1.0 for the GPS and accelerometer 

sensor fusion. The result is shown in Figure 5. 

 

 

 
Figure 5. Noisy X and Y coordinates (red) vs Filtered X and Y coordinates 

(blue) using R as 1.  

 

      The blue line shows a smooth, noise-free plotting that 

shows the real values that the sensors were outputting from the 

self-driving car. 

 

      Likewise, the virtual gyroscope and magnetometer sensors 

were extracted from the simulator and transferred to the 

microcontroller through the serial port. Both sensors also had 

Gaussian noise added beforehand. The same filtering process 

was repeated using the Kalman filter algorithm. The 

comparison between noisy and filtered values can be seen in 

Figure 6. 

 
Figure 6. Noisy vs filtered theta using R as 0.01. 

 

 

IV. CONCLUSION 

      The Kalman filter proves to be a light, efficient method to 

improve real time data acquisition. Combining more than one 

sensor and cleaning the output data through a Kalman filter, a 

more accurate and smoother estimation of the position and 

orientation of an autonomous car is acquired even under 

challenging situations like passing through a tunnel or a 

mountainous landscape. Hence, the Kalman filter improves the 

safety of both self-driving vehicles users and pedestrians.  
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