
Instituto Tecnológico
y de Estudios Superiores de Occidente

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018,
publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Departamento de Electrónica, Sistemas e Informática

Especialidad en Sistemas Embebidos

Defining an air pollution sensor inside the car

TESIS que para obtener el GRADO de

ESPECIALISTA EN SISTEMAS EMBEBIDOS

Presenta: LUIS ARTURO GONZÁLEZ CASILLAS

Tutor HÉCTOR ANTONIO RIVAS SILVA

Tlaquepaque, Jalisco. agosto de 2021.

Defining an air pollution sensor inside the car

Luis Arturo Gonzalez Casillas Hector Antonio Rivas Silva
Dept. Systems and Electronics Dept. Systems and Electronics
Instituto Tecnologico de Estudios Superiores de Occidente (ITESO) Instituto Tecnologico de Estudios Superiores de Occidente (ITESO)
Guadalajara, Mexico Guadalajara, Mexico
lgonzalez.casillas@iteso.mx harivas@iteso.mx

Abstract— This paper provides the specification and definition

of a system capable of reading pollution inside the cabin of an

automobile and shows the measurements to all passengers.

Requirements elicitation, system requirements analysis, system

architectural design, software requirements analysis, software

architectural design, software detailed design and unit

construction phases from the automotive Spice process reference

model will be explained in detail and some examples will be shown.

This paper can function as a guide to define and specify a system

using different methodologies between these phases. The system

design proposed here can be a starting point for future

applications related to automobile pollution measurements, for

example, reading environmental pollution and monitoring

automobile emissions.

Keywords—air pollution, BDD, Automotive SPICE, AUTOSAR

I. INTRODUCTION

 Nowadays, humanity is facing environmental and health
threats due to air pollution. According to the World Health
Organization, an estimated 4.2 million deaths per year
worldwide are caused by air pollution [1].

Automobiles produce 60% to 70% of air pollution in the world
[2], hence, the automobile industry is a major contributor.
Several nations are pressing this industry to seek less polluting
processes and products by creating regulations to reduce
emissions from industrial sources, emissions from vehicles and
engines through new stringent emission standards and cleaner-
burning gasoline [3].

This paper proposes that the starting point to reduce air pollution
is by making people aware of its impact. The main purpose of
this project is to design a system capable of reading pollution
inside the cabin of an automobile and making it visible to all
passengers.

The processes requirements elicitation, system requirement
analysis, system architectural design, software requirements
analysis, software architectural design, software detailed design,
and unit construction from the Automotive SPICE process
reference model were performed and illustrated in this paper;
examples and tips for the development of each phase are
provided as well as details on the system proposed for the
solution of the air pollution threat.

II. METHODOLOGY

 The Automotive Spice process reference model was
developed to fulfill the specific needs of the automotive industry
and it complies with the requirements of ISO/IEC 33004. [4]
The reference model SPICE group processes into three process
categories: primary life cycle processes, organizational life
cycle processes and supporting life cycle processes [4].

Fig. 1 shows the different processes categories and every
process which conform it.

Fig. 1. Automotive SPICE process reference model, 2015-07-16 [4]

For the specification and definition of this system, processes
SYS.1, SYS.2, SYS.3, SWE.1, SWE.2, and SWE.3 from the
primary life cycle processes were followed.

A. SYS.1 Requirements elicitation

BDD (Behavior-Driven Development) method was selected

to clearly understand stakeholder expectations. BDD aims to

close the gap between technical understanding and stakeholder

expectations through writing use case scenarios that are

understandable to all involved. According to BDD, to write use

case scenarios a natural language and a “Give-When-Then”

structure shall be used, besides it should be focused on

describing the behaviors of the system [5].

An example from some of the use cases for this system are as

follows:

1. Given the sensor is inside the cabin of an automobile

When the automobile is switched on

Then ensure the sensor is powered on

And ensure air pollution is measured by the sensor

2. Given the automobile can move

When the sensor performed a reading

Then ensure GPS coordinates are bound and stored with the

readings captured by the sensor

3. Given the system does not contain a screen

When the user wants to see the readings

Then ensure communication through Bluetooth is available

And ensure the sensor can be paired with the user’s cellphone

And ensure the user can see the readings from the sensor

through a Bluetooth terminal on the cellphone

Once all the use cases were documented, a revision with

stakeholders was performed to acquire feedback. Multiple

iterations occurred before receiving approval and continue with

following processes.

B. SYS.2 System requirements analysis

To define system requirements, an overall understanding of

expectations, constraints and physical/functional interfaces

must be accomplished.

Requirements were written following the Expanded Guidance

for NASA Systems Engineering [6], which states that

requirements should be defined in acceptable “shall”

expressions and must contain only one shall per statement. Each

requirement shall be validated.

For this system, every system requirement was validated using

the following questions proposed on the Expanded Guidance

for NASA Systems Engineering:

• Are the requirements written correctly?

• Are the requirements technically correct?

• Do the requirements satisfy stakeholders?

• Are the requirements feasible?

• Are the requirements verifiable?

• Are the requirements redundant or over-specified?

Systems requirements provide a complete description and

constraints on how the system shall react to a specific situation,

as well as it also mentions what kind of communication

protocols will be implemented to meet customer expectations

and the assigned budget. System requirements mention what

hardware elements will be used to generate the expected

solution and it also delimits the boundaries for the software.

C. SYS.3 System architectural design

To create the system architecture a boundary diagram was

created. Boundary diagrams show all the elements that interact

within the system including their interfaces.

Fig. 2 shows all the elements that are part of the system and

the interaction between them. A satisfactory system

architecture shall consider all elements that interact with the

system, internal and external. Issues at the integration, testing,

and validation phases could be avoided by considering all

elements that interact within the system.

Fig. 2. System Architecture, Boundary Diagram

D. SWE.1 Software requirements analysis

Once system requirements and system architecture are

completed, software requirements can be defined. Every system

requirement shall be traced to at least one software requirement

and software requirements shall consider and cover all the

system architecture too. Software requirements and software

architecture could be created at the same time to gain a better

understanding of how the software modules will be distributed.

What elements do the software need to cover all the

functionality expected by the system? It is the question software

requirements and software architecture shall response.

Creating sequence diagrams based on use case scenarios,

system requirements and system architecture clarifies which

software modules will be needed.

Fig. 3 shows an example of a sequence diagram created for the

definition of the system. Software requirements were created

having into consideration SOLID principles of object-oriented

programming.

Fig. 3. Sequence Diagram – Sending Stored Data

Grouping software requirements into functionalities or modules

become easier to read, understand and implement, therefore,

software requirements were written by grouping requirements

into modules, where each module has one and only one

responsibility.

In addition to software requirements, a traceability record shall

be created and documented in a way that a software requirement

can be traced back to a system requirement and can be found in

the system architecture, hence, software requirements shall also

be traced to all software elements. Traceability must be possible

backward as well as frontwards.

To facilitate software test specifications, software requirements

were categorized into functional and non-functional

requirements.

E. SWE.2 Software architectural design

AUTOSAR classic platform architecture was selected to

define software architecture. AUTOSAR is a worldwide

collaboration of multiple companies from the software,

automotive, and semiconductor industry. Standardization of

functional interfaces and basic functions are the primary goal

[7].

All the elements in the software, the interaction between them,

and the way they are located into different layers are shown by

the software architecture. The software architecture for this

system is shown in Fig. 4

Fig. 4. Software Architecture using AUTOSAR layers

F. SWE.3 Software detailed design and unit construction

 Software requirements, architecture and sequence diagrams
shall be considered to create the software detailed design.

The functionality of an interface from a module can be visually
represented by activity diagrams. Software detailed design could
be documented by activity diagrams of each interface from
every module.

Defining component interfaces shall be made by following the
scope of each module defined on the software requirements and
architecture. An interface shall do only one thing according to
the SOLID principles.

Figure 5 shows an activity diagram for the interface called
monitor of the module or component named DATA_COM.

Fig. 5. Activity Diagram – Monitor interface from DATA_COM module

Unit construction of modules was developed after the creation
of activity diagrams for each interface on every module.

An example of traceability can be seen in the implementation of
the module DATA_COM. Justification of the activity diagram
of Figure 5 can be traced to the sequence diagram of Fig. 3.

III. CONCLUSION

 Air pollution is one of the causes of biggest threats
nowadays like global warming and health issues. By the
implementation of this system, the population would start being
aware of this “invisible” issue by making it visible. Also, this
work can be used as a guide to specify and define any type of
system involving software and as a starting point for
applications related to automobile pollution measurements.

ACNOWLEDGMENTS

This work was supported by the Mexican federal

government through the CONACyT agency.

REFERENCES

[1] Who.int. 2021. Ambient air pollution. [online] Available at:
<https://www.who.int/teams/environment-climate-change-and-
health/air-quality-and-health/ambient-air-pollution> [Accessed 7 July
2021].

[2] Swami, Abhishek. (2018). Impact of Automobile Induced Air Pollution
on roadside vegetation: A Review. ESSENCE International Journal for
Environmental Rehabilitation and Conservation. 9. 101-116.
10.31786/09756272.18.9.1.113.

[3] US EPA. 2021. Reducing Emissions of Hazardous Air Pollutants | US
EPA. [online] Available at: <https://www.epa.gov/haps/reducing-
emissions-hazardous-air-pollutants> [Accessed 7 July 2021].

[4] 2016. Automotive SPICE. 3rd ed. [ebook] Available at:
<http://www.automotivespice.com/fileadmin/software-
download/Automotive_SPICE_PAM_30.pdf> [Accessed 7 July 2021].

[5] D. North, “Introducing BDD,” Better Software Magazine, 2006.

[6] 2016. Expanded Guidance for NASA Systems Engineering. Washington,
D.C: National Aeronautics and Space Administration, pp.92 - 107.

[7] cooperation, A., 2021. AUTOSAR. [online] Available at:
<https://www.autosar.org/> [Accessed 9 July 2021].

