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Abstract: Increased dietary acid load has a negative impact on health, particularly when renal
function is compromised. Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that is
elevated during renal failure. The relationship between metabolic acidosis and FGF23 remains
unclear. To investigate the effect of dietary acid load on circulating levels of FGF23, rats with normal
renal function and with a graded reduction in renal mass (1/2 Nx and 5/6 Nx) received oral NH4Cl
for 1 month. Acid intake resulted in a consistent decrease of plasma FGF23 concentrations in all
study groups when compared with their non-acidotic control: 239.3 ± 13.5 vs. 295.0 ± 15.8 pg/mL
(intact), 346.4 ± 19.7 vs. 522.6 ± 29.3 pg/mL (1/2 Nx) and 988.0 ± 125.5 vs. 2549.4 ± 469.7 pg/mL
(5/6 Nx). Acidosis also decreased plasma PTH in all groups, 96.5 ± 22.3 vs. 107.3 ± 19.1 pg/mL,
113.1 ± 17.3 vs. 185.8 ± 22.2 pg/mL and 504.9 ± 75.7 vs. 1255.4 ± 181.1 pg/mL. FGF23 showed a
strong positive correlation with PTH (r = 0.877, p < 0.0001) and further studies demonstrated that
acidosis did not influence plasma FGF23 concentrations in parathyroidectomized rats, 190.0 ± 31.6 vs.
215 ± 25.6 pg/mL. In conclusion, plasma concentrations of FGF23 are consistently decreased in rats
with metabolic acidosis secondary to increased acid intake, both in animals with intact renal function
and with decreased renal function. The in vivo effect of metabolic acidosis on FGF23 appears to be
related to the simultaneous decrease in PTH.

Keywords: acid intake; FGF23; PTH; kidney

1. Introduction

Nutrient intake plays a major role in the maintenance of acid-base homeostasis [1]. An
excessive dietary acid load may lead to metabolic acidosis, particularly in individuals with
chronic kidney disease (CKD) because the failing kidney is not able to produce the amount
of bicarbonate required to buffer acid production resulting from diet and metabolism [2–4].
Chronic metabolic acidosis is thought to represent a major factor in the progression of
CKD [5] and is generally associated with higher mortality risk [6].

Fibroblast growth factor 23 (FGF23) is a hormone secreted by osteocytes/osteoblasts
that is involved in the regulation of mineral metabolism [7]. The main target organ for
FGF23 is the kidney, where FGF23 increases urinary excretion of phosphate (P) and de-
creases the synthesis of calcitriol [8].

Synthesis and secretion of FGF23 are regulated mainly by dietary P. In fact, an in-
creased P intake is thought to be the most important stimulus for FGF23 secretion [9,10].
In addition, FGF23 production is under hormonal control by calcitriol [11,12] and by
parathyroid hormone (PTH), which stimulates FGF23 secretion [13]. Moreover, inflamma-
tion [14], iron deficiency [15] and high caloric intake [16] have been reported to increase
FGF23 production.
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Elevated levels of FGF23 are usually found in patients with renal failure, due to
P retention and hyperphosphatemia, and FGF23 has been reported as a risk factor of
cardiovascular mortality both in patients with CKD [17] and in healthy individuals [18,19].

The connection between FGF23 and metabolic acidosis is unclear. How acidosis affects
FGF23 production should be known because it may influence dietary recommendations
for the general population and, particularly, for persons with reduced renal function.
In vitro studies have shown that acidosis stimulates FGF23 production by neonatal mouse
bone [20,21]. However, to our knowledge, in vivo studies specifically designed to investi-
gate the effect of metabolic acidosis on FGF23 have not been conducted. Interestingly, the
few collateral data that have been reported from in vivo studies, that were originally de-
signed for other purposes, do not support a stimulatory effect of acidosis on FGF23 [22–24].
Thus, it is necessary to clarify the relationship between metabolic acidosis and increased
FGF23 concentrations.

The aim of this work was to test the hypothesis that, as previously shown in vitro,
metabolic acidosis also up-regulates circulating levels of FGF23 in vivo. To this purpose,
we investigated the influence of increased acid intake (in the form of NH4Cl supplied with
drinking water) on FGF23 in healthy rats and in rats with several degrees of impairment in
renal function. In addition, in vitro studies were conducted in UMR 106 cells cultured at
different pH.

2. Materials and Methods
2.1. Ethics

Experimental protocols were reviewed and approved by the Ethics Committee for
Animal Research of the University of Cordoba and by Junta de Andalucia (Spain) (Ethical
Code Number 30/10/2017/148, dated 8 November 2017). All the studies were carried out
in accordance with the approved guidelines.

2.2. In Vivo Experiments
2.2.1. Animals and Diets

Two months old female Wistar rats, provided by the Animal Housing Facilities of the
University of Cordoba (Cordoba, Spain), were used in the studies.

Dietary modification, including changes in P and fat content, was used as a part of the
treatment. Three diets were used in the experiments: a standard diet (Altromin C 1090-10,
AltrominSpezialfutter GmbH, Lage, Germany) with either a normal (0.6%) or high (1.2%) P
concentration, and a diet with high-fat (HF) content and 0.6% P concentration (Altromin C
1090-60, AltrominSpezialfutter GmbH, Germany). These diets contained normal amounts
of calcium (Ca) and vitamin D: 0.6% of Ca and 500 IU/g of vitamin D. Daily food intake
was recorded for each rat by averaging the amount of food eaten every week.

2.2.2. Generation of Kidney Disease

Renal function was reduced by partial removal of renal mass and by dietary changes
(increasing fat and P intake). For ablation of renal mass, two nephrectomy (Nx) procedures
were carried out: 1/2 Nx and 5/6 Nx. Before performing surgery, rats were anesthetized
using inhaled isoflurane (Isovet, Braun, Barcelona, Spain). For 1/2 Nx, the right kidney
was exposed and removed. For 5/6 Nx, it was performed in two steps. In the first step, the
left kidney was exposed, and the two poles (2/3 of renal mass) were ablated. After 1 week
of recovery, in the second step, the animal was reanesthetized and the right kidney was
excised, as described above. Fentanyl, 0.2 mg/kg, ip (Fentanest, Kern Pharma, Barcelona,
Spain) was used as an analgesic agent. Rats subjected to 1/2 Nx were fed an HF diet to
accelerate the deterioration of renal function induced by heminephrectomy.

2.2.3. Parathyroidectomy

A selective parathyroidectomy (PTX) was performed, as previously reported, with
the aid of a dissecting microscope [13]. Briefly, with the rat under general anesthesia
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(inhaled isofluorane), the skin on the ventral part of the neck was incised, the thyroid was
exposed, and the parathyroid glands were identified, dissected and ablated. Hemorrhage
was prevented by electrocautery.

2.2.4. Induction of Acidosis

Metabolic acidosis was induced in rats with intact renal function and in 1/2 Nx rats
by oral administration of a NH4Cl solution, 1% NH4Cl (Scharlau, Scharlab, Barcelona,
Spain) dissolved in water, instead of normal drinking water. In 5/6 Nx rats, the NH4Cl
concentration was reduced to 0.75%. Control (non-acidotic) rats received tap water. In
all groups, 0.1% sodium saccharin (Scharlau, Scharlab, Barcelona, Spain) was added to
drinking water to improve its palatability.

2.2.5. Experimental Design

(a) Acidosis with intact parathyroid function

Rats were randomly allotted to 6 groups (n = 9 per group) using specific software
(Research Randomizer). The number of rats per group was calculated based on the disper-
sion observed when measuring the parameters under investigation in previous studies by
our laboratory, and assuming a 95% confidence level. Three groups (Groups 1, 3 and 5)
included rats with normal acid-base balance and 3 groups (Groups 2, 4, and 6) included
rats with acidosis (Figure S1):

Group 1 (Control), rats with an intact renal function that were fed a standard diet
(0.6% P).

Group 2 (Control+Acid) was similar to Group 1, but the rats received NH4Cl to induce
metabolic acidosis.

Group 3 (1/2 Nx), 1/2 Nx rats fed HF diet.
Group 4 (1/2 Nx+Acid) was similar to Group 3, with the addition of NH4Cl to induce

chronic metabolic acidosis.
Group 5 (5/6 Nx), rats with 5/6 Nx were fed a standard diet with high P (1.2% P).
Group 6 (5/6 Nx+Acid) was similar to Group 5 plus NH4Cl to induce chronic

metabolic acidosis.
To confirm an even distribution of rats between the different experimental groups, rats

were weighed before commencing the experiments. No significant difference in the body
weight of the study groups was found (Group 1 = 219.7 ± 5.2 g, Group 2 = 226.4 ± 5.8 g,
Group 3 = 221.3 ± 2.3 g, Group 4 = 216.6 ± 2.2 g, Group 5 = 226.7 ± 3.0 g and
Group 6 = 227.5 ± 2.6 g).

Rats received the treatments for 30 days and at the end of the experiments were
sacrificed by exsanguination under general anesthesia (inhaled isoflurane) to obtain blood
samples (from the abdominal aorta). For twenty-four hours, urine samples were collected
for the 3 days prior to sacrifice by placing the rats in metabolic cages.

(b) Acidosis with parathyroidectomy

Rats with intact renal function fed a standard diet (Altromin C 1090-10, Altromin-
Spezialfutter GmbH, Lage, Germany) were subjected to PTX, as described above. Twenty-
four hours after parathyroidectomy, rats were allotted to two groups: PTX (n = 6) and
PTX+Acid (n = 8). PTX (non-acidotic) rats received tap water, while PTX+Acid received
a 1% NH4Cl solution instead of drinking water, as described above. Both groups of rats
were euthanized after 30 days of treatment. Blood and urine collections were performed as
described above.

2.2.6. Blood and Urine Chemistries

Arterial blood gas analysis and ionized calcium (Ca2+) measurements were performed
immediately after blood collection using selective electrodes (RapidLab, Siemens Health-
care GmbH, Germany). Afterwards, plasma was separated by centrifugation and stored
at –20 ◦C until assayed. Plasma concentrations of P, creatinine and urea, and urine Ca
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(total Ca) and P were measured by spectrophotometry (Biosystems SA, Barcelona, Spain).
Urine pH was measured with pH indicator strips (Scharlau, Scharlab SL, Barcelona, Spain).
ELISA tests were used to quantify intact FGF23, iFGF23 (Kainos Laboratories, Tokyo,
Japan), carboxy-terminal FGF23, cFGF23 (Immutopics Inc., Quidel Corporation, OH, USA)
and PTH (Immutopics Inc., Quidel Corporation, OH, USA). Radioimmunoassay (Im-
munodiagnostic Systems Ltd., Boldon, UK) was used in plasma samples to determine
1,25-dihydroxyvitamin D (calcitriol).

2.3. In Vitro Experiments
2.3.1. Cell Culture

Rat osteosarcoma cells UMR 106 (ATCC, Manassas, VA, USA) were cultured in Dul-
becco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 10% fetal bovine serum (FBS) (Biowest, Riverside, MO, USA). Cells were
seeded in 6 wells plates with 10,000 cells/cm2 and maintained in DMEM up to 90% con-
fluence. FGF23 production was stimulated by adding calcitriol (10−8 M) (Kern pharma,
Barcelona, Spain), as previously reported [25]. Two groups of experiments were performed
to study the effect of acidosis on FGF23 production: short-term and longer-term experi-
ments. Short-term experiments were carried out in cells that had grown in a medium with
normal (7.4) pH and were briefly exposed (for 24 h) to a low (7.2) pH medium. The pH of
the culture medium was reduced by adding HCl. In longer-term experiments, cells were
incubated until they reached confluence (for 6 days) in either DMEM with normal pH (7.4)
or DMEM with low pH (7.2).

2.3.2. RNA Extraction and Real-Time Reverse Transcription-Polymerase Chain
Reaction (RT-PCR)

Total RNA was isolated using the TRIzol reagent protocol (Invitrogen, Thermo Fisher
Scientific, Walthan, MA, USA). The sequence of primers used for RT-PCR is shown in
Table S1. Quantification was done using the QuantiTect SYBR Green RT-PCR kit (Qiagen
GmbH, Hilden, Germany) for 50 ng of RNA and 1 µL of primer. The mRNA expression
was analyzed in the Light Cycler thermal cycler system (Roche Diagnostics, Indianapo-
lis, IN, USA) and the relative expression of the target genes was determined using the
2−∆∆Ct method.

2.4. Statistical Analysis

Statistical analysis was conducted with the software Prism/GraphPad v6. Values
were reported as mean ± standard error (SE). To compare the difference of the means of
3 or more groups, ANOVA, followed by the Fisher LSD test as a post-hoc procedure was
used. When only 2 groups were involved, an intergroup comparison was performed by
t-tests. Pearson correlation coefficients were used to estimate and assess the strength of
associations. A p < 0.05 was considered significant.

3. Results
3.1. In Vivo Studies
3.1.1. Renal Function

Plasma creatinine and urea concentrations in the study groups are shown in Table 1.
Acidosis tended to decrease plasma creatinine, but significant differences with the non-
acidotic controls were only observed in 5/6 Nx rats.

3.1.2. Acid-Base Balance

As intended, mild metabolic acidosis was achieved in rats with normal renal function
and in 1/2 Nx rats. Thus, a decrease in blood pH was only observed in 5/6 Nx rats,
7.07 ± 0.07 vs. 7.42 ± 0.02. However, a significant reduction in urine pH was detected in all
acidotic groups (Figure 1). Changes in plasma bicarbonate were only apparent in acidotic
5/6 Nx rats, while the anion gap was increased in the non-acidotic 5/6 Nx group (Table 2).
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Table 1. Plasma creatinine and urea concentrations in the six experimental groups at the end of
the experiment.

Creatinine (mg/dL) Urea (mg/dL)

Control 0.66 ± 0.01 30.2 ± 1.2
Control+Acid 0.63 ± 0.01 27.0 ± 0.8
1/2 Nx 0.80 ± 0.02 a 39.1 ± 1.8 a

1/2 Nx+Acid 0.76 ± 0.01 a 34.1 ± 1.5
5/6 Nx 1.12 ± 0.05 a 70.3 ± 7.7 a

5/6 Nx+Acid 0.94 ± 0.03 a* 82.1 ± 10.1 a

Letters (a) indicate significant differences (p < 0.05) vs. control group. Asterisks (*) indicate differences vs. its
non-acidotic counterpart (p < 0.05). Values are means ± SE. Control, rats with intact renal function fed a standard
diet. Control+Acid, rats with intact renal function fed a standard diet and induced metabolic acidosis. 1/2 Nx,
heminephrectomized rats fed a high-fat diet. 1/2 Nx+Acid, heminephrectomized rats fed a high-fat diet and
induced metabolic acidosis. 5/6 Nx, rats subjected to 5/6 nephrectomy fed a high phosphorous diet. 5/6 Nx+Acid,
rats subjected to 5/6 nephrectomy fed a high phosphorous diet and induced metabolic acidosis.

Figure 1. Acid-base parameters. (a) Blood pH, and (b) urine pH in rats (n = 9 per group) with normal
(control) and reduced (1/2 Nx and 5/6 Nx) renal function without and with (+Acid) metabolic
acidosis. a p < 0.05 vs. control; * p < 0.05 vs. its non-acidotic counterpart.

Table 2. Blood parameters related to acid-base balance in the six experimental groups at the end of
the experiment.

Bicarbonate (mmol/L) Anion Gap (mmol/L)

Control 25.9 ± 0.5 11.4 ± 0.4
Control+Acid 24.7 ± 0.7 10.6 ± 0.6
1/2 Nx 24.9 ± 0.3 10.9 ± 0.6
1/2 Nx+Acid 23.7 ± 0.6 10.6 ± 0.4
5/6 Nx 24.2 ± 1.1 20.3 ± 2.8 a

5/6 Nx+Acid 12.6 ± 2.9 a* 15.6 ± 1.0 *
Letters (a) indicate significant differences (p < 0.05) vs. control group. Asterisks (*) indicate differences vs. its
non-acidotic counterpart (p < 0.05). Values are means ± SE. Control, rats with intact renal function fed a standard
diet. Control+Acid, rats with intact renal function fed a standard diet and induced metabolic acidosis. 1/2 Nx,
heminephrectomized rats fed a high-fat diet. 1/2 Nx+Acid, heminephrectomized rats fed a high-fat diet and
induced metabolic acidosis. 5/6 Nx, rats subjected to 5/6 nephrectomy fed a high phosphorous diet. 5/6 Nx+Acid,
rats subjected to 5/6 nephrectomy fed a high phosphorous diet and induced metabolic acidosis.

3.1.3. Mineral Metabolism

Plasma P concentrations tended to increase with the reduction in renal function and
acidosis further increased plasma P in 5/6 Nx rats, 7.6 ± 0.7 vs. 6.0 ± 0.4 mg/dL. Since
acidotic rats decreased food intake and, consequently P intake, when compared with non-
acidotic controls (Table S2), urinary excretion of P was expressed as the ratio daily urinary
P excretion (mg/day)/daily P ingestion (mg/day). Urinary excretion of P increased in
rats with reduced renal function, particularly in 1/2 Nx rats. Acidosis resulted in a further
increase in urinary P excretion in all groups and significant differences were observed in
rats with intact renal function, 0.37 ± 0.02 vs. 0.30 ± 0.01 (Figure 2).
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Figure 2. Plasma concentrations and urinary excretion of phosphate and calcium. (a) Plasma
phosphate, P, (b) urinary excretion of P, (c) plasma ionized calcium, Ca2+, and (d) urinary excretion
of Ca in rats (n = 9 per group) with normal (control) and reduced (1/2 Nx and 5/6 Nx) renal
function without and with (+Acid) metabolic acidosis. a p < 0.05 vs. control. * p < 0.05 vs. its
non-acidotic counterpart.

Blood Ca2+ concentrations did not change in 1/2 Nx rats but were significantly re-
duced in 5/6 Nx rats, 1.10 ± 0.04 vs. 1.24 ± 0.01 mmol/L in controls with normal renal
function. Acidosis resulted in increases in Ca2+ that were significant both in controls,
1.31 ± 0.02 mmol/L and in 5/6 Nx, 1.27 ± 0.05 mmol/L. Urinary excretion of Ca was
consistently increased in all acidosis groups (Figure 2).

Plasma calcitriol concentrations were not substantially altered by the reduction in
renal function. Acidosis tended to decrease plasma calcitriol and significant differences
were recorded in 5/6 Nx rats, 27.4 ± 6.1 vs. 59.4 ± 7.7 pg/mL (Figure 3).

Figure 3. Plasma concentrations of calcitriol and parathyroid hormone. (a) Calcitriol (CTR) and
(b) parathyroid hormone (PTH) in rats (n = 9 per group) with normal (control) and reduced (1/2 Nx
and 5/6 Nx) renal function without and with (+Acid) metabolic acidosis. a p < 0.05 vs. control;
* p < 0.05 vs. its non-acidotic counterpart.

Circulating PTH concentrations increased progressively with the deterioration of renal
function, from 107.3 ± 19.1 in rats with normal renal function to 1255.4 ± 181.1 pg/mL in
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5/6 Nx rats. Acidosis resulted in a decrease in plasma PTH in all groups, 96.5 ± 22.3
vs. 107.3 ± 19.1 pg/mL, 113.1 ± 17.3 vs. 185.8 ± 22.2 pg/mL and 504.9 ± 75.7 vs.
1255.4 ± 181.1 pg/mL, although significant differences were only observed in rats with
reduced renal function (Figure 3).

Plasma concentrations of iFGF23 increased progressively in the study groups as a
reflection of the decline in renal function, from 295.0 ± 16.8 pg/mL, in rats with intact renal
function to 2549.4 ± 469.7 pg/mL in 5/6 Nx rats. Acidosis resulted in a consistent decrease
of iFGF23 in all study groups when compared with their non-acidotic control: 239.3 ± 13.5
vs. 295.0 ± 15.8 pg/mL (intact renal function), 346.4 ± 19.7 vs. 522.6 ± 29.3 pg/mL
(1/2 Nx) and 988.0 ± 125.5 vs. 2549.4 ± 469.7 pg/mL (5/6 Nx) (Figure 4). Circulating
levels of cFGF23 were increased with deteriorated renal function and were also significantly
reduced in acidotic rats with normal renal function, 115.2 ± 7.3 vs. 181.0 ± 17.5 pg/mL, and
in 1/2 Nx rats, 201.3 ± 17.7 vs. 287.2 ± 19.9 pg/mL but not in 5/6 Nx rats, 959.4 ± 600.5 vs.
874.7 ± 187.0 pg/mL (Figure 4). However, the 5/6 Nx results were influenced by an outlier
in the acidotic group that had an extremely high cFGF23 concentration (2751.5 pg/mL).
When the data from this rat was not included in the statistical analysis, a decrease in cFGF23
was also observed in acidotic 5/6 Nx rats, 362.0 ± 85.91 vs. 874.7 ± 187.0 (p = 0.142).

Figure 4. Plasma concentrations of fibroblast growth factor 23 (FGF23). (a) Intact FGF23, iFGF23, and
(b) carboxy-terminal FGF23, cFGF23, in rats (n = 9 per group) with normal (control) and reduced
(1/2 Nx and 5/6 Nx) renal function without and with (+Acid) metabolic acidosis. a p < 0.05 vs.
control; * p < 0.05 vs. its non-acidotic counterpart.

As shown in Figure 5, iFGF23 concentrations were weakly correlated with plasma P
concentrations (r = 0.372, p = 0.006) but this direct correlation was a likely consequence of the
simultaneous increases of P and FGF23 secondary to a deterioration of renal function and
may not reflect the effect of acidosis on FGF23. By contrast, iFGF23 showed a strong positive
correlation with plasma PTH concentrations (r = 0.877, p < 0.0001). No correlation was
found between iFGF23 and calcitriol concentrations (r = −0.014, p = 0.928). The correlation
study yielded similar results when it was carried out using cFGF23 data (Figure S2).

To further explore the role of PTH in the acidosis-induced decrease in FGF23, in vivo
experiments were repeated in a subset of parathyroidectomized (PTX) rats with normal
renal function. In these rats, acid ingestion resulted in significant decreases in plasma
pH, 7.27 ± 0.02 vs. 7.40 ± 0.01, and bicarbonate, 16.7 ± 1.0 vs. 24.6 ± 0.5 mmol/L.
However, iFGF23 did not change in PTX rats subjected to acidosis, 190.0 ± 31.6 vs.
215.9 ± 25.6 pg/mL (Table 3).
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Figure 5. iFGF23 correlations. Correlation between plasma concentrations of intact fibroblast growth
factor 23 (iFGF23) and: (a) plasma phosphate, P, (b) plasma parathyroid hormone, PTH and (c) plasma
calcitriol, CTR, concentrations.

Table 3. Blood parameters related to acid-base balance and plasma intact fibroblast growth factor 23
(iFGF23) concentrations in parathyroidectomized rats.

pH Bicarbonate
(mmol/L) iFGF23 (pg/mL)

PTX 7.40 ± 0.01 24.6 ± 0.5 215.9 ± 25.6
PTX+Acid 7.27 ± 0.02 * 16.7 ± 1.0 * 190.0 ± 31.6

Asterisks (*) indicate differences vs. non-acidotic group (p < 0.05). Values are means ± SE. PTX, non-acidotic
parathyroidectomized rats. PTX+Acid, parathyroidectomized rats with induced metabolic acidosis.

3.2. In Vitro Studies

UMR 106 cells increased FGF23 mRNA expression (arbitrary units vs. tbp) when
exposed to acidic medium both short-term (24 h), 1.23 ± 0.07 vs. 1.01 ± 0.03 (p = 0.004) and
longer-term (6 days) 1.21 ± 0.08 vs. 1.01 ± 0.04 (p = 0.032).

4. Discussion

This study aimed to elucidate the effect of increased acid intake on circulating FGF23
concentrations. Our results demonstrate that metabolic acidosis was associated with lower
plasma FGF23 concentrations. This effect was very consistent and reproducible along
a scale of renal function (from intact to markedly impaired). The decrease in FGF23 in
chronic metabolic acidosis was associated with a simultaneous decrease in PTH and was
not observed after PTX.

Increased levels of FGF23 and metabolic acidosis are detrimental to health, and they
contribute to the progression of renal disease and survival [5,17]. Thus, the present study
was designed to investigate the effect of metabolic acidosis on plasma FGF23 concentrations
in healthy rats and in rats with impaired renal function. The reduction in renal function
was graded to simulate clinical situations of CKD stages 2–3 and stage 4. A moderate
reduction in renal function was achieved by a heminephrectomy combined with feeding
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high-fat diets. This model, which has been used previously by our group [26], combines
ablation of renal mass and subtle damage to the remnant kidney, which mimics human
CKD associated with metabolic syndrome. The 5/6 Nx combined with a high P diet is the
most common procedure for the induction of severe kidney disease in rats [27]. Metabolic
acidosis was achieved by oral administration of NH4Cl, which is also a universal method
to produce acidosis in rodents [28]. Many studies of acidosis in rats have induced severe
acidosis that may not be translated to patients with CKD. Thus, we aimed to achieve both
mild acidosis (in rats with intact renal function and with 1/2 Nx) and severe acidosis (in
5/6 Nx rats).

Previous work has shown that in vitro, metabolic acidosis stimulates FGF23 produc-
tion by neonatal mouse calvaria cells [20,21]. Our results confirm these findings using a
different cell line, UMR 106. A recent study also demonstrates a stimulatory action of weak
acids (e.g., lactate) on FGF23 production in vitro, which is attributed to both a pH-mediated
effect and an inflammation-mediated effect [29]. Typically, in vitro experiments are of
short duration (e.g., 24 h) and this might account for the difference between in vitro and
in vivo studies. However, our data demonstrate that the influence of acidosis on FGF23
in vitro is not restricted to short-term experiments (24 h) but it can also be demonstrated
in longer-term (6 days) experiments. Taken together, these results would indicate that the
direct effect of acidosis on bone is to stimulate FGF23 secretion. It is interesting to point
out that acidosis has also been shown to stimulate the production of another phosphaturic
hormone, PTH [30].

However, based on our results, metabolic acidosis secondary to increased acid in-
take resulted in a consistent decrease in plasma FGF23 concentrations. Although to our
knowledge, this is the first report documenting a decrease in FGF23 as a consequence of
acidosis—there are some data in the literature that point in the same direction.

In a large cross-sectional study involving 980 CKD patients, Khairallah et al. investi-
gated the relationship between circulating FGF23 concentrations and acid-base balance [24].
They did not find an association between FGF23 and either the potential acid load or bicar-
bonate, however, FGF23 tended to be lower in patients with an increased net acid excretion,
although the differences were not significant when data were adjusted for clinical factors
(estimated glomerular filtration rate, 24-h urine albumin, diabetes, etc.). It is interesting to
note that in this study, cFGF23 was measured and, according to our data, advanced renal
disease may tamper the effect of acidosis on cFGF23.

In a study designed to investigate the effect of acidosis on vascular calcification,
Leibrock et al. found that NH4Cl administration decreased iFGF23 in klotho-deficient
mice but not in wild-type mice. These changes were observed only in iFGF23, but not in
cFGF23 [22].

In CKD patients with mild metabolic acidosis (plasma bicarbonate 20–24 mEq/L)
Chen et al. administered increasing doses of oral sodium bicarbonate for 6 weeks. Contrary
to their expectations, these authors found an increase in plasma cFGF23 concentrations after
bicarbonate treatment and concluded that it was unclear whether the increase in cFGF23
would be related to the alkalosis induced by bicarbonate [23].

Given the discrepancy between in vitro and in vivo studies, it is likely that the in vivo
effect of acidosis may be related to changes in other parameters of mineral metabolism that
regulate FGF23 production by bone cells. The main factors that impact FGF23 synthesis
and secretion are P, calcitriol and PTH [9–13].

The most important biological action of FGF23 is to promote phosphaturia, therefore,
it seems logical that P should have a predominant effect on FGF23. The effect of acidosis
on plasma P is controversial; plasma P has been reported to decrease in short-term stud-
ies carried out in healthy individuals [31] and to increase in renal patients with chronic
metabolic acidosis [17]. In the course of acidosis, P is extracted from bone [32] and from
soft tissues [33]. Moreover, intestinal absorption of P is also increased during acidosis [34].
All these factors are likely responsible for the increase in plasma P detected in our acidotic
rats with reduced renal function; however, the elevated plasma P does not explain the
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decrease in FGF23. An increase in the urinary excretion of P and Ca, which is likely related
to mineral extraction from bone [32], was found in acidotic rats. Acidosis has also been
reported to increase phosphaturia by down-regulation of Na/P cotransporters Na/Pi2a
and Na/Pi2c, in a process that seems dependent on the availability of P [35,36]. However,
more recent data have questioned the role of down-regulation of protein expression of
Na/P cotransporters and attributes the increased phosphaturia to reduced transporter
activity after the interaction of protons with Na/Pi2a and Na/Pi2c [37]. It is interesting
to note that acidotic rats had increased phosphaturia even though FGF23 and PTH levels
were decreased. Mechanistically, it would make sense to decrease FGF23 secretion in a
situation in which phosphaturia is already increased by acidosis.

Calcitriol also regulates FGF23 synthesis [12] and the stimulatory effect of calcitriol on
FGF23 has been demonstrated both in healthy bone and in bone from CKD patients [38].
Metabolic acidosis is known to inhibit CYP27B1, the main enzyme that participates in
calcitriol synthesis [39], although the influence of acidosis on circulating levels of vitamin
metabolites D is controversial [31]. In our rats with acidosis, there was a tendency to
decreased calcitriol, which may have played an additional role in the decrease in FGF23.
However, the almost null correlation between calcitriol and FGF23 does not support a
major influence of calcitriol on acidosis-induced FGF23 down-regulation.

PTH is another main regulator of FGF23. FGF23 concentrations have been reported
to be reduced in parathyroidectomized rats, and PTH supplementation increases plasma
FGF23 in a dose-dependent manner [13]. The effect of PTH on FGF23 is partially mediated
by calcitriol, but PTH is able to increase FGF23 under conditions in which calcitriol is
controlled [13]. Metabolic acidosis has been shown to stimulate PTH secretion [30]; however,
this only occurs when plasma ionized calcium levels are clamped. In fact, the increase in
ionized calcium secondary to acidosis can revert the changes in PTH [40]. The acidotic rats
of the present study showed increased plasma Ca2+ concentrations, which were likely due
to two mechanisms: (a) acidosis-induced mobilization of Ca from bone; and (b) acidosis-
induced increase in the ionized fraction of Ca (by shifting the equilibrium between protein-
bound and ionized Ca). In agreement with the increased Ca2+, in our study, plasma PTH
was consistently decreased in acidotic rats. In addition, an excellent correlation was found
between plasma concentrations of PTH and FGF23. Moreover, when PTH was eliminated
(in PTX rats), FGF23 did not decrease in response to acidosis. It is also interesting to note
that diet-induced acidosis lowers PTH response in experimental models [41]. Thus, it is
likely that changes in PTH may play a major role in the decrease in FGF23 observed in
acidotic rats.

The mechanisms involved in the reduction of FGF23 induced by increased acid intake
are depicted in Figure 6. In the context of acidosis, calcium and phosphate are released
from bone to buffer the acid load and are abundantly excreted in the urine. The increase in
Ca2+ inhibits PTH secretion, which in turn down-regulates FGF23. The decrease in FGF23
makes sense from a regulatory perspective: in the first place, because it is not needed
to increase phosphaturia (which is already stimulated by acidosis), and also because of
its collateral effects on calcitriol and PTH. A decrease in FGF23 will prevent a further
decrease in calcitriol concentrations and will also contribute to avoiding increases in PTH,
which could be detrimental for a bone tissue already subjected to the decalcifying influence
of acidosis.

Both increased FGF23 and lowered bicarbonate concentrations are considered factors
that increase cardiovascular morbidity/mortality [17,42]. In fact, bicarbonate (and other
alkali producing foods, like fruits and vegetables) are advocated as therapeutic strategies
to reduce cardiovascular risk, particularly in patients with CKD [43]. Since bicarbonate
treatment is likely to increase FGF23, it would be interesting to investigate the balance
point between acid-base status and FGF23 concentrations that would be more favorable for
the cardiovascular system.

In addition to traditional factors related to mineral metabolism and renal disease, there
is some evidence that acidosis may influence energy metabolism. Acidosis may impair
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glycemic control and promote insulin resistance [44]. Insulin has been shown to decrease
FGF23 secretion by bone cells [25]. At present, it is unclear whether acidosis-induced
insulin resistance may influence the reduction of FGF23 observed in acidotic rats.

Figure 6. Proposed model integrating the actions of chronic metabolic acidosis on bone, kidney and
parathyroid glands. As a consequence of metabolic acidosis, calcium (Ca) and phosphate (P) are
extracted from bone. This contributes to elevating calcemia and phosphatemia and increasing urinary
excretion of both Ca and P. The increase in plasma Ca2+, which is further potentiated by acidosis,
inhibits PTH secretion by parathyroid glands and down-regulates FGF23 production by bone cells.

This paper has some strengths and also some limitations. The main strength is the use
of different animal models which allow the evaluation of the FGF23 response to acidosis in
a variety of clinically relevant settings. Limitations include the fact that the results need
to be confirmed in humans. The discrepancy between the in vivo and in vitro effect of
acidosis on FGF23 secretion needs to be further explored. Although the influence of PTH on
the acidosis-induced decrease in FGF23 seems clear, additional factors may also be playing
a role in this process.

5. Conclusions

In conclusion, in rats with increased acid intake, plasma concentrations of FGF23 are
consistently decreased, both in animals with intact renal function and with decreased re-
nal function. The in vivo effect of metabolic acidosis on FGF23 appears to be related
to the simultaneous decrease in PTH, which is secondary to an elevation of plasma
Ca2+ concentration.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nu14051041/s1, Figure S1: Experimental design. Figure S2: Correlation be-
tween plasma concentrations of carboxy-terminal fibroblast growth factor 23 (cFGF23) and: (a) plasma
phosphate, P, (b) plasma parathyroid hormone, PTH, and (c) plasma calcitriol, CTR, concentrations.
Table S1: Sequences of the primers used for real-time RT-PCR. Table S2: Food, calcium (Ca) and
phosphorus (P) intake in the six experimental groups at the end of the experiment.
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