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Summary 

The estimation of forest variables to support a forest inventory can be approached through 

the use of different technologies. Although field sampling is the most widely 

implemented technique, the development of remote sensing techniques increases the 

possibilities of action in this field. One of these technologies is the airborne LiDAR 

scanner (ALS). In this study, linear models and non-parametric models with Random 

Forest imputation were generated to estimate the total height (HT) and site index (SI) of 

Eucalyptus dunnii Maide, based on LiDAR metrics. High spatial resolution continuous 

rasters for HT and SI were created with these models. The use of a semi-automatic object-

oriented segmentation algorithm for stand delimitation based on the SI raster was then 

carried out. To evaluate the performance of these models, the One Leave One cross-

validation technique was implemented, determining for each model the ratio between the 

RMSE of the model and the RMSE of the cross-validation (RMSEcv). Linear models for 

HT estimation presented a better fit (R2=0.84, RMSE=0.84 m, MAPE=0.039, 

Bias=0.002) than the Random Forest (R2=0.85, RMSE=1.26 m, MAPE=7.19, Bias=-

0.173) model including only independent variable the 99th percentile. The 

RMSE/RMSEcv ratio presented a higher value for the linear model (0.93) than Random 

Forest (0.75). For the estimation of the site index (SI), the Random Forest model was 

applied, which included the LiDAR metrics corresponding to the 99th percentile and the 

80th bicentile. This model had an R2 value of 0.65 and an RMSE value of 1.62 m. Then, 

on the SI raster generated by the Random Forest model, automatic segmentation was 

applied, generating segments with high internal homogeneity and low homogeneity 

between segments. The methodology developed in this work provides accurate estimates 

and mapping of HT and SI at stand scale based on LiDAR data. In addition, an automatic 

segmentation method was applied, generating stands based on the SI. This segmentation 

is very useful for the sector as it is a tool that will improve forest management in terms 

of harvesting and future plantations. 

 

Keywords: LiDAR; intensive silviculture; Eucaliptus spp.; linear model; Random Forest; 

total height; site index; stand segmentation. 
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1. Introduction 

The surface of Uruguay is 176,251 km2, of which currently 66% are grasslands 

(natural, fertilized, improved, or implanted) and around 4.77% is occupied by native 

forest and 5.91% occupied by planted forest (MGAP, 2019). In Uruguay, commercial 

forest plantations have been carried out mainly with species of the genus Eucalyptus spp. 

and Pinus spp. (MGAP, 2018; FAO, 2020). Within the genus Eucalyptus the predominant 

species are Eucalyptus grandis Hill ex Maide and Eucalyptus dunnii Maide, and within 

the genus Pinus sp. mainly Pinus taeda L. and Pinus elliottii Engelm (MGAP, 2019). The 

wood of E. grandis is used for cellulose pulp and for sawmilling, and in the case of E. 

globulus and E. dunnii for pulp purposes. In contrast, the Pinus sp. is intended for sawing 

purposes only. 

The quality of the forest site determines the potential productivity of an area, 

referring to the volume of wood generated by a forest in the final harvesting.  The term 

site quality integrates climatic, topographic, and edaphic elements of the site. In Uruguay, 

the rotation of Eucalyptus spp. is around 8 to 10 years for pulp purposes and 20 years for 

sawmill. In the case of Pinus spp., the rotation corresponds to approximately 25 years for 

sawmills (MGAP, 2019). This potential productivity is quantified with the mean 

dominant height, being the site index (SI) an indication of the productive capacity of the 

site. The forest site index refers to the graphic representation that describes the 

relationship between the dominant height and the age of a stand (Prodan et al., 1997). In 

Uruguay, SI estimating equations are available for some forest species, as E. dunnii, E. 

grandis, E. globulus and Pinus spp. (Methol, 2008). These equations consider the current 

age of the trees, the reference age of the species and the current dominant height. (Methol, 

2008). 

Traditionally, obtaining information on forests has been carried out through field 

inventory, presenting important limitations when it is necessary to study large areas 

(Bergen and Dronova, 2007; Sánchez et al., 2018). Based on the information obtained in 

the field inventories, forest variables such as volume, total biomass, basal area, and 

density are estimated, presenting a level of uncertainty and precision (Cruz, 2010). 

However, there are currently innovative technologies such as remote sensing that includes 

the use of sensors, the analysis of aerial orthophotographs and other intensive data 

collection methods that can complement field work (Logroño et al., 2020). This scientific 

discipline generates greater efficiency when estimating the dasometric variables through 

lower economic costs, less time invested and less estimation error (Palop et al., 2016). 

Light Detection and Ranging (LiDAR) is an active remote sensing system based 

on the emission of laser pulses that make contact with the surface and bounce off, 

generating a return signal. This return signal allows calculating the distance from the 

surface to the sensor since the speed of light is taken as a constant (Palop et al., 2016). 

LiDAR technology can represent the three-dimensional structure of the forest, allowing 

the improvement of the estimation of variables such as biomass, volume or basal area, 

compared to other two-dimensional measurement sensors, such as photographic systems 

or radiometers (García, 2010; Alberola et al., 2018; Moe et al., 2020; Arumäe, 2020). 

Precision forestry requires the use of LiDAR technology supplemented with information 

from field plots. In Australia, LiDAR data have been analyzed to estimate tree height, 

canopy height, and crown diameter, which were then used to infer canopy volume of trees 

in the genus Eucalyptus spp. (Verma et al., 2019). A study in Estonia, forest height and 

volume were estimated using LiDAR metrics as an independent variable. In this work the 
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height was estimated using the 80th percentile of the point cloud and the volume was 

estimated using the 80th percentile and the cover density. A study conducted in Canada 

investigated the potential of Random Forest, a machine learning technique, to estimate 

canopy structure as measured by LiDAR (Ahmed et al., 2015). Another study, conducted 

in Canada, combined information derived from LiDAR plots with Landsat pixel-based 

composites to produce annual estimates of forest structure from 1984 to 2016 in more 

than 650 million hectares of Canada's forest ecosystems (Matasci et al., 2018). In a study 

in Uruguay, LiDAR metrics have been used to improve inventories of forest stands of 

Eucalyptus spp. (Hirigoyen et al., 2020).  

In terms of forest management, stand delineation is of utmost importance for 

efficient forest planning. Forest stands are uniform in composition, size, age or species, 

and are managed as a single unit (García et al., 2014). The main objective of such 

delineation is to generate economic and/or ecological benefits (O'Hara et al., 2013). 

Traditionally, stand delineation was carried out manually using information from the field 

and high-resolution photographic images (Dechesne et al., 2016; Arumäe, 2020). This 

method is not efficient because it requires a lot of analysis time by human operators. In 

addition, the degree of subjectivity of this method means that the results tend to vary 

between different operators (García et al., 2014). At present, automatic segmentation is 

available based on dasometric variables derived from LiDAR metrics and is useful for 

precision forestry, as it allows the delineation of stands based on these variables. 

Automatic segmentation is capable of generating more homogeneous stands than those 

defined manually by traditional methods. Also, another advantage of automatic 

segmentation is the lower time invested and lower cost when delineating stands compared 

to traditional methods (Gutiérrez et al., 2013; Hirigoyen et al., 2020; Pukkala, 2020). It 

should be noted that optimal segmentation should decrease within-segment variability 

and increase between-segment variability (Sánchez et al., 2018; Pukkala, 2020). In a 

study, carried out in Spain, accurate segmentations of Pinus sylvestris stands were 

generated, where mean shift or multiresolution segmentation methods were used from 

LiDAR data (Varo et al., 2017; Varo and Navarro, 2021). In Uruguay, a semi-automatic 

object-oriented segmentation algorithm was used for stand delimitation based on 

Airborne Laser Scanning (ALS) data in Eucalyptus grandis and E. dunnii plantations. In 

this study, above ground biomass and total volume maps were generated for harvesting 

tasks based on rasters derived from LiDAR metrics (Hirigoyen et al., 2020). 

However, less experience exists in the use of LiDAR data to conduct site quality 

analysis (Cheng and Zhu, 2012). By using height projection equations, the site index at 

the reference age of the species can be estimated, and LiDAR can be used in these 

equations. In the United States, site index was estimated with dynamic site index 

equations based on a long-term loblolly pine plantation applied on the height raster 

generated with the dominant mean height model based on LiDAR metrics as independent 

variables (Gopalakrishnan et al., 2019). In Poland, a study demonstrated how airborne 

laser scanning bitemporal data collected within an 8-year period can be used for the 

development of site index models for Pinus sylvestris L. based on tree height (Socha et 

al., 2020). In a study in Norway, the site index (SI) of the forest was estimated using 

LiDAR metrics as an independent variable. In this work a regression was performed 

between the SI of each plot against LiDAR metrics for Picea abies (L.) H. Karst and 

Pinus sylvestris L. As a result, SI maps were generated for each tree species and for the 

study area. (Noordermeer et al., 2020). The hypothesis of this work was that the 

segmentation of Eucalyptus dunnii stands according to dominant height allows inferring 
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site index and mapping site quality for use in forest management. The general aid is to 

generate a stand-scale mapping from LiDAR data to improve and optimize of forest 

management based on the estimation of the site index in commercial plantations of 

Eucalyptus dunnii Maide in Uruguay. The specific objectives were i) estimate the 

dominant height of E. dunnii plantations from LiDAR data; ii) estimate the site index 

based on LiDAR metrics and delimit forest productivity zones based on the site index. 

The methodology developed in this work provides accurate estimates and mapping of the 

variable total height (HT) and site index (SI) at stand scale based on LiDAR data. In 

addition, an automatic segmentation method was applied, generating stands based on the 

SI. This segmentation is very useful for the sector as it is a tool that will improve forest 

management in terms of harvesting and future plantations. 

2. Materials and methods 

2.1 Study area 

This work was carried out in commercial plantations of Eucalyptus dunnii of the 

company Forestal Oriental S.A. located in the departments of Río Negro and Paysandú, 

with coordinates of 32°33′04.51″S - 57°14′39.61″W (Figure 1). Climate of the area is Cfa 

according to the Koppen-Geiger classification, characterized by hot summers and rainfall 

distributed throughout the year, with a mean annual temperature of 19.2 °C and annual 

accumulated precipitation of 1262.5 mm (Castaño et al., 2011). Dominant soil is 

phaeozem with a mollic horizon and no secondary calcium carbonate in the upper, 

accumulation of organic matter and saturated in bases in its first meter of depth (FAO, 

2015). According to the classification of the National Commission for Agroeconomic 

Studies of the Land (CONEAT) of Uruguay, predominates soils in the area are 

characterized by presenting a texture from sandy loam to sandy clay loam, average 

fertility to low, moderately deep and generally well drained. This soil group presents an 

average productivity compared to the forest priority soil groups (MGAP, 2018). 

2.2 Field data 

In the months of May and June of the year 2017, 43 plots with a radius of 10 m 

(314.16 m2) were established in the field. A systematic sampling design was carried out 

according to traditional inventory procedures for monospecific plantations of Eucalyptus 

sp. Each field plot contains data corresponding to diameter at breast height (dbh at 1.3 m, 

cm), density (number of trees per hectare), basal area (G, m2 ha-1), total height (H, m) and 

volume per hectare (m3 ha-1). Table 1 shows a summary of the measurements made on 

the sample plots. 
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Table 1. Silvicultural variables of Eucalyptus dunnii: number of plot(n), density (N); diameter at 

breast height (dbh); basal area (G), total height (TH), total volume (TV), and age. stdev: standard 

deviation, min: minimum, max: maximum.  

Field Attributes Stdev Min max  mean 

 

Eucalyptus 

dunnii 

(n=43) 

Age (years) 1.71 5.00 10.00 7.44 

TH (m) 2.43 16.20 25.30 20.33 

Dbh (cm) 2.39 12.65 22.99 17.29 

G (m2 ha -1) 5.44 14.11 36.84 149.19 

TV (m3 ha -1) 37.87 80.49 235.94 149.19 

N (tree ha −1) 231.90 445.63 1401.00 992.97 

 

2.3 LiDAR data acquisition and processing 

The LiDAR sensor data was obtained in April 2017, for an area of 1995 ha (Figure 

1), using a Riegl VUX-1 laser scanner installed on an autogyro helicopter, at a flight 

altitude of 110 m above ground level, a pulse repetition rate of 550 kHz, a wide angular 

pitch of 0.0687 ° and a field of view of 55 °. The point density is 12 points per m2. For 

the georeferencing of the plots, the WGS84 UTM 21 (EPSG: 32721) coordinate system 

was used. The LiDAR point cloud was processed with the LAStools software through the 

Windows cmd console, generating the normalized point cloud, the digital surface model 

(MDS) and the digital vegetation model (MDV). To carry out the normalization of the 

point cloud, the “lasheight” function was used, taking as an input file the tiles in LAZ 

format provided by the company that carried out the LiDAR flight. To obtain the MDS 

and MDV, the “blast2dem” function was implemented, obtaining as products several 

rasters in ASCII format. To evaluate the distribution of the pulses on the surface, the 

“lasgrid” function was used, generating raster files, where the digital value of each pixel 

(1m) corresponds to the density of pulses per m2. Then, to obtain the metadata information 

of the total normalized point cloud, the “lasinfo” function was implemented, highlighting 

the average number of points per m2 as a result. To obtain the rasters of the LiDAR 

metrics, the "lascanopy" function was used, using a pixel size of 17.8 m, corresponding 

to the square root of the surface area of the field plot (314.16 m2). 
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Figure 1.: Study area of Eucalyptus dunnii commercial plantations  

 

To carry out the extraction of the LiDAR metrics from the area occupied by the 

field plots, the “lascanopy” function of the LAStools software was used through the 

Windows cmd console. The input files used were the normalized point cloud in LAZ 

format and a vector file in shapefile format that corresponds to the area occupied by the 

field plots. The parameters used in the code were those corresponding to the metrics to 

be extracted, "cover_cutoff 2.0" and "height_cutoff 0". The parameter "cover_cutoff 2.0" 

indicates the height from which to consider the points in terms of the "canopy cover" 

(similar to the fraction of the covered space). It is indicated that it is considered from two 

meters in height, to avoid points from non-relevant vegetation, such as scrub. Therefore, 

it only affects the “cover” metric. The parameter "height_cutoff 0" is similar to the 

previous one but refers to the cutting height to be considered by all statistics. In this case, 

it is set to 0 to be able to obtain the percentiles and bicentiles of the entire range of heights. 

Then, to obtain the database, the LiDAR metrics file and the file with the field data are 

merged. 
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2.4 Variable selection and statistical analysis  

Before obtaining the estimation models of the total height based on the LiDAR 

metrics, the study of the correlation matrix between them was carried out. For this, the 

"cor" function available in the R package was used. Then, the study of the normality of 

the uncorrelated variables was carried out by means of the "shapiro.test" function 

available in the R package. Linear predictive models were fitted for the estimation of total 

height as a function of the set of metrics selected above. The construction of these models 

was carried out with the "lm" function of the R package.  

2.5 Variable selection and k-NN models with method Random Forest 

The analysis of the correlation between variables was carried out to reduce data 

collinearity, and then the k-NN Random Forest algorithm was applied. The Variance 

Inflation Factor (VIF) was implemented. The correlated variables were eliminated, and 

the varSelection function of yaImpute (Crookston et al., 2008) in the R package was used 

to select the variables. The criterion used to select the variables was a critical threshold 

of VIF>10 (Quinn et al., 2002). This function calculates the generalized root mean square 

distance (grmsd) at each moment of the aggregation of variables to an imputation 

algorithm, preserving the variables that strengthen the imputation process (Crookston et 

al., 2008).  

The database was divided into two groups, corresponding to training and 

validation, containing 70% and 30% of the total data, respectively. Then, the model fit 

was calculated with the training data, using the "yai" function available in the "yaimute" 

package of R. Next, the "trainControl" function of the "caret" package was implemented 

to generate parameters that control the model creation process, allowing the calculation 

of the k value for the Random Forest imputation method. The value of k was chosen for 

the imputation that presented the lowest root mean square error (RMSE) value. Then, the 

"randomForest" package was used to obtain the nonparametric model. In addition, the "q" 

value was calculated to detect possible overfitting of the model (Weisberg, 1985). 

2.6 Model assessment and validation 

The coefficient of determination (R2) was used to determine the goodness of fit of 

the models. This coefficient represents the quality of the model for estimating the results, 

and the proportion of variation in the results that the model can generate. The performance 

of the models generated was evaluated by studying the estimation errors. These 

estimation errors correspond to the root mean square error (RMSE), the mean absolute 

percentage error (MAPE) and the model bias (Bias). Simple linear regressions relating 

observed and predicted values were evaluated using the coefficient of determination (R2) 

to assess the selected models (Zald et al., 2016). 

After selecting the best model, it was validated. Validation is of utmost importance 

because it will determine whether the model can be extrapolated to the entire study area 

(Altman et al., 2000). Therefore, validation will determine the credibility of the estimation 

of the dependent variable in different cases (Fernández, 2018). To validate the linear 

models, the one leave one cross validation technique was used. This technique consists 

of removing one observation from the sample in each interaction and fitting the selected 

model using the remaining observations and estimating its value (Montealegre et al. 2016, 

Lekuona et al. 2018, Hirigoyen et al., 2020). Each fit is going to have its R2, RMSE and 

Bias values. These values were averaged obtaining R2, RMSE and Bias from the cross-

validation, which were compared with the values of the selected model (Knapp et al., 
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2017). The model that presents the best quality of fit corresponds to the one that presents 

close values of RMSE of the cross-validation and the RMSE of the model to be evaluated. 

As these RMSE values get closer, the prediction of the model improves, and the 

overfitting of the data becomes less (Anderson et al., 2005). 

When validating the nonparametric Random Forest model, the internal (training) 

and external (evaluation) accuracy was studied. To carry out this study, the database was 

divided into training (70% of the data) and evaluation (30% of the data) (Fernández, 

2018). These two databases were taken independently, and the estimation errors were 

calculated. In this case, the quality of the validation estimates is higher when the ratio 

between RMSE of training data and RMSE of evaluation data is closer to the value of 1. 

This determines whether the model was applicable to the entire area to be studied. In 

addition, the cross-validation technique was used. For the comparison of the best linear 

model (parametric model) and the K-nn Random Forest model (non-parametric model), 

the R2 and RMSE were used, since these coefficients summarize the performance of the 

models and the existing difference between predictions and observations (Zald et al., 

2016).  

2.7 Obtaining height raster and site index raster 

To generate the height raster, the best selected model was applied on the raster of 

the LiDAR metric corresponding to the independent variable. The raster corresponding 

to the LiDAR metric in question was obtained using LAStools software. The generated 

height raster has a pixel size of 17.8 cm, corresponding to the surface of the plots used in 

this work (314.16 m2). In addition, this raster presents in each pixel a digital level that 

refers to the average total height in meters. 

To obtain the site index (SI) raster, first, a new attribute corresponding to the SI 

value was generated in the database. To estimate the SI of the plot, the equation proposed 

by Methol (2008) for the species E. dunnii was applied. This equation is composed of the 

current total height of the plot (AMD1), the current age of the trees in the plot (t1) and the 

reference age of the species (t2). In the case of E. dunnii, a t2 equal to 8 years is considered 

(Methol 2008). Linear and non-parametric models were then generated to estimate SI as 

a function of LiDAR metrics. The best of these models was applied on the LiDAR metrics 

raster to obtain the Site Index raster. Eq. (1) 

 

                                     eq(1) 

 

2.8 Segmentation Method 

The algorithm used to carry out the stand segmentation was based on the non-

parametric estimator called Mean Shift (MS). This algorithm was implemented with the 

Orpheo ToolBox (OTB) software available in QGIS tools (QGIS, 2009). This automatic 

segmentation method was applied on the site index raster, generating homogeneous 

segments in terms of the IS value of the pixels. In this work, the function 

"otbcli_LargeScaleMeanShift" of the OTB tool was used from the Windows CMD 

console, defining different parameters in the code. The parameters corresponded to spatial 
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radius, range radius and minimum region size. The value of spatial radius will determine 

the neighborhood to average, the value of range radius refers to the digital value threshold 

that the algorithm will consider delimiting segments (this parameter defines the interval 

in the spectral space), and the value of minimum region size defines the smallest size of 

the segment (Comaniciu et al., 2002). These parameters define the homogeneity within 

each segment and the heterogeneity between segments. In segmentation, the aim is for 

segments to be as homogeneous as possible and for heterogeneity between segments to 

be high. In this work, different combinations of parameters that generated different 

segmentations were tested. The set of parameters that resulted in the lowest intra-segment 

variation and the highest inter-segment variation was chosen. This variation was obtained 

by means of the statistical zonal tool of the QGIS software, taking as input the shapefile 

resulting from the segmentation. 

2.8.1 Unsupervised evaluation of the segmentation method 

To evaluate the segmentation method applied to the site index raster of this work, 

unsupervised evaluation (NSE) was chosen. This technique is based on expert knowledge 

and generates better results than the supervised evaluation. This is because the NSE 

generates results of higher efficiency and lower subjectivity than the ES technique (Wu 

et al., 2013; Varo et al., 2017). In the unsupervised evaluation each segment should 

present as much homogeneity as possible within it and in addition, the segments should 

be differentiated from each other (Varo et al., 2017). In this work to select the best 

segmentation, the evaluation of the internal homogeneity of the segments and the 

evaluation of the heterogeneity between segments were carried out. The evaluation of the 

internal homogeneity of the segments was carried out by means of the internal variance 

of the segments, selecting as the best segmentation the one with lower variance values 

and smaller difference between variances. The evaluation of the heterogeneity between 

segments was determined by means of the variance of the Site Index values of each 

segment, that is, the one with the highest variance value was selected as the best 

segmentation. 

3. Results 

3.1 Linear models 

In the case of the linear models for estimating total height for Eucalyptus dunni, 

metrics corresponding to the 99th, 95th and 90th percentiles were used. These LiDAR 

metrics presented high Pearson´s correlation coefficients with total height (Table 2). The 

linear models presented similar values for the coefficient of determination (R2) and a 

slight variation in the root mean square error (RMSE). Therefore, the linear model with 

the 99th percentile (model 1, Table 3) was selected since it had a higher ratio between the 

RMSE of the model and the RMSE of the cross-validation (RMSE/RMSEcv= 0.939). 

This defines a higher quality of fit by that model compared to the other two models using 

the 95th and 90th percentile metrics (Table 3). 

 

Table 2. Correlation coefficient of Pearson for each independent variable and the dependent 

variable of total height: TH (m): total height; p99, p95 and p90: percentile 99, 95 and 90. 

 p99 p95 p90 

TH (m) 0.92 0.92 0.92 
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Table 3. Linear models with their fit values and cross-validation: TH (m): total height; R2: 

coefficient of determination; RMSE: root mean square error (m); MAPE: absolute percentage 

error; Bias: model bias; RMSEcv, MAPEcv y BIAScv: errors of the cross validation. 

 
Models R2 RMSE MAPE Bias 

RMSE 

cv 

MAPE 

cv 

BIAS 

cv 

RMSE/ 

RMSEcv 

TH 

(m) 

5.96 + 0.659*p99 

model 1 0.84 0.94 0.04 0.00 1.00 0.83 0.00 0.94 

5.442 + 0.721*p95 

model 2 0.85 0.90 0.04 -0.02 1.16 0.97 0.01 0.77 

4.444 + 0.794*p90 

model 3 0.85 0.99 0.41 0.00 2.04 1.22 0.01 0.49 

 

Figure 2 shows the relationship between the observed and predicted total height 

values for the selected model (model 1). After performing a linear model of estimated 

total height (HT predicted) as a function of observed total height (HT observed), it was 

found that the determination coefficient (R2) corresponded to 0.82. This determined that 

there is almost perfect agreement between predictions and observations. 

 

  

Figure 2. Relationship between observed and predicted values for total height (TH m) of 

Eucalyptus dunnii plantations by model 1. 

  

 

R2 = 0.82 
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3.2 Non-parametric Random Forest model  

After applying multicollinearity analysis and the correlation test to the metrics to 

be included in the model, the varSelection function was used. The candidate metrics to 

be used in the Random Forest model as predictor variables of total height were defined 

with the generalized mean square distance statistics (gmsd, Table 4). The selected metrics 

were used together and individually within the model, with the 99th percentile model 

presenting a higher R2 value (R2 = 0.85, RMSE = 1.27, Table 5), using a value of "k" 

equal to 5. The value of "q" of this model corresponded to a value of 1.26, presenting 

some overfitting because it was above the empirical value of 1.07. In addition, the result 

of the cross-validation presented a RMSEcv value of 1.67, being the RMSE ratio of the 

model (Table 5) and RMSE of the cross-validation equal to 0.76. The value of the ratio 

between internal precision and external precision was 0.60 (Table 5). 

 

Table 4. Statistics of generalized mean square distance (gmsd): sd: standard deviation; p99 and 

p75: percentile 99 and 75; b80 and b90: bicentile 80 and 90; dns_gap: cover density. 

LiDAR 

metrics gmsd (mean) gmsd (sd) 

p99 0.71 0.08 

p75 0.71 0.09 

b80 0.71 0.07 

b90 0.64 0.07 

dns_gap 0.65 0.07 

 

Table 5. Fit values, errors and the comparison between the RMSE of the training data with the 

RMSE of the evaluation data of the Random Forest model.: HT (m): total height; R2: coefficient 

of determination; RMSE: root mean square error (m); MAPE: absolute percentage error; Bias: 

model bias; RMSEt/RMSEe: RMSE of the training and the RMSE of the evaluation. 

 

 
Internal accuracy (Train) 

External accuracy 

(Evaluation) 

 

  

Var. Models R2 RMSE MAPE BIAS RMSE RMSEt/RMSEe. 

HT 

(m) 
model 4  0.85 1.27 7.20 -0.17 2.12 0.60 
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Figure 3 shows the relationship between the observed and predicted total height 

values for model 4 model. This relationship showed a determination coefficient (R2) of 

0.57. This value determined an acceptable agreement between observed and predicted 

values. 

 

 

Figure 3. Relationship between observed and predicted values for total height (TH m) of 

Eucalyptus dunnii plantations by model 4. 

 

3.3 Site index and height raster 

Two raster of stand height were obtained, one using model 1 and the other using 

model 4. In both cases the model was applied on the LiDAR metric raster corresponding 

to the 99th percentile, since it was the metric included in the selected model. Two rasters 

had a pixel size of 17.8 m and the digital level corresponded to the height of the trees in 

meters. The height rasters generated with models 1 and 4 were of good quality, as they 

represented the reality of the forest, explained by the acceptable validity of the models. 

In the case of site index (SI) estimation, a linear model using LiDAR metrics as 

independent variables could not be fitted satisfactorily. Nevertheless, when using the 

model 4, a coefficient of determination (R2) of 0.65, an RMSE of 1.627m and Bias of -

0.3 were obtained, using as independent variables the metrics corresponding to the 99th 

percentile and the 80th bicentile. Figure 4 shows the relationship between the observed 

and predicted site index (SI) values for Random Forest model. This relationship showed 

a determination coefficient (R2) of 0.41. This value determined a relatively low 

agreement between observed and predicted values. Then, in R with the stack function of 

the raster package and rgdal, the rasterstack of 99th percentile raster and 80th bicentile 

raster was carried out. As a result, a single two-band raster was obtained, keeping the 

 

R2 = 0.57 
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digital levels of the metrics in each band. The Random Forest model was then applied to 

this rasterstack to obtain the site index raster. 

 
Figure 4. Relationship between observed and predicted values for index site (SI m) of 

Eucalyptus dunnii plantations by Random Forest. 

 

3.4 Segmentation OTB 

The result of the OTB segmentation for forest stand delimitation based on the site 

index varied according to the combination of the parameters spatial radius, range radius 

and minimum region size. Various combinations of these parameters were tested, and the 

ten best segmentations were taken for evaluation (Table 6). Table 6 shows a value of 1 

for "Hete. Ranking" for the largest variance between the SI means of each segment, and 

with a value of 1 for "Homo. ranking" for the largest variance of the SI internal variance 

values of each segment. The segmentation selected corresponded to the one referred to as 

"i", as it was the one with the lowest intra-segment variation and the highest inter-segment 

variation (Table 6). The parameters of this segmentation corresponded to a value of 30 

for spatial radius, a value of 1 for range radius and a value of 64 for minimum region size. 

The minimum region size value of 64 is equivalent to an area of 2,03 hectares. This value 

was obtained by multiplying the area of the SI raster pixel by the minimum region size 

value of 64 pixels. 

  

 

R2 = 0.41 
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Table 6. Combination of spatial radius, range radius and minimum region size parameters and 

evaluation of segmentations:  Seg.: segmentation name; SP: spatial radius; RR: range radius; 

MRS: minimum region size; Var. mean SI: variance site index value of each segment (m2).; Hete. 

ranking: heterogeneity ranking.; Var.Var. SI: variance of the variance values of site index 

presented by each segment.; Homo. Ranking: homogeneity ranking.; Nº seg.: number of 

segments.; Area (ha): mean area of segments in hectares. 

Seg. 
Parameters Var. 

mean 

SI 

Hete. 

ranking  

Var. 

Var. SI 

Homo. 

ranking  
Nº seg. Area (ha) 

SP RR MRS 

e 20 8 16 1.32 10 255.72 1 529 10.81 

c 20 3 16 1.76 9 276.08 2 582 11.77 

b 16 3 16 1.90 8 321.92 3 635 10.96 

i 30 1 64 2.99 5 393.38 4 585 11.60 

d 20 1 16 3.24 3 423.74 5 1558 4.39 

j 35 1 64 3.10 4 426.15 6 584 11.63 

a 4 3 16 2.17 7 428.78 7 413 16.63 

f 20 1 64 2.95 6 435.61 8 630 10.79 

g 20 1 95 3.29 2 462.38 9 499 13.55 

h 35 1 95 3.44 1 473.19 10 458 14.74 

 

Figure 5 represents the result of the delimitation of the stands based on the OTB 

segmentation as a function of the site index. Figure 4 and figures 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16 (Annexes) represents the detail of the generated segments and location in the 

study area. 
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Figure 5. Representation of the detail of Eucalyptus dunnii plantation segments of segmentation 

"i" by site index.  
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4. Discussion 

Technology involving ALS sensors has been applied in the forest environment, 

aiming to determine forest variables (Böck et al., 2017; Yang et al., 2019). In this work 

high spatial resolution site index (SI) and total height (HT) rasters were generated using 

models based on LiDAR metrics. Linear models and the non-parametric model using 

Random Forest imputation of the K-nn algorithm were compared. The linear model was 

used because of its simplicity and less processing when generating the rasters, and the 

non-parametric model was applied due to its quality of being independent of the data 

distribution. In addition, forest stand delimitation was achieved based on the site index 

raster, delimiting areas of different forest productivity for E. dunnii specie. The estimation 

of total height is closely related to the site index (SI) and used as indicators of forest site 

quality (Mora et al., 2013). For segmentation, the Mean Shift (MS) segmentation 

algorithm available in the Orpheo ToolBox (OTB) software was used, and the results of 

the site index segmentation were of high quality. 

4.1 Height estimation models and height raster generation 

The most common methods for estimating total height in forest inventories using 

LiDAR metrics correspond to simple regression methods and non-parametric methods ( 

Leite et al., 2020; Coops et al., 2021; Pourshamsi et al., 2021). Our results demonstrated 

that the simple regression method and the Random Forest model are suitable methods to 

estimate total height based on LiDAR metrics. Regarding the selection of LiDAR metrics 

for the linear models, the best predictors of total height were the 99th, 95th and 90th 

percentiles. This is because these percentiles correspond to the part of the LiDAR point 

cloud that represents the first returns which are generated by the impact of the laser pulse 

on the highest part of the canopy of the trees. There are studies confirming a high 

correlation between total tree height and metrics corresponding to the highest percentiles 

(Varo et al., 2017; Shao et al., 2018; Hirigoyen et al. 2020; Arumäe, 2020). In this case, 

the accuracy of the height models was high because of low RMSE values and high R2 

values, with a high ratio between the RMSE of the model and RMSE of the cross-

validation, determining this a good predictive value. Random Forest method has been 

also highlighted as one of the best k-NN models for estimating dominant height, total 

volume and biomass. (Zald et al. 2016; Hirigoyen et al. 2020). In the case of the Random 

Forest model, the best model used the 99th percentile as the only independent variable. 

When comparing the results between the linear models (model 1, 2 y 3) and the Random 

Forest model (model 4), a similar value of the coefficient of determination (R2) and 

similar values of RMSE were observed. However, in the case of the model 4, the RMSE 

presented a slightly higher RMSE value compared to the linear models. In addition, it 

should be noted that the model 1, which included the 99th percentile, had a higher ratio 

between the RMSE of the model and the RMSE of the cross-validation, with a value of 

0.94. In turn, the relationship between the observed and predicted values showed a higher 

determination coefficient for the model 1 with the 99th percentile (R2=0.82) than for the 

model 4 with the 99th percentile (R2=0.57). These results are in line with precedents on 

the comparison of linear and non-parametric models (Xu et al., 2018; Silva et al., 2018; 

Hirigoyen et al., 2020). However, this work highlights the inclusion in model 4 of only 

one LiDAR metric (99th percentile), compared to the Random Forest model generated in 

the study by Hirigoyen et al. (2020) which included the 75th percentile and Elev.max 

metrics (maximum statistic of all heights above the cut-off height of the point cloud). 
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The height rasters generated with model 1 (linear) and model 4 (Random Forest) 

presented good quality, due to the concordance between the height values of each pixel 

with the ground reality represented with the 99th percentile raster. In the case of the height 

raster generated with model 4, the presence of areas of pixels of similar height 

(homogeneous patches) stands out in the interior of the forest. This is explained by the 

use of Eucalyptus dunnii clones by the company Forestal Oriental S.A. The clones tend 

to have similar height values for the same age. In addition, in this raster, a large variation 

of heights (heterogeneous patches) was observed at the edge of the forest, explained by 

the edge effect. Trees at the forest edge tend to be more exposed to climatic conditions, 

such as wind damage. In addition, trees at the edge tend to use their energy for greater 

production of lateral branches (greater crown volume), resulting in a lower height of these 

individuals. 

4.2 Site index estimation 

Site quality determines the productive potential of an area, referring to the volume 

of timber generated by a stand at final rotation, and is quantified by the site index (SI). 

The SI is defined as the dominant height at a key age for a forest species. The SI is an 

indicator of stand productivity, because, for the same site and species, its value will vary 

in relation to the quality of the genetic material and the silviculture applied (Methol, 

2008). LiDAR technology provides a scan of the surface, generating a census of the 

heights of the entire forest area. The SI can be estimated by means of models where the 

independent variables (LiDAR metrics) correspond to the highest percentiles of the point 

cloud. This is because there is a high correlation between the dominant height, included 

in the SI equation of Methol (2008), and these percentiles. The possibility of having SI 

mapping of the entire forest area is of utmost importance, as it increases the efficiency of 

stand harvesting planning. 

Linear models and the Random Forest model were used to estimate the site index. 

The linear models presented very low values of the coefficient of determination (R2) when 

the regression between the SI and the metrics of the highest percentiles of the point cloud 

was performed (R2
p99=0.09; R2

p95=0.08; R2
p90=0.07). These results are concordant with 

those obtained in Brazil for non-linear mixed SI estimation models for Eucalyptus 

urugrandis (Packalén et al., 2011). In that study, the Chapman-Richards equation was 

applied, which is very similar to the SI equation used in this work (Methol, 2008). In the 

SI equation, the current dominant height of the plots was replaced by a linear height 

estimation model based on LiDAR metrics. However, in this work Random Forest model 

showed a worst fit (R2=65%, RMSE=1.627m), similar to those obtained by Noordermeer 

et al. (2020, R2<69%). Our model included the 99th percentile and the 80th bicentile, and 

the Noordermeer et al. (2020) model included the 90th, 60th percentiles and the difference 

in the 90th percentile of height (ΔH90). In future studies, the way of estimating the SI 

Packalén et al. (2011) may generate better models in future studies for E. dunnii in 

Uruguay. 

4.3 OTB segmentation based on the site index 

OTB segmentation to delimit eucalyptus forest stands is simpler, more efficient 

and of similar accuracy compared to other more complex methods (Hirigoyen et al., 

2020). This automatic segmentation method is better than manual segmentation, mainly 

due to the faster generation of segments (stands). In this work, this segmentation method 

was applied on the site index (SI) raster generated with the Random Forest model. 

Visually and quantitatively, the segmentation results of this work were of good quality. 
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The segmentation obtained presented high homogeneity within each segment, in 

concordance with previous studies (Varo et al., 2017; Pukkala, 2020; Hirigoyen et al., 

2020). Therefore, OTB segmentation is a very useful tool to automatically segment 

Eucalyptus dunnii stands. However, it is important to note that the shape and size of the 

resulting stands is not perfect, since there were forest areas which were not segmented 

and areas with small polygons. These imperfections were present in the results of several 

studies and were manually modified (Gutiérrez et al., 2013; Duarte et al., 2018). Such 

imperfections would be related to the combination of parameters used and the SI raster 

entered as input. This is because the unsupervised Mean Shift (MS) classifier will 

delineate the segments based on the digital levels of the raster in question. To overcome 

these imperfections, different combinations of spatial radius (SR), range radius (RR) and 

minimum region size (MRS) were tested. In this work we defined a value of 30 for SR, a 

value of 1 for RR and a value of 64 for MRS. The SR value of 30 will determine the 

number of neighbouring pixels to be averaged. The value of 1 for RR defines the interval 

in the spectral space when performing the delineation of the segments, this low value 

determines that the classifier finds larger differences in the SI raster. The value of 64 for 

MRS defines a minimum segment size of 2.03 ha, solving to a large extent the generation 

of very small segments that are not representative of the real terrain. 

4.4 Forest management applications 

The possibility of generating models to estimate forest variables based on LiDAR 

metrics is an important tool for good quality inventories. This technology allows 

obtaining information from the whole study area and requires a low number of calibration 

plots. In the case of traditional inventories, a larger number of plots is required, resulting 

in a greater need for human resources, a greater time investment and a higher economic 

cost. LiDAR technology provides a census of forest height, generating more accurate 

results than traditional inventory. When planning forest harvesting, it is essential to have 

the total volume of the stands, with the height of the forest being a fundamental variable 

for its calculation.  

The use of the OTB segmentation method improves processing time by increasing 

the area covered and maximizing labor efficiency (Ortega, 2018; Hirigoyen et al., 2020). 

The segmentation based on the site index (SI) is very useful silvicultural product because 

it defines the productivity of different sites. Efficient forest management requires stands 

to be as homogeneous as possible within the forest in terms of IS. The selection of 

segmentation "i" was not only based on intra-segment homogeneity and inter-segment 

heterogeneity, but also on the number of segments and the average area of each segment. 

The segmentation presented 585 segments for the total surface (1995 ha) with an average 

area of 11.6 ha. This stand size is consistent for forest planning and harvesting 

planification. The minimum region size (MRS) parameter value defined a minimum stand 

area of 2.03 ha, allowing for relatively small stands that will determine the productivity 

of each site in more detail. Knowing the productivity of the forest area will not only 

promote efficient harvesting but will also improve the planning of future plantations.  

The availability of models for estimating total height (HT) and site index (SI), 

using LiDAR metrics as an independent variable, allows their application in large areas. 

SI equation derived from LiDAR data for Eucalyptus dunnii can predict the production 

by the reference age of the species (8 years). The efficiency of forest management is 

improved when information is available for the entire study area, which is not the case in 
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traditional inventories. Therefore, the OTB segmentation of the SI is an economical 

option, which allows foresters to improve forest planning. 

5. Conclusions 

This study showed that it is possible to generate models for estimating total height 

(HT) and site index (SI) using LiDAR metrics as independent variables. In addition, the 

best models for HT and SI estimation included the metrics corresponding to the highest 

percentiles of the point cloud. It is worth noting that the linear model (model 1) and the 

Random Forest model (model 4), presented similar results; however, model 4 presented 

a slightly higher RMSE value. As for the estimation of SI, the Random Forest model 

showed a better fit. By applying these models, it was possible to obtain high spatial 

resolution maps of HT and SI for the entire study area. Automatic stand delineation from 

SI based on an unsupervised assessment allows to increase the accuracy of the SI value 

for each stand. This methodology provides an inexpensive and easy approach to update 

model for the generation of SI maps, based on raster derived from LiDAR metrics. SI 

maps are very useful for forest planning, as they define the productivity of the study area. 

The tools used in this work, based on LiDAR metrics, promote an improvement of the 

decision-making process on forestry activities based on the SI. This study, in addition to 

providing new tools for better forest management, promotes the need for further progress 

in the application of airborne laser scanning (ALS) data for the estimation of the SI of 

Eucalyptus spp. plantations in Uruguay. 
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7. Annexes 

 

Figure 6. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using the 

site index (part 1). 

 

 

Figure 7. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using the 

site index (part 2). 
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Figure 8. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using the 

site index (part 3). 

 

Figure 9. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using the 

site index (part 4). 
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Figure 10. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using 

the site index (part 5). 

 

Figure 11. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using 

the site index (part 6). 
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Figure 12. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using 

the site index (part 7). 

 

 

Figure 13. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using 

the site index (part 8). 
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Figure 14. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using 

the site index (part 9). 

 

Figure 15. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using 

the site index (part 10). 
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Figure 16. Detail of segments on Google satellite image of Eucalyptus dunnii plantations using 

the site index (part 11). 

 


