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TheWorld Health Organization (WHO) announced in March a pandemic caused by Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This new infectious disease
was named Coronavirus Disease 19 (COVID-19), and at October 2020, more than
39,000,000 cases of SARS-CoV-2 have been detected worldwide leading to near
1,100,000 deaths. Clinically, COVID-19 is characterized by clinical manifestations, such
as fever, dry cough, headache, and in more severe cases, respiratory distress. Moreover,
neurological-, cardiac-, and renal-related symptoms have also been described. Clinical
evidence suggests that migration of immune cells to the affected organs can produce an
exacerbated release of proinflammatory mediators that contribute to disease and render
the immune response as a major player during the development of the COVID-19 disease.
Due to the current sanitary situation, the development of vaccines is imperative. Up to the
date, 42 prototypes are being tested in humans in different clinical stages, with 10 vaccine
candidates undergoing evaluation in phase III clinical trials. In the same way, the search for
an effective treatment to approach the most severe cases is also in constant
advancement. Several potential therapies have been tested since COVID-19 was
described, including antivirals, antiparasitic and immune modulators. Recently, clinical
trials with hydroxychloroquine—a promising drug in the beginning—were suspended. In
addition, the Food and Drug Administration (FDA) approved convalescent serum
administration as a treatment for SARS-CoV-2 patients. Moreover, monoclonal
antibody therapy is also under development to neutralize the virus and prevent
infection. In this article, we describe the clinical manifestations and the immunological
information available about COVID-19 disease. Furthermore, we discuss current therapies
under study and the development of vaccines to prevent this disease.
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INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2), denominated by the International Committee on Taxonomy
of Viruses (ICTV) (1), was first isolated during an outbreak in
Wuhan, the Chinese province of Hubei in December 2019. This
virus belongs to Coronaviridae family and betacoronavirus
subfamily, known to infect mammals, such as bats, mice, and
pangolins. An example of this subfamily is Severe Acute
Respiratory Syndrome Coronavirus (SARS-CoV), which caused
an epidemic in 2002 involving 26 countries with over 8,000 cases
(1–4).

Since the outbreak in Wuhan in December 2019, SARS-CoV-
2 has demonstrated an accelerated contagious and spreading
behavior (5). The fast transmission and the high number of cases
affecting worldwide have made the management of virus
spreading extremely difficult. The transmission of the virus is
person-to-person through fomites and respiratory droplets (5, 6).
Furthermore, fecal shedding has been shown up to 5 weeks after
the clinical recovery (7–9). Therefore, it is hypothesized that
fecal-oral transmission could be another propagation route for
SARS-CoV-2 (10), with an incubation period that can last
approximately up to 7 days after exposure to the virus (6, 11,
12). Interestingly, asymptomatic individuals display viral loads
that have shown to be challenging to detect during the period of
Frontiers in Immunology | www.frontiersin.org 2
incubation (13, 14). Consequently, the spreading of the virus has
no contention, and therefore researchers actively work to find
vaccines and treatments for this pathogen.

In this article we discuss the current knowledge about the
innate and adaptive immune response during coronavirus
disease (COVID-19). Furthermore, we describe the scientific
strategies currently undergoing testing for prophylaxis or
treatment for COVID-19.
SARS-COV-2 VIRION CHARACTERISTICS
AND TARGET RECEPTOR IN CELLS

SARS-CoV-2 is a positive-stranded RNA virus with an estimated
genome size equal to 29.9 kb (15). In contrast, the genome size of
previous pathogenic coronaviruses, such as SARS-CoV and the
Middle East Respiratory Syndrome virus (MERS) is 27.9 kb, and
30.1 kb, respectively (3, 16). It has been predicted that SARS-
CoV-2 has fourteen open reading frames (ORFs) that encode for
four structural proteins: spike (S) that promotes the viral entry to
host cell, membrane protein (M) that induces the membrane
curvature and allows the union with nucleocapsid (N) protein.
Additionally, the M protein interacts with the envelope protein
(E) and allows virus assembly and release (15, 17, 18). Fifteen
FIGURE 1 | Schematic representation of SARS-CoV-2. SARS-CoV-2 is a positive-sense single-strand RNA enveloped virus. Viral genome encodes four structural
proteins: Spike glycoprotein (S), envelope (E), Membrane (M), and Nucleocapsid (N) protein. Others 13 non-structural proteins are encoding by ORF segment 1ab.
December 2020 | Volume 11 | Article 569760

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Canedo-Marroquı́n et al. SARS-CoV-2 Immune Response: Vaccines and Treatments
non-structural proteins are also encoded by the ORFab
portion (15) (Figure 1). Similar to SARS-CoV, SARS-CoV-2 S-
glycoprotein is cleaved by a transmembrane serine-protease 2
(TMPRSS2), producing two surface proteins S1 and S2 (19).
The virus attaches to the host cell by the S1-domain by means
of the receptor-binding domain (RBD), which binds to
the Angiotensin Converted Enzyme 2 (ACE2) receptor to
promote the viral fusion and the release of the viral genome
into the host cells that is required for the production of new
virions (20).

The ACE2 receptor can be expressed by cells from the
respiratory system, arteries, heart, and digestive tract (20–22).
In the respiratory tract, the receptor is expressed by pneumocytes
type I and II located in the throat and lungs, as well as by alveolar
macrophages (20). Despite the low presence of ACE2 both in the
upper and lower respiratory tracts, the tropism for type II
alveolar cells can be explained by the presence of proteases
that contribute to the viral proteolytic processing required for
SARS-CoV-2 entry (23). Three proteases have been described
that can prime the S-protein: TMPRSS2, furin, and cathepsin B/L
(22, 24, 25). TMPRSS2, as described above, cleaves the S protein
in the S2 subunit at the RRARmotif, particularly in a highly basic
domain (20). The furin protease also contains the cleavage RRAR
sequence (23, 26). It has been described that furin can be secreted
by the alveolar epithelium cells and work on neighboring cells
(26). The synergy between furin and TMPRSS2 allows the viral
entry to the cells (20, 27). According a predicted analysis
cathepsin B/L are endosomal cysteine proteases that facilitate
the entry of SARS-CoV into the cells; however, the contribution
of these enzymes to SARS-CoV-2 entry has not been
described (28).
CLINICAL FEATURES OF SARS-COV-2

COVID-19 displays clinical manifestations any time from 6 to 14
days after the exposure to SARS-CoV-2 (29). The most frequent
symptoms are fever, nasal congestion, myalgia, headache, and cough
(5, 30). However, anosmia and encephalitis have also been described
for COVID-19 patients (31). Further, respiratory impairment
occurs with severe clinical manifestations, such as respiratory
distress and pneumonia (32). Comorbidities, including
hypertension, diabetes, cardiovascular, and respiratory diseases,
are closely associated with the severity of disease, mainly because
patients with these ailments could develop pneumonia and require
intensive care unit hospitalization, mechanical ventilation, and
eventually extracorporeal membrane oxygenation (33). Symptoms
could lead tomultiple organ inflammation, resulting in organ failure
(34, 35) that can cause death to the affected patient (30, 36) (Figure
2). Globally, the lethality is near to 2%–3% (37, 38), with the elderly
population as the most susceptible (39). Interestingly, it has been
reported that after the illness, a minor percentage of patients can
show the reactivation of SARS-CoV-2 (40). Even more, virus
reactivation can lead to the relapse of the patient (41, 42). So far,
the hospitalization of the patients that relapse has not been
described (43).
Frontiers in Immunology | www.frontiersin.org 3
In addition to the involvement of lungs, heart, kidney, liver,
and bowels, SARS-CoV-2 seems to reach the central nervous
system (CNS), causing a broad range of clinical manifestations
that will be discussed next (44). Similarly to other respiratory
viruses (45–49), the ability of coronavirus to enter the CNS has
been demonstrated by using murine animal models (50) and in
vitro neuronal cell cultures (51, 52). Neurological symptoms were
also shown for other coronaviruses, such as SARS-CoV and
HCoV-OC43 (53–55). It has been suggested that neurons are a
potential SARS-CoV-2 target, because these cells express the
ACE2 receptor (31). Other cells from the CNS like astrocytes
and oligodendrocytes are also targets of SARS-CoV-2 infection
due to they also express the ACE2 receptor (56). In addition, a
recent report showed that SARS-CoV-2 could be detected in
neurons and microglia from deer mice at day 6 post-infection
(44). Consistent with this notion, is the observation that 36.4% of
patients can display several neurologic symptoms, including
headache, encephalitis, impaired consciousness, and even the
Guillain-Barré syndrome (57–59). Possible routes for the virus
to enter into the CNS are the peripheral nerves and the blood-
brain barrier (BBB), whether the virus uses immune cells or to go
through the BBB remains to be defined (45, 60). Along these lines,
it has been observed that patients infected by SARS-CoV-2 suffer
from olfactory and taste disorders (OTDs) (57). Symptoms that
seems to be more frequent in women than in men (61). Among
the symptoms of taste disorders, dysgeusia and ageusia were
observed, while hyposmia, and anosmia also occurred as
olfactory disorders (62). It has been demonstrated that SARS-
CoV can enter the CNS through the olfactory bulb (62). Since
SARS-CoV-2 generates symptoms involving OTDs, it can be
suggested that this virus can arrive at the olfactory bulb and
enter the CNS (63). However, because the olfactory sensory
neurons were found not to express the ACE2, SARS-CoV-2
could not infect them, unless it uses another receptor that has
not been described yet (63).

Another coronavirus as HCoV-OC43, is thought to enter the
CNS via the hematogenous route as an immune cell carry-on
(64). It was suggested that SARS-CoV-2 also can enter the CNS
through a hematogenous route. Using in vitro models for the
BBB, the presence of ACE2 receptors was shown in blood vessels
from the frontal cortex along with the brain microvascular
endothelium (BMVEC) (65). Furthermore, the S protein seems
capable of disrupting the BBB (65). Additionally, there is
evidence for the presence of the virus in the cerebrospinal fluid
(CSF), proving that SARS-CoV-2 can reach the CNS (62). An
alternative to the hematogenous route for SARS-CoV-2 may be
transporter or pass through the tight junctions from the
epithelial cells in the choroid plexus and the endothelial cells
from the veins located in the subarachnoid space, which are the
cells that are part of the blood-CSF barrier (BCSFB) (65, 66).

Interestingly, the ability of SARS-CoV-2 to invade the CNS is
thought to be associated with respiratory failure in patients with
COVID-19, though this notion still remains to be conclusively
defined (67, 68). Further studies are needed to evaluate the effect
that the virus has on the CNS and the neurological symptoms
that this pathogen causes in humans.
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THE IMMUNE RESPONSE
TO SARS-COV-2

Although the immunopathology of coronaviruses remains
poorly understood, the elucidation of the molecular and
cellular mechanisms behind the immune response triggered by
SARS-CoV-2 will help to develop vaccines and therapeutic
strategies to control the infection or to improve the clinical
progression of patients. Because SARS-CoV-2 is a novel virus,
the immune response elicited by this pathogen is not yet
comprehended. In this section, we discuss the main findings
relative to the immune response to the virus and how this
response affects the lungs.

The Innate Immune Response Induced by
SARS-CoV-2
Much remains to be understood about the molecular immune
mechanism involved in SARS-COV-2 infection. Commonly,
pathogen-associated molecular patterns (PAMPs) from
microorganisms are recognized by pattern-recognition
receptors (PRRs) (69). When viral fusion occurs, the viral
genome can be recognized by various PRRs expressed by host
cells (70–72). Among the PRRs that recognize viral RNA, it is
essential to highlight toll-like receptors (TLR) 7 and 8 that trigger
the myeloid differentiation primary response (MyD88) pathway
upon binding to viral ssRNA (73, 74). Additionally, viral proteins
can be recognized by TLRs and trigger the TLR4-MyD88
pathway (75). All these pathways promote the expression of
type I IFNs (73, 76). Nevertheless, a deficient type I IFN response
is observed during SARS-CoV-2 infection in vitro (77). An
inefficient type I and type III IFN response has been suggested
to associated with increased patient fatality. No IFN-b and IFN-l
could be detected in plasma samples and lung biopsies from
Frontiers in Immunology | www.frontiersin.org 4
SARS-CoV-2 individuals (78, 79). Type I interferon levels
increased in patients suffering from severe disease and that
improved after a critical condition (78). Even though the TLR-
4 pathway involves the activation of the Tank-binding kinase 1
(TBK1), studies have shown that this kinase does not get
activated during an in vitro infection with SARS-CoV-2 (77).
All these in vitro results suggest that SARS-CoV-2 could inhibit
the IFN pathway at one or more of the steps mentioned above.
Contrary to the in vitro results, during infection of mice with
SARS-CoV-2, an increase in IFN-a and TBK-1 was observed,
with a peak at day 6 post-challenge, followed by a decrease in the
expression of these molecules (44). These data suggest that there
might be an IFN response during the infection in vivo, which
declines later as the viral loads from the lung tissue (44).

Hematological studies have shown a progressive increase in
the number of neutrophils in the peripheral blood of COVID-19
patients (40, 80–82), especially in those cases with respiratory
distress (83). Furthermore, pulmonary infiltration has been
found in autopsies of COVID-19 patients (84). On the other
hand, COVID-19 patients had shown low eosinophil levels that
could be considered as a laboratory biomarker (40, 80, 81, 85).
Moreover, the presence of natural killer (NK) cells is reduced in
COVID-19 patients, which might be associated with higher levels
of chemokines ligand (CXCL) 9 and 16 (77). It is thought that a
decrease in IFN-g secretion could be associated with an
impairment of the antiviral immune response (81, 86–89).

Some patients have shown a cytokine storm release (CRS)
response associated with a negative prognosis, including death
(90). CRS is an excessive inflammatory response induced by the
SARS-CoV-2 infection, which in severe cases consists of the
reduction of T cells and diffusing airway damage due to
the infiltration of immune cells and the hyaline membrane
formation (91, 92). COVID-19 severe cases show increased
A B

FIGURE 2 | Symptoms caused by COVID-19 disease. (A) Is a representation of the most frequent symptoms in patients with SARS-CoV-2, where the most
frequent symptom is the fever, followed by fatigue, dry cough, myalgia, dyspnea, and headache. (B) Is a representation of the most severe symptoms in patients
with SARS-CoV-2, where pneumonia is the most common, followed by acute respiratory distress syndrome (ARDS), arrhythmia, shock, acute cardiac injury (ACI),
and acute kidney injury (AKI).
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levels of several cytokines and chemokines, at least five-fold or
more than healthy controls (93). Among them IL-2, IL-7,
granulocyte-colony stimulating factor (G-SCF), interferon
gamma-induced protein 10 (IP-10), monocyte chemoattractant
protein-1 (MCP-1), macrophage inflammatory protein 1A
(MIP-1A), monocyte chemotactic protein-3 (MCP-3), tumor
necrosis factor alpha (TNF-a), IL-6, and IL-1RA had been
shown to associate with the pro-inflammatory profile (5, 90,
93–97). Moreover, IL-6 levels have been directly corelated to
viral loads (95). Also, increased IL-6 levels are detected before the
intubation for mechanical ventilation (98, 99). IL-6 levels are
linked to elevated IP-10, MCP-3, and IL-1RA levels and are
associated with fatal outcomes (95, 100).

On the other hand, moderate pro-inflammatory cytokines
have been observed in mild cases (89, 100), a finding not unique
for SARS-CoV-2. Disease severity association with cytokine
storm has been broadly studied for viruses such as the
respiratory syncytial virus (RSV), which can lead to a cytokine
storm syndrome in encephalitis cases (101), influenza A and B
virus (102), and others coronaviruses including SARS-CoV (103)
and MERS (104), Ebola virus, in hantavirus pulmonary
Frontiers in Immunology | www.frontiersin.org 5
syndrome (105, 106), and Epstein-Barr virus (107). A
schematic representation for the contribution of cellular
infiltration to disease is shown in Figure 3.

Adaptive Cellular and Humoral Immunity
Induced by SARS-CoV-2
Lymphopenia is the most characteristic immune manifestation
of patients infected with SARS-CoV-2 (40, 80, 81, 85). Subsets of
T cells as CD4+, CD8+, and memory T cells are lower in severe
cases, implying an inadequate antiviral response after SARS-
CoV-2 infection (81, 85). In this line, mild cases present an
increase of CD8+ T cells until 11 days post-admission, which
could be associated with the clinical outcome. Noteworthy, a
case-report study shows that circulating T follicular helper cells
(cTfh) progressively increased after 9 days post-admission
during a mild disease and remain in peripheral blood during
convalescent, consistent with antibody-secreting cells (ASC)
(89). Together with corroborating the data described above,
this study also showed the recruitment of ASC and cTfh cells
in the blood of patients. These levels are slightly elevated when
compared to healthy patients, even after 20 days of symptoms
FIGURE 3 | Immune response against SARS-CoV-2. Cellular infiltration and Cytokines storm upon the infection of SARS-CoV-2. After SARS-CoV-2 recognition and
replication in type II pneumocytes, peripheral blood cells are recruitment to alveoli, with a release of cytokines and chemokines (IL-2, IL-7, G-SCF, IP-10, MCP-1,
MIP-1A, and TNFa), allowing infiltration into the lung of granulocytes and mononuclear cells as monocytes, lymphocytes, and NK cells. Lungs-infiltrated cells are also
involving in cytokines storm.
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onset (89). Tfh cell function is essential for developing memory B
cells and the production of high-affinity antibodies (108).
However, more studies are needed to better understand
these interactions.

Consistent with this, a higher B/T cell ratio has been found in
COVID-19 patients (81, 89). In mild cases, the ASCs are detected
after 7 days of post-admission in association with viral clearance
(89). Also, in severe cases, ASCs levels are elevated compared to
healthy controls, with a 31% expansion 7 days after the onset of
the symptoms (109). No significant differences were observed for
IgM and IgG production against SARS-CoV-2, with a peak from
7 days until 40 days post-admission independent of clinical
course (24, 81, 82, 89, 110). Also, it has been shown that IgG
levels in asymptomatic patients were reduced when compared to
symptomatic ones, in addition to a reduction in neutralizing
antibody activity (24, 81). Along these lines, it was reported that
only 19.3% of patients show a robust level of neutralization
activity and that they decrease up to 28 days after their recovery,
suggesting that neutralizing antibodies have a short half-
life (111).

Studies reporting the immunophenotyping of the disease
considered innate and adaptative responses, specifically, the
neutrophil/lymphocyte ratio (NRL) and the IgG levels. A
report, patients were separated into four groups: NRLhigh-
IgGhigh; NRLhigh-IgGlow; NRLlow-IgGhigh and NRLlow-IgGlow.
The worse prognosis was found in both NRLhigh groups,
positively related to fatality. Remarkably, NRLlow-IgGlow

patients did not require mechanic ventilation (82). The NRL
has been considered a reasonable and helpful measure to define
disease severity in patients (112–115). This knowledge has been
the key to identifying disease severity markers, which could
contribute to defining therapeutic targets and for developing
prophylactic strategies and vaccines.

How the Immune Response Against
SARS-CoV-2 Affects the Lung
Due to the broad distribution of ACE2 molecule, SARS-CoV-2
infection could be displaying a multiorgan involvement (116).
Nevertheless, the most frequently affected organ is the lung and
an acute lung injury (ALI) can develop. Up to date, little is
known about the mechanism involved in lung dysfunction.
Histopathological analyses from deceased patients have
revealed significant changes in the lung, highlighting the
alveolar damage with desquamated pneumocytes, hyaline
membrane, fibrinous exudate, and immune cell infiltration
(117). Specifically, alveolar macrophages are found in the
lumen and lymphocytes in the interstitium, associated with
diffuse alveolar damage. The high infiltration controls the
infection (84, 117–119), consistent with leukopenia in
hemogram founded in affected patients. The diffuse damage in
the lower respiratory tract could be due to infection in the Clara
cells, a non-ciliated secretory type cell, and the evasion of an early
immune response, such as interferon type I, allowing a high viral
replication in the lower respiratory tract (77, 118, 120).

During the infective process, the virus displays mechanisms
to avoid the immune system of the host (78, 79). Once the innate
immune cells recognize the viral particles, they become activated
Frontiers in Immunology | www.frontiersin.org 6
with the aim of clear the pathogen. Although peripheral myeloid
cells play a crucial role during the innate immune response, little
is known about their contribution during SARS-CoV-2 infection.
Transcriptomic analyses performed in peripheral blood
mononuclear cells (PBMC) and bronchoalveolar lavage fluid
(BALF) samples from infected patients revealed a down-
regulation of genes related to degranulation and activation of
immune cells, such as neutrophils in BALFs (121). Similar results
were obtained from studies performed using necropsies (88, 92).
On the hand, the expression of pro-inflammatory cytokines and
chemokines is upregulated in BALFs of infected individuals
(121). Remarkably, genes that encode for chemokine ligands
(CCL)-2/MCP-1, CCL-3/MIP-1A, and CCL4/MIP-1b, CXCL2,
CXCL8 and CXCL10/IP-10 expression were increased in SARS-
CoV-2 patients, suggesting important recruitment of monocytes/
macrophages and neutrophils at lung during SARS-CoV-2
infection (121). These findings are consistent with the low
levels of peripheral monocytes and lymphocytes that are
associated with elevated expression of CCL8 and CCL2 and
CXCL9 and CXCL16 in the blood of SARS-CoV-2 patients (77,
122), suggesting the migration of peripheral T cells to control the
lung damage from the interstitium to the alveolar space (91). In
addition, high levels of CXCL8 were detected in SARS-CoV-2
patients (77), which can promote the recruitment of granulocytes
to the tissue and the production a pro-inflammatory
environment in the alveoli (123, 124). One explanation for the
damage of the airway epithelium is the recruitment of immune
cells and the contribution of the degranulation to eliminate the
infected cells, promoting an inflammatory state that can last until
the viral clearance. As a result of this process, pulmonary damage
is produced in a manner equivalent to other respiratory viruses
(94, 125, 126).
VACCINES AND TREATMENTS

Vaccines
Currently, the world science is focused on the development of a
vaccine against SARS-CoV-2 (127). The need of developing
vaccines during pandemic times represents a major challenge for
science and medicine. First, SARS-CoV-2 is a new coronavirus
strain, without a complete understanding of the best animal model
for this infectious disease. Despite these difficulties, scientists
worldwide work to advance with the highest possible velocity to
develop and evaluate vaccine prototypes. Inactivated virus, DNA-
based strategies, non-replicating viral vector, protein subunits,
replicating viral vector, live attenuated virus, RNA-based, and
VLPs are within the strategies being developed (128). In the last
WHO report, 152 vaccines prototypes are being tested in preclinical
models, and 42 are tested in humans, with ten of them in phase
(129). Besides, until October 15, 2020, 10 studies, which showed
immunogenicity and safety in previous phases, are in the early
stages of Clinical Phase 3 (Table 1). As part of these phase 3 studies,
between 30,000 and 65,000 volunteers have been recruited to
evaluate these vaccine prototypes around the world (130).

The inactivated virus formulation has been broadly used for
licensed vaccines being used for decades to prevent emerging
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respiratory diseases (131). Phase 1/2 clinical trials revealed the
safety of using an inactivated vaccine against SARS-CoV-2 with a
range of adverse reactions between 20% and 30% of those
vaccinated and a robust neutralizing response after the second
dose (132–134).

An inactivated vaccine generated by Sinovac (CoronaVac)
was evaluated pre-clinically rats, mice and rhesus macaques, with
two doses, on days 0 and 7 days after challenge, secretion of IgG
of 105 approximately 1 week after immunization against the
SARS-CoV-2 S-protein important to obtain a robust IgG
secretion. Consistently, neutralization assays were carried out.
A high titer of neutralized antibodies (1 x 104 approximately) is
observed 6 weeks after immunization, the results are similar for
Frontiers in Immunology | www.frontiersin.org 7
clinical phase 1 and 2 study with two doses at 0 and 14 days (133,
134). Also, Coronavac has not shown significant severe adverse
reactions in Phases 1 and 2. Thus, this vaccine has moved on to a
Phase 3 clinical trial (135).

The inactivated vaccine developed by Sinopharm evaluated in
Phases 1 and 2 clinical trials was administrated intramuscularly
in two doses (5 ug/dose) at 0 and 21 days. According their
interim reported showed high titers of neutralized antibodies in
volunteers, 1 x 10 3 approximately (132). Currently, this vaccine
is in Phase 3 (135).

BBIBP-CorV is an inactivated prototype of a vaccine against
SARS-CoV-2 tested in six clinical models (including mice, rats,
guinea pigs, rabbits, and nonhuman primates), which were
TABLE 1 | Vaccine candidates for COVID-19 currently in clinical trials and their strategies.

Vaccine candidates Phase I Phase I/II Phase II Phase III

Non-
Replicating
Viral Vector

ChAdOx1-S PACTR202006922165132 2020-001228-32 ISRCTN89951424
NCT04516746

Adenovirus Type 5 Vector ChiCTR2000030906 ChiCTR2000031781 NCT04526990
Ad26COVS1 NCT04436276 NCT04505722
Adeno-based (rAd26-S+rAd5-S) NCT04436471

NCT04437875
NCT04530396

Replication defective Simian Adenovirus (GRAd)
encoding S

NCT04528641

Inactivated CoronaVac NCT04383574
NCT04352608

NCT04456595669/
UN6.KEP/EC/2020

Inactivated ChiCTR2000031809 ChiCTR2000034780
Inactivated ChiCTR2000032459 ChiCTR2000034780
Inactivated NCT04412538 NCT04470609
Inactivated NCT04530357
Whole-Virion Inactivated NCT04471519

Protein
Subunit

Adjuvanted recombinant protein (RBD-Dimer) NCT04445194 NCT04466085
Full length recombinant SARS CoV-2
glycoprotein nanoparticle vaccine adjuvanted
with Matrix M

NCT04368988

RBD-based NCT04473690
Native like Trimeric subunit Spike Protein
vaccine

NCT04405908

Recombinant spike protein with Advax™

adjuvant

NCT04453852

Molecular clamp stabilized Spike protein with
MF59 adjuvant

ACTRN12620000674932p

S-2P protein + CpG 1018 NCT04487210
RBD + Adjuvant IFV/COR/04
RBD (baculovirus production expressed in Sf9
cells)

ChiCTR2000037518

Peptide (EpiVacCorona) NCT04527575
Virus like-
particles

Plant-derived VLP adjuvanted with GSK or
Dynavax adjs.

NCT04450004

RNA LNP-encapsulated mRNA NCT04283461 NCT04405076 NCT04470427
3 LNP-mRNAs 2020-001038-36

ChiCTR2000034825
NCT04368728

mRNA NCT04449276 NCT04515147
mRNA NCT04480957
LNP-nCoVsaRNA ISRCTN17072692
mRNA ChiCTR2000034112

DNA DNA plasmid vaccine with electroporation NCT04447781
NCT04336410

DNA plasmid vaccine + Adjuvant NCT04463472
NCT04527081

DNA plasmid vaccine CTRI/2020/07/026352
DNA Vaccine (GX-19) NCT04445389

Replicating
Viral Vector

Measles-vector based NCT04497298
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immunized intramuscularly route twice on days 0 and 21. These
mammalian species were challenged with SARS-CoV-2; the
vaccine-induced high levels of neutralizing antibodies do not
produce significant adverse effects in the biochemical serum
parameters. Furthermore, it was observed that immunization
with two doses with 2 ug/dose of BBIBP-CorV conferred
significant protection against SARS-CoV-2 (136).

Adenovirus-based vaccines are led by AstraZeneca, CanSino
Biologics Inc, Gamaleya Research Institute, and Janssen Vaccines
& Prevention B.V (130). AstraZeneca produced a chimpanzee
adenovirus-vectored vaccine (ChAdOx1 nCoV-19) in their
report indicated the vaccine was tolerated with 1 g of
paracetamol every 6 h, which must be administered
prophylactically 24 h before vaccination (137). The response of
IgG antibodies against the SARS-CoV-2 protein S reached a peak
on day 28 and was maintained until day 56 after vaccination.
Furthermore, the IFN-g response peaked at day 14 and
antibodies capable of neutralizing live SARS-CoV-2 were
induced on day 28 after a booster dose (137). The Phase 3
clinical trial of this vaccine prototype was paused to allow the
review of data by an independent committee, due to a suspected
severe adverse reaction in two different patients. After this
review, the trial was restarted in India, Brazil, and the UK (138).

CanSino Biologics INC developed a prototype with
recombinant adenovirus type 5 (Ad5) called rAd26-S + rAd5-
S, which expresses the S glycoprotein of SARS-CoV-2. In phase
1/2 studies it was shown that the vaccine is safe, well-tolerated,
with the majority of adverse reactions of mild or moderate
severity which include fever (46%), headache (39%), fatigue
(44%), vomiting (2%), loss of appetite (16%), diarrhea (11%),
and occur in the first 7 days post-vaccination. In general, this
vaccine induced a strong humoral and cellular immune response
in healthy patients, which begins to be observed 14 days post-
vaccination. Secretion of IFN-g, TNF-a, and IL-2 by CD4+ and
CD8+ T cells was measured, and a peak was observed at day 28th
post-vaccination). A single dose of the COVID-19 vaccine
vectorized with Ad5 caused a four-fold increase in RBD-
binding antibodies and virus neutralization (139). Due to the
success of this prototype, it had advanced to a Phase 3 clinical
study (129).

A preliminary report from a phase 1 for a mRNA-based
vaccine against SARS-COV-2 (mRNA-1273) indicated that
seroconversion appears on day 15 after the first vaccination
(140). Also, antibody neutralizing activity was detected after the
second vaccination (140). A report of phase 1/2 of RNA vaccine
BNT162b1 indicated that the candidate elicited a higher titer of
nAb than the convalescent group, with a temporal decrease of
lymphocytes that return to baseline levels between 1 week (141).
No data for T and B cell immunity have been reported yet (141).

Subunit vaccines used protein-S, and RBD subunits since S
protein must have a stable domain (142, 143). It was shown that
spike-immunized mice developed a virus neutralizing antibody
response that lasted for 10 weeks approximately (144). Novavax
designed a prototype with an innovative adjuvant Matrix-M1
adjuvant, a positive correlation between the immunization dose
mixed with adjuvant with the production of neutralized
Frontiers in Immunology | www.frontiersin.org 8
antibodies was obtained (145). Also, this prototype is evaluated
in Phase 3 (138).

The recombinant viral vector methodology has been widely
studied for the development of vaccines and gene therapy (146).
Viral vectors used for this strategy are measles virus, poxvirus,
adenovirus, and vesicular stomatitis virus (147). This type of
prototype has been widely studied with adenoviruses since they
can induce a population of CD4+ and CD8+ cells (148, 149). For
SARS-CoV-2, this vaccination strategy has used the vesicular
stomatitis virus (VSV) with replicative capacity, which expressed
a modified form of the S-gene of SARS-CoV-2. This preliminary
study demonstrated a decrease in viral load in mice immunized
with two doses of VSV-eGFP-SARS-CoV-2 and challenged with
SARS-CoV-2, at 4 days post-infection in samples of lung,
splenocytes, heart, and nasal lavage, in addition to high IgG
secretion (150).

Trained Immunity and SARS-CoV-2
Infection
Trained immunity is based on acquiring a type of immune
memory by epigenetic reprogramming of innate immune cells,
such as monocytes and NK cells (151, 152). It has been observed
that the tuberculosis vaccine consisting of an attenuated
mycobacteria Bacillus Calmette-Guerin (BCG) produces a
long-lasting trained immunity consisting of these innate cell
populations (153–157). It has been hypothesized that BCG-
vaccination could associate with decreased disease severity and
lethality during COVID-19 worldwide (158). The lethality
reported by COVID-19 in countries with BCG vaccination is
about 5.8 times lower than countries without the BCG
vaccination program (159). Equivalent suggestions have been
made by other studies supporting the notion of using the BCG
vaccine to prevent severe COVID-19 at least in the most
vulnerable groups, such as the elderly and healthcare personnel
(160, 161). Recently, a study in a hospital from the United Arab
Emirates demonstrated that a boost with the BCG vaccine in the
healthcare workers could reduce the disease caused by SARS-
CoV-2 (162).

However, clinical trials are needed to scientifically define the
impact of BCG vaccine as a preventive measure for COVID-19.
Along these lines, since WHO declared a pandemic for SARS-
CoV-2, more than 21 clinical trials are currently in progress to
evaluate whether BCG vaccination in adults and healthcare
workers could decrease the symptoms caused by COVID-19
(163). Some of these first clinical trials were performed in the
Netherlands (NCT04328441) and Australia (NCT04327206) as
phase III clinical trials (163). In addition, one phase IV clinical
trial is in progress (NCT04417335).

Despite the promising results of BCG vaccination, up to date
there are not yet published data demonstrating the benefits of the
BCG vaccine in clinical trials. Moreover, the WHO did not
recommend the BCG vaccine as an approach for COVID-19
(164). It is likely that the WHO decision was based on the lack of
direct clinical evidence supporting a benefit for SARS-CoV-2
infection and that an increased demand for the BCG vaccine
could jeopardize the supply for tuberculosis rates vaccination (164).
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Therapeutic Approaches for SARS-CoV-2
Infection
The design of therapeutic strategies for COVID-19 has been
oriented in three fundamental directions: viral elimination using
molecules that can interfere with viral replication, anti-
inflammatory therapies, or palliative treatments that help
reduce symptoms and the regulation of the immune response
(165). The COVID-19 emergency had challenged researchers to
design treatments. In the meantime, clinicians have given some
already registered drugs to reduce disease severity in patients.

Furthermore, recent findings suggest that clinical recovery
can be promoted by the administration of antiviral therapy
before lung disease is at an advanced stage (166, 167). In this
section, some drugs and other therapeutic strategies under
evaluation will be described. A summary of the therapeutic
approaches is described in Table 2.

A) Antivirals
Remdesivir is a nucleotide analog that works as an inhibitor
upon binding to the viral RNA strands and disrupts new the
synthesis viral genomes with successful results against
coronaviruses as SARS-CoV MERS-CoV, is currently tested for
SAR-CoV-2 (168, 194). In vitro studies in Vero E6 cells have
shown that Remdesivir inhibits the replication of SARS-CoV-2
after entry into the cells (168). Medical reports published by
China and the United States indicate a faster recovery of patients
in response to the administration of Remdesivir (92, 169).
Recently, the Food and Drug Administration (FDA) authorized
this drug for severely hospitalized COVID-19 patients (195).
Later, the FDA approved the use of Remdesivir in hospitalized
patients with confirmed or suspected COVID-19, regardless of
Frontiers in Immunology | www.frontiersin.org 9
severity, based on the results in a controlled clinical trial
including hospitalized patients with mild, moderate, and severe
disease (NCT04280705).

Favipiravir is a purine nucleic acid analog previously used to
treat influenza, considered a prodrug whose active metabolite
interferes with viral replication by inhibiting viral RNA
polymerase (170, 191). In a clinical trial (ChiCTR2000029600),
the administration of Favipiravir combined with interferon−a
(IFN−a) in patients with COVID-19, contributes to an enhanced
viral clearance (171).

Lopinavir and ritonavir are protease inhibitors used in the
therapy for human immunodeficiency virus 1.(HIV-1) (196).
SARS-CoV-2 patients treated with these drugs showed only a
slight improvement (4, 5, 197). The combination of lopinavir-
ritonavir with ribavirin and IFNb/1b reduced viral loads in
nasopharyngeal swabs, stool, and saliva obtained from patients
after 8 days of treatment (198). Notably, IL-6 levels decreased
significantly after treatment with this combined antiviral
treatment (174). These observations suggest that an early
treatment with these drugs can decrease virus spread and
reduce the exacerbated production of pro-inflammatory
cytokines (198).

Arbidol is a derivative of indole, which acts on aromatic
amino acids and can interfere with the replication of the
influenza virus (199). In vitro studies on SARS-CoV-2 have
shown that Arbidol can block the entry and trafficking to
intracellular vesicles (176). Arbidol reduces the risk of
developing lung lesions when used alone or together with
lopinavir/ritonavir to promote viral elimination without
significant side effects (200–202). Additionally, the mix of
antivirals and interferon was shown to efficiently reduce both
TABLE 2 | Treatments under evaluation for COVID-19 and their mechanisms of action.

Treatments Action Mechanisms Limitations

Antivirals Remdesivir Viral replication inhibitor (168) Bradycardia, liver damage, and
gastrointestinal reactions that can contribute
to the deterioration of the disease (169).

Favipiravir Inhibits viral RNA polymerase (170). Gastrointestinal disorders, skin lesions, liver,
and cardiovascular damage (168, 171).

Lopinavir-ritonavir Protease inhibitor believed to interfere with viral fusion with cell membrane (172,
173).

Antiviral activity against SARS-CoV-2 has not
been found in clinical studies (174, 175).

Arbidol Blocks entry and intracellular traffic in vesicles (176). Some patients may develop hypersensitivity
(176).

Other
drugs

Chloroquine and
hydroxychloroquine

Immunomodulatory effect. It is inhibiting the entry of SARS-CoV-2 (168, 177–179). Accumulation in various organs and low
elimination rate; and arrhythmia and heart
failure (178, 180, 181).

Melatonin Inhibits calmodulin (182, 183). This would only allow reducing the
associated clinical symptoms (183).

Dexamethasone Reduce the duration of mechanical ventilation and mortality from severe acute
respiratory distress syndrome (184).

There are only a palliative treatment (184).

Plasma Treatment Neutralizing antibodies against SARS-CoV-2 (185). Doses dependent on the neutralizing title
(186).

Specific monoclonal
antibodies to SARS-
CoV-2

Blocks the entry of the virus through ACE2 because they are mainly directed against
the S protein (187–190)

Although several mAbs have been evaluated
in vitro, in vivo, and there are ten clinical trials
ongoing (166, 170, 171, 191)

Tocilizumab Non-specific Abs for SARS-CoV-2. This directed against IL-6 receptor, IL-6 is one
of the cytokines responsible for the inflammatory state persistent in severe patients
(192, 193).

It has been reported only beneficial effects in
critically ill patients (82, 193).
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symptoms and viral loads (203). Currently, a clinical study is
evaluating the safety and efficacy of Arbidol as an adjuvant for an
antiviral therapy combined with IFNb/1a in SARS-CoV-2
positive patients (NCT04350684).

The main restriction of antiviral treatments is the development
of adverse effects, such as liver and cardiovascular damage,
gastrointestinal disorders, and skin lesions, which are the most
commonly reported for the antivirals mentioned above and could
worsen the patient condition (168, 169, 171).

B) Aminoquinolines
Chloroquine and its hydroxychloroquine analog are antimalarials
that have been used for over 50 years as a prophylaxis and treatment
(204). Both drugs lead to a reduction of MHC class II expression,
the production of reactive oxygen species (ROS) and pro-
inflammatory cytokines, such as IL-1b and TNF-a (204).
Additionally, hydroxychloroquine can enter lysosomes, impairing
the acidification mechanisms and the function of these
organelles (205).

Previous data from in vitro studies showed that chloroquine
can display an antiviral capacity against Chikungunya virus
(CHIK) and SARS-CoV (177, 206). Furthermore, chloroquine
was shown to be able to inhibit the entry of SARS-CoV-2 into
Vero E6 cells at concentrations that do not cause cytotoxic effects
in vivo (168). Due to these results, both drugs were applied as
treatment to COVID-19 patients worldwide, with a constant
debate about effectiveness (207). However, later on during the
pandemic, WHO suspended all clinical trials testing these
compounds for COVID-19, as no significant improvements
were found in treated patients. Furthermore, one clinical
study showed a high fatality rate (63.6%) due to high
hydroxychloroquine doses, which can cause cardiac toxicity
(180, 181, 208).

C) Melatonin
N-acetyl-5-methoxytryptamine (or melatonin) is a derivative of
tryptophan, an essential amino acid that plays a critical role in
immuno-inflammatory events produced during a viral infection.
Besides, melatonin acts as an antioxidant that reduces oxidative
stress and reduces vascular permeability (209–212). The use of
this molecule use has increased in atherosclerosis and respiratory
distress, such as acute lung disease, viral or bacterial infections
(209–212). Melatonin alleviates respiratory pain by reducing
vascular permeability and can inhibit calmodulin, an essential
protein for ACE2 function (182). Because melatonin indirectly
targets various cellular targets of SARS-CoV-2, including
the ACE2, the use of this molecule against SARS-CoV-2
infection has been suggested (183, 213). Currently, six clinical
studies are evaluating the effectiveness and safety of melatonin as
prophylaxis, both in critically ill and outpatients (NCT04474483,
NCT04531748, NCT04409522, NCT04353128, NCT04530539,
NCT04470297). Two of these clinical studies are currently in the
recruitment phase, the first plans to evaluate the anti-
inflammatory effects of melatonin in a patient with COVID-19
(NCT04409522). The second takes advantage of the anti-
inflammatory effects of melatonin to proposed it as
prophylaxis for health care workers (NCT04353128). However,
Frontiers in Immunology | www.frontiersin.org 10
it must be considered that this drug does not inhibit viral
replication and transcription. Instead, the administration of
melatonin only reduces the associated clinical symptoms
(182, 214).

D) Dexamethasone
Dexamethasone is a corticosteroid that has been shown to reduce
the duration of mechanical ventilation and fatality caused by
COVID-19 (215). The use of corticosteroid for the management
for acute respiratory distress syndrome due to viral infections is a
controversial topic since these drugs can delay the elimination of
the virus and increase the risk of secondary infections due to
their immunosuppressive effect. Despite this, it has been used
successfully to treat influenza A (H1N1) pdm09-associated
pneumonia, reducing mortality (216). Thus, dexamethasone
can be used as a treatment combined with other antiviral or
drug therapy (186, 215, 217).

E) Immune Therapies
i) Plasma Transfusion
Transfusion of plasma is used for acute infections and is a classic
form of immunotherapy for emerging infectious-diseases (218).
This therapy is based on the passive administration of plasma
with high titers of nAbs, generated endogenously by convalescent
individuals (219). Such a therapy is still in use and has been
implemented successfully in diseases without a favorable
treatment or specific vaccine (187). During the last epidemics
due to Ebola (EBOV), Influenza A-H1N1, and emerging
coronaviruses, this type therapy has been implemented as an
alternative for treatment (220–223).

Mainly, transfer of plasma from convalescent patients after
SARS-CoV or MERS infections showed viral loads reduction
and improvement of clinical and laboratory parameters, with a
decrease in temperature, increased oxyhemoglobin saturation,
improved lymphocyte levels, and decreased C-reactive protein
levels. Also, fresh frozen plasma (FFP) improves survival rates
in patients (186, 224). Similarly, recovery from COVID-19
disease was observed in patients with severe illness after
treatment with convalescent plasma with high nAbs titters
obtained from surviving donors (185). Importantly, during an
FFP treatment, other biological products involved in the
recovery of patients, such as anti-inflammatory cytokines and
defensins, are also transferred (225). The principal limitation of
FFP is to determine the optimal nAb titer required for an
efficient virus neutralization (186). Thus, hemovigilance is
essential because some patients could need more than one
dose of FFP depending on the severity of illness, as described
for other viral diseases where plasma transfusion was utilized
(226). Moreover, the use of FFP has equivalent risks for adverse
effects than any other blood component transfusion, such as
allergic/anaphylactic reaction and infections due of other
microbes (226).

Nevertheless, the reported incidence of adverse reactions after
transfusion of convalescent plasma is less than 5% (227). One of
the precautions to consider is avoiding Transfusion Related
Acute Lung Injury (TRALI) (218, 227). TRALI is a new acute
lung injury and occurs during or within 6 h after transfusion
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(218, 228). TRALI-patients present acute dyspnea, need of
intubation, hypertension, hypotension, and acute leukopenia
(218, 228). To prevent acute lung injury, it has been
recommended to transfer the plasma to patients who have
never been pregnant or undergone an abortion, thus allowing
to decrease the possibility of presenting the antibodies to HLA or
granulocyte antigens in the serum that could lead to the
development of TRALI (218, 229).

The half-life of antibodies determinates the election for the
plasma donor (226). Yet, researchers have not determined the
reduction of viral loads in severe COVID-19 patients with
convalescent plasma treatment (CPT) or FFP and mixture with
antiviral treatments (187, 224, 230). Furthermore, given that the
population at risk includes patients with comorbidity such as
hypertension, diabetes, or cardiovascular diseases, which are part
of potential CPT donors, makes it challenging to validate CPT as
one of the therapies that should be considered on a larger scale
(224, 230, 231).

Despite all these questions, both advantages and disadvantages
of the therapy should be taken into consideration for treatment of
SARS-CoV-2 infection. Based on history and evidence, and due to
the health emergency, CTP is currently used throughout the world
and was recently approved by the FDA, with guidelines for
healthcare professionals (232, 233).

ii) Monoclonal Antibodies
Monoclonal antibodies (mAbs) are a powerful tool for treating
of several diseases, such as cancer and immunological illnesses
(234). Along these lines, various strategies are in progress to
isolate different mAbs specific for various SARS-CoV-2
antigens, due the potential of mAbs against emerging viruses
(192, 235). Further, the use of mAbs against other emerging
viruses has demonstrated potent neutralizing effects for SARS-
CoV and MERS-CoV (234, 236). Since mAbs have been
previously tested as prophylactics for SARS, using mAb to
prevent SARS-CoV-2 infection stands as a promising
approach to treat or prevent this disease, at least in the most
susceptible individuals (235, 237). Additionally, mAbs could be
used as treatment against viral encephalitis, and their use might
help reduce not only respiratory symptoms by also neurological
symptoms (238). For this reason, several groups are working on
the development of this therapy for COVID-19 using
various strategies.

Human recombinant soluble ACE2 (hrsACE2) blocks the
viral entry in vitro, decreasing viral loads, however, in vivo,
hrsACE2 failed to block viral entry (192). Other strategies
involve the development of mAbs from SARS-CoV-2
convalescent individuals and 206 mAbs were recently isolated
from eight of them. Although two of those antibodies blocked
viral entry, their specificity and neutralizing activity requires
further characterization (239). More recently, a new mAb was
discovered called MAb362, which is a cross-reactive human IgA
mAb that was shown capable to neutralize SARS-CoV-2 in vitro.
This mAb also targets the S protein and prevents the binding
with the ACE2 receptor (235).

Similarly, nineteen nAbs that target the RBD or the N-
terminal domain (NTD) from the S protein were isolated from
Frontiers in Immunology | www.frontiersin.org 11
convalescent patients (240). All the antibodies demonstrated an
impressive capability of neutralizing SARS-CoV-2 in vitro,
making them good candidates for clinical evaluation (240).
Additionally, the isolation of neutralizing mAbs against SARS-
CoV-2 from convalescent patients of COVID-19 led to the
identification of two mAbs, CA1, and CB6. While both showed
in vitro the capacity to neutralize the virus, CB6 outperformed
CA1. Studies in the rhesus macaque model showed decreased
viral loads due to intravenous vaccination at a dose of 50 mg/kg
with CB6. Furthermore, a single dose of CB6 prophylaxis before
exposure to SARS-CoV-2 demonstrated protection in macaques
against infection (241).

REGN-COV2 is an anti-viral antibody cocktail, which is
composed by anti-spike antibodies that target the RBD of the
protein (242). This cocktail has the potential of being used as
prevention as well as a treatment for patients with COVID-19
(242, 243). Currently, REGN-COV2 is being evaluated in clinical
trials as a treatment for non-hospitalized and hospitalized
COVID-19 patients, and as prevention for the high-risk group
of people (243).

Other mAbs have been tested in patients with COVID-19,
such as tocilizumab, an IL-6 receptor-specific mAb that was
evaluated in at least one clinical trial (ChiCTR2000029765)
showing beneficial effects in a cohort with severe COVID-19.
Also, these mAbs were recommended for patients with low
IgG levels and high NLR (82). Nonetheless, adverse effects
reported included increased hepatic enzymes (transaminases),
thrombocytopenia, neutropenia, cutaneous rash and infections
in the bloodstream. Other side effect were bacteremia and
fungemia, which were likely the result of the IL-6 inhibition,
which can impair B and T cell proliferation and function and
diminish the immune response against infection agents (244).
Furthermore, mAbs capable of neutralizing pro-inflammatory
cytokines could be applied to prevent or reduce the cytokine
storm (82, 193).

Few studies are ongoing to identify and obtain mAbs against
SARS-CoV-2, such as the NCT04342195 and NCT04354766.
More than ten clinical trials evaluating the effectiveness of mAbs
as a treatment against this virus are in progress (245). Within the
first trials are the involved the use of TJ003234 (NCT04341116),
gimsilumab (NCT04351243), and lenzilumab (NCT04351152),
which are mAbs against granulocyte macrophage-colony
stimulating factor (GM-CSF). The last one is currently in
phase III clinical trial (245). Other phase III trials in progress
are REGN-COV-2 (NCT04452318) that has three different
targets in the S protein, thus preventing the virus from
entering into the cell, and LY-CoV555 (NCT04497987) that
comes from a patient now recovered from SARS-CoV-2 (246).
Although no results have been published up to date, these mAbs
seem as promising approaches for preventing or treating
COVID-19.

iii) Single-Domain Antibodies
Heavy chain antibodies are derived naturally from camelids (247,
248). Their lack of variable region has a smaller size than
conventional antibodies, with high stability and affinity for
each respective cognate epitope (247, 248). Therefore, the
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isolation of a camelid-derived single domain antibody (SdAb) is
considered a new promising therapeutic strategy (248). Similar
to mAbs, the therapeutic mechanism is focused on the virus
neutralizing activity. For this reason, SARS-CoV-2 is mainly
directed against RBD, blocking the union with the ACE2
receptor. A SdAb called H11 was identified with a higher
affinity, neutralizing activity and a KD <1 mM (249). Similarly,
a SdAb called Ty1 was isolated from an alpaca after
immunization twice with SARS-CoV-2 S1-sheep-Fc and the
other two with SARS-CoV-2 RBD region in a 60 days
scheme (247).
CONCLUDING REMARKS

Even though it has been more than 6 months since discovering
this novel coronavirus, the knowledge of the immune response
elicited against SARS-CoV-2 remains scarce. So far, it has been
proposed that the immune response is a major component of the
pathology observed during COVID-19.

The reduction of T cells in peripheral blood during SARS-
CoV-2 infection could lead to an inadequate memory response,
similar to what is described for other viral infections (81). It has
been proposed that a limited presence of eosinophils, monocytes,
and T cell subsets in peripheral blood might be due to the large
recruitment of those cells to the lung epithelium after infection
(Figure 3) (92). Consistently with this notion, it was shown that
SARS-CoV and MERS impaired the host memory immune
response (250). Although, the long-lasting immune response
cannot be elucidated yet, a vaccine for SARS-CoV-2 is
expected to promote long lasting immunological memory
(251–253).

Furthermore, there are still many unknown elements of the
immune response induced by SARS-CoV-2. The severe clinical
cases have allowed us to begin understanding the development of
SARS-CoV-2 infection in the host. Despite this, many questions
have arisen about the immunopathology and as to how it can
relate to pre-existing chronic diseases and severe clinical
manifestations, even death in young people. Up to date, the
number of lymphocytes and neutrophils have been suggested as
markers of disease severity (254). As described above, several
studies have revealed symptoms involving the CNS during
COVID-19 disease. However, it has not yet been defined the
mechanism for viral entrance in CNS. Additional studies are
needed to explain as to how cytokine storm is associated to
disease severity and patient with the outcome.

Scientific efforts to design therapies are essential to prevent
acute respiratory deterioration, the use of ventilation, morbidity,
and mortality from SARS-CoV-2 infection. Although during the
pandemic, significant progress on vaccine development has been
made, still no safe and efficacious vaccine is available for the use
of the population. The fact that several of prototypes are
currently starting phase III clinical trial evaluation (Table 1)
provides hope for an availability of vaccine for COVID-19 much
sooner than for any other infectious disease. Furthermore,
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production of mAbs could be a parallel strategy for COVID-
19 prophylaxis.

It seems likely that an unbalanced immune response triggered
by SARS-CoV-2 infection requires that the therapeutic
interventions described above not only aim at eliminating the
virus but also at regulating the immune response to prevent the
exacerbated inflammation observed during COVID-19 (255).
The antivirals target different steps of viral replication, the
combination of which could be useful to limiting viral loads
and the subsequent spread of the virus, promoting an effective
antiviral response by T cells (10, 11). The combination of
antiviral therapies with interferon can be beneficial to control
viral spread (256). In addition, some antiviral drugs are capable
of activating a cellular immune response on its own, stimulating
the secretion of virus-specific antibodies and activating adaptive
immunity (170, 257). Finally, blocking the pro-inflammatory
cytokine response is another crucial point for the design of
therapeutic strategies to improve critically ill patients (82).

The search for a vaccine is an urgent need at a global level.
Nowadays, technologies have allowed us to work by leaps and
bounds searching for new vaccines or therapies against SARS-
CoV-2. It is necessary to prioritize the health of volunteers and
ensure the safety of vaccine prototypes, especially since the
variety of potential adverse effects have not been fully
understood yet, such as the antibody-dependent enhancement
(ADE), which stands as a risk of vaccination or immunotherapy.
A full study regarding all the possible adverse effect is needed, as
well as the transparency of the clinical studies that are
carried out.
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52. Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ.
Axonal Transport Enables Neuron-to-Neuron Propagation of Human
Coronavirus OC43. J Virol (2018) 92(17):e00404–18. doi: 10.1128/
jvi.00404-18

53. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M,
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118. Fernández-Rodrıǵuez A, Casas I, Culebras E, Morilla E, CohenMC, Alberola J.
COVID-19 and post-mortem microbiological studies. Rev Esp Med Leg (2020)
46(3):127–38. doi: 10.1016/j.reml.2020.05.007

119. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al.
Pulmonary post-mortem findings in a series of COVID-19 cases from
northern Italy: a two-centre descriptive study. Lancet Infect Dis (2020)
20:1135–40. doi: 10.1016/S1473-3099(20)30434-5

120. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al. Physical
distancing, face masks, and eye protection to prevent person-to-person
transmission of SARS-CoV-2 and COVID-19: a systematic review and
meta-analysis. Lancet (2020) 395:1973–87. doi: 10.1016/S0140-6736(20)
31142-9

121. Xiong Y, Liu Y, Cao L, Wang D, Guo M, Jiang A, et al. Transcriptomic
characteristics of bronchoalveolar lavage fluid and peripheral blood
mononuclear cells in COVID-19 patients. Emerg Microbes Infect (2020)
9:761–70. doi: 10.1080/22221751.2020.1747363

122. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics
of lymphocyte responses and cytokine profiles in the peripheral blood of
SARS-CoV-2 infected patients. EBioMedicine (2020) 55:102763.
doi: 10.1016/j.ebiom.2020.102763

123. Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: Facts
beyond expression. Front Immunol (2014) 5:508. doi: 10.3389/
fimmu.2014.00508

124. Allard B, Panariti A, Martin JG. Alveolar Macrophages in the Resolution of
Inflammation, Tissue Repair, and Tolerance to Infection. Front Immunol
(2018) 9:1777. doi: 10.3389/fimmu.2018.01777

125. Schaefer IM, Padera RF, Solomon IH, Kanjilal S, Hammer MM, Hornick
JL, et al. In situ detection of SARS-CoV-2 in lungs and airways of patients
with COVID-19. Mod Pathol (2020) 1–11. doi: 10.1038/s41379-020-
0595-z

126. Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L,
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Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection
from reinfection via epigenetic reprogramming of monocytes. Proc Natl
Acad Sci U S A (2012) 109:17537–42. doi: 10.1073/pnas.1202870109

154. Kleinnijenhuis J, Van Crevel R, Netea MG. Trained immunity:
Consequences for the heterologous effects of BCG vaccination. Trans R
Soc Trop Med Hyg (2014) 109:29–35. doi: 10.1093/trstmh/tru168

155. Arts RJW, Blok BA, Aaby P, Joosten LAB, de Jong D, van der Meer JWM,
et al. Long-term in vitro and in vivo effects of g-irradiated BCG on innate and
adaptive immunity. J Leukoc Biol (2015) 98:995–1001. doi: 10.1189/
jlb.4ma0215-059r

156. Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, et al.
BCG Vaccination Protects against Experimental Viral Infection in Humans
through the Induction of Cytokines Associated with Trained Immunity. Cell
Host Microbe (2018) 23:89–100. doi: 10.1016/j.chom.2017.12.010
December 2020 | Volume 11 | Article 569760

https://doi.org/10.1111/his.14134
https://doi.org/10.1016/j.reml.2020.05.007
https://doi.org/10.1016/S1473-3099(20)30434-5
https://doi.org/10.1016/S0140-6736(20)31142-9
https://doi.org/10.1016/S0140-6736(20)31142-9
https://doi.org/10.1080/22221751.2020.1747363
https://doi.org/10.1016/j.ebiom.2020.102763
https://doi.org/10.3389/fimmu.2014.00508
https://doi.org/10.3389/fimmu.2014.00508
https://doi.org/10.3389/fimmu.2018.01777
https://doi.org/10.1038/s41379-020-0595-z
https://doi.org/10.1038/s41379-020-0595-z
https://doi.org/10.1038/s41586-020-2324-7
https://doi.org/10.1038/d41573-020-00151-8
https://doi.org/10.1038/s41586-020-2798-3
https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus-landscape-ncov.pdf?ua=1
https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus-landscape-ncov.pdf?ua=1
https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus-landscape-ncov.pdf?ua=1
https://doi.org/10.1016/j.vaccine.2018.01.068
https://doi.org/10.1001/jama.2020.15543
https://doi.org/10.1101/2020.07.31.20161216
https://doi.org/10.1126/science.abc1932
https://doi.org/10.1016/j.cell.2020.06.008
https://doi.org/10.1016/j.cell.2020.06.008
https://doi.org/10.1016/S0140-6736(20)31604-4
https://doi.org/10.1016/S0140-6736(20)31604-4
https://doi.org/10.1016/S0140-6736(20)31208-3
https://doi.org/10.1056/nejmoa2022483
https://doi.org/10.1038/s41586-020-2639-4
https://doi.org/10.1016/j.lfs.2020.118056
https://doi.org/10.1038/s41423-020-0400-4
https://doi.org/10.1101/2020.07.31.228486
https://doi.org/10.1056/nejmoa2026920
https://doi.org/10.3390/vaccines2030624
https://doi.org/10.1016/j.copbio.2007.10.010
https://doi.org/10.1016/j.copbio.2007.10.010
https://doi.org/10.1016/j.celrep.2015.10.034
https://doi.org/10.1182/blood-2007-02-062117
https://doi.org/10.1016/j.chom.2020.07.018
https://doi.org/10.1016/j.chom.2011.04.006
https://doi.org/10.1016/j.chom.2011.04.006
https://doi.org/10.1016/j.clim.2014.10.005
https://doi.org/10.1016/j.clim.2014.10.005
https://doi.org/10.1073/pnas.1202870109
https://doi.org/10.1093/trstmh/tru168
https://doi.org/10.1189/jlb.4ma0215-059r
https://doi.org/10.1189/jlb.4ma0215-059r
https://doi.org/10.1016/j.chom.2017.12.010
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Canedo-Marroquı́n et al. SARS-CoV-2 Immune Response: Vaccines and Treatments
157. Covián C, Fernández-Fierro A, Retamal-Dıáz A, Dıáz FE, Vasquez AE, Lay
MK, et al. BCG-Induced Cross-Protection and Development of Trained
Immunity: Implication for Vaccine Design. Front Immunol (2019) 10:2806.
doi: 10.3389/fimmu.2019.02806

158. Covián C, Retamal-Diaz A, Bueno SM, Kalergis AM. Could BCG vaccination
induce protective trained immunity for SARS-CoV-2? Front Immunol (2020)
11:970. doi: 10.3389/FIMMU.2020.00970

159. Mohamed Hussein AAR, Salem MR, Salman S, Abdulrahim AF, Al Massry
NA, Saad M, et al. Correlation between COVID-19 case fatality rate and
percentage of BCG vaccination: is it true the vaccine is protective? Egypt J
Bronchol (2020) 14(1):25. doi: 10.1186/s43168-020-00022-1

160. O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer
protection against COVID-19? Nat Rev Immunol (2020) 20(6):335–6.
doi: 10.1038/s41577-020-0337-y

161. Jirjees FJ, Dallal Bashi YH, Al-Obaidi HJ. COVID-19 death and BCG
vaccination programs worldwide. Tuberc Respir Dis (2020). doi: 10.4046/
trd.2020.0063

162. Amirlak I, Haddad R, Hardy JD, Khaled NS, Chung MH, Amirlak B.
Effectiveness of booster BCG vaccination in preventing Covid-19 infection.
medRxiv (2020). doi: 10.1101/2020.08.10.20172288

163. National Institutes of Health. ClinicalTrials.gov: Bacillus Calmette Guerin
and COVID. NIH (2020).

164. World Health Organization. Bacille Calmette-Guérin (BCG) vaccination and
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