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We have witnessed a persistent puzzling anomaly in the muon magnetic moment that cannot be 
accounted for in the Standard Model even considering the existing large hadronic uncertainties. A new 
measurement is forthcoming, and it might give rise to a 5σ claim for physics beyond the Standard 
Model. Motivated by it, we explore the implications of this new result to five models based on the 
SU (3)C × SU (3)L × U (1)N gauge symmetry and put our conclusions into perspective with LHC bounds. 
We show that previous conclusions found in the context of such models change if there are more than 
one heavy particle running in the loop. Moreover, having in mind the projected precision aimed by the 
g-2 experiment at FERMILAB, we place lower mass bounds on the particles that contribute to muon 
anomalous magnetic moment assuming the anomaly is otherwise resolved. Lastly, we discuss how these 
models could accommodate such anomaly in agreement with current bounds.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Standard Model (SM) offers an excellent description of the strong and electroweak interactions in nature. Its theoretical pre-
dictions, calculated beyond tree level, are compatible with experimental measurements with unprecedented accuracy. Nevertheless, 
there are many open questions, which cannot be addressed within the SM. The long-standing muon anomalous magnetic moment 
anomaly, if experimentally confirmed, is one of them. The deviation of the magnetic moment of any charged fermion from its Dirac 
prediction, g/2 = 1, is quantified by the aforementioned anomalous magnetic moment (g − 2)/2. For the case of the muon, the SM 
predicts,

aS M
μ = g − 2

2
= 116591802(2)(42)(26) × 10−11. (1)

This value takes into account the electromagnetic, weak, and hadronic corrections (see [1] for a recent review). The theoretical error 
showed in Eq. (1) corresponds to the electroweak, lowest-order hadronic, and higher-order hadronic contributions, respectively. Several 
diagrams that contribute to aS M

μ have been computed beyond one-loop.
Experiments have measured the muon anomalous magnetic moment using the principle of Larmor precession, whose frequency is pro-

portional to the magnetic field which the charged particle is subject to. As the theoretical and experimental errors shrank, a discrepancy, 
quantified by �aμ = aexp

μ − aS M
μ , was observed between the Standard Model prediction and the experimental measurements. Comparing 

the SM prediction with the measurements from Brookhaven National Lab [2,3], we get,
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�aμ = (261 ± 78) × 10−11 (3.3σ)

[4,5] – (2009)

�aμ = (325 ± 80) × 10−11 (4.05σ)

[6] – (2012)

�aμ = (287 ± 80) × 10−11 (3.6σ)

[7] – (2013)

�aμ = (377 ± 75) × 10−11 (5.02σ)

[8] – (2015)

�aμ = (313 ± 77) × 10−11 (4.1σ)

[9] – (2017)

�aμ = (270 ± 36) × 10−11 (3.7σ) (2)

[10] – (2018).
The different values quoted in Eq. (2) refer to different studies where the overall SM contribution was reassessed based on different 

calculations of the hadronic contribution. According to the Particle Data Group (PDG), the current discrepancy reads 3.3σ , but the PDG 
review already acknowledges recent studies where the significance approaches 4σ . It is clear that such hadronic contribution blurs the 
significance of this anomaly, but it appears a sign of new physics. We will be conservative in our study and adopt �aμ = (261 ±78) ×10−11

[5].
Fortunately, there are two experiments (g-2 at FERMILAB [11] and Muon g-2 at J-PARC [12]) that will be able to push down the 

error bar and increase the discrepancy if the central value remains the same. The goal is to bring the error down by a factor of four. 
In particular, the g-2 experiment is about to announce new results. Keeping the central value of the previous measurement, the g-2 
experiment has the potential to claim the first 5σ signal after the Higgs boson discovery, and with the expected theoretical improvements 
[13,14] this significance could increase to nearly 8σ [15]. Such observation will have profound implications for particle physics. If the 
anomaly is not confirmed though, we will place conservative 1σ bounds by enforcing the overall contribution of a given model to g-2 
to be at most 78 × 10−11. Furthermore, considering the sensitivity aimed by the g-2 collaboration and the expected reduction of the 
theoretical uncertainties of the hadronic contribution [16], we can further impose a projected 1σ bound by requiring �aμ < 34 × 10−11

[16]. In summary, we are arguably on the climax of the muon magnetic moment history, and for this reason, our investigation is timely 
important.

Instead of exploring g-2 in a simplified model where there are few new physics contributions to g-2 and the experimental constraints 
are easier to bypass, we investigate g-2 in Ultra-Violet complete models based on the SU (3)C × SU (3)L × U (1)X (3-3-1) gauge sym-
metry. Such models are well-motivated for several reasons. They are capable of addressing the number of fermion generations due to 
anomaly cancellations and QCD asymptotic freedom requirements. Such models are anomaly free if there is an equal number of triplets 
and antitriplets fermion multiplets. The anomaly cancellation does not occur generation by generation, it does when all three fermion 
generations are considered. In this way, we need three fermion generations to have an anomaly free model. On the other side, asymptotic 
freedom of QCD requires less than 17 quarks. Thus, models with three fermion generations stand as the simplest non-trivial anomaly free 
representation of the SU (3)L × U (1)N gauge group [17].

These models can explain neutrino masses [18–32] and dark matter [33–45]. Due to the enlarged scalar sector they are entitled to a 
rich phenomenology that can be explored in the context of meson oscillations, colliders, flavor violation [46,47], among others [48–51].

That said, there are models based on this gauge symmetry that have become quite popular. They are known as Minimal 3-3-1 [52], 3-3-
1 with right-handed neutrinos (3-3-1 r.h.n), [53,54], 3-3-1 with neutral lepton (3-3-1 LHN) [36,55], Economical 3-3-1 [56–58], and 3-3-1 with 
exotic leptons [59–62]. Each model gives rise to several new contributions to aμ , and these corrections come either from gauge bosons, or 
scalar fields, or new fermions. Some of them induce a negative contribution to aμ . In the past, these corrections to aμ have been studied 
as a function of the masses of the particles. The conclusions can be misleading when there are multiple particles contributing to g-2. Thus, 
we believe that the proper way to present results in the context of 3-3-1 models is by presenting results in terms of the energy scale of 
symmetry breaking. The individual contributions to g-2 are not particularly relevant, but the overall correction to g-2, because there might 
be cancellations. The main corrections to g-2 stem from new gauge bosons whose masses are determined by the energy scale at which 
the 3-3-1 symmetry is broken. Therefore, we can write down all individual contributions in terms of this energy scale and later sum them 
up to derive the overall contribution to g-2. We do this exercise for the five models under study. Moreover, in this way, we can connect 
our findings to existing bounds rising from collider physics. We believe that our findings will represent a new direction concerning 3-3-1 
model building endeavors if the g-2 anomaly is confirmed.

There were studies of the muon magnetic moment in the context of 3-3-1 models in the past [63–68]. We extend them by investigating 
five different models simultaneously and putting them into perspective with existing bounds. Moreover, we show that previous conclusions 
found in the literature are not valid in the presence of two heavy new fields in the loop. At loop level, there can be more than one heavy 
particle in the loop that contributes to the muon magnetic moment. This is a common feature in 3-3-1 models as they have a rich particle 
spectrum. We show how our conclusions change depending on the masses of those particles and draw robust conclusions. We provide a 
Mathematica notebook, available at [69].



Á.S. de Jesus et al. / Physics Letters B 809 (2020) 135689 3
2. 3-3-1 models

It is important to highlight some key features of the models based on the SU (3)C × SU (3)L ××U (1)N gauge symmetry before discussing 
each model individually. Enlarging the SU (2)L symmetry to SU (3)L implies that the fermion generations are now triplets or antitriplets 
under SU (3)L . After the SU (3)L × U (1)N symmetry is spontaneously broken, a remnant SU (2)L × U (1)Y is observed [70]. The fermionic 
and bosonic contents are dictated by the electric charge operator which is generally written as a combination of the diagonal generators 
of the group as follows,

Q

e
= 1

2
(λ3 + αλ8) + N I =

⎛
⎜⎝

1/2(1 + α√
3
) + N

1/2(−1 + α√
3
) + N

− α√
3

+ N

⎞
⎟⎠ , (3)

where λ3,8 and I are the generators of SU (3)L and U (1)N , respectively.
As we want to reproduce the Standard Model spectrum, the first two components of the triplet should be a neutrino and a charged 

lepton. From this requirement, we get α/
√

3 = −(2N +1), which implies that the third component should have a 3N +1 quantum number 
under U (1)N . For instance, taking N = −1/3, the third component would be a right-handed neutrino νc

R , or simply a neutral fermion, N . 
These choices lead to the 3-3-1 r.h.n., and 3-3-1 LHN. If we took N=0, i.e. α = −√

3, then the third component would be a positively 
charged lepton, either lc , or E , where lc is simply the charge-conjugate of the Standard Model lepton l, while E is an exotic charged 
lepton. The last two choices lead to the Minimal 3-3-1 model and 3-3-1 model with exotic leptons, respectively. These 3-3-1 models usually 
feature three scalar triplets in the scalar sector, but if there are only two, then, it is called Economical 3-3-1. There are other possible ways 
to extend these models by introducing extra singlet fermions under SU (3)L , additional scalar multiplets, etc. The initial motivation behind 
all these models is the possibility to solve the number of fermion generations. Later on, it was realized that many of them are also capable 
of explaining neutrino masses, dark matter, and some flavor anomalies [71].

We now move on to a brief description of each model. We emphasize that we will not discuss the models in detail, we will focus 
rather on the aspects that are relevant to our phenomenology.

3. MINIMAL 3-3-1

In the Minimal 3-3-1 model the leptonic triplet is arranged as [52,72],

f a
L =

⎛
⎝ νa

la

(lc)a

⎞
⎠ (4)

where the a = 1, 2, 3 is the generation index. As explained above this model is a consequence of taking α = −√
3. It is well-known that an 

SU (3)L × U (1)N gauge has 9 gauge bosons. Four of them are identified as the W ± , Z and the photon. There are other five massive gauge 
bosons known as W ′± , U±± and Z ′ . The W ′ gauge boson experiences a charge current similar to the W boson of the Standard Model. 
The U±± is a doubly charged gauge boson. The dynamics of the gauge boson interactions with leptons are governed by the charged (LCC ) 
and neutral (LNC ) currents Lagrangian [52],

LCC
l ⊃ − g

2
√

2

[
ν̄γ μ(1 − γ5)Cl̄T W ′−

μ − l̄γ μγ5Cl̄T U−−
μ

]
, (5)

LNC ⊃ f̄ γ μ[gV ( f ) + g A( f )γ5] f Z ′
μ, (6)

where gV and g A are the vector and axial coupling constants, which for charged leptons read,

g A(l) = g

2cW

√
3
√

1 − 4s2
W

6
, gV (l) = 3g A(l), (7)

with

g′ = g
sW√

1 − 4
3 s2

W

,

where, sW = sen(θW ), cW = cos(θW ), and θW is the Weinberg angle. All these gauge bosons will contribute to aμ . We left out the hadronic 
sector as it is irrelevant to our g-2 study.

The masses of all fermions and gauge bosons are obtained via the introduction of three scalar triplets and one scalar sextet,

χ =
⎛
⎝ χ−

χ−−
χ0

⎞
⎠ ,ρ =

⎛
⎝ ρ+

ρ0

ρ++

⎞
⎠ , η =

⎛
⎝ η0

η+
1

η+
2

⎞
⎠ , (8)

S =
⎛
⎝ σ 0

1 h−
2 h+

1
h−

2 H−−
1 σ 0

2
h+ σ 0 H++

⎞
⎠ , (9)
1 2 1



4 Á.S. de Jesus et al. / Physics Letters B 809 (2020) 135689
Fig. 1. Feynmann diagrams that contribute to the muon anomalous magnetic moment in the 3-3-1 models investigated in this work.

where the vacuum expectation value (vev) for every one of the neutral components of scalars are 
〈
η0

〉 = vη , 
〈
ρ0

〉 = vρ , 
〈
χ0

〉 = vχ , 〈
σ 0

2

〉 = vσ2 and 
〈
σ 0

1

〉 = vσ1 . One may notice that after spontaneous symmetry breaking mechanism scalar sextet breaks down to a scalar 
triplet, doublet and a singlet field [18]. This scalar sextet is important to generate neutrino masses via a type II seesaw mechanism 
[18,19,73,74]. Similarly to what occurs in the type II seesaw mechanism, the combination v2

η + v2
ρ + v2

σ2
+ 2v2

σ1
contributes to the W

mass, this allows us to recognize v2
η + v2

ρ + v2
σ2

= v2, where v ≈ 246 GeV. In this work we consider vσ1 to be sufficiently small as 
required by the ρ parameter [75]. In this way we can take vη = vρ = vσ2 ≈ v/

√
3. We highlight that we did not include the scalar sextet 

in our calculations of aμ . The scalar sextet gives rise to a negative contribution to g-2 and small when compared to the doubly charged 
gauge boson. Therefore, its inclusion in our discussion is simply a matter of completeness.

As a result, the masses of the new gauge bosons are given by [52],

M2
W ′ = g2

4

(
v2
η + v2

χ + v2
σ2

+ 2v2
σ1

)
,

M2
U = g2

4

(
v2
ρ + v2

χ + 4v2
σ2

)
,

M2
Z ′ ≈

⎛
⎝ g2 + g′2

3

3

⎞
⎠ v2

χ . (10)

It is important to mention that the relevant interactions involving scalar fields as far as the muon magnetic moment is concerned are, 
[17],

L ⊃ Gl

[
lR νLη

−
1 + lcR νLh+

1 + lR νLh+
2 + lRlL Rσ2

]
+ h.c, (11)

with Gl = ml
√

2
2vη

and Rσ2 the real component of the σ 0
2 , where the masses for η+

1 , h+
1 , h+

2 and Rσ2 are given by [76],

M2
η+

1
∼ f vχ ,

Mh+
1 ,h+

2
∼ vχ ,

MRσ2
∼ vχ , (12)

where f is an energy parameter whose value must lie around vχ [76]. These scalars interact with leptons through the Yukawa Lagrangian 
in Eq. (11) meaning that they couple to leptons proportionally to their masses. Hence, their contribution to aμ will be suppressed. The 
neutral scalar contribution arises via the Feynman diagram in Fig. 1(a), the charged scalar via Fig. 1(c), the doubly charged scalar through 
Figs. 1(e)-(f), the Z ′ via Fig. 1(g), the W ′ via Fig. 1(i) and the U±± through Fig. 1(l)-(m). The doubly charged gauge boson contribution 
gives rise to the largest modification of aμ . If we had included the scalar sextet in our calculations our conclusions would not have 
changed.

4. 3-3-1 r.h.n

The 3-3-1 model that features right-handed neutrinos is called (3-3-1 r.h.n), the third component of the leptonic triplet is replaced by 
a right-handed neutrino. For this reason, the model has the following leptonic sector [53,54],
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f a
L =

⎛
⎝ νa

la

(νc)a

⎞
⎠ ; laR . (13)

In this case the five new gauge bosons are the W ′± , Z ′ , X0 and X0†. As the third component of the fermion triplet is a neutral fermion, 
there is no doubly charged boson and the X0 and X0† bosons are neutral. Following the notation in Eq. (6), the vector and axial-vector 
couplings of the neutral current are found to be [53,54],

g′
V (l) = g

4cW

(1 − 4s2
W )√

3 − 4s2
W

, g′
A(l) = − g

4cW

√
3 − 4s2

W

, (14)

while the charged current takes the form,

L ⊃ − g

2
√

2

[
νc

R γ μ(1 − γ5)l̄ W ′−
μ

]
, (15)

which is similar to the Minimal 3-3-1 model. It is important to highlight that the X0 and X0† gauge bosons do not contribute to the 
neutral current.

The scalar sector of the model also features three scalar triplets as follows,

χ =
⎛
⎝ χ0

χ−
χ0′

⎞
⎠ ,ρ =

⎛
⎝ ρ+

ρ0

ρ+′

⎞
⎠ , η =

⎛
⎝ η0

η−
η0′

⎞
⎠ . (16)

The spontaneous symmetry breaking mechanism leads to the gauge boson masses,

M2
Z ′ = g2

4(3 − 4s2
w)

(
4c2

W v2
χ + v2

ρ

c2
W

+ v2
η(1 − 2s2

W )2

c2
W

)
,

(17)

and

M2
W ′ = M2

X0 = g2

4

(
v2
η + v2

χ

)
. (18)

For simplicity we take 
〈
χ0′〉 = vχ , 

〈
ρ0

〉 = vρ , 
〈
η0

〉 = vη , with the other neutral scalar not developing a vev different from zero. We also 
assume that the SU (3)L × U (1)N symmetry breaking energy scale, vχ , occurs at energies much higher than the weak scale. As before the 
condition v2

η + v2
ρ = v2 is obeyed with v ∼ 246 GeV.

The Yukawa Lagrangian involving the charged scalars is essentially the same as in Eq. (11) and for the same reason the contributions 
to aμ stemming from charged scalars are small. As far as the scalar sector is concerned, there is a small difference which is due to the 
presence of a neutral scalar that interacts with the muon through the Yukawa Lagrangian,

L ⊃ Gab f̄a LρebR , (19)

which leads to

L ⊃ Gsμ̄μS2, (20)

where Gs = mμ

√
2/(2v).

As the scalar couples to muons proportionally to the muon mass, we conclude that their corrections to aμ are dwindled. We included 
all these contributions in our computations anyway. The masses of these scalars are given by,

M2
S2

= 1

2
(v2

χ + 2v2(2λ2 − λ6))

(21)

M2
h+ = λ8 + 1

2

2
(v2 + v2

χ )

where the constants λ2, λ6 and λ8 are coupling constants of the scalar potential (see Eq. (6) of [36].). In order to obtain analytical 
expressions for the masses of the scalars simplifying assumptions were made concerning some couplings. We emphasize that they do not 
affect our conclusions.

Summarizing, the contributions of the 3-3-1 r.h.n model to aμ rise from the neutral (Fig. 1(g)) and singly-charged gauge bosons 
(Fig. 1(i)), the neutral (Fig. 1(a)) and charged scalars (Fig. 1(c)). The main difference between this model and the Minimal 3-3-1 model 
is the absence of a doubly charged gauge boson which was the main player in the Minimal 3-3-1 model.
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5. 3-3-1 LHN

The 3-3-1 model with heavy neutral lepton (3-3-1 LNH) [36,55] differs from the 3-3-1 r.h.n because now the right-handed neutrino is 
replaced by a heavy neutral lepton (N) whose mass is governed by the scale of symmetry breaking of the 3-3-1 symmetry. The lepton 
generations are arranged as follows,

f a
L =

⎛
⎝ νa

la

Na

⎞
⎠ ; laR , Na

R . (22)

The same scalar triplets defined in Eq. (16) appear in this model. Consequently, the Z ′ and W ′ masses are precisely the same as Eqs. 
(17) and (18) respectively. The neutral current is also the same. There is a subtle but important difference that resides in the charged 
current,

L ⊃ − g√
2

[
NL γ μl̄L W ′−

μ

]
. (23)

The vector and vector-axial couplings in the charged current that appears in Eq. (23) are easily extracted. Similarly to the 3-3-1 r.h.n
this model will have interactions involving scalars of the form,

L ⊃ Gl lR NLh−
1 + Gl lR νLh+

2 + Gsμ̄μS2, (24)

where again Gs = mμ

√
2/(2v), and Gl = ml

√
2/vη . We point out that the scalar fields h−

1 and h−
2 are the mass eigenstates that arise of 

the diagonalization procedure of the (χ−, ρ ′−) and (η−, ρ−) bases and S2 is a combination of Rη and Rρ [36]. Their masses are found 
to be [36,55],

M2
h−

1
= λ8 + 1

2

2
(v2 + v2

χ ) ,

M2
h−

2
= v2

χ

2
+ λ9 v2 ,

M2
S2

= 1

2
(v2

χ + 2v2(2λ2 − λ6)), (25)

where λ2, λ8, λ9 are the coupling constants of the scalar potential in this model (see Eq. (6) of [36]). As always, vχ is assumed to be 
much larger than vρ and vη , as v2

ρ + v2
η = 2462 GeV2. For simplicity we take vρ = vη = v/

√
2. We highlight that this assumption does 

not interfere in our conclusions as the scalar contributions are suppressed anyway in comparison with the ones stemming from gauge 
bosons.

In summary, in the 3-3-1 LHN we have a contributing coming from the S2 (Fig. 1(a)), h−
2 (Fig. 1(c)), h−

1 (Fig. 1(d)), Z ′ (Fig. 1(g)) and 
W ′ (Fig. 1(j)).

6. Economical 3-3-1 model

The Economical 3-3-1 model [56–58,77] is built with the same leptonic triplet of the 3-3-1 r.n.h model, but now with scalar sector 
reduced to incorporate two scalar triplets, only:

χ =
⎛
⎝ χ0

1
χ−

2
χ0

3

⎞
⎠ , η =

⎛
⎝η+

1
η0

2
η+

3

⎞
⎠ , (26)

where the vev of neutral fields takes the form 
〈
η0

2

〉 = vη0
2
= v/

√
2, 

〈
χ0

1

〉 = vχ1 = u/
√

2, 
〈
χ0

3

〉 = vχ0
3

= vχ/
√

2. Once again we assume that 
u, v � vχ .

The corrections for aμ arise from neutral and charged scalars via Yukawa Lagrangian [56],

L ⊃ G�
i j f iLη� jR + Gε

i jεpmn( f
c
iL)p( f iL)m(η)n + h.c. (27)

From this Lagrangian we will obtain terms that go with Gl
¯lRνLη

+
1 and Gsμ̄μS2, where,

M2
η+

1
= λ4

2

(
u2 + v2 + v2

χ

)
, M2

S2
= 2λ1 v2

χ . (28)

The neutral and charged currents are the same as the 3-3-1 r.h.n, but the masses of the gauge bosons take different forms because we 
now have only two scalar triplets,

M2
Z ′ ≈ g2c2

W v2
χ

3 − 4s2
W

, M2
W ′ = g2

4

(
v2
η + v2

χ

)
. (29)

The Economical 3-3-1 features basically the same new physics contributions to aμ as the 3-3-1 r.h.n. The main differences appear in the 
expressions for the W ′ and Z ′ masses. As we are going to plot the overall contribution of each 3-3-1 model to aμ as a function of the vχ , 
as we will see, the results will differ.
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7. 3-3-1 model with exotic leptons

3-3-1 models are known for being versatile, with many possible combinations of fermionic and scalar multiplets that can be con-
structed in an anomaly-free way. However, the price that usually has to be paid is that the quarks generations cannot be represented 
equally under SU (3)L . This happens in the 3-3-1 model with exotic leptons. A consequence of this necessity is that Z ′ interactions are no 
longer universal, leading to flavor changing neutral currents at tree level [78]. In this section, the goal is to investigate models that have 
generations with different representations under SU (3)L in the leptonic sector. Here we are going to consider the following leptonic sector 
[59]

f1L =
⎛
⎝ ν1

l1
E−

1

⎞
⎠ ; lc1; f2,3L =

⎛
⎝ ν2,3

l2,3
N2,3

⎞
⎠ ; lc2,3; (30)

f4L =
⎛
⎝ E−

2
N3
N4

⎞
⎠ ; Ec

2; f5L =
⎛
⎝ N5

E+
3

l+3

⎞
⎠ ; Ec

3; (31)

where N and E are the exotic neutral and charged leptons, respectively.
We label the new gauge bosons as K ± , K 0 and Z ′ . The scalar sector is formed by three triplets, given by [59–62],

χi =
⎛
⎝χ−

i
χ0

i
χ0′

i

⎞
⎠ ,χ3 =

⎛
⎝ χ0

3
χ+

3
χ ′+

3

⎞
⎠ , (32)

with i = 1, 2, 〈χ1〉 = (
0, 0, vχ

)T , 〈χ2〉 =
(

0, v/
√

2, 0
)T

and 〈φ3〉 =
(

v ′/
√

2, 0, 0
)T

, where vχ � v, v ′ , with v ′ ∼ v .

The relevant interactions to aμ are [62],

L ⊃ g′

2
√

3sW cW
μ̄γμ (gV + g A)μ Z ′

− g√
2

(
N1L γμμL + μ̄LγμN4L

)
K +

μ

− g√
2

(
μ̄LγμE L

)
K 0

μ + h1μ̄(1 − γ5)Nχ+

+h2μ̄E−χ0 + h3μ̄E−
2 χ0 + H.c., (33)

where χ+ and χ0 are scalars coming from the scalar triplets. The vector and vector-axial couplings of the Z ′ to charged leptons are,

gV = −c2W + 2s2
W

2
, g A = c2W + 2s2

W

2
, (34)

and the masses of the gauge bosons are found to be [62],

M2
Z ′ = 2

9

(
3g2 + g′2) v2

χ ,

M2
K + = M2

K 0 = g2

4

(
2v2

χ + v2
)

,

g′ = g tanW√
1 − tan2

W /3
. (35)

As highlighted previously, the corrections to aμ coming from the scalars are suppressed by the lepton masses, so they will not be 
considered in this case. Hence, the main corrections to aμ rise from the gauge bosons Z ′ (Fig. 1(g)), K 0 (Fig. 1(h)) and K − (Fig. 1(k)). The 
Feynman diagrams induced by the presence of K − and K 0 also involve an exotic charged lepton E , whose mass can be very large.

8. Contributions for the muon anomalous magnetic moment

Having in mind the relevant interactions for g − 2 appearing in 3-3-1 models, in this section we provide general contributions to g − 2
which will be used later taking into account the particularities of each 3-3-1 model.

8.0.1. Neutral scalar mediator
A new scalar (φ) may induce two possible corrections to g − 2 as represented in Figs. 1(a) and (b). In this case, the general expression 

for �aμ is written as follows,

�aμ(φ) = 1

8π2

m2
μ

M2
φ

1∫
0

dx
∑

f

⎡
⎢⎣

∣∣∣g f μ
s 1

∣∣∣2
P+

1 (x) +
∣∣∣g f μ

p 1

∣∣∣2
P−

1 (x)

(1 − x)(1 − xλ2) + xε2
f λ

2

⎤
⎥⎦ , (36)
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where

P±
1 (x) = x2 (

1 − x ± ε f
)
, (37)

with g f μ
s 1 and g f μ

p 1 being the scalar (s) and pseudo-scalar (p) matrices in flavor space, ε f ≡ m f
mμ

and λ ≡ mμ

Mφ
. The fermion mass is m f = mμ

for the Fig. 1(a) and m f = mE for the Fig. 1(b), with Mφ being the scalar mass. It is important to mention that in the limit of heavy 
mediator, Mφ � mμ, m f , the analytical expression for �aμ is simplified to,

�aμ(φ) 
 1

4π2

m2
μ

M2
φ

∑
f

[∣∣∣g f μ
s 1

∣∣∣2
(

1

6
− ε f

(
3

4
+ log(ε f λ)

))
+

∣∣∣g f μ
p 1

∣∣∣2
(

1

6
+ ε f

(
3

4
+ log(ε f λ)

))]
. (38)

8.0.2. Singly charged scalar mediator
A singly charged scalar (φ±) generates corrections to the g − 2 via Figs. 1(c)-(d), where νL are the SM neutrinos, and N heavy neutral 

leptons. If lepton number is not conserved a charged operator might be present in the Lagrangian. Either way, the general result for �aμ

is found to be,

�aμ

(
φ+) = −1

8π2

m2
μ

M2
φ+

1∫
0

dx
∑

f

∣∣∣g f μ
s 2

∣∣∣2
P+

2 (x) +
∣∣∣g f μ

p 2

∣∣∣2
P−

2 (x)

ε2
f λ

2(1 − x)
(

1 − ε−2
f x

)
+ x

, (39)

where

P±
2 (x) = x(1 − x)

(
x ± ε f

)
, (40)

with ε f ≡ mν
mμ

and λ ≡ mμ

Mφ+ . In the heavy scalar mediator regime we obtain,

�aμ(φ+) 
 −1

4π2

m2
μ

M2
φ+

∑
f

[∣∣∣g f μ
s 2

∣∣∣2
(

1

12
+ ε f

4

)
+

∣∣∣g f μ
p 2

∣∣∣2
(

1

12
− ε f

4

)]
. (41)

8.0.3. Neutral gauge boson mediator
The neutral gauge boson corrections to the g − 2 are given by the diagrams of Figs. 1(g)-(h). In some cases we have an exotic charged 

fermion, E , and when that happens we label the neutral gauge boson K 0 in addition to the Z ′ . The general contribution for �aμ is given 
by,

�aμ

(
E, Z ′) = 1

8π2

m2
μ

M2
Z ′

1∫
0

dx
∑

f

⎡
⎢⎣

∣∣∣g f μ
v 1

∣∣∣2
P+

3 (x) +
∣∣∣g f μ

a 1

∣∣∣2
P−

3 (x)

(1 − x)
(
1 − λ2x

) + ε2
f λ

2x

⎤
⎥⎦ , (42)

with

P±
3 = 2x(1 − x)(x − 2 ± 2ε f ) + λ2x2(1 ∓ ε f )

2(1 − x ± ε f ), (43)

where ε f ≡ mE f
mμ

, λ ≡ mμ

M Z ′ , with g f μ
v 1 and g f μ

a 1 being the vector and vector-axial coupling constants. Considering the neutral boson much 
heavier than the fermions we obtain a simplified expression,

�aμ

(
E, Z ′) 
 −1

4π2

m2
μ

M2
Z ′

∑
f

[∣∣∣g f μ
v 1

∣∣∣2
(

2

3
− ε f

)
+

∣∣∣g f μ
a 1

∣∣∣2
(

2

3
+ ε f

)]
. (44)

Note that in ε f ≡ 1 in the absence of exotic fermions. In this case, vector neutral gauge bosons give rise to a positive contribution to 
g-2. Generally speaking, the overall sign depends on the relative strength between the vector and vector-axial couplings.

8.0.4. Charged gauge boson mediator
The Feynman diagrams in Figs. 1(i)-(k) account for the possible contributions stemming from a singly charged gauge boson (W ′ or K ) 

and a neutral fermion (ν or N). In this case, the more general expression for �aμ is given by,

�aμ

(
N, W ′) = −1

8π2

m2
μ

M2
W ′

1∫
0

dx
∑

f

∣∣∣g f μ
v 2

∣∣∣2
P+

4 (x) +
∣∣∣g f μ

a 2

∣∣∣2
P−

4 (x)

ε2
f λ

2(1 − x)
(

1 − ε−2
f x

)
+ x

, (45)

with

P± = −2x2(1 + x ∓ 2ε f ) + λ2x(1 − x)(1 ∓ ε f )
2 (

x ± ε f
)

(46)
4
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where and ε f ≡ mN f
mμ

, λ ≡ mμ

MW ′ . gv and ga are again the vector and vector-axial couplings. In 3-3-1 models, we have either mN f = mν or 
mN f = mN following Figs. 1(i)-(k). MW ′ is the charged gauge boson mass. Taking MW ′ � mN , m f the overall correction to g − 2 simplifies 
to,

�aμ(N, W ′) 
 1

4π2

m2
μ

M2
W ′

∑
f

[∣∣∣g f μ
v 2

∣∣∣2
(

5

6
− ε f

)
+

∣∣∣g f μ
a 2

∣∣∣2
(

5

6
+ ε f

)]
. (47)

8.0.5. Doubly charged vector boson mediator
Doubly charged vector bosons (U±±) are rare fields in model building endeavors but common in some 3-3-1 model constructions. The 

Feynman diagrams that contribute to the g − 2 are displayed in Figs. 1(l)-(m) and their contribution are given by,

�aμ

(
U++) = 8

8π2

m2
μ

M2
U

1∫
0

dx
∑

f

∣∣∣g f μ
v 3

∣∣∣2
P+

4 (x) +
∣∣∣g f μ

a 3

∣∣∣2
P−

4 (x)

ε2
f λ

2(1 − x)
(

1 − ε−2
f x

)
+ x

− 4

8π2

m2
μ

M2
U

1∫
0

dx
∑

f

∣∣∣g f μ
v 3

∣∣∣2
P+

3 (x) +
∣∣∣g f μ

a 3

∣∣∣2
P−

3 (x)

(1 − x)
(
1 − λ2x

) + ε2
f λ

2x
, (48)

where ε f ≡ m f
mμ

, λ ≡ mμ

MU
, and g f μ

a 3 (g f μ
v 3 ) are symmetric and anti-symmetric couplings in flavor space. In the case that f = μ, we will have 

identical fields, thus gμμ
v 3 = 0 [1]. In the limit MU � m f , mμ) we get,

�aμ

(
U++) 
 1

π2

m2
μ

M2
U

∑
f

[∣∣∣g f μ
v 3

∣∣∣2 [−1 + ε f
] −

∣∣∣g f μ
a 3

∣∣∣2 [
1 + ε f

]]
. (49)

We highlight that for ε f = 1 the overall doubly charged gauge boson contribution is negative and the vector current is null.

8.1. Minimal 3-3-1 model

The relevant interactions for the minimal 3-3-1 model were discussed section 3. The corrections to g −2 rise from the presence of new 
gauge bosons U++ , Z ′ and W ′ , and charged scalar η−

1 . The parameters that were used in this model will be explained below, considering 
the general analytical expressions given above.

• The case U++ contribution is based on Eq. (48), where gμμ
a 3 = − g

2
√

2
and gμμ

v 3 = 0. So, we should get �aμ

(
U++)

, where a muon and 
a doubly charged boson are the mediators for the g − 2 process. In the limit MU � mμ we obtain,

�aμ

(
U++) 
 −2

1

π2

m2
μ

M2
U

∣∣∣∣ g

2
√

2

∣∣∣∣
2

. (50)

Notice that the correction to g − 2 is indeed negative and simply governed by MU .
• The W ′ correction to g − 2 is obtained from Eq. (45). We should take ε f ≡ mν

mμ
, gνμ

v 2 = gνμ
a 2 = g

2
√

2
. In the heavy mediator regime we 

get,

�aμ(ν, W ′) 
 1

4π2

m2
μ

M2
W ′

∣∣∣∣ g

2
√

2

∣∣∣∣
2 (

5

3

)
. (51)

We point out that the result in Eq. (51) cannot be used when we have a neutral fermion N present with mN being sufficiently large. 
In that case one needs to numerically solve Eq. (45).

• The Z ′ correction to g − 2 is obtained from Eq. (42). Using mE f = mμ , taking vector and vector-axial couplings from Eq. (7) we find 
the heavy Z ′ limit,

�aμ

(
μ, Z ′) 
 −1

4π2

m2
μ

M2
Z ′

∣∣∣∣∣∣∣
g

2cW

√
3
√

1 − 4s2
W

2

∣∣∣∣∣∣∣
2 (

− 4

27

)
. (52)

• Concerning the charged scalar contribution, we can derive it using Eq. (39), with ε f ≡ mν
mμ

and gνμ
s2 = gνμ

p2 = mμ

√
2

2vη
. For Mη+

1
� mμ, mνL

we obtain,

�aμ(η+
1 ) 
 −1

4π2

m2
μ

M2
η+

1

∣∣∣∣∣mμ

√
2

2vη

∣∣∣∣∣
2 (

1

6

)
. (53)

Notice that the correction to g − 2 is negative and suppressed the muon mass. This occurs because the charged scalar is embedded in 
a scalar multiplet that gets a non-trivial vacuum expectation value. This means that the scalars in the multiplet interaction with fermions 
proportionally to their masses.
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8.2. 3-3-1 r.h.n

We will use the same logic of the 3-3-1 minimal model to find the individual corrections to g − 2. To avoid being repetitive we simply 
quote them in the heavy mediator regime. With that being said, we found,

�aμ(ν, W ′) 
 1

4π2

m2
μ

M2
W ′

∣∣∣∣ g

2
√

2

∣∣∣∣
2 (

5

3

)
, (54)

�aμ

(
μ, Z ′) 
 −1

4π2

m2
μ

M2
Z ′

1

3

∣∣∣∣∣∣∣−
g

4cW

√
3 − 4s2

W

∣∣∣∣∣∣∣
2 [

−
∣∣∣1 − 4s2

W

∣∣∣2 + 5

]
, (55)

�aμ(h+) 
 −1

4π2

m2
μ

M2
h+

∣∣∣∣∣mμ

√
2

2vη

∣∣∣∣∣
2

1

6
, (56)

�aμ(S2) 
 1

4π2

m2
μ

M2
S2

(
mμ

√
2

2vη

)2 [
1

6
−

(
3

4
+ log

(
mμ

M S2

))]
. (57)

In summary, the 3-3-1 r.h.n yields four contributions to g-2.

8.3. 3-3-1 LHN

This model induces several corrections to g − 2, coming from the Z ′ , W ′ , h−
1 and h−

2 and S2. The contributions to g − 2 rising from the 
Z ′ , h−

1 and S2 fields are identical to the 3-3-1 r.h.n model. The W ′ contribution is a bit different because of the presence of neutral heavy 
fields, N . In the previous model, this field was replaced by the right-handed neutrino. Hence, we only exhibit the different corrections to 
g − 2. Taking ε f ≡ MN

mμ
, gNμ

v 2 = gNμ
a 2 = g

2
√

2
we get,

�aμ(N, W ′) 
 1

4π2

m2
μ

M2
W ′

∣∣∣∣ g

2
√

2

∣∣∣∣
2 5

3
(58)

and for the charged scalar h2,

�aμ(h+
2 ) 
 −1

4π2

m2
μ

M2
h+

2

∣∣∣∣∣mμ

√
2

2vη

∣∣∣∣∣
2

1

6
. (59)

The scalar and pseudo-scalar coupling of this charged scalar are equal to mμ

√
2/(2vη) and for this reason we observe an extra muon 

mass dependence on Eq. (59).

8.4. Economical 3-3-1

In this model, the new contributions to g − 2 are obtained by studying the processes mediated by Z ′ , W ′ , η+
1 and S2. The corrections 

to �aμ that arise from Z ′ and W ′ have nearly the same magnitude as in the 3-3-1 r.h.n model. The main difference is in the gauge boson 
masses that have a slightly different dependence with the energy scale at which the 3-3-1 symmetry is broken. It is straightforward to 
find that,

�aμ(η+
1 ) 
 −1

4π2

m2
μ

M2
η+

1

∣∣∣∣∣mμ

√
2

2vη

∣∣∣∣∣
2

1

6
, (60)

�aμ(S2) 
 1

4π2

m2
μ

M2
S2

(
mμ

√
2

2vη

)2 [
1

6
−

(
3

4
+ log

(
mμ

M S2

))]
. (61)

8.5. 3-3-1 with exotic leptons

The corrections to g − 2 stemming from the 3-3-1 with exotic leptons model are governed by the Z ′ , K 0 and K + bosons. In summary 
we get,

�aμ(N, K +) 
 1

4π2

m2
μ

M2
K +

∣∣∣∣ g√
2

∣∣∣∣
2 5

3
, (62)

�aμ

(
E, K 0

)

 −1

4π2

m2
μ

M2
K 0

∣∣∣∣ g√
2

∣∣∣∣
2 (

4

3

)
, (63)

�aμ

(
μ, Z ′) 
 −1

4π2

m2
μ

M2
Z ′

∣∣∣∣ g′

2
√

3sW cW

∣∣∣∣
2 1

12

[
−

∣∣∣(−c2W + 2s2
W

)∣∣∣2 + 5
∣∣∣(c2W + 2s2

W

)∣∣∣2
]

. (64)

To sum up, the possible analytical expressions for the corrections to g − 2 from models 3-3-1 were described in this section. Where 
their numerical results will be shown in the section 9.
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Table 1
Summary of the lower bounds based on our calculations. For comparison we include the LHC bounds at 13 TeV center-of-
mass energy. These LHC bounds are based on either 36 f b−1 or 139 f b−1 of data. The lower mass bounds on the Z ′ and 
W ′ bosons from the 3-3-1 r.h.n model are also applicable to the Economical 3-3-1 model as they have the same interactions. 
We emphasize that the limits quoted in [1] neglected Z ′ decays into exotic quarks and heavy leptons which can weaken 
the lower mass bounds up to 50%. The same is true for the bounds obtained in [84]. The effect of Z ′ exotic decays were 
considered in the Minimal 3-3-1 model in [83]. Conversely, the lower mass constraints we found are robust.

Model LHC-13 TeV g-2 current g-2 projected

Minimal 3-3-1 M Z ′ > 3.7 TeV [83] M Z ′ > 434.5 GeV M Z ′ > 632 GeV
MW ′ > 3.2 TeV [83] MW ′ > 646 GeV MW ′ > 996.1 GeV

3-3-1 r.h.n ∗M Z ′ > 2.64 TeV [1] M Z ′ > 158 GeV M Z ′ > 276.5 GeV
— MW ′ > 133 GeV MW ′ > 239 GeV

3-3-1 LHN 
for MN = 1 GeV

∗M Z ′ > 2 TeV [1] M Z ′ > 160 GeV M Z ′ > 285 GeV
— MW ′ > 134.3 GeV MW ′ > 238.3 GeV

3-3-1 LHN 
for MN = 100 GeV

∗M Z ′ > 2 TeV [1] M Z ′ > 136.7 GeV M Z ′ > 276.5 GeV
— MW ′ > 114.2 GeV MW ′ > 231 GeV

Economical 
3-3-1

∗M Z ′ > 2.64 TeV [1] M Z ′ > 59.3 GeV M Z ′ > 271.4 GeV
— MW ′ > 49.5 GeV MW ′ > 226.7 GeV

3-3-1 exotic leptons 
for mN = 10 GeV, mE = 150 GeV

∗M Z ′ > 2.91 TeV [84] M Z ′ > 429 GeV M Z ′ > 693 GeV
— MW ′ > 359 GeV MW ′ > 579.6 GeV

3-3-1 exotic leptons 
for mN = 10 GeV, mE = 150 GeV

∗M Z ′ > 2.91 TeV [84] M Z ′ > 369 GeV M Z ′ > 600 GeV
— MW ′ > 309.1 GeV MW ′ > 501.4 GeV

Fig. 2. Overall contribution to �aμ from the Minimal 3-3-1 model. The green bands are delimited by �aμ = (261 ± 78) × 10−11. The current 1σ bound is found by requiring 
�aμ < 78 × 10−11 while the projected bound is obtained for �aμ < 34 × 10−11. We used M Z ′ = 0.395vχ , MW ′ = MU±± = 0.33vχ .

9. Results

In this section, we will present the main results of our work and put them into perspective with collider bounds. In all models 
discussed here, the leading corrections to aμ stem from the new gauge bosons. As we are dealing with a SU (3)L gauge group there are 
several gauge bosons that play a role in aμ . We have computed all individual corrections to aμ and expressed our results in terms of the 
scale of symmetry breaking, vχ . For completeness we display the individual contributions in the Appendix. As the gauge bosons and scalar 
fields have masses governed by vχ we can sum up all the individual contributions and draw conclusions in terms of the total �aμ for 
each model. The main results are summarized in the Table 1. We start discussing our findings in the context of the Minimal 3-3-1 model.

9.1. Minimal 3-3-1

In Fig. 2 we show the total contribution to �aμ as a function of vχ for the Minimal 3-3-1 model with a black curve. There we also 
display a green band at which the aμ anomaly is addressed. Moreover, we exhibit the current and projected 1σ bounds considering 
the precision aimed by the g-2 experiment at FERMILAB. It is important to mention that the individual contributions were calculated 
numerically considering vη = vρ = 147 GeV. The Z ′ correction to aμ is small. The largest corrections to aμ stem from the singly (W ′) 
and doubly (U++) charged gauge bosons. The latter gives rise to a negative contribution to aμ. This is an important point that has been 
overlooked in [63,79]. The vector current vanishes for a doubly charged gauge boson [1]. The main contributions come from the W ′ and 
U++ gauge bosons in the Minimal 3-3-1 model, which are positive and negative respectively. The overall correction to �aμ is small and 
negative. Looking at Fig. 2 one can easily conclude that the vχ > 1.8 TeV, and using the projected g-2 sensitivity we will be able to impose 
vχ > 2.8 TeV. This model cannot explain �aμ as it yields a negative correction to aμ . Moreover, one should keep in mind the existing 
collider bounds which were placed on the mass of the new gauge bosons (see Table 1). One may use the relations M Z ′ = 0.395vχ , and 
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Fig. 3. Overall contribution to �aμ from the 3-3-1 r.h.n model. We used M Z ′ = 0.395vχ , MW ′ = MU±± = 0.33vχ .

MW ′ = MU±± = 0.33vχ to obtain constraints on the scale of symmetry breaking. Currently LHC data imposes M Z ′ > 3.7 TeV which means 
vχ > 9.3 TeV. Having in mind the Landau pole found at 5 TeV, the Minimal 3-3-1 model has been excluded by LHC searches. There are 
ways to extend the Minimal 3-3-1 model and add extra decay channels to the Z ′ gauge boson [80], without altering the g-2 predictions. 
Such new decay modes may weaken the LHC bound. Therefore it is worthwhile to determine the contributions to aμ as it gives rise to an 
orthogonal and complementary bound on the model.

We point out that each contribution to aμ depends on the mass of the particles running in the loop. However, we can describe each 
correction to aμ in terms of the scale of symmetry breaking, vχ , as the particle masses depend on it. In this way, we obtain the lower 
mass bounds on the masses of the gauge bosons using Fig. 2. We summarize these bounds in Table 1.

In summary, if the aμ anomaly is confirmed by the g-2 experiment, the Minimal 3-3-1 model cannot offer an answer. New interactions 
with charged leptons must arise.

9.2. 3-3-1 r.h.n

In Fig. 3 we show �aμ prediction from the 3-3-1 r.h.n model. The individual contributions are shown in the Appendix. The W ′ and 
Z ′ gauge bosons give rise to the largest corrections to aμ . As we explained earlier we can express each correction to aμ in terms of the 
scale of symmetry breaking as the particle masses depend on it. This feature allowed us to plot �aμ as a function of vχ in Fig. 3. We 
conclude from Fig. 3 that vχ < 200 GeV is needed to reproduce the measured �aμ . However, such a small value has been ruled out by 
collider searches for Z ′ bosons. Collider bounds impose M Z ′ > 4 TeV [1], which implies that vχ > 12 TeV. We highlight that such lower 
mass bound on the Z ′ mass is not robust because it assumed that the Z ′ field decays only into charged leptons, which may not be true 
in this model as the Z ′ can also decay into exotic quarks. The presence of such decay modes certainly will weaken the LHC limit. We 
have implemented the model in Calchep [81] via Lanhep [82] and found that indeed the Z ′ branching ratio into charged leptons can be 
suppressed up to 34% when all three exotic quarks are sufficiently light for the Z ′ decay into. Therefore, conservatively speaking the lower 
mass bound on the Z ′ boson should read 2.64 TeV, implying that vχ > 6.68 TeV. Hence, regardless of the inclusion of new exotic decays, 
collider bounds still forbid the 3-3-1 r.h.n model to provide a solution to the muon anomalous magnetic moment. That said, we obtain 
lower mass bounds requirement the 3-3-1 r.h.n contribution to aμ to be within the 1σ error bars. The bounds are summarized in Table 1.

9.3. 3-3-1 LHN

The 3-3-1 model that features the presence of neutral leptons instead of right-handed neutrinos is known as 3-3-1 LHN. This ingredient 
is sufficient to change our conclusions. It is a fact unexplored in the literature. Again we show for completeness the individual contribu-
tions in the APPENDIX. In Fig. 4 we show �aμ when the contribution from the 3-3-1 LHN model is accounted for, assuming MN = 1 GeV. 
At first look it appears that the 3-3-1 LHN may explain the anomaly for 1 TeV < vχ < 2 TeV. However, the collider bounds we discussed 
previously in the 3-3-1 r.h.n model are in principle also applicable here. Thus, one could imagine that vχ should be also larger than 12 TeV 
to be consistent with current LHC bounds on the Z ′ mass. As aforementioned, such collider bound can be weakened by the presence of Z ′
decays into exotic quarks. In this model, there are additional decay models in N’s pairs. We have implemented the model in Calchep [81]
via Lanhep [82] and assessed the impact of these new decay in the Z ′ branching ratio into charged leptons. We concluded that branching 
ratio into charged leptons may be diminished up to 60%, when also three exotic quarks and three neutral leptons, N, are light enough 
for the Z ′ to decay into. Conservatively speaking, it means that the lower mass bound should also be weakened by 50%, which implies 
that M Z ′ > 2 TeVs and that vχ > 5.06 TeV. Thus, even considering new exotic decays, the 3-3-1 LHN is not capable of addressing the 
muon anomaly because the scale of symmetry breaking is too small to be consistent with LHC limits. The conclusion would not change 
if we had adopted different values for MN . Enforcing the �aμ to be smaller than 78 × 10−11 and 34 × 10−11 we get vχ > 407 GeV and 
vχ > 722 GeV that yield M Z ′ > 160 GeV and M Z ′ > 285 GeV, respectively. A similar logic applies to the W ′ boson. Our lower mass bounds 
are shown in Table 1 even for the case when MN = 100 GeV.

9.4. Economical 3-3-1

The total correction to aμ from the Economical 3-3-1 model is displayed in Fig. 5. This model is rather similar to the 3-3-1 r.h.n model. 
Thus it cannot accommodate the aμ anomaly either. The main difference appears in the mass of the gauge bosons which have a different 
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Fig. 4. Overall contribution to �aμ from the 3-3-1 LHN model for mN = 1 GeV (left-panel) and mN = 100 GeV (right-panel). One can clearly from the plots that our conclusions 
concerning the 3-3-1 LHN heavily depend on mass used for the neutral lepton. For mN = 100 GeV we can place a projected limit of vχ > 6.4 TeV, whereas for mN ≤ 240 GeV 
no limit on the scale of symmetry breaking can be found because the corrections to �aμ are too small. We used M Z ′ = 0.395vχ , MW ′ = MU±± = 0.33vχ .

Fig. 5. Overall contribution to �aμ from the Economical 3-3-1 model. We used M Z ′ = 0.395vχ , MW ′ = MU±± = 0.33vχ .

Fig. 6. The overall �aμ with contribution from the 3-3-1 model with exotic leptons assuming mN = 10 GeV, mE = 150 GeV (left-panel) and mN = 100 GeV, mE = 500 GeV 
(right-panel). We used M Z ′ = 0.55vχ , MK ′ = MK 0 = 0.46vχ .

relation with vχ . These results into different lower mass bounds summarized in Table 1. Looking at Table 1 we can easily conclude that 
the constraints derived from aμ on this model are quite weak compared to those stemming from collider searches.

9.5. 3-3-1 with exotic leptons

The 3-3-1 model with exotic leptons features gauge bosons, K ± and K 0, that induce the largest corrections to aμ . The interactions 
that these bosons experience are absent in the previous models, because they couple to exotic charged leptons, E, which can be heavy. 
The values obtained for �aμ are shown in Figs. 6 for MN = 10 GeV, ME = 150 GeV (left-panel) and MN = 100 GeV, ME = 500 GeV 
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Fig. 7. Overall contribution of the 3-3-1 LHN model augmented by an inert scalar triplet φ. The LHC bound is represented by a vertical line which excluded the region of 
parameter space to the left. One can notice that this extended version of the 3-3-1 LHN model now successfully accommodates the aμ anomaly for vχ ∼ 10 TeV, while being 
consistent with LHC constraint.

(right-panel). We considered these two cases to assess the dependence of our finding on the masses of these particles. We remind that 
the individual contributions are also exhibited in the Appendix. The total contribution to aμ is rather small because there more than one 
heavy field running in the loop. Consequently, the scale of symmetry breaking needed to reproduce the measured �aμ value is too small 
to be consistent with collider bounds. Therefore, once again, we can simply derive 1σ lower bound on scale of symmetry breaking which 
can be translated into lower mass limits on the gauge boson masses as shown in Table 1.

10. Difference between 3-3-1 models

We highlight that the gauge bosons drive the contributions to g-2. In simplified model constructions the masses of the gauge bosons 
can be made independent quantities. Here, this does not occur. First, as a result of the SU (3)L nature, we have multiple gauge bosons, 
and the pattern of symmetry breaking ties the gauge bosons masses to a single parameter, vχ . For this reason our findings are expressed 
in terms of vχ . One may wonder about the impact of scalar fields in our numerical calculations. As aforementioned, they yield negligible 
contributions, regardless of the Yukawa couplings assumed. Concerning the masses of the exotic fermions, these do impact the overall 
corrections to g-2, but we remind the reader that these contributions are still mediated by gauge bosons. We have assessed how the 
masses of the exotic fermions impact our findings, for instance in Figs. 4–6.

In summary, as far as g-2 is concerned, one can clearly see the difference between the 3-3-1 models by comparing the Figs. 2–6. The 
Minimal 3-3-1 model gives rise to a much larger correction to g-2 in comparison with the 3-3-1 r.h.n model as a result of the doubly 
charged gauge boson. The 3-3-1 LHN model differs from the 3-3-1 r.h.n prediction mainly due to the presence of a neutral fermion whose 
masses lies in the 1 − 100 GeV mass range. Such fermion is absent in the 3-3-1 r.h.n model. The Economical 3-3-1 models which is very 
similar to the 3-3-1 r.h.n model still in the end of day yield a different overall contribution to g-2 because the masses of the gauge 
bosons have a slight different dependence with vχ . The 3-3-1 model with exotic leptons despite the distinct mass spectrum may give rise 
to an overall correction to g-2 which is similar to one stemming from the 3-3-1 LHN depending on the values adopted for the masses 
of the exotic fermions. Anyway, our finding show that all these 3-3-1 models yield different corrections to g-2 and if the g-2 anomaly is 
confirmed they must be extended.

11. Discussions

We have shown that all five models studied cannot accommodate the muon anomalous magnetic moment anomaly in agreement with 
existing bounds. This finding is timely important because we expect a new measurement of the muon anomalous magnetic moment. 
Moreover, there is an ongoing discussion concerning the significance of the signal in light of large hadronic uncertainties. If the g-
2 anomaly turns out to be just a statistical fluctuation our results represent a lower bound on the energy scale at which the 3-3-1 
symmetry should be broken. Our conclusion holds even if one departs from the vη = vρ assumption adopted throughout. These choices 
for vη and vρ affect more the scalar contributions which are already suppressed by the muon mass. On the other hand, if the g-2 
anomaly is confirmed, one ought to think of ways of extending such models to address aμ while being consistent with collider bounds. 
The addition of an inert scalar triplet under SU (3)L [68], or inert singlet scalar, or vector-like leptons, etc., represent viable possibilities 
[85]. However, each of these avenues constitute a new model, with their own phenomenological implications that we plan to explore in 
the near future. For concreteness, we have added an inert scalar triplet, φ, into the 3-3-1 LHN model and computed the overall contribution 
to aμ . Such scalar triplet which gets a mass from the quartic coupling in the scalar potential, λφ†φχ †χ , after the scalar triplet χ acquires 
a vev . This mass goes as Mφ ∼ λvχ . This inert triplet scalar allows us to include L ⊃ yab f̄aφebR . Taking y22 equal to unit we get Fig. 7. 
There we display the total contribution of the 3-3-1 LHN model augmented by this inert scalar triplet. We can successfully explain the 
muon anomalous magnetic moment anomaly for vχ ∼ 10 TeV, while being consistent with LHC constraint that rules out the region with 
vχ < 5.06 TeV. Therefore, we have conclusively presented a solution to the muon anomalous magnetic moment in the context of 3-3-1 
models.

12. Conclusions

We have revisited the contribution to the muon anomalous magnetic moment stemming from five different models based on the 
SU (3)C × SU (3)L × U (1)N gauge symmetry. We have assessed the impact of changing the masses of the exotic leptons present in such 
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Fig. 8. Overall �aμ taking into account each individual contribution from the Minimal 3-3-1 model and 3-3-1 r.h.n.

Fig. 9. Overall �aμ taking into account each individual contribution from the 3-3-1 LHN model for mN = 1 GeV.

models and shown that our quantitative conclusions do change depending on the value assumed for their masses. A fact unexplored 
before. Moreover, we corrected previous estimations in the literature such as the contribution stemming from the doubly charged gauge 
boson, as it does not have a vectorial current to muons. Moreover, we have drawn our conclusions in perspective with collider bounds and 
concluded that none of the five models investigated here are capable of accommodating the anomaly. Consequently, we derived robust 
and complementary 1σ lower mass bounds on the masses of the new gauge bosons, namely the Z ′ and W ′ bosons. In summary, if 
the anomaly observed in the muon anomalous magnetic moment is confirmed by the g-2 experiment at FERMILAB these models must 
be extended. For concreteness, we presented a plausible extension to the 3-3-1 LHN model, which features an inert scalar triplet. This 
extension can accommodate the anomaly for vχ ∼ 10 TeV, while being consistent with LHC limits. We make our Mathematica numerical 
codes available at [86] to allow the reader to double check our findings and apply our tool to other studies of the muon anomalous 
magnetic moment.
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Appendix A

Here, in Figs. 8-12 we show for completeness the plots of individual contributions to aμ of the particles introduced in the main text.
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Fig. 10. Overall �aμ taking into account each individual contribution from the 3-3-1 LHN model for mN = 100 GeV (left-panel) and mN = 240 GeV (right-panel).

Fig. 11. Overall �aμ taking into account each individual contribution from the Economical 3-3-1 model.

Fig. 12. Overall �aμ taking into account each individual contribution from the 3-3-1 with exotic leptons, for mN = 10 GeV, mE = 150 GeV (left-panel) and mN = 100 GeV, 
mE = 500 GeV (right-panel).
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