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Abstract: The potato is susceptible to water stress at all stages of development. We examined four
clones of tetraploid potato, Cardinal, Desirée, Clone 37 FB, and Mije, from the germplasm bank of the
National Institute of Agricultural Research (INIA) in Chile. Water stress was applied by suspending
irrigation at the beginning of tuberization. Stomatal conductance, and tuber and plant fresh and
dry weight were used to categorize water stress tolerance. Cardinal had a high susceptibility to
water stress. Desirée was less susceptible than Cardinal and had some characteristics of tolerance.
Mije had moderate tolerance and Clone 37 FB had high tolerance. Differential gene expression in
leaves from plants with and without water stress were examined using transcriptome sequencing.
Water stress-susceptible Cardinal had the fewest differentially expressed genes at 101, compared to
Desirée at 1867, Clone 37 FB at 1179, and Mije at 1010. Water stress tolerance was associated with
upregulation of the expression of transcription factor genes and genes involved in osmolyte and
polyamine biosynthesis. Increased expression of genes encoding late embryogenesis abundant (LEA)
and dehydrin proteins along with decreased expression of genes involved in nitrate assimilation
and amino acid metabolism were found for clones showing water stress tolerance. The results also
show that a water deficit was associated with reduced biotic stress responses. Additionally, heat
shock protein genes were differentially expressed in all clones except for highly susceptible Cardinal.
Together, the gene expression study demonstrates variation in the molecular pathways and biological
processes in response to water stress contributing to tolerance and susceptibility.
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1. Introduction

Potato (Solanum tuberosum L.), due to its high caloric, protein, and vitamin content, is today
an indispensable food source, representing the third largest food crop in the world [1]. Given its
limited root development, which is shallow and consequently has limited capacity for water extraction,
it is considered to be a crop that is susceptible to water stress in all stages of development, from its
emergence to tuber bulking. However, water stress early in crop development reduces the number
and size of leaves, and plant height, which ultimately affects the yield and quality of the plant [2].
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The water stress impact on plant yield is related to decreased photosynthesis, which is a product
of stomatal closure, reduced photosynthetic area, altered osmotic potential of the cell, and decreased
CO2 assimilation rate. These processes lead to reduced carboxylation of ribulose-1,5-bisphosphate
and promotes the production of reactive oxygen substances (ROS) that generate oxidative stress [3].
The great genetic diversity of native potato species represents an important genetic resource in the
search for traits of interest in breeding commercial varieties, including tolerance to water stress [4].

Andean potato native species have been evaluated and characterized by their high nutritional
content, variety of compounds with high antioxidant activity, and organoleptic qualities that make
them attractive for use as a functional food [5–7]. It has also demonstrated the potential of resistance
and multi-resistance to viruses, bacteria, fungi, and nematodes, as well as great potential for adaptation
under severe heat, high radiation, drought, frost, and nutritional deficits [6,8,9].

Water stress is the main limiting factor of the crop yield and natural distribution of plant
species [10]. It comprises a complex response mechanism that results in a variety of biochemical,
molecular, physiological, and morphological changes that affect plant growth, development, and
productivity [11]. Water stress usually occurs together with other types of stress, such as high
temperatures, high salinity, and oxidative stress, which is often reflected in similar cell signaling and
regulation [12].

The identification of genetic traits and response mechanisms specific to water stress would improve
the adaptation of potato to adverse conditions [13]. Several studies have focused on elucidating the
involvement of genes induced by water stress and those most relevant features of tolerance [14,15].
To improve water stress tolerance, potato breeders have been limited by a complex biological system
that includes the type of vegetative propagation, autotetraploidy, and high levels of heterozygosity [16].
Furthermore, it has been reported that the response can vary depending on the genotype, severity
of the stress, state of plant development, and tissue assessed, so the response mechanism is not yet
fully defined [17–19]. Nevertheless, different studies have generated much information describing
various components to the adaptive response, such as proteins activating the response to stress and
signaling factors, proline accumulation, accumulation of osmolytes, osmotic adjustment, ion transport
alteration, increase of the efficient use of the water, increase in the oxidative metabolism, adjustment in
the hormonal balance, increase in the root growth, inhibition of the foliar growth, water changes of
xylem, and the maintenance of turgor [4,8].

Additionally, two main groups of genes involved in water stress response and tolerance have
been described. They are made up of functional proteins, such as chaperones, late embryogenesis
proteins (LEA), antifreeze proteins, and mRNA-binding proteins. One group includes key enzymes
for osmolyte biosynthesis, water transport proteins, sugar and proline transporters, detoxification
enzymes, and various proteases, while the other group includes regulatory proteins, such as various
transcription factors, protein kinases, protein phosphatases, enzymes involved in the metabolism of
phospholipids, and other signaling molecules [20].

The generation of a gene expression profile to characterize the response to stress by the RNA-seq
technique provides fundamental information for the analysis of metabolic pathways, classification of
patterns of expression, and discovery of new genes. It also permits the exploration of mechanisms of
molecular regulation under various kinds of stress [18–21]. Studies of gene expression profiles in potato
have indicated candidate drought tolerance traits in Andean-native potato clones, highlighting osmotic
adjustment, changes in carbohydrate metabolism, membrane modifications, cuticle strengthening,
cell rescue mechanisms, detoxification of radicals, and stabilization of proteins [8]. Additionally, some
families of transcription factors with significant changes in response to severe water stress, such as
bHLH, ERF, MYB, C2H2, NAC, WRKY, HD-ZIP, and bZIP, have been described [18]. Also, gene ontology
(GO) analysis of upregulated functional groups during drought treatment have revealed genes related
to transcription, regulation of transcription, and response to stresses, while the downregulated groups
are related to proteolysis, catalytic activity, and photosynthesis. Biochemical pathways with a higher
representation of differentially expressed drought response genes have also been identified in clades,
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such as ’carbohydrate metabolism’, ’translation’, ’amino acid metabolism’, ’folding, classification,
and degradation’, and ’energy metabolism’ [21].

In this study, we evaluated transcriptomic profiles using RNA-seq in two landraces (Mije and
Clone 37 FB) and two varieties (Cardinal and Desirée) with contrasting responses to water stress. Our
results will be useful for the potential identification of candidate genes for marker-assisted selection
within genetic improvement programs and the identification of functional groups that allow a deeper
understanding of water stress tolerance mechanisms in tetraploid potato.

2. Materials and Methods

2.1. Biological Material

The potato clones used (Solanum tuberosum 2n = 4x = 48) were part of the INIA-Chile germplasm
bank and were composed of four clones, Cardinal, Desirée, Mije, and Clone 37 FB, with variation in
water stress tolerance in vitro [22]. The four clones were selected for their similar cycle (120 days).
All of them were cultivated under in vitro conditions in Murashige and Skoog (MS) solid medium [23]
(3% sucrose, pH 5.6 ± 0.1, and 7 g agar-agar). This material was used to obtain potato minitubers
by the method described by Toledo et al. (1998) [24]. In order to obtain true tubers, every tuber was
planted in 6-L pots for two growing seasons in 2010–2011 and 2012–2013. Finally, the multiplication
of the tubers in the field during the season 2014–2015 was performed using standard conditions of
agronomic management and fertilization (150 N kg N ha−1; 130 kg K2O ha−1). After harvest, every
tuber was measured and used as seed.

2.2. Greenhouse Stress Assays

The greenhouse tests were established in July 2016, in 6-L pots, using four replicates per clone.
Plants were grown in pots under greenhouse conditions (25 ◦C ± 3, 16/8 h day/night photoperiod)
and two watering treatments: (Control) well-watered with 100% to 96% irrigation and (treatment)
a controlled water stress cycle with a 21-day period were applied. Control pots were irrigated
corresponding to a field capacity (CC) between a 100% and 96% volumetric content (VWC). For the
water deficit treatment, irrigation was suspended once the first open flowers were observed (113 days
after sowing), which coincides with the beginning of the tuberization in the evaluated clones. Water
stress was applied at the beginning of tuberization as this was the stage most susceptible to water stress
in potatoes [8]. The timing of tuberization was similar for the four clones. Potting soil moisture was
monitored using EC-5 type moisture sensors (Decagon Devices Inc., Pullman, WA, USA). Volumetric
soil water content (θ.% Vv) in the four potato genotypes (Cardinal, Desiree, Mije, and Clone 37 FB)
was measured every day in 10 repetitions using the moisture sensors. The moisture sensor measures
were used from the moment the irrigation was suspended at 113 days after sowing until the time when
moisture content was reduced to approximately 50% of the volumetric content in the soil. At this time,
leaf samples were taken on the third leaf of the plants (120 days after sowing). The tuber harvest was
made three weeks after the beginning of water stress (134 days after sowing) in October 2016.

Drought tolerance indices were calculated using the following ratios: Mean productivity (MP) =

(Yp + Ys)/2 [25]; geometric mean productivity (GMP) = (Yp × Ys) 0.5 [26]; tolerance (TOL) = Yp − Ys [27];
drought tolerance index (DTI) = (Ys × Yp )/(Yp)2 [26]; and drought susceptibility index (DSI) =

[1 − (Ys/Yp)]/[1 − (SI)] [28], where stress intensity (SI) = 1 − (Ys/Yp). Yield stability index (YSI) =

Ys/Yp [29]. In all these equations, Ys and Yp were calculated as the mean yield of a given clone under
water stress and non-stress conditions, respectively.

The biomass measurements of fresh and dry weight (leaf, root and tuber) were quantified using a
semi-analytical balance (0.01 g to 2 Kg, Radwag, Radom, Polonia). In addition, the number of tubers
was counted. Stomatal conductance (gs) using the SC-1 porter (Decagon Devices Inc., Pullman, WA
USA) was also measured. For the extraction of RNA, samples were taken 120 days after sowing.
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2.3. Experimental Design and Statistical Analysis

The experimental design was a randomized complete block with four replicates and a factorial
analysis of variance (ANOVA). The treatments were: Irrigated (control) and not irrigated at the
beginning of tuberization (treatment). In order to compare the effect of water stress among clones,
it was measured as treatment/control × 100. Relatives values were used to reduce the bias caused by
differences in vigor between genotypes [30].

Statistical analyses were performed in R-3.5.2 (https://www.r-project.org/). The assumptions of
normality and homogeneity of variances were verified using the Shapiro–Wilk and Lilliefors test
(Kolmogorov–Smirnov). Significant differences between the means of the genotypes within each
treatment were compared by a Tukey multiple comparison analysis (p < 0.05). Analyses and graphical
visualization of the data were performed in the statistical program R, using the ggplot2, Rmisc and
lattice packages. The criterion was to choose the number of clusters with the highest F value in
accordance with a multivariate analysis of the variance (MANOVA).

2.4. RNA Extraction

The third leaf from the top of the plant was sampled for three of the four replicates of the plant for
each cultivar and each treatment from the greenhouse for a total of 24 samples used for RNA extraction.
The samples were taken once after one week under water stress, which corresponded to 120 days after
sowing. For each sample, 100 mg of leaf material were sampled from the apical leaflet using a hole
punch. The leaf disks were ground with plastic pestles in liquid nitrogen inside 1.5-mL Eppendorf
Tubes. RNA was extracted according to the manufacturer’s instruction using a TRIzol™ Plus RNA
Purification Kit (Invitrogen™ Thermo Fisher Scientific Inc, New York, NY, USA). The RNA pellet was
allowed to dry and resuspended in 30 µL of DEPC water. It was incubated for 10 min at 65 ◦C and
stored at −20 ◦C until analyzed.

2.5. Library Preparation and Sequencing

The libraries were prepared for the three biological replicates for each of the cultivars and
treatments for a total of 24 transcriptome libraries using the TruSeq RNA kit (Illumina, San Diego, CA,
USA). The mRNA was purified from 1 µg of total RNA using oligo-dT beads, and then fragmented
using divalent cations at 95 ◦C. Reverse transcription was performed to obtain cDNA fragments of
approximately 200 bp. After repair, adenylation, and ligation of the indexed adapters, the libraries
were completed and amplified by PCR. The libraries were analyzed by capillary electrophoresis in the
Fragment Analyzer (AATI Technologies, Markham, Ontario, Canada), and quantified by fluorometry
with a Qubit 2.0 instrument, (Thermo Fisher Scientific Inc., New York, NY, USA). The libraries were
sequenced on a HiSeq 2500 instrument (Illumina, San Diego, CA, USA) in paired-end mode (2 × 125bp).
The raw sequencing quality statistics are presented in Supplementary Table S1.

Sequencing data were aligned to the reference genome of S. tuberosum v3_2.1.10 using the TopHat
v. 2.0.9 [31] with the “fr-unstranded” library mode. The quality of the alignments was verified using
the ’flagstat’ tool of the SAMtools v software. 0.1.19 [32]. Transcripts were then assembled with
CuffLinks v. 2.1.1 [33], using the ITAG1.0 annotation system of S. tuberosum from Sol Genomics
Network [34,35]. The assembly of the transcriptome was performed with the "multi read correct" and
"bias correct" modes activated. Finally, assembled transcripts of different replicates and treatments
were combined into a single reference transcriptome for each variety using the CuffMerge tool
included in CuffLinks. Raw and processed transcriptome sequence data were deposited at the
National Centre for Biotechnology Information Gene Expression Omnibus (NCBI GEO) accession
number GSE140083. Differentially expressed genes between control and water-stressed plants were
identified for each cultivar using CuffDiff, and the fragment per kilobase per million mapped reads
(FPKM) was calculated [33]. FPKM was calculated for each of the three biological replicates for each
cultivar and treatment and used in the CuffDiff negative binomial test for differential expression

https://www.r-project.org/
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between control and water-stressed samples. The same reference genome of S. tuberosum as well
as the single fused transcriptome was used as a reference for differential gene expression. Finally,
differentially expressed genes in each cultivar were compared using custom perl scripts, and a single
list of upregulated and downregulated genes was generated in all cultivars at the points evaluated.
The log2 ratio of water stressed FPKM:control FPKM gene expression was calculated for each gene.
Genes with log2 > 1 were classified as upregulated with water stress and those with log2 < −1
were classified as downregulated with water stress. TheGO terms from the iTAG1.0 annotation
files were used for functional analysis using topGO [36] for the up- and downregulated genes from
CuffDiff analysis. Enriched GO terms were those where p ≤ 0.05 in the topGO Fisher’s exact test.
The enrichment score (−log10 (p-value)) was also calculated. Functional annotations from SpudDB [37]
http://solanaceae.plantbiology.msu.edu/cgi-bin/annotation_report.cgi were used to search the scientific
literature for information on the biological function of genes (Supplementary Table S2–S5).

2.6. nCounter mRNA Quantification

Multiplex analysis of the expression of genes was examined using nCounter Digital Analyzer
(Nanostring Technologies, Seattle, WA, USA.). Details of the nCounter multiplex gene expression
analysis are described elsewhere [38,39]. In total, 100 ng of total RNA were used for each nCounter
quantification reaction. An nCounter codeset was designed for 24 random genes that were previously
found to be expressed in potato leaves [40] (Supplementary Table S6). Gene expression of five
housekeeping genes 18S rRNA, Cox1-B (X83206.1) [41], EF-1-alpha (AB061263.1) [42], cyclophilin
(AF126551.1) [43], and actin (X55749) was measured and their geometric mean was used to normalize
the gene expression of the 24 test genes. mRNA abundance was log2-transformed and averaged
across replications for each cultivar and treatment combination. The nCounter data was compared
to log2-transformed FPKM for the 24 genes averaged over each cultivar and treatment combination
from the transcriptome sequencing data using Pearson correlation with SYSTAT v. 13 (Systat Software,
San Jose, CA, USA).

3. Results

3.1. Soil Water Content

In irrigated (control) plants, the soil water content (θ) was close to 100% to 96% during the
entirety of the experimental period in the four potato genotypes. In the non-irrigated soil (treatment),
θ decreased by 57% to 55% until day 9, then θ decreased by 76% to 72% until day 16, and finally,
θ decreased by 82% to 86% until the end of treatment (day 21) (Figure 1). The stress was continuous
but gradual for a week followed by two weeks of a more intense water deficit.

http://solanaceae.plantbiology.msu.edu/cgi-bin/annotation_report.cgi
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Figure 1. Volumetric soil water content (θ. % vv) in four genotypes of potato (Cardinal, Desiree, Mije, and
Clone 37 FB). During water stress experiments, plants were grown in pots under greenhouse conditions
(25 ◦C ± 3. 16/8 h day/night photoperiod) and two watering treatments: (Control) well-watered, with
100% to 96% irrigation; and (treatment), a controlled water stress cycle with a 21-day period. The values
are the means ± SD (n = 8; four sensors per block and two per clone).

3.2. Relationship Between Performance Under Water Stress by Plant and Selection of Water Stress
Tolerance Indices

Hierarchical classification using water stress indices separated the genotypes into three groups.
The first group included Clone 37 FB, which was less affected in the yield stability index (YSI); and the
second group included Mije, which was less affected in mean productivity (MP), geometric mean
productivity (GMP), and drought tolerance index (DTI). Finally, a third group included the Desirée
and Cardinal clones that had more similar yield-based indices (Figure 2).

Figure 2. Relations among yield-based selection indices and genotypes of potato. Hierarchical
classification of genotypes of potato using yield-based selection indices during the 2016 season in
a greenhouse.

3.3. Agronomic Characteristic Changes in Potato Plants Under Water Stress

Tables 1–5 show the ANOVA result for the response of the four clones in a greenhouse as a
function of irrigation (control) and cessation of irrigation from the beginning of tuberization (water
stress treatment) (Figure 3).

As shown in Table 1, Clone 37 FB under control conditions produced significantly less fresh tuber
weight (g/plant) than the commercial varieties Desirée and Cardinal, which denotes genetic differences
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between the clones. The fresh weight of tubers (g/plant) in Cardinal and Desirée under water stress
decreased whereas it was increased in Clone 37 FB (Table 1). The differential response on fresh tuber
weight among clones could be due to a larger number of tubers. Using the number of tubers and
fresh tuber weight, the average fresh weight of a tuber (g/tuber) was determined. When subjected to
water stress, Cardinal displayed a decreased average tuber weight and Desirée and Mije did not show
significant differences. In contrast, the effect of water stress on the Clone 37 FB genotype increased
its average tuber weight (Table 2). The dry weight of tubers was also decreased in Cardinal but was
not significantly different for Desirée and Mije and increased for Clone 37 FB. These results show that
the clones vary in water stress tolerance (Table 3). The accumulation of water in the tuber differed
in Clone 37 FB. Under water stress, this clone was able to increase the amount of water in the plant
(Table 4). Plant water content was measured as the sum of the water content in the shoot and roots.
The results show that the genotypes lose water under water stress, with the exception of Clone 37 FB,
which increased its average water content in the plant (shoot + root (g/plant)) (Table 5).

Clone 37 FB was classified as tolerant under conditions of stress treatment as it increased its tuber
fresh weight by 2.5 g/plant and average tuber weight (g/tuber) by 1 g/tuber. In this genotype, the
accumulation of dry matter in the tuber (g/plant) was increased by 0.1 g/plant and the average per
tuber (g/tuber) by 0.1 g/tuber.

The fresh weight increase of Clone 37 FB tubers was correlated with increased water content in the
tuber by 2.5 g/plant. The water content in the tuber and shoot + root presented significant differences
in the genotype Clone 37 FB, increasing, respectively, by 0.9 g/tuber and 5.8 g/plant (Tables 4 and 5).

Table 1. Effects of water stress on the total fresh weight of tubers (g/plant) and response (%) for four
potato genotypes, Cardinal, Desiree, Clone 37 FB, and Mije, under greenhouse conditions (23 ◦C ± 3.
16/8 h day/night photoperiod). The letters indicate the results of the Tukey multiple comparisons
post-hoc test. The same letters after each value indicates that no significant differences were found.

Total Fresh Weight of Tuber

Genotype Control (g/plant) Treatment (g/plant)
Response

(treatment/control) ×
100 (%)

Cardinal 35.1 ± 12.7 Ba 13.4 ± 1.2 Bb 42.24 ± 12.9 A
Desiree 32.5 ± 3.7 Ba 25.7 ± 2.4 Cb 83.15 ± 7.9 A

Mije 24.9 ± 2.1 Ba 24.7 ± 1.4 Ca 99.84 ± 7.4 AB
Clone 37 FB 5.3 ± 0.9 Aa 7.8 ± 1.2 Ab 151.7 ± 45.6 B

Table 2. Effects of water stress on the average fresh weight per tuber (g/tuber) and response (%) for four
potato genotypes, Cardinal, Desiree, Clone 37 FB, and Mije, under greenhouse conditions (23 ◦C ± 3.
16/8 h day/night photoperiod).

Average Fresh Weight of Tubers

Genotype Control (g/tuber) Treatment (g/tuber)
Response

(treatment/control) ×
100 (%)

Cardinal 7.0 ± 2.5 Ba 3.01 ± 0.4 Ab 44.65 ± 9.39 A
Desiree 9.9 ± 2.3 Ca 8.6 ± 0.8 Ba 92.43 ± 18.23 A

Mije 3.2 ± 0.3 ABa 2.8 ± 0.1 Aa 88.77 ± 13.5 A
Clone 37 FB 1.6 ± 0.3 Aa 2.6 ± 0.4 Ab 165.3 ± 38.2 B
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Table 3. Effects of water stress on the average dry weight per tuber (g/tuber) and response (%) for four
potato genotypes, Cardinal, Desiree, Clone 37 FB, and Mije, under greenhouse conditions (23 ◦C ± 3.
16/8 h day/night photoperiod). The letters indicate the results of the Tukey multiple comparisons
post-hoc test. The same letters after each value indicates that no significant differences were found.

Average Dry Weight of Tubers

Genotype Control (g/tuber) Treatment (g/tuber)
Response

(treatment/control) ×
100 (%)

Cardinal 1.5 ± 0.7 ABa 0.7 ± 0.1 Aa 53.61 ± 21.32 A
Desiree 2.1 ± 0.7 Ba 1.7 ± 0.4 Bb 93.60 ± 18 A

Mije 0.5 ± 0.1 Aa 0.6 ± 0.04 Aa 121.15 ± 26.74 A
Clone 37 FB 0.2 ± 0.1 Aa 0.3 ± 0.1 Aa 64.83 ± 75.02 A

Table 4. Effects of water stress on the average water content per tuber (g/tuber) and response (%)
for four potato genotypes, Cardinal, Desiree, Clone 37 FB, and Mije, under greenhouse conditions
(23 ◦C ± 3. 16/8 h day/night photoperiod). The letters indicate the results of the Tukey multiple
comparisons post-hoc test. The same letters after each value indicates that no significant differences
were found.

Average Water Content of Tubers

Genotype Control (g/tuber) Treatment (g/tuber)
Response

(treatment /control) ×
100 (%)

Cardinal 5.5 ± 2.4 ABa 2.3 ± 0.4 Aa 44.20 ± 10.10 A
Desiree 7.8 ± 2.0 Ba 6.8 ± 0.4 Ba 93.25 ± 21.1 A

Mije 2.7 ± 0.3 Aa 2.2 ± 0.1 Aa 82.98 ± 15.64 A
Clone 37 FB 1.4 ± 0.4 Aa 2.3 ± 0.5 Aa 179.65 ± 54.09 B

Table 5. Effects of water stress on the average water content of shoot + root (g/tuber) and response
(%) for four potato genotypes, Cardinal, Desiree, Clone 37 FB, and Mije, under greenhouse conditions
(23 ◦C ± 3. 16/8 h day/night photoperiod). The letters indicate the results of the Tukey multiple
comparisons post-hoc test. The same letters after each value indicates that no significant differences
were found.

Average Water Content of Shoot + Root

Genotype Control (g/tuber) Treatment (g/tuber)
Response

(treatment /control) ×
100 (%)

Cardinal 12.02 ± 2.9 Aa 8.5 ± 2.9 ABa 71.59 ± 22.67 A
Desiree 23.6 ± 6.1 Ba 14.7 ± 2.8 Cb 64.17 ± 12.66 A

Mije 6.3 ± 1.4 Aa 4.2 ± 1.9 Ab 57.13 ± 24.74 A
Clone 37 FB 6.1 ± 0.7 Aa 11.9 ± 1.5 BCa 196.81 ± 44.66 B
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Figure 3. Comparative effects of water stress 21 days after the beginning of tuberization in two varieties, Cardinal and Desirée, and two landraces, Mije and Clone
37 FB, under greenhouse conditions (23 ◦C ± 3. 16/8 h day/night photoperiod).
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3.4. Gas Exchange in Potato Plants Under Water Stress

Gas exchange decreases as water stress increases, and stomatal conductance (gs) was the first to
be affected by this type of stress in the clones evaluated (Figure 4). The Cardinal genotype, during the
three weeks of evaluation, had reduced stomatal conductance, showing closure of stomata in the face of
water stress. In contrast, the response of Desiree and Mije was to maintain their stomatal conductance
during the first two weeks of stress by keeping their stomata open even under water stress. Finally,
Clone 37 FB decreased stomatal conductance on the second week of stress (Figure 4a–d).

Figure 4. Profile of stomatal conductance (gs) (mmol m−2 s−1) measured once per week for three
weeks of water stress in four potato genotypes, (a) Cardinal and (b) Desiree, (c) Mije, and (d) Clone
37 FB genotypes, under greenhouse conditions (23 ◦C ± 3. 16/8 h day/night photoperiod). (*** shows
differences between treatments).

3.5. Transcriptome Sequencing Reveals Water Stress Responsive Genes

Differences in gene expression were found with water stress treatment for all clones (Figure 5
and Supplementary Tables S2–S5). Desirée had the largest number of differentially expressed genes at
1867, followed by Clone 37 FB at 1179 and Mije at 1010, with Cardinal with the fewest at 101. Venn
diagrams of differentially expressed genes from CuffDiff show that the largest number of genes up- and
downregulated in a given clone is unique for that clone (Figure 5). These results show gene expression
responses are dependent on genetic variation between clones. Clone 37 FB and Mije showed similar
upregulation for 117 genes and downregulation for 85 genes. Both of these clones had even higher
numbers of up- and downregulated genes in common with Desirée, with 439 with Clone 37 FB and 450
with Mije. Cardinal had fewer differentially expressed genes compared with the other clones and a
small number of genes overlapping in expression.
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Figure 5. Venn diagram of differentially expressed genes. Up- and downregulated genes with water
stress for each of the cultivars were compared.

The functional annotation of differentially expressed genes were analyzed using GO
annotations (Figure 6). Cardinal had a high susceptibility to water stress and the fewest gene expression
changes, as such there were very few GO terms showing enrichment. All of the GO terms for Cardinal’s
upregulated genes were also enriched for Cardinal’s downregulated genes. The GO term 3’,5’-exonuclease
activity was enriched in Cardinal’s downregulated genes but not upregulated. Genes annotated with
this term are involved in DNA repair.

Desirée had the highest number of differentially expressed genes and the term with the highest
GO enirichment score was “ATP binding” for downregulated genes (Figure 6b). Many of these genes
were kinases that were involved in intracellular signaling (Supplementary Table S3). Additionally,
both up- and downregulated genes showed an enrichment of GO terms associated with the regulation
of gene expression, which supports the observation that Desirée had a strong gene expression response
to water stress. Desirée showed upregulation of genes involved in the biosynthesis of polyamines (GO
terms “polyamine biosynthetic process” and ‘carboxyl and carboxyltransferase activity”) associated
with stress responses. Downregulated genes were found to be enriched for the GO term” nitrate
assimilation”, which was likely due to decreased nitrate uptake under a water deficit. The GO term
“shikimate metabolic process” was also enriched among downregulated genes. The shikimate pathway
is involved in amino acid biosynthesis.

Mije had a tolerance to water stress and was found to have enrichment of the GO term
“sequence-specific DNA binding” associated with transcription factor genes for both up- and
downregulated genes, indicating changes in gene expression were induced with stress (Figure 6c
and Supplementary Table S4). Genes upregulated for Mije were enriched for GO terms “primary
amine oxidase activity”, “amine metabolic process”,”carbohydrate binding”, and “carboxyl- or
carbomoyltransferase activity” that included genes involved in S-adenosyl methionine polyamine
biosynthesis, which is increased in response to stress in plants. S-adenosylmethionine was also involved
in functions covered by the GO term “S-adenosylmethionine-homocysteine S-methyltransferase
activity”, which was also enriched for Mije upregulated genes. This enzyme functions in the synthesis
of methionine from S-adenosyl methionine. The GO analysis indicates that S-adenosylmethionine
metabolism was important in Mije responses to water stress. Downregulated genes for Mije were enriched
with the term “nitrate assimilation”, which is likely associated with the decreased nitrate uptake that
occurs under water stress. Decreased amino acid biosynthesis was also noted. The GO term “response
to hormone” was enriched among the downregulated genes, which included several genes involved in
auxin and ethylene responses (Supplementary Table S4). Fatty acid biosynthesis was also found to be
downregulated with water stress with the enrichment of the GO term “fatty acid biosynthesis.”

Clone 37 FB was the clone with the highest tolerance to water stress in the study. Like Mije and
Desirée, there was enrichment of the GO term “sequence specific DNA binding” associated with



Agronomy 2019, 9, 848 12 of 18

transcription factors in both up- and downregulated genes (Figure 6d and Supplementary Table S5).
These results concur with the large number of differentially regulated genes with water stress in Clone
37 FB. There were several GO terms associated with inositol that were enriched among the upregulated
genes. The GO terms “inositol biosynthetic process,” “inositol 1,3,4-trisphosphate 6-kinase activity”,
“inositol 1,3,4-trisphosphate 5-kinase activity”, and “inositol tetrakisphosphate 1-kinase activity” were
associated with the production of inositol intracellular signaling molecules. The GO term “inositol
biosynthetic process” was also associated with biosynthesis of galactinol and raffinose, which are
osmolytes involved in abiotic stress tolerance in plants. The GO term “response to dessication” was
also enriched among the upregulated genes. Interestingly, only clone 37 FB showed enrichment for
this term. Genes upregulated in Clone 37 FB related to desiccation responses include dehydrins, LEA,
and ABA response genes (Supplementary Table S5). The downregulated genes for clone 37 FB showed
high enrichment for the GO term “ATP binding.” This was due to the large number of kinase genes
found among the downregulated genes. GO terms for downregulated genes were also associated with
DNA replication and several were associated with amino acid metabolism, including “L-phenylalanine
catabolic process”, “proline catabolic process”, “L-serine biosynthetic process”, and “L-aspartate
oxidase activity.” Additionally, the GO term “nitrate assimilation” was also enriched among the
downregulated genes similarly to Desirée and Mije, which concurs with the decrease in amino acid
biosynthesis (Supplementary Table S5).

Genes involved in plant defense were differentially expressed in all clones (Supplementary
Table S2–S5). Annotations carrying the keyword “resistance” were searched for in the gene lists
to find resistance genes. The keywords “pathogenesis”, “glucanase”, “osmotin”, and “thaumatin”
were searched for in the gene lists for each of the clones to find pathogenesis-related genes. Water
stress-susceptible Cardinal downregulated six disease resistance genes and one pathogenesis-related
gene with no genes upregulated. Desirée upregulated three disease resistance genes and nine
pathogenesis-related genes. This clone also downregulated 17 disease resistance genes and 11
pathogenesis-related genes. The moderately water stress tolerant clone, Mije, showed downregulation
of six disease resistance genes and none were upregulated. There were also 15 upregulated
pathogenesis-related genes and three downregulated. The highly water stress-tolerant clone 37 FB
showed upregulation of one disease resistance gene and downregulation of three. For this clone,
two pathogenesis-related genes that were upregulated and 24 genes were downregulated. These
results show that downregulation of pathogen defense genes was associated with water stress in all
the clones.

Heat shock proteins are chaperone proteins that contribute to protein stability under stress.
Cardinal showed upregulation of a single heat shock protein gene. However, the other clones had more
extensive differential expression of heat shock protein genes (Supplementary Table S2–S5). Desirée
upregulated 31 heat shock protein genes and downregulated two. Mije upregulated 33 heat shock
protein genes with none being downregulated. Clone 37 FB upregulated five and also downregulated
another five.
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Figure 6. GO term enrichment. topGO was used to analyze the enrichment of GO terms for up- and
downregulated genes for (a) Cardinal, (b) Desirée, (c) Mije, and (d) Clone 37 FB.

3.6. nCounter Validation

Gene expression analysis for 24 random genes previously found to be expressed in leaves [40]
was examined using nCounter and compared to FPKM from the transcriptome sequencing analysis.
The analysis demonstrated that there was a positive correlation between the gene expression measured
using transcriptome sequencing and nCounter (Figure 7). These results are a validation of the
transcriptome sequencing FPKM measures of gene expression.
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Figure 7. Correlation between gene expression measured using transcriptome sequencing and the
nCounter Digital Analyzer. Pearson correlation of the log2 differences between FPKM and nCounter
Digital Analyzer measurements for the 24 genes.

4. Discussion

The results showed that clone 37 FB had a tolerance to water stress and even had increases in
tuber fresh weight under stress. Cardinal was the most susceptible, with the greatest loss of fresh
tuber weight. Desirée was less susceptible and even moderately tolerant on some measures of tuber
yield. Mije had moderate tolerance, with a maintenance of tuber fresh weight compared to Cardinal
but was much less tolerant than clone 37 FB. The effects of water stress in potato have been widely
studied at the phenotypic and physiological level [44–46], which includes analysis at the level of gene
expression [18,47]. In our study, two landraces with tolerance to water stress in vitro [22] from southern
Chile were analyzed for water stress tolerance in the greenhouse and, for the first time, RNAseq was
used along with two commercial varieties the findings show differentially expressed genes in the
tissue of leaf of plants grown under optimal irrigation compared to water-deficit conditions in the
greenhouse. Our results show a similarity to published studies, including differential expression of
genes involved in osmolyte and polyamine biosynthesis, LEA and dehydrin genes, transcriptional
regulation factors, kinases, and genes controlling amino acid biosynthesis.

Cardinal was the most susceptible to water stress and was found to have reduced stomatal
conductance (gs). There are many pathways that induce stomatal closure, which has negative effects
on CO2 absorption, photosynthesis, transpiration, cooling, and water [48]. These pathways can be
divided into hydro-passive and active stomatal closure [48]. In the case of the cultivated potato, several
studies have shown that gas exchange is significantly affected by water deficit. Cardinal also had the
least number of differentially expressed genes compared to other clones. These results suggest that
susceptible responses to water stress do not require large changes in gene expression.

The current study found that clone 37 FB plants responded tolerantly to water stress in the
greenhouse. The results showed a moderate increase in tuber weight, water accumulation, and dry
biomass under water stress. Clone 37 FB also had a low tuber yield under the control irrigated
conditions compared to the other clones. The low allocation of resources to tuber production may have
contributed to its tolerance to the water stress applied to clone 37 FB. There was evidence to support this
hypothesis from the differential gene expression analysis. The GO enrichment analysis demonstrated
that clone 37 FB increased the expression of genes involved in response to desiccation, including genes
encoding LEA and dehydrin proteins that accumulate with water deficit [49]. This clone also increased
the expression of genes involved in the biosynthesis of osmolytes, which are protective against drought
stress [50]. These functions likely contributed to the comparatively increased capacity to tolerate water
stress for clone 37 FB.

Desirée was found to be the most similar to Cardinal using yield-based indices for comparison.
However, the similarities may be based more on tuber size rather than the percentage of tuber
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weight loss under water stress. Tuber weight loss under water stress for Desirée was moderate and
in a similar range as Mije. The total loss of tuber weight was higher for Desirée, but the average
loss of weight per tuber was higher for Mije. The functional analysis also showed similarities in
enriched GO terms between Desirée and Mije, including the upregulation of genes involved in tthe
production of polyamines involved in stress responses [51]. Clone 37 FB, Desirée, and Mije shared
enrichment of the GO term “nitrate assimilation” among downregulated genes. These clones also
showed downregulation of genes involved in amino acid biosynthesis. These results concur with
findings that a water deficit is associated with a nitrogen nutrient deficit, leading to reduced amino
acid biosynthesis [52].

Biotic stress responses were also altered under water stress in the four clones. The results showed
that all of the clones had decreased defense responses to pathogens under water stress. All clones showed
decreased expression of disease resistance (R) genes. R genes are involved in pathogen recognition in
eliciting plant defense [53]. Cardinal showed the highest proportion of downregulated R genes, with
6 out of a total of 101 differentially expressed genes. Differential expression of pathogenesis-related
genes that encode anti-microbial proteins [54] was also observed. Clone 37 FB had the largest number
of downregulated pathogenesis-related genes at 24, but also upregulated two. Desirée up- and
downregulated nine pathogenesis related genes each. Mije downregulated one and upregulated 15.
Cardinal had one downregulated pathogenesis-related and none were upregulated. These results
suggest that reduced pathogenesis responses may be related to an increased capacity for tolerance to
water stress. A reduced pathogenesis response can save cellular energy and resources for repartitioning
to counter damage induced by abiotic stress.

Heat shock proteins function to maintain protein folding and stability under stress [55].
Interestingly, Cardinal, which was the most susceptible to water stress, showed differential expression
of just one heat shock protein gene while the other clones showed differential expression of several
genes with this function. For Desirée and Mije, most of the heat shock genes were upregulated with
water stress and few were downregulated. Clone 37 FB had similar numbers of heat shock genes
showing up- and downregulation. These results suggest that there is a role for heat shock proteins in
maintaining cellular function under stress, particularly for Desirée and Mije. The results also suggest
that Cardinal’s lack of a heat shock protein response may be related to it susceptibility and low tuber
yield under water stress.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/12/848/s1.
Table S1 Raw sequencing statistics. Table S2 List of differentially expressed genes in the Cardinal clone. Table S3
List of differentially expressed genes in the Desiree clone. Table S4 List of differentially expressed genes in the Mije
clone. Table S5 List of differentially expressed genes in the Clone 37 FB clone. Table S6 nCounter CodeSet probes.
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