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On a Thermostated Kac Model with
Rescaling
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Abstract. We introduce a global thermostat on Kac’s 1D model for the
velocities of particles in a space-homogeneous gas subjected to binary col-
lisions, also interacting with a (local) Maxwellian thermostat. The global
thermostat rescales the velocities of all the particles, thus restoring the
total energy of the system, which leads to an additional drift term in the
corresponding nonlinear kinetic equation. We prove ergodicity for this
equation and show that its equilibrium distribution has a density that,
depending on the parameters of the model, can exhibit heavy tails, and
whose behaviour at the origin can range from being analytic, to being Ck,
and even to blowing-up. Finally, we prove propagation of chaos for the
associated N -particle system, with a uniform-in-time rate of order N−η

in the squared 2-Wasserstein metric, for an explicit η ∈ (0, 1/3].
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1. Introduction

1.1. Thermostated Kac Model

In 1956, Marc Kac [22] introduced a space-homogeneous dynamics for a collec-
tion of N identical particles with one-dimensional velocities v = (v1, . . . , vN ) ∈
R

N , undergoing binary collisions. It can be described as follows: select two par-
ticles i �= j at random, and update their velocities according to the rule

(vi, vj) �→ (v′
i, v

′
j) = (vi cos θ − vj sin θ, vi sin θ + vj cos θ), (1)
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for θ chosen randomly and uniformly on [0, 2π). This rule preserves the total
energy, i.e. (v′

i)
2 + (v′

j)
2 = v2

i + v2
j . Particles evolve continuously with time

t ≥ 0 by iterating (1), where the times between collisions are independent and
exponentially distributed with parameter λN ; thus, every particle undergoes
2λ collisions per unit of time on average. This is known as Kac’s model, and
the above procedure produces a pure-jump Markov process on R

N , called
the particle system; we denote fN

t the probability distribution of the particle
system at time t ≥ 0. Note that the total energy of the system

∑
i v2

i is
preserved; thus, if the vector of initial velocities belongs to SN−1(

√
NE) :=

{v ∈ R
N :

∑
i v2

i = NE}, for some fixed energy E > 0, then fN
t is supported

on SN−1(
√

NE) for all t ≥ 0.
Assume that the family of initial distributions (fN

0 )N∈N is symmetric
and chaotic with respect to some probability measure f0 on R, that is, for
any fixed k, the marginal distribution of fN

0 in the first k variables converges
weakly, as N → ∞, to f⊗k

0 . In other words, initially, any fixed number of
particles becomes asymptotically independent and f0-distributed, as the total
number of particles grows. Assuming that f0 has a density, Kac proved that
this property is propagated to later times by the dynamics: for all t ≥ 0, the
family (fN

t )N∈N is symmetric and chaotic with respect to the density ft, which
is the solution to the so-called Boltzmann–Kac equation:

∂tft(v) = 2λ
∫

R

∫ 2π

0

[ft(v′)ft(v′
∗) − ft(v)ft(v∗)]

dθ

2π
dv∗. (2)

This property is now termed propagation of chaos, and it has been extensively
studied during the last decades, for this and other related kinetic models, see
for instance [11,14,23,24].

Call σN the uniform distribution on SN−1(
√

NE), and assume that fN
0

is supported on SN−1(
√

NE) and has a density with respect to σN . Then, for
all t ≥ 0, fN

t also has a density with respect to σN , and the particle system is
ergodic in L1(SN−1(

√
NE), σN ), having 1 as the unique equilibrium distribu-

tion. Kac initially worked in L2(SN−1(
√

NE), σN ) and conjectured that there
is a spectral gap bounded below uniformly in N . This conjecture was proven
by Janvresse in [21] and the gap was computed explicitly by Carlen, Carvalho,
and Loss in [9]. Since convergence in L2 gives a crude upper bound to conver-
gence in L1, the relative entropy

∫
SN−1(

√
NE)

fN
t log fN

t σN (dv) was studied.
The best known convergence results for the relative entropy are exponential
with rate of order 1/N . To ensure fast convergence to equilibrium in L1, the
authors in [6] looked for systems close to equilibrium. More specifically: for
a larger system of N particles (where N 	 N 	 1), they considered initial
states of the form fN

0 (v) = lN (v1, . . . , vN )
∏N

j=N+1 γ(vj), where lN is a density
on L1(RN ), and

γ(w) = (2πT )−1/2e−w2/(2T ) (3)
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is the Gaussian at a fixed temperature T . They argued heuristically that for the
first N particles in the system, this effectively works as an external thermostat.
Thus, they introduced the thermostated Kac model for a system of N particles,
in which, in addition to the collisions mentioned above, every particle interacts
with a thermostat at a rate μ. That is: when the thermostat acts on particle
i ∈ {1, . . . , N}, its velocity vi gets replaced by vi cos θ−w sin θ, and the rest of
the velocities are not affected. Here, w is chosen independently and randomly
with density γ(w), and θ is again chosen uniformly on [0, 2π). We will refer to
this rule as the weak thermostat. As in Kac’s original model, propagation of
chaos also holds in this case, as first shown in [6]; see also [16] for a quantitative
result.

In this paper, we consider the strong thermostat, also known as the An-
dersen thermostat and as the Maxwellian thermostat, which, when acting on
particle i, simply replaces velocity vi by w, sampled with density γ. The cor-
responding nonlinear limit equation in this case is

∂tft(v) = 2λ
∫

R

∫ 2π

0

[ft(v′)ft(v′
∗) − ft(v)ft(v∗)]

dθ

2π
dv∗ + μ[γ(v) − ft(v)].

(4)

We note that the strong thermostat is related to the weak one through a van
Hove limit, see [29] for details.

Interactions with the (weak or strong) thermostat no longer preserve the
total energy, thus the velocity distribution for the system is supported on
the whole space R

N . This model is ergodic in L1(RN ) and has the Gaussian
∏N

i=1 γ(vi) as its unique equilibrium distribution. The density fN
t converges ex-

ponentially fast to equilibrium in relative entropy
∫
RN fN

t log(fN
t /

∏
i γ(vi))dv

with an exponent bounded below uniformly in N ; see [6]. We mention that
the argument behind the model with thermostats was made rigorous in [4]
as a mean-field limit of finite-reservoir systems using the L2 metric and the
Fourier-based Gabetta–Toscani–Wennberg metric d2. Studying the conver-
gence to equilibrium for the finite-reservoir system is not a simple problem
(see [5]).

1.2. Global Thermostats and Rescaling

The thermostats mentioned above act locally, in the sense that their action on
one particle is not connected to their action on the rest of the particles. In this
work, we plan on introducing global thermostats to Kac’s model which affect
the velocities of all the particles of the system in a connected way. An example
of a global thermostat is the Gaussian isokinetic thermostat (see [10], [25]).
In [3], this global thermostat was applied to a space-dependent particle model
with an external electric field, where it prevented the energy of the system
from growing to infinity and introduced non-equilibrium steady states.

Another kind of global thermostat is obtained by rescaling the velocity
of each particle after an interaction against the external source, thus keeping
the energy of the system constant. Global thermostats with rescaling have
been used in molecular dynamics. An example is the Berendsen thermostat [2]
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which was used to study particle systems that have temperature and pressure
as controllable parameters, instead of the total energy and volume (see [7] and
references therein).

In this work, we will consider the Kac particle system coupled to the
strong thermostat where, in addition, we allow the system to restore its total
energy towards NE by introducing a rescaling mechanism on this model (hence
making our thermostats global). One of our motivations for introducing this
model is to obtain a system that retains some of the nice equilibration features
of the (locally) thermostated particle system, while keeping the energy of the
system closer to its initial value, as in the original Kac model.

More specifically, one rescaling mechanism that we will consider is the
following: after a strong thermostat interaction of particle i against a sample
w taken from the Gaussian distribution (3), the velocity of every particle in
the system is multiplied by the factor

αN (vi, w) =

√
NE

NE − v2
i + w2

. (5)

This has the effect of keeping the total energy
∑

i v2
i constant and equal to NE

almost surely. The corresponding finite particle system is defined rigorously
through its generator in (54) in the Appendix. We remark that we will mostly
be working with a particle system defined using a slightly different rescaling
factor, see (11). In the sequel, we will use the term thermostat to refer to the
local thermostat dynamics described by (4), while the term global thermostat
will refer to the rescaling mechanism.

Note that, for N large, the factor αN (vi, w) becomes approximately 1;
making the effect of rescaling after a single thermostat interaction negligible.
However, since there are order N such interactions on every finite time interval,
the effect of the rescaling mechanism survives as N → ∞, giving rise to an
additional drift term in (4), namely −μE−T

2E ∂v(vft(v)). This argument will be
made rigorous in Lemma 23. The Kac and thermostat interactions produce
the same terms as in (4). Consequently, the corresponding candidate limit
equation for our thermostated Kac model with rescaling is

∂tft(v) = 2λ
∫

R

∫ 2π

0

[ft(v′)ft(v′
∗) − ft(v)ft(v∗)]

dθ

2π
dv∗

+ μ[γ(v) − ft(v)] − A∂v(vft(v)),
(6)

for the collection (ft)t≥0 of probability densities on R, where we introduced
the constant

A = μ
E − T

2E
.

The present paper can be seen as a continuation of our previous work [16],
where we used similar tools to make quantitative the propagation of chaos re-
sult for the thermostated Kac model (without rescaling) in [6]. Here, the main
objects of study are the thermostated finite particle system with rescaling
and its corresponding kinetic equation (6). To the best of our knowledge, the
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rescaling mechanism and its associated drift term are new in the context of
Kac-type kinetic models. The drift term in (6) has the effect of taking the
energy of ft towards E, see Theorem 5. We remark that, apart from the phys-
ical motivation explained above, the nonlinear equation (6) is mathematically
interesting on its own. Indeed, as we shall see, the equation is contractive and
admits an equilibrium density having properties that differ from those of the
Gaussian: it can exhibit heavy tails or explosion at the origin, depending on
the parameters λ, μ, E, and T .

1.3. Main Results

Our main results concern the convergence properties of the nonlinear equation
(6), and the propagation of chaos for its corresponding particle system. We will
use the following distance to quantify convergence: given ν and ν̃ probability
measures on R

k, their 2-Wasserstein distance is given by

W2(ν, ν̃) =

(

inf E

[
1
k

k∑

i=1

|Xi − Yi|2
])1/2

, (7)

where the infimum is taken over all couplings of ν and ν̃, that is, over all
random vectors X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) defined on some
common probability space, such that Law(X) = ν and Law(Y) = ν̃. We follow
the convention of using the normalizing factor 1

k to simplify the dependence on
dimension. The infimum in (7) is always achieved by some (X,Y), and such a
pair is called an optimal coupling, see [30] for details.

Regarding the nonlinear equation (6), we are interested in its stability
properties, which we study in Sect. 2. We define a notion of weak solution
for continuous functions of t ≥ 0 taking values in the space of probability
measures, and we prove the existence and uniqueness of a solution (ft)t≥0

with bounded energy, see Definition 4 and Theorem 5. In Lemma 7, we prove
the stability of the rth-moments of ft, for all r > 2 satisfying

rA < 2λCr + μ, (8)

where Cr := 1 − 2
∫ 2π

0
|cos θ|r dθ

2π > 0 (note that there always exists such an
r > 2, as long as 2λ + μ > 0). The existence of an equilibrium distribution
and its main properties are stated in the following result, proven at the end of
Sect. 2:

Theorem 1 (equilibrium distribution). Let 2λ + μ > 0. There exists a proba-
bility measure f∞ on R with energy E, such that limt→∞ ft = f∞ weakly, for
any (ft)t≥0 weak solution of (6) having bounded initial energy. Moreover,

W2(ft, f∞) ≤ W2(f0, f∞)e− μT
2E t,

and f∞ is the unique stationary weak solution of (6). Moreover, f∞(dv) has a
density, denoted by f∞(v), that has the following properties:

(i) f∞ is even and monotone decreasing on (0,∞).
(ii)

∫
R

f∞(v)|v|rdv < ∞ if and only if r satisfies condition (8).
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(iii) f∞ ∈ C∞(R\{0}), and satisfies for all v ∈ R\{0}:
A∂v(vf∞(v)) = 2λ(B2[f∞, f∞](v) − f∞(v)) + μ[γ(v) − f∞(v)]. (9)

(iv) Regarding the behaviour of f∞ at the origin, we have: for any integer
p ≥ 0, f∞ ∈ Cp(R) if and only if

T

E
< 1 +

2
p + 1

(
μ

2λ + μ

)−1

. (10)

Consequently, if T
E ≥ 1+2

(
μ

2λ+μ

)−1

, then limv→0 f∞(v) = ∞. Moreover,
if E ≥ T , then f∞ is analytic. This also holds for non-integer p > 0, if
we interpret the statement f∞ ∈ Cp(R) as

∫
R

|f̂∞(ξ)||ξ|p dξ < ∞, where
f̂∞ denotes the Fourier transform of f∞.

Note that parts (ii) and (iv) of this theorem imply that unless we have
E = T or μ = 0 (in which case f∞ = γ), there are two cases: either f∞ does
not have finite moments of high order (case E > T ), or f∞ cannot have too
many derivatives at the origin (case E < T ). We summarize the smoothness
properties of f∞ at the origin in Fig. 1.

In Sect. 3, we turn to the study of the particle system associated with
(6) and its propagation of chaos property. Unfortunately, the rescaling factor
αN (vi, w) in (5) is hard to handle mathematically, since it takes large values
on sets where some v2

i is close to NE. Consequently, for the particle system
with αN as the rescaling factor, we could only prove propagation of chaos at
the level of the generators, see Lemma 23. In order to obtain a more tractable
particle system, we will consider a different rescaling factor, namely

βN (w) =

√
NE

NE − E + w2
, (11)

which is obtained from αN (vi, w) by replacing v2
i by its expected value E.

We call1 Vt = (V 1
t , . . . , V N

t ) the Markov process with Kac and thermostat
interactions, rescaled using βN , as described in Sect. 1.2; see (35) in Sect. 3
for an explicit construction using an SDE with respect to a Poisson point
measure. Even though this particle system no longer preserves the total energy
exactly, the expected total energy is preserved, see Lemma 16. We also prove
a contraction property in Lemma 15, and deduce equilibration in Lemma 17.

Before we state our second main result, let us recall the following char-
acterization of chaoticity, see [26, Proposition 2.2] for details: for fixed t ≥ 0
the collection (fN

t )N∈N, with fN
t = Law(Vt), is ft-chaotic if and only if the

empirical (random) measure of the system

V̄t :=
1
N

N∑

i=1

δV i
t

converges weakly to the (non-random) measure ft.

1We do not make explicit the dependence of the particle system on the number of particles
N . Also, we use superscripts for the particles’ indexes.
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Figure 1. Phase diagram for the smoothness of f∞ at the
origin

Theorem 2 (propagation of chaos). Fix r > 2 such that condition (8) is sat-
isfied, and assume that

∫ |v|rf0(dv) < ∞. Then, there is a finite constant C
depending only on λ, μ, E, T , r, and

∫ |v|rf0(dv), such that for all t ≥ 0 we
have:

E[W 2
2 (V̄t, ft)] ≤ 4e− μT

E tW 2
2 (fN

0 , f⊗N
0 ) + C

⎧
⎪⎨

⎪⎩

N−1/3, r > 4,

N−1/3(log N)2/3, r = 4,

N− r−2
2(r−1) , r ∈ (2, 4).

(12)

Thus, this result, proved in Sect. 3, establishes the propagation of chaos
for the thermostated Kac particle system with rescaling, with an explicit
uniform-in-time rate of order N−1/3 in expected squared 2-Wasserstein dis-
tance, when

∫ |v|rf0(dv) < ∞ and condition (8) is satisfied for some r > 4.
This is not so far from the optimal general rate N−1/2, valid for the expected
squared 2-Wasserstein distance between the empirical measure of an i.i.d. se-
quence and its common law, see [18, Theorem 1].

To obtain an explicit chaos rate, one needs to ensure that the initial condi-
tion term W2(fN

0 , f⊗N
0 )2 converges to 0 as N → ∞, hopefully with rate N−1/3
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or faster. For instance, one can simply take fN
0 = f⊗N

0 , thus W2(fN
0 , f⊗N

0 ) = 0.
However, we would like Theorem 2 to be useful when the initial distributions
fN
0 are supported on the sphere SN−1(

√
NE), as it is commonly considered in

the literature of Kac-type models. One method of obtaining such an f0-chaotic
sequence, used for instance in [11,12], is to condition f⊗N

0 to the sphere; see
for instance [20, Theorem 1.5] and [13, Equation (5.33)] for a specific rate.

In our next result, we provide an alternative approach, based on scaling.
Specifically: given a probability measure f on R satisfying

∫
v2f(dv) = E, take

a random vector X = (X1, . . . , XN ) with distribution f⊗N , and define

fN = Law(Y), with Y = (Y1, . . . , YN ) given by Yi =

(
E

1
N

∑
j X2

j

)1/2

Xi

(13)

on the event
∑

i X2
i > 0, while on the event

∑
i X2

i = 0 the vector Y is defined
as some given exchangeable random vector taking values on SN−1(

√
NE),

independent of X (its particular distribution is irrelevant). By construction,
fN is supported on the sphere SN−1(

√
NE).

The following theorem provides a quantitative chaoticity estimate valid
for general measures; its proof is given at the end of Sect. 3. To state our
result, we introduce the following: given N ∈ N and a probability measure f
on R, define

εN (f) = EW2(X̄, f)2, (14)

where X = (X1, . . . , XN ) has distribution f⊗N , and X̄ = 1
k

∑k
i=1 δXi is its

(random) empirical measure. The best available rates of convergence for εN (f)
are found in [18, Theorem 1], which we present in our setting in (44); we use
these estimates in the theorem below. We remark that the scaling procedure
(13) and the main idea of the proof are already present in [17, Lemma 25] and
[14, eq. (20)], where explicit rates of chaoticity for the uniform measures on
spheres towards the Gaussian are obtained.

Theorem 3. Let f be a probability measure on R with
∫

v2f(dv) = E and
having finite rth-moment for some r > 2. Then, (fN )N∈N given by (13) is a
sequence of distributions supported on the sphere SN−1(

√
NE) which is chaotic

to f . Moreover, we have

W 2
2 (fN , f⊗N ) ≤ εN (f).

Consequently (see (44)), we obtain the following quantitative rate: there exists
a constant C depending only on r and

∫ |v|rf(dv), such that

W2(fN , f⊗N )2 ≤ C

⎧
⎪⎨

⎪⎩

N−1/2, r > 4,

N−1/2 log(N), r = 4,

N−(1− 2
r ), r ∈ (2, 4).

We stress the fact that the scaling (13) and the statement of Theorem 3
make no assumptions about f , except that it has a finite rth-moment for some
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r > 2. In particular, f is not assumed to have a density, which is required
to even define the conditioned tensor product. We also note that the chaotic-
ity estimate we provide is a “strong” one, in the sense that it compares the
full distributions fN and f⊗N , instead a fixed number of marginals, or the
empirical measure of a sample of fN against f , as in Theorem 2.

1.4. Plan of the Paper

Our proofs use both analytic and probabilistic tools. The proof of the main
properties of the equilibrium distribution f∞, stated in Theorem 1, relies on
the Fourier transform. To obtain our contraction and chaoticity estimates in
Wasserstein distance, we will make use of probabilistic coupling arguments.
Most notably, in Sect. 2 we will introduce the Boltzmann process,2 a stochastic
process having marginal laws equal to ft, and use it throughout the rest of the
paper to prove many of our convergence results.

We remark that our results also hold true in the case of the more physical
weak thermostat mentioned above. Most of the proofs can be easily adapted
to this case. However, some intermediate lemmas, such as Lemma 21, become
quite technical. To keep the exposition simple, we chose to work with the
strong thermostat.

The structure of the paper is as follows: in Sect. 2, we study the nonlinear
equation (6) and its properties. In Sect. 3, we study the particle system and
prove the propagation of chaos. Finally, in the Conclusion we mention some
open problems. The proofs of some technical lemmas are left to the Appendix.

2. Analysis of the Nonlinear Equation

2.1. Well-Posedness

In this section, we study the well-posedness of (6) and its main properties.
We now introduce some useful notation. Let B(R) denote the space of signed,
finite Borel measures, and define the mapping B2 : B(R) × B(R) → B(R) via
the equation

∫

R

B2[ν, ν̃](dv)φ(v) =
∫

R

∫

R

∫ 2π

0

φ(v cos θ + v∗ sin θ)
dθ

2π
ν(dv)ν̃(dv∗), (15)

for all continuous and bounded functions φ and all ν, ν̃ in B(R). We note that
B2[·, ·] is a symmetric bilinear form on B(R) satisfying ‖B2[ν, ν̃]‖ ≤ ‖ν‖‖ν̃‖,
where ‖·‖ denotes the total variation norm. B2 has the following monotonicity
property for non-negative measures:

ν ≤ ν̃ ⇒ B2[ν, ν] ≤ B2[ν̃, ν̃],

where the inequality ν ≤ ν̃ means ν(A) ≤ ν̃(A) for all measurable set A. If
ν, ν̃ have densities f(v), g(v) ∈ L1(R), then B2[ν, ν̃] also has a density which

2The term “Boltzmann process” is typically used in the context of the Boltzmann equation.
We will use the same name for our thermostated Kac model with rescaling.
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we also denote by B2[f, g]. In this case, B2[f, g] satisfies

B2[f, g](v) =
∫

R

∫ 2π

0

f(v′)g(v′
∗)

dθ

2π
dv∗.

Recall that A = μE−T
2E , γ(w) = (2πT )−1/2e−w2/(2T ) is the thermostat distri-

bution at temperature T , and E > 0 is the average 1-particle energy in our
system. Thus, our nonlinear equation (6) for the collection of densities (ft)t≥0

takes the form

∂tft(v) = 2λ(B2[ft, ft] − ft) + μ[γ(v) − ft(v)] − A∂v(vft(v)),

where 2λ and μ are the rates of Kac and thermostat interactions, respectively.
We assume that

∫
v2f0(v)dv < ∞. If ft has a density, we will also call it ft,

and we will use ft(v)dv and ft(dv) interchangeably (same for γ(dv), etc.).
We now turn to the problem of existence and uniqueness of solutions for

(6). Let us first write the equation in weak form. The key idea is to note that
if ft(v) solves (6), then a formal computation shows that eAtft(eAtv) solves an
equation with no drift term. In order to provide a precise definition, for t ≥ 0,
let B1[t] be given by

B1[t](dv) = eAtγ(eAtv)dv. (16)

Let P(R) ⊆ B(R) denote the space of Borel probability measures on R,
metrized with ‖ · ‖.

Definition 4 (weak solution). We say that a collection (ft)t≥0 ∈ C([0,∞),P(R))
is a weak solution to (6), if (gt)t≥0 defined by

∫
φ(v)gt(dv) =

∫
φ(e−Atv)ft(dv)

satisfies

gt = f0 +
∫ t

0

{2λ(B2[gs, gs] − gs) + μ(B1[s] − gs)} ds, ∀t ≥ 0. (17)

Note that g satisfies (17) if and only if

gt = e−Dtf0 + e−Dt

∫ t

0

eDs {2λB2[gs, gs] + μB1[s]} ds, (18)

where D := 2λ + μ. We can now state and prove:

Theorem 5 (well-posedness). For any f0 ∈ P(R), there is a unique weak so-
lution (ft)t≥0 to (6). If f0 ∈ L1(R), then ft ∈ L1(R) for all t ≥ 0. If f0 has
finite rth moment, then so does ft for all t. In addition, if

∫
R

v2f0(dv) < ∞,
then the solution ft to (17) satisfies

∫

R

v2ft(dv) = e− μT
E

∫

R

v2f0(dv) + E
(
1 − e− μT

E

)
,

for all future times. In this case, we see that
∫

R

v2ft(dv) ≤ max
{

E,

∫

R

v2f0(dv)
}

. (19)
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Proof of Theorem 5. The proof of existence and uniqueness for (18) uses the
iterative construction of [32] (see also [28] and [8]), which is standard. Here,
we provide a full proof for convenience of the reader. Let M be the space of
bounded, positive, Borel measures on R. Let f0 be a Borel probability measure
on R. Define the sub-probability measures (un

t )∞
n=0 inductively by

u0
t = e−Dtf0,

un+1
t = e−Dtf0 +

∫ t

0

e−D(t−s) (2λB2[un
s , un

s ] + μB1[s]) ds. (20)

From the monotonicity properties of B2, we see by induction that un
t is contin-

uous in t for each n, that un
t (R) ≤ 1, and that (un

t )n is increasing in n. Hence,
for each t, we can define ut ∈ M as ut(A) = limn un

t (A) for each measurable
set A. Note that ut − un

t is a non-negative measure for each t, thus we have
convergence in total variation, since

lim
n→∞ ‖un

t − ut‖ = lim
n→∞ ut(R) − un

t (R) = 0.

This, together with the bilinearity of B2 and its property that ‖B2[ν1, ν2]‖ ≤
‖ν1‖‖ν2‖ for all signed measures ν1, ν2, implies that

lim
n→∞ ‖B2[un

t , un
t ] − B2[ut, ut]‖ ≤ lim

n→∞ ‖un
t − ut‖(un

t (R) + ut(R)) = 0.

Thus, we can take the infinite n limit in (20) and establish that ut solves
(18). Being an increasing limit of continuous functions, u : [0,∞) → M is
lower semi-continuous, and thus measurable. Since ut(R) ≤ 1, ∀t, u belongs to
L∞([0,∞),M). This fact and (18) imply that ut is continuous in t.

To prove that ut is a probability measure, we follow [28]. Using (17), we
see that function h(t) = ut(R) is differentiable and satisfies the differential
equation

h′(t) = −(2λ + μ)h(t) + μ + 2λh(t)2.

Since h(0) = 1, h(t) ≡ 1 for all t as desired. To show the uniqueness of ut,
let gt ∈ C([0,∞),M) satisfy (18). On one hand, gt ≥ u0

t by definition. And
thus, by induction, gt ≥ un

t a.e. t for all n. Hence, we have gt ≥ ut. Since gt is
continuous in t by hypothesis, it must be a probability measure for all t just
like ut. Thus, ‖gt − ut‖ = gt(R) − ut(R) = 0.

We now show the propagation of being a density: let f0 ∈ L1(R), then
un

t ∈ L1(R) for all R and we use the completeness of L1 under the total
variation norm. To prove the propagation of the rth-moments, we first note
that for any probability measures ν1 and ν2 with finite rth moments nr and
mr, B2[ν1, ν2] satisfies

∫

R

|x|rB2[ν1, ν2](dx) ≤ Cr
nr + mr

2

where Cr = 2max{ r
2 ,1} ∫ 2π

0
| cos θ|r dθ

2π . If f0 has a finite rth moment for some
r > 0 then, by induction, we see that, for each t, (

∫
R

un
t (dv)|v|r)n is finite,
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monotone increasing, and bounded above by the solution R(t) to the following
integral equation:

R(t) = e−(2λ+μ)t

∫

R

|v|rf0(dv) + Cr

∫ t

0

e−(2λ+μ)(t−s)(2λ +
μ

2
)R(s)ds

+Cr

∫

R

|w|rγ(dw).

Here, Cr is as above. R(t) is finite due to Grönwall’s inequality. The monotone
convergence theorem implies that R(t) controls the rth moment of ft. �

Remark 6. The proof above can be used to show the following result which will
be useful in proving Theorem 1: if the initial density f0 is even and monotone
non-increasing on [0,∞), then ft also has this properties, for all t. To justify
this, it is enough to show that being even and monotone on [0,∞) is preserved
under the map g �→ B2[g, g]. Indeed, this fact allows us to show inductively
that un

t is even and monotone on [0,∞) for all n, which then passes to the
limit in n. Let us show the missing detail: fix g ∈ L1(R) nonnegative, even,
and monotone on [0,∞). Changing the parameter θ, one can write the post-
collisional velocities as v′ =

√
v2 + v2∗ cos θ and v′

∗ =
√

v2 + v2∗ sin θ; thus, for
0 ≤ v ≤ w and using the evenness of g, we have

B2[g, g](v) =
∫

R

∫ 2π

0

g
(√

v2 + v2∗ |cos θ|
)

g
(√

v2 + v2∗ |sin θ|
) dθ

2π
dv∗

≥
∫

R

∫ 2π

0

g
(√

w2 + v2∗ |cos θ|
)

g
(√

w2 + v2∗ |sin θ|
) dθ

2π
dv∗

= B2[g, g](w),

that is, B2[g, g](v) is non-increasing on [0,∞) when g is.

2.2. The Boltzmann Process

For a given f0 ∈ P(R), let (ft)t≥0 ∈ C([0,∞),P(R)) be the unique weak
solution of (6) given by Theorem 5. We will now construct a stochastic pro-
cess (Zt)t≥0, called the Boltzmann process, such that Law(Zt) = ft for all
t ≥ 0. This process is the probabilistic counterpart of (6), and it represents
the trajectory of a single particle immersed in the infinite population. It was
first introduced by Tanaka [27] in the context of the Boltzmann equation for
Maxwell molecules.

Consider a Poisson point measure P(dt,dθ,dz) on [0,∞)×[0, 2π)×R with
intensity 2λdt dθ

2π ft(dz), and an independent Poisson point measure Q(dt,dw)
on [0,∞) × R with intensity μdtγ(dw). Consider also a random variable Z0

with law f0, independent of P and Q. The process Zt is defined as the unique
solution, starting from Z0, to the stochastic differential equation

dzt =
∫ 2π

0

∫

R

[Zt- cos θ − z sin θ − Zt- ]P(dt,dθ,dz)

+
∫

R

[w − Zt- ]Q(dt,dw) + AZtdt.

(21)
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Strong existence and uniqueness of solutions for this SDE is straightfor-
ward, since the rates of P and Q are finite on bounded time intervals. To show
that Law(Zt) = ft, the argument is classical: one first shows that �t := Law(Zt)
solves a linearized weak version of (6), namely

∂t

∫

R

φ(v)�t(dv) = 2λ
∫

R

φ(v)(B2[�t, ft] − �t)(dv)

+ μ

∫

R

φ(v)(γ − �t)(dv) + A

∫

R

vφ′(v)�t(dv)

for all bounded and continuous φ for which vφ′(v) is bounded and continuous.
This can be seen to have a unique solution in a weak sense similar to (18),
because: ν �→ B2[ν, ft] is non-expanding in total variation for all t. Since ft is
also a solution of this linearized version, we must have that �t = ft.

Using the Boltzmann process (21), one can easily study the evolution of
moments for the kinetic equation (6). As the next lemma shows, when T ≥ E
(negative drift term in (21)), every moment is propagated uniformly in time;
otherwise, only some moments propagate:
Lemma 7 (propagation of moments). Let r > 2, assume that

∫ |v|rf0(dv) <
∞, and let (ft)t≥0 be the weak solution to (6). Then, supt≥0

∫ |v|rft(dv) < ∞
if and only if r satisfies condition (8).
Proof. Call h(t) = E|Zt|r =

∫ |v|rft(dv), since Law(Zt) = ft. Using Itô calcu-
lus for jump processes and the inequality (a+b)r ≤ ar+br+2r−1(abr−1+bar−1)
for a, b ≥ 0, from (21) we deduce that for almost all t ≥ 0:

∂th(t) = 2λE

∫ 2π

0

dθ

2π

∫

R

ft(dz)[|Zt cos θ − z sin θ|r − |Zt|r]

+ μE

∫

R

[|w|r − |Zt|r]γ(dw) + rAE|Zt|r

≤ Arh(t) + BrE

∫

R

|Zt|r−1|z|ft(dz) + B̃r,

where Ar = −2λCr − μ + rA, and Br, B̃r are some constants depending on r.
By Jensen’s inequality, we have E|Zt|r−1 ≤ h(t)1−1/r, and also

∫ |z|ft(dz) ≤
max{E,

∫
f0(dv)v2}1/2, because of equation (19). Thus, we obtain

Arh(t) + B̃r ≤ ∂th(t) ≤ Arh(t) + max
{

E,

∫

f0(dv)v2

}1/2

Brh(t)1−1/r + B̃r,

where the first inequality is deduced similarly, using that ar + br ≤ (a + b)r

for all a, b ≥ 0. From these inequalities, the conclusion follows. �
We introduce the Boltzmann process (21) since it allows us to use coupling

arguments for obtaining convergence results in 2-Wasserstein distance, such as
contraction and propagation of chaos. Regarding the former, we have:

Lemma 8 (contraction). Let (ft)t≥0 and (f̃t)t≥0 be two weak solutions to (6)
starting from possibly different initial conditions f0 and f̃0. Then,

W2(ft, f̃t) ≤ W2(f0, f̃0)e− μT
2E t.
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Proof. For all t ≥ 0, let Ft be an optimal coupling between ft and f̃t, that is, Ft

is a probability measure on R×R such that
∫

(z − z̃)2Ft(dz, dz̃) = W2(ft, f̃t)2.
Let S(dt,dθ,dz,dz̃) be a Poisson point measure on [0,∞) × [0, 2π) × R × R

with intensity 2λdt dθ
2π Ft(dz,dz̃), and define P(dt,dθ,dz) = S(dt,dθ,dz, R)

and P̃(dt,dθ,dz̃) = S(dt,dθ, R,dz̃). In words, P and P̃ are Poisson point
measures, with intensities 2λdt dθ

2π ft(dz) and 2λdt dθ
2π f̃t(dz̃), respectively, which

have the same atoms in the t and θ variables, and which are optimally coupled
realizations of ft and f̃t on the z and z̃ variables. Also, let Q(dt,dw) be a
Poisson point measure with intensity μdtγ(dw) that is independent of S, and
set Q̃ = Q. Let also (Z0, Z̃0) be a realization of F0, independent of everything
else; in particular we have E[(Z0 − Z̃0)2] = W2(f0, f̃0)2.

Let Zt and Z̃t be the solutions to the SDE (21) with respect to (P,Q)
and (P̃, Q̃), respectively, thus Law(Zt) = ft and Law(Z̃t) = f̃t. Consequently,
we have W2(ft, f̃t)2 ≤ E[(Zt − Z̃t)2] =: h(t). Using Itô calculus, we have:

∂th(t) = 2λE

∫ 2π

0

dθ

2π

∫

R×R

Ft(dz,dz̃)[(Zt cos θ − z sin θ − Z̃t cos θ + z̃ sin θ)2

− (Zt − Z̃t)2]

+ μE

∫

R

[(w − w)2 − (Zt − Z̃t)2]γ(dw) + 2μ
E − T

2E
E(Zt − Z̃t)2

= 2λE

∫ 2π

0

dθ

2π

∫

R×R

Ft(dz, dz̃)[(cos2 θ − 1)(Zt − Z̃t)2 + (z − z̃)2 sin2 θ]

− μT

E
h(t),

where in the last step the cross-term vanished because
∫ 2π

0
cos θ sin θdθ = 0.

Since
∫

(z − z̃)2Ft(dz, dz̃) = W2(ft, f̃t)2 ≤ h(t), the integral in the last line
is bounded above by 0. We thus obtain ∂th(t) ≤ −μT

E h(t), which yields the
result. �

Remark 9. We can also consider the following parametrization of the Kac col-
lisions, introduced by Hauray [19]: when particles with velocities v and v∗
interact, the new velocity for v is v′ =

√
v2 + v2∗ cos θ. Using this parametriza-

tion and the case
∫

v2f0(dv) = E =
∫

v2f̃0(dv), a similar coupling argument
yields the following contraction result in W4:

W4(ft, f̃t)4 ≤ E[(Z0 − Z̃0)4] exp
(

−
[

2λ +
2μT

E
− μ

]

t

)

+ E[(Z2
0 − Z̃2

0 )2] exp
(

−
[
λ

2
+

2μT

E
− μ

]

t

)

.

Now we show the existence of a steady state f∞ for (6) and its main
properties. Thanks to the contraction property of the solutions in Wasserstein
metric (Lemma 8), we can prove:
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Lemma 10 (equilibration). There exists a probability measure f∞ on R with
energy E, such that limt→∞ ft = f∞ weakly, for any (ft)t≥0 weak solution of
(6) having bounded initial energy. Moreover,

W2(ft, f∞) ≤ W2(f0, f∞)e− μT
2E t,

f∞ is the unique stationary weak solution of (6), and is also the unique solution
to

− A

∫

R

φ′(v)vf∞(dv) =
∫

R

φ(v){2λ(B2[f∞, f∞] − f∞) + μ(γ(v) − f∞)}dv

(22)

for every bounded test function φ on R with bounded and continuous first
derivatives.

Proof. For any t, s ≥ 0, note that ft+s can be seen as the weak solution to
(6) at time t, starting from fs. Hence, using Lemma 8 and the fact that the
energy is always bounded by max{E,

∫
f0(dv)v2}, we have

W2(ft, ft+s) ≤ W2(f0, fs)e− μT
2E t ≤ 2max

{

E,

∫

v2f0(dv)
}1/2

e− μT
2E t. (23)

This shows that for any sequence (tn)n∈N with tn → ∞, the collection (ftn
)n∈N

is a Cauchy sequence with respect to W2, thus it converges to some limit distri-
bution f∞ (see [31, Theorem 6.18] for completeness in W2), which is the same
for every such (tn)n∈N. Thus, (ft)t≥0 itself converges to f∞ in W2. Similarly,
if (f̃t)t≥0 is the weak solution to (6) starting from f̃0, then it converges in W2

to some f̃∞. Thus, for all t ≥ 0 we have

W2(f∞, f̃∞) ≤ W2(f∞, ft) + W2(ft, f̃t) + W2(f̃t, f̃∞),

and letting t → ∞ gives W2(f∞, f̃∞) = 0, again thanks to Lemma 8. This
shows that the limit is the same for any weak solution of (6). Since the con-
vergence is in W2, we have

∫
v2f∞(dv) = limt

∫
v2ft(dv) = E. Letting s → ∞

in (23) gives W2(ft, f∞) ≤ W2(f0, f∞)e− μT
2E t. Moreover, taking f0 = f∞, the

last inequality implies that W2(ft, f∞) = 0, thus ft = f∞ for all t ≥ 0. That
is, f∞ is a stationary solution, and uniqueness is straightforward.

Now we prove that f∞ satisfies (22). By our definition of weak solution,
we know that (gt)t≥0 given by

∫
φ(v)gt(dv) =

∫
φ(e−Atv)f∞(dv) satisfies (17).

Noting that
∫

R

φ(v)B1[t](dv) =
∫

R

φ(e−Atv)γ(v)dv and
∫

R

φ(v)B2[gt, gt](dv) =
∫

R

φ(e−Atv)B2[f∞, f∞](dv),

we thus obtain for every bounded function φ with continuous and bounded
first derivatives:
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∫

R

φ(e−Atv){2λ(B2[f∞, f∞] − f∞) + μ(γ(v) − f∞)}(dv)

= ∂t

∫

R

φ(e−Atv)f∞(dv) = −Ae−At

∫

R

φ′(e−Atv)vf∞(dv).

Evaluating at t = 0 shows that f∞ solves (22). Now we prove that f∞ is the
only solution: given f ∈ P(R) satisfying (22), a similar computation shows
that (gt)t≥0 defined by

∫
φ(v)gt(dv) =

∫
φ(e−Atv)f(dv) satisfies (17) inte-

grated against test functions φ which are bounded and with bounded first
derivatives. By a density argument, it follows that (gt)t≥0 itself satisfies (17),
thus f is a stationary weak solution of (6). By the uniqueness of the stationary
distribution, we deduce that f = f∞. �

We now prepare for the proof of Theorem 1. Note that the case λ = 0
in equation (6) can be solved explicitly by the method of characteristics. We
summarize the result in the following lemma, which we state without proof.

Lemma 11. Let λ = 0 and f0 ∈ L1(R). Then, the weak solution (ft)t≥0 to (6)
is given by

ft(v) = e−μt[e−Atf0(e−Atv)] +
∫ t

0

μe−μs
(
e−Asγ(e−Asv)

)
ds.

Also, f∞ is given by

f∞(v) =
∫ ∞

0

e−(1+A
μ )sγ(e− A

μ sv)ds. (24)

Remark 12. When λ = 0, the measure f∞ given by (24) can be seen as the law
of Xe

E−T
2E τ , where X and τ are independent random variables, with X ∼ γ

and τ ∼ exp(1).

In Theorem 1, we will use the Fourier transform to prove the smoothness
properties of f∞. We use the convention

ν̂(ξ) =
∫

R

e−2πivξν(dv)

for any finite measure ν. Note that for any such ν1 and ν2 we have ̂B2[ν1, ν2] =
B̂2[ν̂1, ν̂2], where

B̂2[z, w](ξ) :=
∫ 2π

0

z(ξ cos θ)w(ξ sin θ)
dθ

2π
. (25)

Call y(ξ) = f̂∞(ξ). We first provide some properties of y(ξ) in the following
two lemmas. The proofs are given in Sects. 4.2 and 4.3 . For convenience, we
introduce the following terminology: we say that a function φ : R → R ∪ {∞}
satisfies property (P) if it is non-negative, even, and non-increasing on [0,∞).

Lemma 13. For the Fourier transform y(ξ), we have:
(i) y ∈ C2(R) and satisfies for all ξ ∈ R:

− Aξ
dy

dξ
(ξ) = 2λ

(∫ 2π

0

y(ξ cos θ)y(ξ sin θ)
dθ

2π
− y(ξ)

)

+ μ(γ̂(ξ) − y(ξ)).(26)
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(ii) y(ξ) satisfies (P).

(iii) For any k = 0, 1, 2, . . . , we have
(
ξ d
dξ

)k

y ∈ C(R) and lim
|ξ|→∞

(

ξ
d
dξ

)k

y =

0. In particular, there is a constant Ck for which we have
∣
∣
∣
∣
dky

dξk
(ξ)

∣
∣
∣
∣ ≤ Ck|ξ|−k.

Lemma 14. If z(ξ) : [0,∞) → [0, 1] is continuous and satisfies

z(ξ) ≤ rγ̂(ξ) + (1 − r)
∫ π

2

0

z(ξ cos θ)z(ξ sin θ)
dθ

π/2
, (27)

for some r ∈ (0, 1), then

z(ξ) ≤ γ̂(ξ) ∀ξ. (28)

When r = 0, equation (28) still holds if we assume in addition that limξ↓0(z(ξ)−
1)ξ−2 = −2π2E.

Proof of Theorem 1. The existence f∞, the convergence of ft in W2 and the
fact that it is the unique stationary weak solution of (6), were proven in
Lemma 10. We now prove that f∞ has a density. For this, we write f∞ as
limt→∞ ft where f0 := γ. Since f0 satisfies property (P), so does ft for all
t ≥ 0, thanks to Remark 6; thus, ft(v) ≤ 1

2|v| for all v �= 0 due to the inequal-
ity 1/2 ≥ ∫ v

0
ft(x)dx ≥ vft(v) which holds for all v ≥ 0. Using Lemma 10

to pass to the weak-limit of infinite t, we have that for every bounded and
continuous function φ we have

∫
φ(v)f∞(dv) ≤ ∫

φ(v) dv
2|v| . This, together with

an approximating argument using continuous and bounded functions that φ
vanish around 0, implies that f∞ necessarily has the form

f∞ = rδ0 + (1 − r)ρ, (29)

where δ0 is the Dirac mass at 0, ρ(v) is some density function satisfying (P)
and the estimate ρ(v) ≤ 1

2|v| for all v, and r ∈ [0, 1) is some constant. Our
next task is to show that r = 0. Equation (29) implies that there is an L1(R)
probability density ρ1 such that the following holds

B2[f∞, f∞] = r2δ0 + (1 − r2)ρ1. (30)

We substitute equations (29) and (30) into equation (22) and let φ(v) = e−ηv2
.

This gives

2A(1 − r)
∫

R

ηv2e−ηv2
ρ(v)dv

= 2λ(r2 − r) − μr +
∫

R

e−ηv2
(2λ((1 − r2)ρ1(v) − (1 − r)ρ(v)) + μγ(v))dv.

Letting η → ∞ and applying the dominated convergence implies that 2λ(r2 −
r) − μr must be 0. The only solution r in [0, 1] compatible with having energy
E > 0 is r = 0. This shows that f∞ has a density that satisfies (P), thus
proving (i).
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Now we show (ii). The forward implication follows directly from choosing
f∞ as the initial condition and using Lemma 7. For the converse: assume
(8) holds. Take f0 as any density with finite rth moment and let φM (x) =
max(M, |x|r). Since ft → f∞ weakly, Lemma 7 implies that we have

∫

R

φM (v)f∞(v)dv = lim
t→∞

∫

R

φM (v)ft(v)dv ≤ sup
t≥0

∫

R

|v|rft(v)dv < ∞.

The conclusion follows from the monotone convergence theorem.
Now, we prove (iii). To show that f∞ ∈ Ck(R\{0}) for any k, we use the

Fourier transform. Fix k, and let v > 0. We will express f∞(v) in terms of its
Fourier transform: y(ξ). Since f∞ ∈ L1(R), we have that

f∞(v) = lim
V →∞

∫ V

−V

(

1 − |ξ|
V

)

y(ξ)e2πiv.ξdξ.

Here, the limit is taken in L1(R). We can divide this integral into an integral
over [−1, 1], which is a smooth function in v, and an integral over {1 ≤ |ξ| ≤
V }. On this interval, we also note that the integrand can be expressed as

cy(ξ)
(

1 − |ξ|
V

)
dk

dξk

(
e2πivv−k

)
. (31)

After performing k integrations-by-part and then taking the limit as V → ∞,
we see that the contribution of {|ξ| ≥ 1} is

∫

{|ξ|≥1}
ce−2πivv−k dk

dξk
y(ξ)dξ

plus boundary terms at ±1. The boundary terms at ±1 are smooth in v so long
as v > 0, while property (iii) in Lemma 13 implies that the boundary terms
at ±V vanish as V → ∞. The integral in (31) is in the sense of Lebesgue;
and is in Ck−2 because y(k)(ξ) decays like ξ−k. In particular, f∞ is in Ck−2

away from v = 0. Similarly one can show that B2[f∞, f∞] ∈ Ck−2(R\{0}),
justifying the pointwise equality in (9).

Finally, we prove (iv), concerning the boundedness and smoothness prop-
erties of f∞ at the origin. We start by proving the last claim in (iv) concerning
the analyticity of y. When E ≥ T (A ≥ 0), we have −Aξ ∂y

∂ξ ≥ 0 on [0,∞).
Thus, on [0,∞) we have:

y(ξ) ≤ 2λ

2λ + μ
γ̂(ξ) +

μ

2λ + μ

∫ π/4

0

y(ξ cos θ)y(ξ sin θ)
dθ

π/4
.

Thus, by Lemma 14, we have y(ξ) ≤ γ̂(ξ). Therefore y(ξ) is in L1(R), making
f∞ analytic. Therefore, we need only consider the case when E < T (A < 0).
Note that (10) is equivalent to D > −A(p + 1). We rewrite equation (26) in
the following form. Recall that D = 2λ + μ.

(
ξD/|A|y(ξ)

)′
= ξD/|A|−1

(
2λ

|A| B̂2(ξ) +
μ

|A| γ̂(ξ)
)

(32)
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Here, B̂2(x) =
∫ 2π

θ=0
y(x cos θ)y(x sin θ) dθ

2π as in Lemma 13. Note that all the
constants are positive. We integrate both sides of (32) on [0, ξ] and multiply
the resulting equation by ξp−D/|A|. This leads to the equation:

y(ξ)ξp = ξp−D/|A|
∫ ξ

0

xD/|A|−1

(
2λ

|A| B̂2(x) +
μ

|A| γ̂(x)
)

dx.

Hence, we can show that
∫
R

y(ξ)|ξ|Bdξ is infinite when B is large enough as
follows.
∫ ∞

0

y(ξ)ξpdξ =
∫ ∞

ξ=0

ξp−D/|A|
∫ ξ

0

xD/|A|−1

(
2λ

|A| B̂2(x) +
μ

|A| γ̂(x)
)

dxdξ

=
∫ ∞

x=0

xD/|A|−1

(
2λ

|A| B̂2(x) +
μ

|A| γ̂(x)
)(∫ ∞

ξ=x

ξp−D/|A|dξ

)

dx.

(33)

When p ≥ d
|A| − 1, this is infinite due to the ξ-integral. We now show that if

p < D
|A| − 1, then

∫
R

y(ξ)ξpdξ is finite. Consider the integral
∫ X

0
ξpB̂2(ξ)dξ. As

above, we restrict the average over the θ variable to the interval [0, π/4]. By
using polar coordinates: (x, z) := (ξ cos θ, ξ sin θ), augmenting the domain to
the triangle {y ≤ x and x ≤ R}, and applying the change of variables z = x×t
we obtain:

∫ X

0

ξpB̂2(ξ)dξ ≤
∫ X

x=0

xpy(x)
(

4
π

∫ 1

t=0

(1 + t2)
p−1
2 y(tx) dt

)

dx. (34)

Equation (34), together with the fact that limξ→∞ y(ξ) = 0, implies that
∫ X

0

ξpB̂2(ξ) dξ ≤ Xp+1
0

p + 1
+ ε

∫ X

X0

ξpy(ξ) dξ,

for any ε whenever X ≥ X0(ε) is large enough. Thus, multiplying (26) by ξp

and integrating the result on the interval [0,X] (with X large enough) , and
performing an integration by parts gives:

−AXp+1y(X) + (2λ + μ − 2λε + A(p + 1))
∫ X

0

ξpy(ξ)dξ

≤ 2λ
Xp+1

0

p + 1
+ μ

∫ ∞

0

ξpγ̂(ξ)dξ.

Since A < 0, we can neglect the term: −AXp+1y(X). Also, because D−|A|(p+
1) > 0, and w.l.o.g. λ > 0, choosing ε < (D−|A|(p+1))/2λ and letting X → ∞
shows that

∫ ∞
0

ξpy(ξ)dξ < ∞. �

3. Particle System

In this section, we study the propagation of chaos for the particle system
associated to equation (6) with rescaling factor βN given in (11). We provide
an explicit construction of the particle system using an SDE, following [15].
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To this end, for fixed N ∈ N, let R(dt,dθ,dξ,dζ) be a Poisson point measure
on [0,∞) × [0, 2π) × [0, N)2 with intensity

Nλdt
dθ

2π

dξdζ1{i(ξ) �=i(ζ)}
N(N − 1)

=
λdtdθdξdζ1{i(ξ) �=i(ζ)}

2π(N − 1)
,

where i is the function that associates to a variable ξ ∈ [0, N) the discrete
index i(ξ) = �ξ� + 1 ∈ {1, . . . , N}. In words: at rate Nλ, the measure R
selects collision times t ≥ 0, and for each such time, it independently samples
a parameter θ uniformly at random on [0, 2π), and a pair (ξ, ζ) ∈ [0, N)2 such
that i(ξ) �= i(ζ), also uniformly. The pair (i(ξ), i(ζ)) provides the indices of
the particles involved in Kac-type collisions. Let Q1(dt,dw), . . . ,QN (dt,dw)
be a collection of independent Poisson point measures, also independent of
R, each having intensity μdtγ(dw). Finally, let V0 = (V 1

0 , . . . , V N
0 ) be an

exchangeable collection of random variables, independent of everything else,
such that E[(V 1

0 )2] = E.
The particle system, which we denote by Vt = (V 1

t , . . . , V N
t ), is defined

as the unique jump-by-jump solution of the SDE

dVt =
∫ 2π

0

∫

[0,N)2

N∑

i,j=1,i �=j

[aij(Vt- , θ) − Vt- ]1{i(ξ)=i,i(ζ)=j}R(dt,dθ,dξ,dζ)

+
N∑

i=1

∫

R

[bi(Vt- , w) − Vt- ]Qi(dt,dw),

(35)

that starts at V0. Here, for v ∈ R
N , the vectors aij(v, θ) ∈ R

N and bi(v, w) ∈
R

N are defined as

aij(v, θ)k =

⎧
⎪⎨

⎪⎩

vi cos θ − vj sin θ if k = i,

vi sin θ + vj cos θ if k = j,

vk otherwise,

bi(v, w)k =

{
βN (w)w if i = k,

βN (w)vk otherwise,

where βN (w) is the rescaling factor given by

βN (w) =

√
NE

NE − E + w2
.

We call Vt the particle system, and denote fN
t = Law(Vt) its distribution on

R
N . For any i = 1, . . . , N , from (35) it follows that the particle V i

t satisfies
the SDE

dvi
t =

∫ 2π

0

∫ N

0

[V i
t- cos θ − V

i(ξ)
t- sin θ − V i

t- ]Pi(dt,dθ,dξ)

+
∫

R

[βN (w)w − V i
t- ]Qi(dt,dw) +

N∑

j=1,j �=i

∫

R

[βN (w)V i
t- − V i

t- ]Qj(dt,dw),
(36)

where Pi is defined as

Pi(dt,dθ,dξ) = R(dt,dθ, [i − 1, i),dξ) + R(dt,−dθ,dξ, [i − 1, i)),
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and where we have −dθ to transform sin θ into − sin θ. Clearly, Pi is a Poisson
point measure on [0,∞) × [0, 2π) × [0, N) with intensity 2λdtdθdξ1{i(ξ)�=i}

2π(N−1) .

Lemma 15 (contraction for the p.s.). Let Ṽt be the solution to (35) starting
from a possibly different exchangeable initial condition Ṽ0. Then, for all t ≥ 0,

E[(V 1
t − Ṽ 1

t )2] = E[(V 1
0 − Ṽ 1

0 )2]e−GN μt,

where GN :=
∫ Nw2γ(dw)

NE−E+w2 > 0 uniformly in N . Denoting f̃N
t = Law(Ṽt), this

implies that

W2(fN
t , f̃N

t ) ≤ W2(fN
0 , f̃N

0 )e− GN μ

2 t.

Proof. Since the pair (V0, Ṽ0) can be chosen as an optimal coupling between
fN
0 and f̃N

0 , the second claim is a direct consequence of the first, because
W2(fN

0 , f̃N
0 )2 ≤ E[(V 1

t − Ṽ 1
t )2] by exchangeability. Let us prove the first claim:

for h(t) = E[(V 1
t − Ṽ 1

t )2], using exchangeability again, we have from (36):

∂th(t) = 2λE

∫ 2π

0

dθ

2π
[((V 1

t − Ṽ 1
t ) cos θ − (V 2

t − Ṽ 2
t ) sin θ)2 − (V 1

t − Ṽ 1
t )2]

+ μE

∫

R

[(βN (w)w − βN (w)w)2 − (V 1
t − Ṽ 1

t )2]γ(dw)

+ (N − 1)μE

∫

R

[(βN (w)V 1
t − βN (w)Ṽ 1

t )2 − (V 1
t − Ṽ 1

t )2]γ(dw)

=
(

−1 + (N − 1)
∫

R

[βN (w)2 − 1]γ(dw)
)

μh(t),

where the first term vanished because
∫ 2π

0
cos θ sin θdθ = 0. A straightforward

computation shows that the constant in front of μh(t) in the last line equals
−GN , which proves the first claim. Finally, note that Nw2

NE−E+w2 is bounded be-

low by Nw2

NE+w2 , which increases with N ; thus, GN ≥ ∫ 2w2γ(dw)
2E+w2 > 0 uniformly

in N . �

In the usual Kac particle system (without thermostat and rescaling), the
initial energy

∑
i(V

i
0 )2 is a.s. preserved. Although this is no longer the case for

our p.s., we still have preservation of the expected energy:

Lemma 16. E[(V 1
t )2] = E for all t ≥ 0.

Proof. For h(t) := E[(V 1
t )2], a similar argument as in the proof of Lemma 15

gives ∂th(t) = μEGN − μGNh(t), which implies that h(t) = E for all t ≥ 0,
because h(0) = E[(V0)2] = E. �

The above results imply the existence of an equilibrium distribution fN
∞

for the particle system, which is f∞-chaotic. This is the content of the following:

Lemma 17 (equilibration for the particle system). For each N ≥ 2, there is
a probability measure fN

∞, depending on the parameters λ, μ,E, and T , such
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that for any exchangeable initial condition, the distribution fN
t = Law(Vt)

satisfies

W2(fN
t , fN

∞) ≤ W2(fN
0 , fN

∞)e− GN μ

2 t ∀t ≥ 0. (37)

Moreover, if r > 2 is chosen so that condition (8) holds (recall that it always
exists), then there exists a constant C depending on r, λ, μ, E, and T , such
that for U with distribution fN

∞, we have the following chaoticity estimate of
fN

∞ with respect to f∞:

E[W2(Ū, f∞)2] ≤ C

⎧
⎪⎨

⎪⎩

N−1/3, r > 4,

N−1/3(log N)2/3, r = 4,

N− r−2
2(r−1) , r ∈ (2, 4).

(38)

Proof. Equation (37) follows from Lemma 15 with the same argument as in
the proof of Lemma 10, so we omit the details. We now prove (38). Take
fN
0 = fN

∞ and f0 = f∞, thus fN
t = fN

∞ and ft = f∞ for all t ≥ 0. Therefore,
E[W2(Ū, f∞)2] = E[W2(V̄t, ft)2] for all t ≥ 0. We also know from Theorem 1-
(ii) that f∞ has finite rth-moment. Hence, applying Theorem 2 (to be proven
shortly), (12) holds. Equation (38) follows by letting t → ∞. �

We now prepare the grounds for proving our uniform propagation of
chaos result, Theorem 2. The proof is based on a coupling argument. The
main idea, introduced in [15], is to define a collection Zt = (Z1

t , . . . , ZN
t ) of

Boltzmann processes in such a way that, for each i = 1, . . . , N , the process
Zi

t remains as close as possible to the particle V i
t . The construction goes as

follows. First, consider a random vector Z0 = (Z1
0 , . . . , ZN

0 ) with distribution
f⊗N
0 , independent of R and of the Qi’s, optimally coupled to V0, that is,

E

[
1
N

N∑

i=1

(V i
0 − Zi

0)
2

]

= W2(fN
0 , f⊗N

0 )2. (39)

Now, mimicking (21) and (36), we define Zi
t as the solution, starting from Zi

0,
to the SDE

dzi
t =

∫ 2π

0

∫ N

0

[Zi
t- cos θ − F i

t (Zt- , ξ) sin θ − Zi
t- ]Pi(dt,dθ,dξ)

+
∫

R

[w − Zi
t- ]Qi(dt,dw) + AZi

tdt,

(40)

using the same Poisson point measures Pi and Qi as in (36). Here, F i
t : R

N ×
[0, N) → R is a measurable function with the following property: for each z ∈
R

N and any uniformly distributed random variable ξ on the set [0, N)\[i−1, i),
the pair (F i

t (z, ξ), z
i(ξ)) is a realization of the optimal coupling between ft and

the empirical measure z̄i := 1
N−1

∑
j �=i δzj . That is, for all z ∈ R

N ,
∫ N

0

(
F i

t (z, ξ) − zi(ξ)
)2 dξ1{i(ξ) �=i}

N − 1
= W2(ft, z̄i)2. (41)

The proof of existence of such a function F i
t can be found in [15, Lemma 3].
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Comparing (21) and (40), it is clear that each Zi
t is indeed a Boltzmann

process, thus Law(Zi
t) = ft for all i = 1, . . . , N . In words, the dynamics of

Zi
t mimics as closely as possible the one of V i

t : it uses the same jump times,
the same collision parameters θ, and the same samples of the thermostat.
Moreover, for t ≥ 0 fixed, the expression V

i(ξ)
t- in (36) corresponds to a ξ-

realization of the (random) empirical measure 1
N−1

∑
j �=i δV j

t-
, while F i

t (Zt- , ξ)
in (40) is a ξ-realization of ft that is optimally coupled to the empirical measure

1
N−1

∑
j �=i δZj

t-
. However, regarding the rescaling mechanism, we note that,

while in the system an interaction of any particle j �= i against the thermostat
(slightly) modifies the velocity V i

t (last term in (36)), for the process Zi
t this

mechanism takes the form of the drift term AZi
tdt.

Because the vector Zt = (Z1
t , . . . , ZN

t ) uses the same randomness as that
of the particle system, the processes Zi

t and Zj
t have a simultaneous jump

whenever a Kac-type interaction between V i
t and V j

t takes place. Consequently,
the processes Z1

t , . . . , ZN
t are not independent. Thus, to prove Theorem 2, we

need to show that this dependence vanishes as N → ∞. We do this in a
quantitative way and uniformly in time in the following lemma.

Lemma 18 (decoupling). There exists a constant C < ∞ depending only on
E, T , λ and μ, such that for all fixed k ∈ N we have for all t ≥ 0:

W2

(
f⊗k

t ,Law(Z1
t , . . . , Zk

t )
)2 ≤ Ck

N
.

Proof. We follow the proof of [15, Lemma 6], which relies on a coupling ar-
gument; see also [14, Lemma 3]. For fixed k ∈ N, the plan is to define a
collection Z̃1

t , . . . , Z̃k
t of independent Boltzmann processes that they stay close

to Z1
t , . . . , Zk

t on expectation. For i ∈ {1, . . . , k}, the jumps of the process
Z̃i

t will use the same randomness source that Zi
t uses, except when there is a

simultaneous Kac-type jump with some Zj
t , j ∈ {1, . . . , k}, j �= i; in that case,

either Z̃i
t or Z̃j

t will not jump at that instant. To compensate for the missing
jumps, we will use an additional, independent source of randomness to gen-
erate new jumps. For k � N , this kind of jumps occur much less frequently,
thus this construction will give the desired estimate.

To this end, let R̃ be an independent copy of the Poisson point measure
R, and for i = 1, . . . , k, define

P̃i(dt,dθ,dξ) = R(dt,dθ, [i − 1, i),dξ)

+ R(dt,−dθ,dξ, [i − 1, i))1[k,N)(ξ)

+ R̃(dt,−dθ,dξ, [i − 1, i))1[0,k)(ξ),

which is a Poisson point measure with intensity 2λdtdθdξ1{i(ξ)�=i}
2π(N−1) , just as Pi.

Note that the Poisson measures P̃1, . . . , P̃k are independent by construction.
Mimicking (40), we define Z̃i

t as the solution, starting from Z̃i
0 = Zi

0, to the
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SDE

dZ̃i
t =

∫ 2π

0

∫ N

0

[Z̃i
t- cos θ − F i

t (Zt- , ξ) sin θ − Z̃i
t- ]P̃i(dt,dθ,dξ)

+
∫

R

[w − Z̃i
t- ]Qi(dt,dw) + AZ̃i

tdt.

(42)

It is clear that Z̃1
t , . . . , Z̃k

t is an exchangeable collection of Boltzmann processes.
Moreover, using the independence of P̃1, . . . , P̃k and the fact that F i

t (z, ξ) has
distribution ft for any z ∈ R

N and any ξ uniformly distributed on [0, N)\[i −
1, i), one can prove that the processes Z̃1

t , . . . , Z̃k
t are independent. For a full

proof of this fact in a very similar setting, we refer the reader to [15, Lemma
6].

Call h(t) := E[(Z1
t − Z̃1

t )2]. By exchangeability, we have

W2

(
f⊗k

t ,Law(Z1
t , . . . , Zk

t )
)2 ≤ E

[
1
k

k∑

i=1

(Zi
t − Z̃i

t)
2

]

= h(t),

thus it suffices to obtain the desired estimate for h(t). From (40) and (42),
using Itô calculus, we obtain:

∂th(t) = E

∫ 2π

0

∫ N

0

Δ1

[R(dt,dθ, [0, 1),dξ) + R(dt,−dθ,dξ, [0, 1))1[k,N)(ξ)
]

+ E

∫ 2π

0

∫ N

0

Δ2R(dt,−dθ,dξ, [0, 1))1[0,k)(ξ)

+ E

∫ 2π

0

∫ N

0

Δ3R̃(dt,−dθ,dξ, [0, 1))1[0,k)(ξ)

+ E

∫

R

[(w − w)2 − (Z1
t- − Z̃1

t-)
2]Q1(dt,dw) + 2AE[(Z1

t − Z̄1
t )2],

(43)

where Δ1 corresponds to the increment of (Z1
t − Z̃1

t )2 when Z1
t and Z̃1

t have
a simultaneous Kac-type jump, Δ2 is the increment when only Z1

t jumps, and
Δ3 is the increment when only Z̃1

t jumps. Thanks to the indicator 1[0,k)(ξ) and
the fact that Δ2 and Δ3 involve only second-order products of ft-distributed
variables (recall that

∫
v2ft(dv) = E for all t ≥ 0), we deduce that the second

and third terms in (43) are bounded above by Ck
N . On the other hand, for Δ1

we have

Δ1 =
[
Z1

t- cos θ − F 1
t (Zt- , ξ) sin θ − Z̃1

t- cos θ + F 1
t (Zt- , ξ) sin θ

]2
− (Z1

t- − Z̃1
t-)

2

= −(1 − cos2 θ)(Z1
t- − Z̃1

t-)
2.

Thus, simply discarding the negative term with the indicator 1[k,N)(ξ) in (43),
we deduce that

∂th(t) ≤ −E

∫ 2π

0

∫ N

1

(1 − cos2 θ)(Z1
t − Z̃1

t )2
2λdθdξ

2π(N − 1)
+

Ck

N
− μh(t) + 2Ah(t)

= −(λ + μ − 2A)h(t) +
Ck

N
.
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Recall that A = μE−T
2E , thus ∂th(t) + (λ + μT

E )h(t) ≤ Ck
N . Since h(0) = 0, the

desired bound follows from the last inequality by multiplying by e(λ+
μT
E )t and

integrating. �

We now want to use the previous lemma to obtain a chaoticity estimate
for Zt in terms of EW2(Z̄t, ft)2. We will need some previous results. Recall
that (see (14)) given a probability measure ν on R and k ∈ N, we call εk(ν) =
EW2(X̄, ν)2, where X = (X1, . . . , Xk) is a vector of i.i.d. ν-distributed random
variables, and X̄ = 1

k

∑k
i=1 δXi is its (random) empirical measure. The best

available general estimate for εk(ν), found in [18, Theorem 1], asserts that if
ν has finite r moment for some r > 2, then there exists a constant C > 0
depending only on r such that for all k ∈ N,

εk(ν) ≤ C

(∫

|x|rν(dx)
)2/r

⎧
⎪⎨

⎪⎩

k−1/2, r > 4,

k−1/2 log(k), r = 4,

k−(1− 2
r ), r ∈ (0, 2).

(44)

Remark 19. The case r = 4 is omitted in the statement of [18, Theorem 1],
but their proof can be easily adapted to include it. We provide the needed
adjustments in Sect. 4.4 of the Appendix.

We will also need the following estimate, which is a consequence of [15,
Lemma 7]: for any exchangeable random vector X on R

N and any probability
measure ν on R, there exists a constant C > 0 depending only on the second
moments of ν and X1, such that for any k ≤ N ,

1
2

E[W2(X̄, ν)2] ≤ W2

(
ν⊗k,Law(X1, . . . , Xk)

)2
+ εk(ν) + C

k

N
. (45)

We can now state and prove the following:

Lemma 20. Fix r > 2 such that
∫ |v|rf0(dv) < ∞ and condition (8) is satisfied

for this r. Then, there exists a constant C depending only on λ, μ, E, T , r,
and

∫ |v|rf0(dv), such that for all t ≥ 0,

E[W2(Z̄t, ft)2] ≤ C

⎧
⎪⎨

⎪⎩

N−1/3, r > 4,

N−1/3(log N)2/3, r = 4,

N− r−2
2(r−1) , r ∈ (2, 4).

(46)

Moreover, the same bound holds with Z̄i
t = 1

N−1

∑
j �=i δZj

t
in place of Z̄t.

Proof. For any k ≤ N , we obtain from (45) applied to ν = ft and X = Zt:

1
2

E[W2(Z̄t, ft)2] ≤ W2

(
f⊗k

t ,Law(Z1
t , . . . , Zk

t )
)2

+ εk(ft) + C
k

N

≤ C
k

N
+ εk(ft) + C

k

N
,

where in the last step we used Lemma 18. Since (8) holds for this r > 2,
we know from Lemma 7 that the rth moment of ft is bounded uniformly in
time. If r > 4, from (44) we obtain εk(ft) ≤ Ck−1/2 for all t ≥ 0, and then
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taking k ∼ N2/3 gives the result. If r ∈ (2, 4), take k ∼ N
r

2(r−1) . Finally, if
r = 4, take k ∼ (N log N)2/3. The estimate for Z̄i

t is deduced similarly, taking
X = (Zj

t )j �=i in (45). �

The proof of Theorem 2 requires the following two technical lemmas. The
proof of Lemma 21 is provided in the Appendix, while the proof of Lemma 22
can be found for instance in [1, Lemma 4.1.8].

Lemma 21. Let ν be any probability measure on R with
∫
R

w2ν(dw) = T and∫
R

w4ν(dw) =: M4(ν) < ∞. Let K̄1
N , K̄2

N , and K̄3
N be given as follows.

K̄1
N = (N − 1)

∫

R

ν(dw)(1 − βN (w))2

K̄2
N =

∫

R

ν(dw)(βN (w) − 1)2w2

K̄3
N = −2(N − 1)

∫

R

ν(dw)βN (w)(1 − βN (w)) − E − T

E
.

Then, there a constant C that depends only on T,E, and M4 for which the
following holds.

K̄1
N + K̄2

N + |K̄3
N | ≤ C(T,E,M4)

N
.

Lemma 22 (a version of Grönwall’s lemma). Let u : R+ → R+ be an almost-
everywhere differentiable function satisfying du

dt ≤ −au + bu1/2 + c for some
constants a > 0, b ≥ 0 and c ≥ 0. Then,

u(t) ≤ 2u(0)e−at +
2c

a
+

4b2

a2
∀t ≥ 0.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Call h(t) = E[(V 1
t − Z1

t )2]. Using Lemma 20 and ex-
changeability, we obtain

E[W2(V̄t, ft)2] ≤ 2E[W2(V̄t, Z̄t)2] + 2E[W2(Z̄t, ft)2]

≤ 2E

[
1
N

N∑

i=1

(V i
t − Zi

t)
2

]

+
C

N1/3

= 2h(t) +
C

N1/3
.

Thus, it suffices to prove that h(t) ≤ 2e− μT
E th(0) + CN−1/3, because h(0) =

W2(fN
0 , f⊗N

0 )2 by exchangeability and (39).
We thus study the evolution of h(t). We have

∂th(t) = SK
t + ST

t + SR
t + SD

t , (47)

where those four terms correspond to Kac interactions, thermostat interac-
tions, rescaling, and drift, respectively. That is: SK

t comes from the Pi terms
of (36) and (40); ST

t comes from the Qi terms; SR
t comes from the summation

in (36) (and no term from (40)); and SD
t comes from the drift term in (40)
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(and no term from (36)). To write them explicitly, let us first shorten nota-
tion: call V i

t = V
i(ξ)
t , Zi

t = Z
i(ξ)
t , and F 1

t = F 1
t (Zt- , ξ). For clarity, we split the

remaining of the proof into small steps.
Step 1, Kac term: Recall that the intensity of P1(dt,dθ,dξ) is 2λdtdθdξ1{i(ξ)�=1}

2π(N−1) ,
thus from (36) and (40), using Itô calculus, for SK

t we obtain:

SK
t

= E

∫ 2π

0

∫ N

1

[(
V 1

t cos θ − V i
t sin θ − Z1

t cos θ + F 1
t sin θ

)2 − (V 1
t − Z1

t )
2
] 2λdθdξ

2π(N − 1)

= E

∫ 2π

0

∫ N

1

[
(V 1

t − Z1
t )

2(cos2 θ − 1) + (V i
t − F 1

t )
2 sin2 θ

] 2λdθdξ

2π(N − 1)

= 2λ

[

−1

2
h(t) +

1

2
E

∫ N

1
(V i

t − F 1
t )

2 dξ

N − 1

]

, (48)

where in the second equality we discarded the cross-term because
∫ 2π

0
cos θ sin θdθ = 0. Call a(t) = E

∫ N

1
(Zi

t−F 1
t )2 dξ

N−1 , thus a(t) = E[W2(Z̄1
t , ft)2]

thanks to (41); also note that E
∫ N

1
(V i

t −Zi
t)

2 dξ
N−1 = E

1
N−1

∑N
j=2(V

j
t −Zj

t )2 =
h(t) by exchangeability. For the integral in (48), we add and subtract Zi

t, thus
obtaining:

E

∫ N

1

(V i
t − F 1

t )2
dξ

N − 1
= h(t) + a(t) + 2E

∫ N

1

(V i
t − Zi

t)(Z
i
t − F 1

t )
dξ

N − 1

≤ h(t) + a(t) + 2h(t)1/2a(t)1/2,

where we have used the Cauchy–Schwarz inequality. Plugging this into (48)
gives

SK
t ≤ λa(t) + 2λh(t)1/2a(t)1/2. (49)

Step 2, thermostat term: Recall that the intensity of Q1(dt,dw) is μdtγ(dw).
Thus, again from (36) and (40), we have for ST

t :

ST
t = μ

∫

R

[
(βN (w)w − w)2 − E(V 1

t − Z1
t )2

]
γ(dw)

= −μh(t) + μ

∫

R

(βN (w) − 1)2w2γ(dw). (50)

Step 3, rescaling term: Noting that every Qj(dt,dw) has the same intensity
μdtγ(dw), again from (36) and (40), we obtain:

SR
t = μ

N∑

j=2

E

∫

R

[
(βN (w)V 1

t − Z1
t )2 − (V 1

t − Z1
t )2

]
γ(dw)

= μ(N − 1)E
∫

R

[
(βN (w)V 1

t − Z1
t )2 − (V 1

t − Z1
t )2

]
γ(dw)

= μ(N − 1)E
∫

R

[
βN (w)2(V 1

t − Z1
t )2 + (βN (w) − 1)2(Z1

t )2

+ 2βN (w)(βN (w) − 1)(V 1
t − Z1

t )Z1
t − (V 1

t − Z1
t )2

]
γ(dw)
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= μ(N − 1)
∫

R

[
(βN (w)2 − 1)h(t) + (βN (w) − 1)2E

+ 2βN (w)(βN (w) − 1)E[(V 1
t − Z1

t )Z1
t ]
]
γ(dw), (51)

where we have used that E[(Z1
t )2] = E for all t ≥ 0.

Step 4, drift term and conclusion: It is clear that SD
t = −2AE[(V 1

t − Z1
t )Z1

t ].
Plugging this, (49), (50), and (51) into (47) and grouping terms, yields

∂th(t) ≤ 2λa(t)1/2h(t)1/2 + K1
Nh(t) + [λa(t) + K2

N ] + K3
NE[(V 1

t − Z1
t )Z1

t ],
(52)

where K1
N , K2

N and K3
N are given by

K1
N = −μ + μ(N − 1)

∫

R

(βN (w)2 − 1)γ(dw),

K2
N = μ

∫

R

(βN (w) − 1)2w2γ(dw) + Eμ(N − 1)
∫

R

(βN (w) − 1)2γ(dw),

K3
N = −2A + 2μ(N − 1)

∫

R

βN (w)(βN (w) − 1)γ(dw).

As in the proof of Lemma 15, a straightforward computation shows that K1
N =

−μGN , where GN =
∫ Nw2γ(dw)

NE−E+w2 . Since T =
∫

w2γ(dw), we obtain

K1
N = −μT

E
+ μ

∫

R

[
w2

E
− Nw2

NE − E + w2

]

γ(dw) ≤ −μT

E
+

C

N
.

Using the notation and results of Lemma 21, we have K2
N = μK̄2

N +EμK̄1
N and

K3
N = μK̄3

N ; thus, K2
N ≤ C/

√
N and |K3

N | ≤ C/
√

N . Also, |E[(V 1
t −Z1

t )Z1
t ]| ≤

2E and h(t) ≤ 4E because E[(V 1
t )2] = E[(Z1

t )2] = E for all t ≥ 0. Finally, since∫ |v|rf0(dv) < ∞ and condition (8) holds for this r, we can apply Lemma 20
and obtain a(t) = E[W2(Z̄1

t , ft)2] ≤ C/N1/3 for all t ≥ 0, in the case r > 4.
Using all these estimates in (52) gives

∂th(t) ≤ C

N1/6
h(t)1/2 − μT

E
h(t) +

C

N
h(t) +

C

N1/3
+

C

N

≤ C

N1/6
h(t)1/2 − μT

E
h(t) +

C

N1/3
.

Using Lemma 22 yields h(t) ≤ 2h(0)e− μT
E t + CN−1/3, as desired. The case

r ∈ (2, 4] is treated similarly, using the other estimates of Lemma 20. �

To conclude this section, we now prove Theorem 3, regarding the con-
struction of a chaotic sequence supported on the sphere SN−1(

√
NE).

Proof of Theorem 3. We use the scaling procedure given by (13), following
[14,17]. First, note that for any probability measures ν and ν̃ on R, we have

W2(ν, ν̃)2 ≥ (q1/2 − q̃1/2)2, (53)

where q =
∫

v2ν(dv) and q̃ =
∫

v2ν̃(dv). Indeed: for any coupling X ∼ ν and
X̃ ∼ ν̃, we have E[(X−X̃)2] = q+q̃−2E(XX̃) ≥ (q1/2−q̃1/2)2, from which (53)
follows. Now, as specified in (13), consider a random vector X = (X1, . . . , XN )
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with distribution f⊗N and define Q = 1
N

∑
i X2

i . Without loss of generality, we
assume that f does not have an atom at 0, thus Q > 0 almost surely, and let
Y = (Y1, . . . , YN ) be given by Yi = (E/Q)1/2Xi for all i ∈ {1, . . . , N} (if f has
an atom at 0, on the event Q = 0, simply define Y as some fixed, independent,
exchangeable random vector Z taking values on SN−1(

√
NE); the following

computations can be easily extended to this case). We define fN as the law of
Y. By construction, fN is supported on the sphere SN−1(

√
NE). We have:

1

N

N∑

i=1

(Yi − Xi)
2 =

1

N

N∑

i=1

X2
i

(
E1/2

Q1/2
− 1

)2

=

(
E1/2

Q1/2
− 1

)2

Q = (E1/2 − Q1/2)2.

From (53) with ν = f and ν̃ = X̄ = 1
N

∑
i δXi

, we obtain 1
N

∑
i(Yi −

Xi)2 ≤ W2(f, X̄)2. Since Y ∼ fN and X ∼ f⊗N , taking expectations gives
W2(fN , f⊗N )2 ≤ εN (f). The explicit rates now follow directly from (44). �

Conclusion

In this paper, we considered the thermostated Kac model in [6] and introduced
a global thermostat in the form of a rescaling mechanism, in order to restore
the total energy. We used the coupling technique in [15] to obtain a quan-
titative, uniform in time propagation of chaos result for our particle system
with rescaling factor βN given by (11). We studied the contractivity of the
corresponding kinetic equation (6) and its stationary distribution f∞. We dis-
covered that the behaviour of f∞ at the origin shows a phase transition from
blowing-up, to being continuous, Ck, and all the way to analytic based on the
parameters E, T and μ, λ. We showed equilibration for our particle system in
the 2-Wasserstein distance in Lemma 17. We note that the particular form of
the Maxwellian thermostat γ was not needed in our proofs; we only required it
to have finite moments of sufficiently large order (4 is enough, see Lemma 21).
Thus, Theorem 2 can be generalized to other distributions for the thermostat;
the same is true for parts of Theorem 1. Also, as a by-product of our study,
in Theorem 3 we showed how one can construct an f -chaotic sequence on the
sphere SN−1(

√
NE) by scaling an f⊗N -distributed random vector back to the

sphere. This procedure gives a quantitative rate of chaoticity without requiring
f to have a density, and assuming only finite moment of order 2+ε. One could
also study entropic chaoticity for this sequence, as is done for the sequence
obtained by conditioning f⊗N to the sphere in [11,12]; this is the subject of
future research.

As mentioned earlier, we remark that, with some modifications, such as
conforming βN in (11) to the weak thermostat as

√
NE

(N − 1)E + (sgn(Vi)
√

E cos θ − w sin θ)2
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and replacing equation (4) by

∂tft(v) = 2λ (B2[ft, ft] − ft) + μ (B2[ft, γ] − ft) − μ

2
E − T

2E
∂v(vft(v)),

our proof for contraction and propagation of chaos also work for the more
physical weak thermostat introduced in [6] with the same rates. In this case,
the proof for Lemma 21 becomes much more technical.

Many interesting questions remain open. For instance, one can consider
the particle system with the exact rescaling factor αN , given by (5). We do
not know if propagation of chaos holds in this case; we hope that Theorem 2
can be useful in answering this question. A related problem is the study of
the equilibration properties of the N particle system using more conventional
metrics such as the spectral gap and relative entropy. It is possible that Kac’s
conjecture of a spectral gap bounded below uniformly in N holds for this par-
ticle system, as well as the one with rescaling βN . Not knowing the exact form
of the equilibrium distribution in either case presents an additional difficulty
for studying equilibration via spectral gap or relative entropy. We hope that
global thermostats can be applied to study models that have multiple blocks
of Kac-type systems. Examples of such models are provided in [4] and [29].
Within each block, one can introduce a global thermostat to moderate the
total energy of that block.
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4. Appendix

4.1. The Master and Kinetic Equations

In this section, we justify the claim that (6) is the only candidate as the
propagation of chaos limit for our model with thermostat and rescaling (for
both choices: (5) and (11)).

It is expedient to use the generators of the Markov processes and the cor-
responding master equations which we now introduce. The distribution fN

t (v)
in Kac’s original particle system evolved via the following master equation:

∂fN
t

∂t
= Nλ(Q − I)fN

t

where Q is the Kac collision operator:

Q =
(

N

2

)−1 ∑

1≤i<j≤N

Qi,j
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and where the operator Qi,j represents the collision of particles i and j:

Qi,j [fN
t ](v) =

∫ 2π

0

fN
t (v1, . . . , vi−1, v

′
i(θ), . . . , vj−1, v

′
j(θ), . . . , vN )

dθ

2π
,

and where I is the identity operator: I[fN ] = fN .
The operator Pi for the strong thermostat acting on particle i is given

by

Pi[fN ](v) =
∫

R

fN (v1, . . . , vi−1, w, . . . , vN )dwγ(vi).

Now, we introduce P̃j (resp. P̃α
j ) which encorporates the action of strongly

thermostating particle j followed by the rescaling by the factor βN in (11)
(resp. αN in (5)). For any continuous and bounded function φ(v), we have
∫

RN

P̃1[fN
t ](v)φ(v)dv =

∫

RN

∫

R

fN
t (v)φ (βN (w)(w, v2, . . . , vN )) γ(dw)dv,

and
∫

RN

P̃α
1 [fN

t ](v)φ(v)dv =
∫

RN

∫

R

fN
t (v)φ (αN (w,v)(w, v2, . . . , vN )) γ(dw)dv.

Thus, the generator for our particle system and its associated Master equation
are the following.

LN = Nλ(Q − I) + μ

N∑

j=1

(P̃j − I),

∂fN
t

∂t
= LN [fN

t ].

Similarly, the generator Lα
N for the particle system with the scaling αN and

the associated Master equation are given by:

Lα
N [fN ] = Nλ(Q − I) + μ

N∑

j=1

(P̃α
j − I),

and

∂fN
t

∂t
= Lα

N [fN
t ]. (54)

We now state and prove the following lemma which can be seen as a propaga-
tion of chaos result at the level of generators.

Lemma 23. (generator level propagation of chaos). Let (fN (v))N be a se-
quence of symmetric probability densities, with fN ∈ L1(SN−1(

√
NE), σN ),

that is chaotic to f0. Assume that for some r > 2 we have

sup
N

∫

SN−1
fN (v)|v1|rσN (dv) < ∞. (55)
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Then, for any l ∈ N and any h ∈ C2(Rl) with

‖h‖∞ +
l∑

i=1

‖∂ih‖∞ +
l∑

i,j=1

‖∂i,jh‖ < ∞,

the following holds:

lim
N→∞

∫

SN−1
Lα

N [fN ]hσN (dv)

=
∫

Rl

2λ

l∑

j=1

⎛

⎝
∏

i�=j

f0(vi)

⎞

⎠ [B2[f0, f0] − f0](vj)hdv

+
∫

Rl+1
f

⊗(l)
0

⎛

⎝μ

l∑

j=1

(P ∗
j − I) + μ

E − T

2E
v.∇

⎞

⎠ [h]dv.

(56)

The limit in (56) holds if we replace (SN−1(
√

NE), σN ) by (RN ,dv) and Lα
N

by LN .

The idea of the proof is to divide the integral of the generator against a
test function into a region where some components of v are controlled, and into
the complementary region. The moment condition (55) together with Tcheby-
shev’s inequality will imply that the contribution from the complementary
integral is small, while in the controlled region, Taylor’s expansion will be
effective.

Proof. We know from [23] and [6] that

lim
N→∞

∫

SN−1
σN (dv)

⎛

⎝Nλ(Q − I) +
N∑

j=1

(Pj − I)

⎞

⎠ [fN ](v)h(v)

=
∫

Rl

2λ

l∑

j=1

⎛

⎝
∏

i�=j

f0(vi)

⎞

⎠ [B2[f0, f0] − f0](vj)hdv + μ

∫

Rk

l∑

j=1

(P ∗
j − I)h.

Thus, it suffices to study
∫

SN−1

∑
(P̃j − Pj)[fN ]h. We have the following.

∫

SN−1

∑
(P̃j − Pj)[fN ](v)h(v)σN (dv) =

∫

SN−1
fN

N∑

1

(P̃ ∗
j − P ∗

j )[h] =: E1 + E2

where E1 and E2 are given by
l∑

j=1

∫

SN−1×R

fN (v)γ(dw)[h(αN (vl+1, w)(v1, . . . , w, . . . , vl))

−h(v1, . . . , w, . . . , vl)]σN (dv),

and

(N − l)
∫

SN−1×R

fN (v)[h(αN (vl+1, w)(v1, . . . , vl)) − h(v)]σN (dv)γ(dw),
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respectively. We will study limN→∞ E2(N) only. Similar computations show
that E1(N) goes to zero. Let AN be the region given below.

AN = SN−1(
√

NE) × R ∩
{

(v, w) : |vl+1|2 ≤ NE

log(NE)

}

. (57)

Then,

E2 = (N − l)
∫

AN

fN (v)[h(αN (vl+1, w)(v1, . . . , vl)) − h(v)]σN (dv)dw + RN .

As promised, we now control the remainder term RN using Tchebyshev’s in-
equality. Here, we use the boundedness of the average rth moment.

|RN | ≤ 2(N − l)||h||∞ ×
(∫

Ac
N

fN (v)σN (dv)

)

≤ 2(N − l)||h||∞
(

log(NE)
NE

)r/2 ∫

|vl+1|rfN (v)σN (dv).

This shows that we can neglect RN . Let ε := αN (vk+1, w). Using the following
Taylor expansion:

h((1 + ε)v) − h(v) = εv.∇h(v) +
ε2

2

∑

i,j

vivj∂i,jh(v∗)

we divide E2 − RN into two parts E2A ,coming from the εv.∇h(v) term, and
E2B . We now prove that our assumptions on (fN )N make E2B(N) go to zero,
and that E2A gives the desired limit. The expression:

E2B ≤ 1
2

max
i,j≤l

||∂i,jh||∞
∫

AN

(
l∑

i=1

vi

)2

(N − l)fN (v)σN (dv)γ(dw)
(αN (vl+1, w)2 + 1)2

(
v2

l+1 − w2

NE + w2 − v2
l+1

)2

,

together with (57) and the inequality
∑

i,j≤l |vivj | ≤ l
∑l

j=1 v2
j show that

E2B ≤ C(l2E)max
i,j≤l

||∂i,jh||∞
(

1
log(NE)

+
∫

w4γ(dw)
NE

)

.

This implies that E2B(N) goes to zero. The term E2A contributes to the ex-
pression

∫

SN−1(
√

NE)

LN [fN ](v)h(v1, . . . , vl)σN (dv)

in the large N limit. The coefficient of v.∇h(v) in the limit of large N behaves
as follows:

lim
N→∞

μ
N − k

( NE
NE+w2−v2

l+1
+ 1)

v2
l+1 − w2

NE + w2 − O( NE
log(NE) )

=
μ

2
v2

l+1 − w2

E
.
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Integrating against w and against vl+1 implies that, in the infinite N limit,
the coefficient of v.∇h(v) is simply:

μ

2
E − T

E
.

Here, we replaced
∫

AN

∫
R

fN ε(v, w)v.∇h(v) by the integral over all of
SN−1(

√
NE) × R. The cost of this change is negligible as seen above. The

same procedure shows that E1 becomes zero in the limit of large N . �

4.2. Proof of Lemma 13

Proof of Lemma 13. For part (i), the fact that y ∈ C2(R) follows from∫
v2f∞(dv) = E. Equation (26) follows from (22) by choosing φ(v) = e−2πivξ,

and noting that the left-hand side gives 2πiAξ
∫

e−2πivξvf∞(dv) = −Aξ dy
dξ (ξ).

We now prove (ii), that is, we need to show that y(ξ) satisfies (P). To this
end, let (ft)t≥0 be the weak solution to (6) with f0 = γ, and note that, since
ft → f∞ weakly by Lemma 10, we have y(ξ) = limt→∞ f̂t(ξ) for all ξ ∈ R,
where f̂t(ξ) = ĝt(eAtξ) and ĝt(ξ) satisfies the Fourier version of (18), namely

ĝt = e−Dtγ̂ + e−Dt

∫ t

0

eDs(2λB̂2[ĝs, ĝs] + μB̂1[s])ds,

with D = 2λ + μ.
We now aim to prove that ĝt satisfies (P) for every t ≥ 0, for which we will

use a fixed-point argument, similar to the one used in the proof of Theorem 5.
Consider the space

F = {z ∈ C(R, C) : |z(ξ)| ≤ 1,∀ξ ∈ R},

endowed with the L∞ norm ‖ · ‖∞. For τ > 0 fixed, denote X = C([0, τ ], F ),
with the norm |u| = supt∈[0,τ ] ‖ut‖∞, thus (X , | · |) is a complete metric space.
For u ∈ X , define

F [u]t = e−Dtγ̂ + e−Dt

∫ t

0

eDs(2λB̂2[us, us] + μB̂1[s])ds.

For z ∈ F , we have that γ̂, B̂1[s] and B̂2[z, z] all belong to F , which implies
that F maps X into itself. Also, since

‖B̂2[z, z] − B̂2[w,w]‖∞ ≤ 2‖z − w‖∞,

it follows that F is a contraction on (X , |·|) when τ is small enough (the details
are the same as in the proof of Theorem 5). This proves that F has a unique
fixed point, which can then be extended to all times t ≥ 0. By the uniqueness
property, we deduce that (ĝ)t≥0 has to be this fixed point.

Now, consider the smaller space FP = {z ∈ F : z satisfies (P)} and
XP = C([0, τ ], FP ) with the same metrics as before, thus XP is a closed subset
of X . We note that B̂2[z, w] is always even (since replacing ξ by −ξ corresponds



Vol. 22 (2021) On a Thermostated Kac Model with Rescaling 1663

to changing θ into π + θ. This does not affect (25)), and that B̂2[z, z] is non-
increasing on [0,∞) when z satisfies (P): for 0 ≤ ξ1 ≤ ξ2,

B̂2[z, z](ξ2) =
∫ 2π

0

z(|ξ2 cos θ|)z(|ξ2 sin θ|) dθ

2π

≤
∫ 2π

0

z(|ξ1 cos θ|)z(|ξ1 sin θ|) dθ

2π
= B̂2[z, z](ξ1).

Thus, z �→ B̂2[z, z] preserves the property (P), which in turn implies that F
maps XP into itself. Therefore, the fixed point (ĝt)t≥0 of F will belong to XP ,
because starting the Picard iterations from ut ≡ γ̂ will keep the sequence,
and hence its limit, in XP . Consequently, y(ξ) also satisfies (P) since y(ξ) =
limt→∞ ĝt(eAtξ).

We now prove statement (iii). The case k = 0 holds since y(ξ) ∈ C2(R)
and we have f∞ ∈ L1(R), so that limξ→±∞ y(ξ) = 0 by the Riemann-Lebesgue

lemma. For the cases k ≥ 1, we use induction. Let uk(ξ) =
(
ξ d
dξ

)k

y. Assume
uk(ξ) is continuous and limξ→±∞ uk(ξ) = 0 whenever 0 ≤ k ≤ J . We have the
following Leibniz rule whenever r and m are less than J .

ξ
d
dξ

∫ 2π

0

ur(ξ cos θ)um(ξ sin θ)
dθ

2π
=

∫ 2π

0

ur+1(ξ cos θ)um(ξ sin θ)
dθ

2π

+
∫ 2π

0

ur(ξ cos θ)um+1(ξ sin θ)
dθ

2π
.

This, together with equation (26), gives:

−AuJ+1(ξ) = 2λ
J∑

k=0

(
J

k

)∫ 2π

0

uk(ξ cos θ)uJ−k(ξ sin θ)
dθ

2π

−2λuJ(ξ) + μ

(

ξ
d
dξ

)J

(γ̂) − μuJ(ξ).

The right-hand side is continuous, and converges to zero for large |ξ| by the

induction hypotheses and the fact that
(
ξ d
dξ

)J

(γ̂) is a polynomial times a
Gaussian. �

4.3. Proof of Lemmas 14 and 21

Proof of Lemma 14. First, we prove the case when r ∈ (0, 1). Let

G[h](ξ) = rγ̂(ξ) + (1 − r)
∫ π

2

0

h(ξ cos θ)h(ξ sin θ)
dθ

π/2
,

and let S be given by

S =

{

w ∈ C([0,∞), [0, 1]) : sup
ξ �=0

|w(ξ) − 1|
ξ2

< ∞
}

,
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equipped with the norm ‖ · ‖S given by

‖f − g‖S = sup
ξ �=0

|f(ξ) − g(ξ)|
ξ2

.

Then, by a standard 3ε argument, we see that (S, ‖ · ‖)S is a complete metric
space. It is also easy to show that G maps S into S and that G is a contraction
in (S, ‖.‖S) by a factor of (1 − r) (see footnote 3). It follows that γ̂ is the
unique fixed point of G in S. We note also that G has a monotonicity property:
if u(ξ) ≤ w(ξ) for all ξ, then G[u](ξ) ≤ G[w](ξ) for all ξ. This implies that if
u(ξ) satisfies (27), then so does G[u]. We are now ready to prove the lemma.
Let z(ξ) satisfy (27). Consider the sequence {zn} in S with

zk+1 = G[zk], z0 = max{z, γ̂}.

We have z0 ∈ S since z0 is continuous and supξ �=0 |z0 − 1|ξ−2 ≤ supξ �=0 |γ̂(ξ)−
1|ξ−2 < ∞. We also note that z0 satisfies (27). Since z0 ≤ z1, we can show by
induction and the monotonicity property of G that for each ξ we have

z(ξ) ≤ z1(ξ) ≤ · · · ≤ zk(ξ) ≤ · · · ≤ 1.

By the contracting property of G we have that z∗ = limk→∞ zk exists in
(S, ‖ · ‖S). Thus, G(z∗) = z∗ by continuity. Hence, z∗ = γ̂ by the uniqueness of
the fixed point. Therefore, we have z(ξ) ≤ z0(ξ) ≤ z∗(ξ) ≤ γ̂(ξ) for all ξ. This
proves the lemma when r ∈ (0, 1).

When r = 0, we argue by contradiction. Suppose z(ξ) satisfies (27) and
(28), but that z(ξ1) > γ̂(ξ1) for some ξ1. Then, ξ1 > 0. Since z ≤ 1, z(ξ1) =
exp(−2π2Ēξ21) for some Ē < E. Thus, we have

2
π

∫ π/2

0

z(ξ1 cos θ)z(ξ1 sin θ) ≥ z(ξ1) ≥ 2
π

∫ π/2

0

exp(−2π2Ēξ21 cos2 θ) exp(−2π2Ēξ21 sin2 θ).

So there is a subset I1 of [0, π/2] of positive measure for which

θ ∈ I1 ⇒ (
z(ξ1 cos θ) ≥ exp(−2π2Ēξ21 cos2 θ) or z(ξ1 sin θ) ≥ exp(−2π2Ēξ21 sin2 θ)

)
.

It follows that there is ξ2 ∈ (0, ξ1) for which z(ξ2) ≥ exp(−2π2Ēξ22). Since ξ1
was arbitrary,

inf{ξ > 0 : z(ξ) ≥ exp(−2π2Ēξ2)} = 0,

3 This is because for all ξ > 0 we have

|G[f ](ξ) − G[g](ξ)|
ξ2

≤ (1 − r)

∫ π
2

0
(f(ξ cos θ) + g(ξ cos θ))

|(f(ξ sin θ) − g(ξ sin θ))|
ξ2

≤ (1 − r)‖f − g‖S

∫ π
2

0
2ξ2(sin θ)2ξ−2 = (1 − r)‖f − g‖S .
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and there is a sequence ηj > 0 approaching zero for which z(ηj) ≥ exp(−2π2Ēη2
j )

for all j. Therefore

lim inf
j→∞

(z(ηj) − 1)η−2
j ≥ −2π2Ē,

contradicting (28). �

Proof of Lemma 21. The proof relies on Taylor approximation. Let

IN =
{

w :
∣
∣
∣
∣
E − w2

NE

∣
∣
∣
∣ ≤ 1

10

}

, JN = R − IN .

We will need the observation that βN (w) ≤ 2 for all N ≥ 2, and the fact that,
when |x| ≤ 1

10 , we have (1−x)−1/2 = 1+x
2+ 3

8x2Er(x); where |Er(x)| ≤ (
10
9

)5/2.
We are now ready to find the desired upper bounds. We will let x = E−w2

NE .
We note that when w ∈ IN , we have |x| ≤ 1

10 and

(N − 1)(1 − βN (w)) = −N − 1
N

(
E − w2

2E
+

3
8
Er(·) (E − w2)2

E2N

)

. (58)

Let us introduce φN via the equation

βN (w) = 1 +
φN (w)

N
.

It follows that we have
∫

R

|φN (w)|(1 + w2)ν(dv) ≤ C(1 + M4(ν)), (59)

which follows from the fact that on IN we have

|φN | ≤
∣
∣
∣
∣
E − w2

2E

∣
∣
∣
∣

(

1 +
3
80

(
10
9

)5/2
)

, (60)

and the fact that, on JN , we have |φN | ≤ 3N . Thus,
∫

JN

(1 + w2)|φN | ≤ 30N

∫

R

(1 + w2)|
∣
∣
∣
∣
E − w2

NE

∣
∣
∣
∣ ν(dv) ≤ C(1 + M4(ν)).

We now tackle K̄2
N . Using the boundedness of βN and (59)

K̄2
N ≤ 3

∫

R

ν(dw)
∣
∣
∣
∣
φ(w)
N

∣
∣
∣
∣w

2 ≤ C(1 + M4(ν))
N

.

We now tackle K̄1
N and K̄3

N . Using Tchebyshev’s inequality, we see that

(N − 1)
∫

JN

(1 − βN )2ν(dw)

≤ 9(N − 1)
∫

JN

ν(dw) ≤ 9(N − 1)
∫

JN

100
∣
∣
∣
∣
E − w2

EN

∣
∣
∣
∣

2

ν(dw)

≤ C

N
(1 + M4(ν)). (61)
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It follows that

K̄1
N = (N − 1)

∫

IN

φ2
N

N2
ν(dw) + (N − 1)

∫

JN

(1 − βN )2ν(dw)

≤ C
1
N

∫

R

(1 + w2)2ν(dw) +
C

N
(1 + M4(ν)) ≤ C

N
(1 + M4(ν)).

Here, we used (60) and (61) for the first and second terms in the first inequality.
Finally, since K̄N

3 satisfies

K̄N
3 = −2(N − 1)

∫

R

(1 − βN )ν(dw) + 2K̄1
N − E − T

E

the claim |K̄N
3 | ≤ C(1+M4)/N follows from substituting (58) into the integral

above and noting that each of
∫

IN

1
N

∣
∣Er(·)(E − w2)2

∣
∣ ν(dw),

∫

JN

∣
∣
∣
∣
E − w2

2E

∣
∣
∣
∣ ν(dw),

and
∫

JN

(N − 1)|1 − βN |ν(dw)

is bounded above by C(1 + M4(ν))/N . �

4.4. Proof of the Statement in Remark 19

Our case r = 4 corresponds to the parameters q = 2p = 4 in [18, Theorem 1].
Since we are working in dimension d = 1, we only need to consider the case
p > d/2 (see step 2 on page 717 there). To extend the proof in [18, Theorem 1]
to this case also, it remains to show the following inequality holds.

∑

n≥0

2np min
{

2−2pn, (2−2pn/N)1/2
}

≤ CN−1/2 log N.

This follows after we split the sum into the region {n :
√

N < 2pn} and
its complement, and noting that in this region min{2−2pn, (2−2pn/N)1/2} =
2−2np, and the complementary region has O(log N) terms.
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