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1 Introduction

Hyperbolic manifolds and their pseudo Riemannian cousins, de Sitter (dS) and anti de Sit-

ter (AdS) space, arise in several contexts in physics and mathematics. Cosmic inflation

in the early universe and the dark energy dominated expansion at late times are well ap-

proximated by dS space, while AdS space is the arena of most holographic dualities. In

mathematics, the work of Fefferman and Graham [1] relates hyperbolic geometry with the

study of conformal invariants, whereas hyperbolic 3-manifolds provide deep connections

between number theory, topology and geometry.

The focus of the present work are general asymptotically locally AdS (AlAdS) mani-

folds, known as conformally compact Einstein or Poincaré-Einstein manifolds in the math-

ematics literature. These are Riemannian or pseudo Riemannian solutions of Einstein’s

equations with a negative cosmological constant, but the aspects we will discuss here apply
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also to solutions with a positive cosmological constant, that is asymptotically locally dS

manifolds. A common property of all such manifolds is that they have an infinite volume

and a compact conformal boundary.

Conformal geometry on the boundary of AlAdS manifolds can be studied through

hyperbolic geometry in the interior [1]. In particular, certain quantities obtained from

the bulk geometry, such as the renormalized volume in even dimensions and Branson’s

Q-curvature in odd dimensions, compute boundary conformal invariants [2, 3]. A result

of direct relevance to our analysis was proved by Anderson for the case of four dimen-

sional AlAdS manifolds [4] and was generalized to higher even dimensions by Albin [5] and

Chang, Qing and Yang [6]. Anderson’s result concerns the renormalized volume of AlAdS4

manifolds and is summarized in the formula

1

8(2π)2

∫
M4

|W |2 +
3

(2π)2
V ren(M4) = χ(M4), (1.1)

where W is the Weyl tensor of the bulk metric, χ(M4) is the Euler characteristic ofM4, and

V ren(M4) is the renormalized volume. It is instructive to compare this with the generalized

Chern-Gauss-Bonnet theorem for manifolds with boundary [7] (see (3.7) below)∫
M4

Ω +

∫
∂M4

Π = χ(M4), (1.2)

where Ω is the Pfaffian of the bulk Riemann tensor, i.e. the Euler-Poincaré density, and

the Chern form, Π, satisfies −dΠ = Ω. Since the Weyl tensor is the traceless part of the

Riemann tensor, it follows that for any Einstein manifold we have, schematically,∫
M4

Ω ∼
∫
M4

|W |2 + ΛV (M4), (1.3)

where Λ is the cosmological constant and V (M4) is the volume of M4, defined with some

regulator.

Comparing (1.1) and (1.2), we see that the content of Anderson’s theorem is that the

renormalized volume of four dimensional AlAdS manifolds is (again schematically) given by

V ren(M4) ∼ V (M4) + Λ−1
∫
∂M4

Π. (1.4)

In particular, the Chern form associated with the Pfaffian of the bulk Riemann tensor

renormalizes the volume of AlAdS4 manifolds. As we will see in the subsequent analysis,

this conclusion hinges crucially on the fact that the integral of the square of the Weyl tensor

over M4 is finite. This does not hold for higher even dimensional AlAdS manifolds. Of

course, neither the Chern-Gauss-Bonnet theorem nor Anderson’s theorem can be extended

to odd dimensional AlAdS manifolds.

In the context of the AdS/CFT correspondence [8], the renormalized volume of even

dimensional AlAdS manifolds is interpreted as the partition function of the dual con-

formal field theory (CFT), while the Q-curvature of odd dimensional AlAdS manifolds

corresponds to the conformal anomaly of the dual CFT [9]. Both these quantities can be
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computed through a systematic procedure known as holographic renormalization [9–11].

More generally, holographic renormalization computes the boundary term required in order

to formulate the variational problem in terms of conformal equivalence classes of boundary

data, rather than conformal representatives [12, 13]. This is necessary for a well posed vari-

ational problem on a conformal boundary and is related with the ellipticity of boundary

conditions at the quantum level [14].

Borrowing terminology from the AdS/CFT context, we will refer to the boundary

term that allows the variational problem on AlAdS manifolds to be formulated in terms of

conformal classes on the boundary as ‘boundary counterterms’. Several properties of this

boundary term are universal, yet often overlooked. Firstly, it must be covariant and local,

i.e. analytic in field space and polynomial in boundary derivatives. In any situation where

these two properties cannot be maintained simultaneously, locality is given priority at the

expense of covariance. In the holographic context, such situations indicate the presence of

an anomaly in the dual field theory. Notice that locality of the boundary counterterms is

related with the compactness of the boundary. The boundary of any AlAdS manifold is

compact, but there are instances where this property is not manifest, leading occasionally

to the erroneous conclusion that non-local counterterms are required. An example is the

AdSd slicing of AdSd+1. A less trivial one is the Janus solution of type IIB supergravity [15].

Once the correct conformal compactification is identified, however, even in such cases the

boundary can be shown to be compact [16] and the corresponding boundary term local.

Another general property of the boundary counterterms for AlAdS manifolds is that

their divergent part is unique. The only ambiguity is the possibility of adding an arbitrary

linear combination of boundary conformal invariants, which contribute finite terms only.

Due to its interpretation in the context of the AdS/CFT correspondence, this freedom

is referred to as ‘renormalization scheme dependence’. The uniqueness of the divergent

part of the boundary counterterms, however, implies that any boundary term that renders

the variational problem on AlAdS manifolds well posed must coincide with the boundary

counterterms, possibly up to finite terms. In combination with Anderson’s theorem, this

suggests that the boundary counterterms for Einstein-Hilbert gravity on four dimensional

AlAdS manifolds should be given by the Chern form, Π. We show that this is indeed the

case, and generalize this statement to AlAdS manifolds of arbitrary even dimension.

The observation that the Chern form renormalizes the volume of AlAdS4 manifolds

was also the inspiration for the Kounterterms, first proposed for even dimensional AlAdS

manifolds in [17] and later generalized to odd dimensions in [18]. In even dimensions, the

Kounterterms are nothing but the pullback of the Chern form, Π, on the boundary ∂M.

They are a polynomial in the extrinsic curvature of the induced metric on ∂M, which

corresponds to the pullback of the bulk connection one-form onto ∂M. The Kounterterms

for odd dimensions are also a polynomial in the extrinsic curvature of the boundary, but

they are not related with the Chern form in that case.

Given that the Kounterterms are expressed in terms of the extrinsic curvature, while

the counterterms are a polynomial in the intrinsic curvature of the induced metric on ∂M, a

direct comparison seems impossible. However, the variational problem on AlAdS manifolds

can be formulated only within the space of metrics that are asymptotically Einstein, which
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d = dim(∂M) Conditions

2 Euler(∂M) = 0

3 —

even > 2 Weyl(∂M) = 0 & Euler(∂M) = 0

odd > 3 Weyl(∂M) = 0

Table 1. Necessary and sufficient conditions for the validity of the boundary Kounterterms. Except

in four dimensions (d = 3), the Kounterterms regulate the AdS variational problem if and only if

the Weyl tensor of the boundary is zero (odd d > 3), or both the Weyl tensor and Euler density of

the boundary vanish (even d).

implies that the extrinsic curvature and the induced metric on ∂M are asymptotically

related. Using this on-shell relation, the Kounterterms can be rewritten entirely in terms

of the intrinsic curvature of the induced metric, permitting a direct comparison with the

counterterms. Since these are unique, the Kounterterms lead to a well posed variational

problem only if the two coincide, at least up to finite local terms.

Comparing the Kounterterms with the boundary counterterms for generic AlAdS man-

ifolds in dimensions three to seven, we show that a necessary condition for agreement is

that the Weyl tensor of the boundary metric be zero. This is automatically satisfied for

AlAdS4 manifolds, since the Weyl tensor in three dimensions vanishes identically, and re-

flects the fact, pointed out above, that the integral of the square of the Weyl tensor is finite

in four dimensions, but not in higher dimensions. For odd dimensional AlAdS manifolds,

a second necessary condition for the Kounterterms to agree with the boundary countert-

erms is that the Euler characteristic of the boundary also vanishes. With the exception

of AlAdS4 manifolds, therefore, the Kounterterms do not lead to a well posed variational

problem for generic AlAdS manifolds.

We determine the general form of both the counterterms and Kounterterms for AlAdS

manifolds with a conformally flat boundary of arbitrary dimension, and we demonstrate

that the vanishing of the boundary Weyl tensor, as well as of the boundary Euler charac-

teristic in the case of odd dimensions, are also sufficient conditions for the Kounterterms

to coincide with the boundary counterterms. These conditions are summarized in table 1.

Finally, it is worth emphasizing that the boundary Kounterterms do not correspond

to an alternative renormalization scheme in the AdS/CFT sense. Unless the conditions

in table 1 are met, the Kounterterms do not regulate the variational problem, nor do

they remove the long distance divergences of the on-shell action. Moreover, whenever

the conditions in table 1 are satisfied, we find that the Kounterterms correspond to a

minimal subtraction scheme, i.e. they coincide with the boundary counterterms without

any additional finite local contributions.

This paper is organized as follows. In section 2 we provide a self contained overview

of the dilatation operator method of holographic renormalization for pure AdS gravity.

We emphasize the uniqueness of the divergent boundary counterterms and their role in

the regularization of the variational problem on asymptotically locally AdS manifolds.
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The ambiguity corresponding to the choice of finite local counterterms is also discussed

in detail. In section 3 we review the Chern-Gauss-Bonnet theorem for manifolds with

boundary and we explain how it naturally leads to the construction of the Kounterterms

for AdS gravity. Expressing the Kounterterms in terms of the intrinsic curvature of the

boundary in dimensions three to seven, we compare them with the boundary counterterms

and show that there is no agreement unless the boundary Weyl tensor vanishes. Section 4

focuses on asymptotically locally AdS manifolds with a vanishing boundary Weyl tensor.

We determine the boundary counterterms in arbitrary dimension for such manifolds and

show that in even dimensions they coincide with the Kounterterms, while in odd dimensions

we pinpoint the difference. We conclude in section 5 with a brief discussion. A number of

auxiliary technical results are collected in two appendices.

2 Boundary counterterms from a variational principle

A well posed variational principle on a non compact manifold requires the addition of

suitable boundary terms. In this section we review the connection between the variational

problem for pure Einstein-Hilbert gravity in asymptotically locally anti de Sitter (AlAdS)

backgrounds and the local boundary counterterms required to render it well posed. In

particular, we show that the boundary counterterms satisfy the radial Hamilton-Jacobi

equation, which can be most efficiently solved iteratively using the dilatation operator

method [11].

2.1 Asymptotically locally AdS manifolds

A non compact (pseudo) Riemannian manifold is said to be AlAdS if it is a conformally

compact Einstein manifold (also known as a Poincaré-Einstein manifold), which is defined

as follows [1, 6, 19–22]. IfM denotes the interior of a d+1 dimensional compact manifoldM
with boundary ∂M, then a (pseudo) Riemannian metric g onM is said to be conformally

compact if there exists a smooth and non-negative function Ω onM, such that Ω(∂M) = 0,

dΩ(∂M) 6= 0, and g̃ = Ω2g extends smoothly to a non-degenerate metric on M, i.e. g has

a second order pole at the boundary. If it exists, the defining function Ω is not unique

and hence the conformal compactification is not unique. In particular, the metric g on M
induces only a conformal class [g(0)] of boundary metrics g(0) = g̃|∂M. In the vicinity of

the conformal boundary, the Ricci and Riemann tensors of conformally compact manifolds

behave respectively as

Rµν [g] = − d |dΩ|2g̃ gµν +O(Ω−1),

Rµνρσ[g] = |dΩ|2g̃ (gµσgνρ − gµρgνσ) +O
(
Ω−3

)
, (2.1)

where

|dΩ|2g̃ ≡ g̃
µν∂µΩ∂νΩ = O(Ω0). (2.2)

The asymptotic form (2.1) of the Riemann tensor implies that the corresponding Weyl

tensor is asymptotically subleading relative to Rµνρσ[g]. This follows from the fact that
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the Weyl tensor

Wµνρσ ≡ Rµνρσ + gµσPνρ + gνρPµσ − gµρPνσ − gνσPµρ, (2.3)

where the Schouten tensor Pµν in d+ 1 dimensions is defined as

Pµν =
1

d− 1

(
Rµν −

1

2d
Rgµν

)
, (2.4)

transforms homogeneously under local Weyl rescalings of gµν . Namely,

Wµνρσ[g] = Ω−2Wµνρσ[g̃] = O(Ω−2), (2.5)

while the leading asymptotic behavior of Rµνρσ[g] as Ω→ 0 is O(Ω−4).

An AlAdS manifold is a conformally compact manifold that is also Einstein, i.e. it

satisfies Einstein’s equations with a negative cosmological constant1

Rµν −
1

2
Rgµν + Λgµν = 0, (2.6)

where

Λ = −d(d− 1)

2`2
, (2.7)

and ` is the AdS radius. In combination with the asymptotic behavior of the Ricci tensor

in (2.1), Einstein’s equations imply that

|dΩ|2g̃ =
1

`2
. (2.8)

Using the Gaussian normal coordinate ρ emanating from the conformal boundary ∂M
as the asymptotic radial coordinate on M, the non-degenerate metric g̃ takes the form

g̃ = dρ2 + gρ, gρ = g(0) +O(ρ), (2.9)

where g(0) is a non-degenerate metric on ∂M. For a defining function that only depends

on the radial coordinate, i.e. Ω = Ω(ρ), the condition (2.8) determines

Ω =
ρ

`
. (2.10)

It follows that the AlAdS metric g admits the asymptotic (Fefferman-Graham) form [1,

20–22]

g =
`2

ρ2
(
dρ2 + gρ

)
=
`2

ρ2
(
dρ2 + g(0) +O(ρ)

)
. (2.11)

In the subsequent analysis, it will be useful to introduce the non compact radial coordinate

r = −` log(ρ/`) so that

g = dr2 + hij(r, x)dxidxj , hij(r, x) = e2r/`
(
g(0)ij(x) +O(e−r/`)

)
, i, j = 1, . . . d.

(2.12)

1More generally, AlAdS manifolds are solutions of Einstein’s equations with a matter stress tensor that

is asymptotically subleading relative to the cosmological constant term.
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Penrose-Brown-Henneaux diffeomorphisms. Since an AlAdS metric on M induces

only a conformal class of metrics on ∂M, any specific choice of radial coordinate, such

as the one in (2.12), is only defined up a residual bulk coordinate transformation that

preserves the asymptotic form of the metric but acts non trivially within the conformal

class of boundary metrics through a Weyl transformation, namely

gij(0)(x)→ e2σ(x)/`gij(0)(x). (2.13)

These residual bulk coordinate transformations are known as Penrose-Brown-Henneaux

(PBH) diffeomorphisms [23] and take the form2

r → r′ = r + σ(x), xi → x′i = xi +
`

2
e−2r/`gij(0)(x)∂jσ(x) +O(e−3r/`), (2.14)

where σ(x) is an arbitrary function of the transverse coordinates. As we will see in the

next subsection, these residual bulk diffeomorphisms play a crucial role in the formulation

of a well posed variational problem on AlAdS manifolds.

2.2 The variational problem in terms of conformal classes

We have seen that an AlAdS metric on M induces only a conformal class of metrics on

the conformal boundary, ∂M, and so the variational problem on M must be formulated

in terms of the conformal class, [g(0)], instead of the conformal representative g(0). In

particular, the variational problem is well posed provided the on-shell action is a class

function on ∂M [12, 13].3 The relation between boundary Weyl transformations and the

bulk diffeomorphisms (2.14) maps any boundary class function to a function of the bulk

metric that is invariant under radial translations. Requiring the on-shell action, evaluated

with a radial cutoff, to be independent of the cutoff position, determines the boundary

counterterms, up to a finite set of local conformal invariants on the boundary.

In this paper we focus exclusively on the variational problem for the Einstein-Hilbert

action

S =
1

2κ2

(∫
M

dd+1x
√
−g(R− 2Λ) +

∫
∂M

ddx
√
−h 2K

)
, (2.15)

where κ2 = 8πG is the gravitational constant in d+1 dimensions, the cosmological constant

Λ is given in (2.7), and the surface term involving the trace, K, of the extrinsic curvature

of ∂M is the standard Gibbons-Hawking term [24]. The field equations following from this

action are Einstein’s equations (2.6), which admit AlAdS solutions.

In order to formulate the variational problem, it is necessary to regularize M by

introducing a radial cutoff surface infinitesimally away from Ω = 0 and consider instead

∂Mε = Ω−1(ε), where ε is a small and positive number. This amounts to introducing

an upper bound rc on the radial coordinate r in (2.12), which explicitly breaks the PBH

diffeomorphisms (2.14). These diffeomorphisms imply that moving the position of the

2Of course, arbitrary transverse diffeomorphisms of the form xi → x′i = f i(x) also preserve the

form (2.12) of the metric, but do not act on the radial coordinate.
3The on-shell action cannot be rendered a class function for even d due to the conformal anomaly [9],

but it can still furnish a representation of the Abelian group of Weyl transformations.
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radial cutoff rc is equivalent to changing the conformal representative of the conformal

class of boundary metrics [g(0)]. Hence, rendering the variational problem independent of

the position of the radial cutoff is equivalent to a variational principle in terms of conformal

classes of boundary metrics. Moreover, if the variational problem is independent of the

location of the radial cutoff, the on-shell action remains finite as the cutoff is removed. We

will now show that the regularized variational problem can be rendered independent of the

radial cutoff by adding a suitable boundary term.

General variations. The general variation of the action (2.15) on the regularized man-

ifold Mrc takes the form

δSreg =
1

2κ2

∫
Mrc

dd+1x
√
−g
(
Rµν −

1

2
Rgµν + Λgµν

)
δgµν +

∫
∂Mrc

ddxπijδhij , (2.16)

where hij is the induced metric on the regularized boundary ∂Mrc and πij is its conjugate

canonical momentum in the Hamiltonian formulation of the dynamics where the radial

coordinate r plays the role of Hamiltonian ‘time’. Notice that the grr and gri components

of the metric do not enter in the variational problem. These components correspond

respectively to the lapse and shift functions in the radial ADM formalism [25], which are non

dynamical Lagrange multipliers with vanishing canonical momenta. In the gauge (2.12),

corresponding to setting the lapse and shift functions respectively to 1 and 0, the canonical

momentum of the induced metric hij takes the form

πij =
1

2κ2

√
−h
(
Khij −Kij

)
, (2.17)

where Kij = 1
2 ḣij and K = hijKij denote respectively the extrinsic curvature of ∂Mrc

in Mrc and its trace, with the dot in ḣij indicating a total derivative with respect to the

radial coordinate r. Notice that, up to the volume element, the canonical momentum (2.17)

coincides with the quasilocal Brown-York stress tensor [26]

T ijBY =
1

2κ2
(
Khij −Kij

)
. (2.18)

The variational principle (2.16) demonstrates that the variational problem on AlAdS man-

ifolds is inherently related to a radial Hamiltonian formulation of the dynamics.

Diffeomorphisms and variations of the radial cutoff. The Lagrangian of a diffeo-

morphism invariant theory transforms as a tensor density under diffeomorphisms. Namely,

under an infinitesimal coordinate transformation, xµ → xµ + ξµ, the regularized ac-

tion (2.15) transforms as

δξSreg =

∫
∂Mrc

ddx ξrL , (2.19)

where in the gauge (2.12) the radial Lagrangian density, L , takes the form

L =
1

2κ2

√
−h
(
R[h]− 2Λ +K2 −Ki

jK
j
i

)
, (2.20)
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and R[h] denotes the Ricci curvature of the induced metric hij . An alternative way to

derive (2.19) is to use the transformation of the metric gµν on Mrc and of the induced

metric hij on ∂Mrc under diffeomorphisms, respectively δξgµν = ∇µξν +∇νξµ and δξhij =

Diξj+Djξi+2Kijξ
r, in the general variation of the regularized action in (2.16). Throughout

this paper, ∇µ denotes the covariant derivative with respect to the bulk metric gµν , while

Di stands for the covariant derivative with respect to the induced metric hij .

The transformation (2.19) reflects the fact that diffeomorphisms with ξr 6= 0 are not a

symmetry of the regularized theory. These are precisely the PBH diffeomorphisms (2.14),

which correspond to a translation of the radial cutoff rc and induce a Weyl transformation

on the boundary metric g(0). Specifically, (2.19) implies that under an infinitesimal PBH

transformation

ξr = δσ(x), ξi =
`

2
e−2r/`gij(0)(x)∂jδσ(x) +O(e−3r/`), (2.21)

the regularized action transforms as

δσSreg =
1

κ2

∫
∂Mrc

ddx
√
−h δσ

(
R[h]− 2Λ +K2 −Ki

jK
j
i

)
6= 0. (2.22)

As it stands, therefore, the variational problem on the cutoff surface depends explicitly on

the conformal representative of the conformal class of boundary metrics g(0).

Radial diffeomorphisms can be restored as a symmetry of the theory on a non compact

manifold by imposing suitable boundary conditions and adding the corresponding boundary

terms. The relevant boundary condition in this case is that the metric on M be AlAdS,

which projects the field configurations onto the space of asymptotic solutions of the field

equations. As a consequence, the canonical variables hij and πij , or equivalently hij and

Kij , are asymptotically on-shell and are therefore not independent. The unique asymptotic

relation Kij [h] between the variables hij and Kij that any AlAdS metric obeys is the key

to determining the boundary terms necessary to restore the radial diffeomorphisms as

a symmetry of the theory on M. This relation, however, also means that the relevant

boundary term can be equivalently expressed in terms of hij or Kij . Indeed, using the first

Gauss-Codazzi equation in (2.32), the transformation (2.19) of the regularized action can

be written on-shell in different ways:

δξSreg|on-shell =
1

κ2

∫
∂Mrc

ddx
√
−h ξr(R− 2Λ) =

1

κ2

∫
∂Mrc

ddx
√
−h ξr

(
K2 −Ki

jK
j
i

)
.

(2.23)

This redundancy in the way that the relevant boundary term can be parameterized is what

fundamentally allows a meaningful comparison between the boundary counterterms and

Kounterterms.

Universal boundary term restoring radial translations. In order to render the

variational problem well posed, it is necessary to formulate it in terms of conformal classes

of boundary metrics, i.e. to restore radial diffeomorphisms as a symmetry of the theory on

the regularized manifoldMrc , at least asymptotically as rc →∞. As we have argued, this

can be achieved by projecting asymptotically onto AlAdS metrics and adding a suitable
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boundary term, Sct. As we now review, the divergent part of this boundary term is

universal: it is given by an asymptotic solution of the radial Hamilton-Jacobi equation [13].

The only ambiguity in the boundary term amounts to the possibility of adding finite, local

and covariant terms to Sct, which is referred to as a choice of ‘renormalization scheme’ in

the context of the AdS/CFT correspondence. However, the divergent part of the boundary

term that renders the variational problem well posed is completely unambiguous.

The fact that, for any AlAdS metric, the canonical variables hij and Kij are asymp-

totically related through a unique and universal relation allows us to take without loss

of generality the boundary term Sct to be a function of the induced metric hij and its

transverse derivatives, i.e. derivatives with respect to the boundary coordinates xi, but not

of ḣij . Since the radial cutoff does not break transverse diffeomorphisms ξ⊥i(x) tangent to

the cutoff surface, the boundary term should also preserve these. Namely, we demand that

δξ⊥Sct = −2

∫
∂Mrc

ddx ξ⊥i Dj

(
δSct

δhij

)
= 0, (2.24)

which leads to the conservation equation

Di

(
δSct

δhij

)
= 0. (2.25)

Finally, in order for the boundary term not to change the dynamics of the theory, we

demand that it be local, i.e. polynomial in derivatives with respect to xi. As we will see

shortly, for even boundary dimension d, insisting on locality necessarily leads to a specific

explicit dependence of Sct on the radial cutoff rc, which is a manifestation of the holographic

conformal anomaly [9].

Writing the boundary term as

Sct =

∫
∂Mrc

ddxLct, (2.26)

the sum of the regularized action and the boundary term transforms under diffeomor-

phisms as

δξ
(
Sreg + Sct

)
=

∫
∂Mrc

ddx ξrL +

∫
∂Mrc

ddx ξr(L̇ct − ∂iΩi
ct), (2.27)

where L is given in (2.20) and the vector density Ωi
ct is implicitly determined by Lct.

Notice that, for compact ∂Mrc , the density Lct is only defined up to a total derivative.

However, Sct is unaffected by total derivative terms and so must be the variation (2.27).

This determines that adding a total derivative term to Lct, i.e. Lct → Lct + ∂iv
i, shifts

Ωi
ct according to Ωi

ct → Ωi
ct + v̇i. The transformation (2.27) implies that radial diffeomor-

phisms are restored as the radial cutoff is removed provided the r.h.s. vanishes, at least

asymptotically, i.e.

lim
rc→∞

(L + L̇ct − ∂iΩi
ct) = 0. (2.28)

This is the unintegrated version of the equivalent condition

lim
rc→∞

(Ṡreg + Ṡct) = 0, (2.29)
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which provides a universal expression for the boundary term necessary to restore radial

diffeomorphisms, as well as a systematic way for determining it.

The key observation is that, on-shell, the regularized action, Sreg, is a covariant (but

non local) functional of the induced metric, hij , on the radial cutoff, ∂Mrc , and coincides

with a specific solution, S[h], of the radial Hamilton-Jacobi equation, which for pure AdS

gravity takes the form

2κ2√
−h

(
hikhjl −

1

d− 1
hijhkl

)
δS
δhkl

δS
δhij

+
1

2κ2

√
−h(R− 2Λ) = 0. (2.30)

The condition (2.29), therefore, implies that Sct takes the universal form

Sct[h; rc] = −S[h] + finite as rc →∞, (2.31)

where S[h] satisfies the Hamilton-Jacobi equation (2.30). It is a remarkable property of

AlAdS manifolds that this quantity can be made local, i.e. polynomial in derivatives with

respect to xi, thus fulfilling also the locality requirement of Sct, albeit at the expense of

introducing explicit cutoff dependence in the case of even boundary dimension d.

2.3 Boundary counterterms from the dilatation operator expansion

The result (2.31) implies that the boundary term required to render the variational problem

for AdS gravity well posed, and consequently the on-shell action finite, is given by the

divergent part of a solution, S[h], of the radial Hamilton-Jacobi equation. Sct, therefore,

can be determined by asymptotically solving the Hamilton-Jacobi equation (2.30). In

simple cases, this can be done by enumerating all possible terms that can appear in S[h], up

to the desired order, and determining the coefficients using (2.30) [27–29]. It is usually much

more efficient, however, to solve the Hamilton-Jacobi equation systematically through the

recursive relations obtained by a formal expansion of S[h] in eigenfunctions of the dilation

operator [11] (see [30] for a recent review and [31–33] for generalizations to non conformal

and non relativistic theories. A precursor of the dilatation operator method for pure AdS

gravity was developed in [34].) The original approach to holographic renormalization [9, 10]

does not utilize the Hamilton-Jacobi equation and instead determines the asymptotic form

of the regularized on-shell action by evaluating it explicitly on asymptotic solutions of the

equations of motion. In the remaining of this section, we provide a brief, but self contained

review of the dilatation operator method for solving the Hamilton-Jacobi equation in the

case of pure AdS gravity.

The Hamilton-Jacobi approach to gravity relies on the two Gauss-Codazzi equations

K2 −Ki
jK

j
i = R− 2Λ, DiK

i
j −DjK = 0, (2.32)

which correspond respectively to the rr and rj components of Einstein’s equations. Upon

using the relation (2.17) between the extrinsic curvature, Kij , and the canonical momen-

tum, πij , these become respectively the Hamiltonian and momentum constraints

2κ2√
−h

(
πijπ

j
i −

1

d− 1
π2
)

+
1

2κ2

√
−h (R− 2Λ) = 0, Djπ

ij = 0. (2.33)
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The Hamilton-Jacobi equations for gravity are obtained from these constraints by writing

the canonical momentum, πij , as the gradient of a potential S[h]:

πij =
δS[h]

δhij
. (2.34)

In particular, the Hamiltonian constraint leads to the Hamilton-Jacobi equation (2.30),

while the momentum constraint reflects the invariance of S[h] under diffeomorphisms tan-

gent to the constant r surfaces.

Dilatation operator. When acting on covariant functionals of the induced metric, such

as the Hamilton-Jacobi functional S[h], the generator of radial translations may be repre-

sented as the functional operator

∂r =

∫
ddx ḣij [h]

δ

δhij
. (2.35)

The dilatation operator is defined as the leading asymptotic form of the generator of radial

translations in a covariant expansion as r → ∞. Using the leading asymptotic behavior

of the induced metric for AlAdS spacetimes in (2.12), we determine that ḣij ∼ 2`−1hij as

r → ∞. Hence, the leading asymptotic form of the generator of radial translations (2.35)

is given by

∂r ∼ `−1
∫
ddx 2hij

δ

δhij
≡ `−1δD. (2.36)

Covariant expansion of the Hamilton-Jacobi functional. The dilatation opera-

tor (2.36) enables us to expand the Hamilton-Jacobi functional S[h] asymptotically, while

maintaining manifest covariance. Writing

S[h] =

∫
∂Mrc

ddx L[h], (2.37)

we formally expand L[h] in eigenfunctions of the dilatation operator as

L = L(0) + L(2) + · · ·+ L̃(d) log e−2rc/` + L(d) + · · · , (2.38)

where

δDL(2n) = (d− 2n)L(2n), 0 ≤ n < d/2, δDL̃(d) = 0. (2.39)

The term L̃(d) in the expansion (2.38) is non zero only for even boundary dimension, d,

and can be identified with the holographic conformal anomaly [9]. The identification of the

dilation operator with the leading asymptotic form of the generator of radial translations

through (2.36) means that the relations (2.39) imply that L(2n) = O(e(d−2n)rc/`), n < d/2,

and L̃(d) = O(1), as rc →∞, and hence these terms are divergent as the cutoff is removed.4

Using (2.29), therefore, we conclude that the boundary term that renders the variational

problem well posed is given by

Sct[h; rc] = −
∫
∂Mrc

ddx
(
L(0) + L(2) + · · ·+ L̃(d) log e−2rc/`

)
. (2.40)

4The relations (2.39), however, contain more information. In particular, they require L(2n), n < d/2,

and L̃(d) to be homogeneous functionals of the induced metric hij .
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The term L(d) in the expansion (2.38) has scaling dimension zero, i.e. L(d) = O(1),

as rc → ∞, and corresponds to the renormalized on-shell action. It is generically non

local and cannot be determined from an asymptotic analysis alone. Moreover, it is not

an eigenfunction of the dilatation operator in general. The action of δD on L(d) can be

deduced from the fact that S[h], which is identified up to a constant with the regularized

on-shell action, does not depend explicitly on the radial cutoff, due to the diffeomorphism

invariance of the bulk action. Hence, the generator of cutoff translations, ∂rc , must act to

leading order asymptotically as `−1δD, namely

∂rc

(
L̃(d) log e−2rc/` + L(d)

)
∼ `−1δD

(
L̃(d) log e−2rc/` + L(d)

)
. (2.41)

Using the identity δD
√
−h = d

√
−h, this implies that

δDL(d) = −2L̃(d). (2.42)

However, L(d) does not play any role in the subsequent analysis of the present paper.

Recursion relations. Our next task is to set up a recursive procedure for determining

L(2n) for n < d/2 and L̃(d). Given the expansion (2.38) of L in eigenfunctions of the dilata-

tion operator, the canonical momentum (2.34) can be similarly expanded covariantly as

πij =
δ

δhij

∫
∂Mrc

ddx L = πij(0) + πij(2) + · · ·+ π̃ij(d) log e−2rc/` + πij(d) + · · · , (2.43)

where

πij(2n) =
δ

δhij

∫
∂Mrc

ddx L(2n), π̃ij(d) =
δ

δhij

∫
∂Mrc

ddx L̃(d), πij(d) =
δ

δhij

∫
∂Mrc

ddx L(d).

(2.44)

The coefficients π(2n)
i
j , n < d/2, and π̃(d)

i
j are again eigenfunctions of the dilatation

operator:

δDπ(2n)
i
j = (d− 2n)π(2n)

i
j , δDπ

ij
(2n) = (d− 2n− 2)πij(2n), n < d/2,

δDπ̃(d)
i
j = 0, δDπ̃

ij
(d) = −2π̃ij(d). (2.45)

The key step in setting up a recursion procedure is to realize that the traces π(2n)
i
i and

π̃(d)
i
i are related algebraically with the coefficients L(2n) and L̃(d) in the covariant expansion

of L. The precise relation is obtained by applying δD to S[h]. Using (2.37) and (2.34), we

obtain

δDS[h] =

∫
∂Mrc

ddx δDL =

∫
∂Mrc

ddx δDhijπ
ij =

∫
∂Mrc

ddx 2πii, (2.46)

where we have used the identity δDhij = 2hij in the last step. Since L is only defined up

to a total derivative, a suitable choice of the total derivative term allows us to write

2πii = δDL. (2.47)
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Expanding both sides of this identity in eigenfunctions of the dilatation operator as in (2.38)

and (2.43), we obtain (dropping summed indices in the traces)

2
(
π(0) + π(2) + · · ·+ π̃(d) log e−2rc/` + π(d) + · · ·

)
= dL(0) + (d− 2)L(2) + · · ·+ 0 · L̃(d) log e−2rc/` − 2L̃(d) + 0 · L(d) + · · · . (2.48)

Equating terms of equal dilatation weight determines

L(2n) =
2

d− 2n
π(2n), 0 ≤ n < d/2, L̃(d) = −π(d), π̃(d) = 0. (2.49)

The relations (2.49) allow us to set up a recursion algorithm as follows. As we have

seen, the leading asymptotic form of the induced metric in (2.12) can be expressed in the

form ḣij ∼ 2`−1hij . Inserting this in the canonical momentum (2.17) gives

π(0)
ij =

(d− 1)

2κ2`

√
−h hij , (2.50)

which can be integrated to obtain

L(0) =
(d− 1)

κ2`

√
−h. (2.51)

Notice that these indeed satisfy the relations (2.49) for n = 0. Given these zeroth order

expressions, the higher order terms can be computed iteratively by inserting the momentum

expansion (2.43) in the Hamiltonian constraint (2.33) and using the trace relations (2.49).

Matching terms of equal dilatation weight, we arrive at

L(2n) =
`

d− 2n
Q(2n), 0 < n < d/2, L̃(d) = −π(d) =

{
− `

2Q(d), d even,

0, d odd,
(2.52)

where

Q(2) =

√
−h

2κ2
R,

Q(2n) =
2κ2√
−h

n−1∑
m=1

(
π(2m)

i
jπ(2n−2m)

j
i −

1

d− 1
π(2m)π(2n−2m)

)
, 1 < n ≤ d/2. (2.53)

At order n, therefore, Q(2n) and L(2n) are determined algebraically in terms of all πij(2m)

with m < n. From (2.44), we know that the functional derivative of L(2n) gives πij(2n), which

in turn allows us to obtain algebraically Q(2n+2) and L(2n+2), thus completing the recursive

procedure. This recursion algorithm systematically computes the boundary term (2.40) for

any dimension d.

The densities Q(2n) and the symmetric tensor densities πij(2n) are closely related to

the study of conformal invariants in the mathematics literature, see e.g. [5, 6, 20, 22]. In

particular, πij(2n) is covariantly conserved for any d and it is traceless for d = 2n. The first of

these properties follows immediately by covariantly expanding the momentum constraint
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in (2.33) in eigenfunctions of the dilatation operator, while the latter property is equivalent

to the result π̃(d) = 0 in (2.49). In combination with (2.44), this also implies that the

integral of Q(2n) over a compact d = 2n dimensional manifold is a conformal invariant. In

the mathematics literature, Q(d) is known as Branson’s Q-curvature [2, 3, 35].

The relation of Q(2n) and πij(2n) to conformal invariants explains why they are most

compactly expressed in terms of curvature tensors that have a simple transformation under

local Weyl rescalings of hij , such as the Schouten tensor of hij in d dimensions (cf. the

corresponding bulk tensors defined respectively in (2.4) and (2.3))

Pij [h] =
1

d− 2

(
Rij −

1

2(d− 1)
Rhij

)
, (2.54)

and the Weyl tensor

Wikjl[h] = Rikjl + hilPkj + hkjPil − hijPkl − hklPij , (2.55)

which is traceless, i.e. W i
kil = 0, and transforms homogeneously under local Weyl trans-

formations. Moreover, the Bianchi identity for the Riemann tensor

DpRijkl +DkRijlp +DlRijpk = 0, (2.56)

implies that the Weyl tensor satisfies the Bianchi identity

DpWijkl +DkWijlp +DlWijpk + hipCjkl + hikCjlp + hilCjpk − hjpCikl − hjkCilp − hjlCipk = 0,

(2.57)

where Cijk is the Cotton tensor

Cijk[h] = DkPij −DjPik. (2.58)

Recall that, in d ≥ 4, a metric hij is conformally flat if and only if Wikjl[h] = 0, while

in d = 3, the Weyl tensor is identically zero for all metrics and conformal flatness is instead

equivalent to the vanishing of the Cotton tensor. All metrics in d = 2 are conformally flat.

Contracting appropriately the indices in (2.57) leads to the identity

DiWijkl + (d− 3)Cjkl + hjkCiil − hjlCiik = 0, (2.59)

which in turn implies that
1

d− 3
DkDlWikjl = DkCijk. (2.60)

Implementing the recursion algorithm, we determine that the first few L(2n)’s are

given by

2κ2`√
−h
L(0) = 2(d−1),

2κ2`√
−h
L(2) =

`2

d−2
R,

2κ2`√
−h
L(4) =

`4

(d−4)

(
P ijPij−P2

)
, (2.61)

2κ2`√
−h
L(6) =

`6

(d−6)(d−4)(d−2)

[
PijBij+(d−4)

(
P ijP

j
kP

k
i −PP ijP

j
i−

1

2

(
P ijP

j
i−P

2
)
P
)]

,
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while the symmetric tensor densities πij(2n), up to n = 2, take the form

2κ2`√
−h

πij(0) = (d− 1)hij ,

2κ2`√
−h

πij(2) = − `2
(
P ij − Phij

)
,

2κ2`√
−h

πij(4) = − `4

(d− 4)(d− 2)

[
Bij + (d− 4)

(
P ikPjk − PP

ij − 1

2

(
PklPkl − P2

)
hij
)]

.

(2.62)

The tensor Bij that appears in L(6) and πij(4) is given by

Bij =

(
1

d− 3
DkDl + Pkl

)
W ikjl = DkCijk + PklW ikjl, (2.63)

and is known as the Bach tensor in dimension d [20, 36–38]. While Bij is traceless for

any d ≥ 4 and covariantly conserved for d = 4, it is not covariantly conserved for d > 4.

However, the full expression for πij(4) is conserved for any d (but not traceless for d > 4)

and coincides with the modified Bach tensor introduced in [39]. Higher order terms in the

iterative procedure produce analogues of the Bach tensor for higher dimensions that are

more than quadratic in the curvatures.

Q-curvature and conformal anomaly. The covariant densities Q(2n) determined by

the recursion relations (2.52)–(2.53) are functions of the boundary dimension, d. When d

is even, Q(d) corresponds to the holographic conformal anomaly [9], as well as Branson’s Q-

curvature [2, 3, 35]. A conjecture by Deser and Schwimmer [40] for the general structure of

conformal anomalies, later proven by Alexakis [41] specifically for the Q-curvature, implies

that L̃(d) can be decomposed as

L̃(d) = a Ed[h] +

Nd∑
I=1

cI II [h] + ∂i(
√
−hJ i[h]), (2.64)

where Ed[h] is the Euler density in d dimensions, II [h], I = 1, · · · , Nd, are all local con-

formal invariants in d dimensions, and J i[h] is a globally defined (and renormalization

scheme dependent) total derivative term that does not contribute to the integral of L̃(d)
over a compact boundary. While in the conjecture of Deser and Schwimmer for the con-

formal anomaly the coefficients a, cI are generic and depend on the specific conformal field

theory, in the Q-curvature their values are related and are all proportional to the inverse

gravitational constant κ−2 ∝ G−1.
While the Euler density is the unique global conformal invariant in every even dimen-

sion (type-A anomaly in the classification of [40]), there can be multiple local conformal

invariants (type-B anomaly) in any even dimension (see e.g. [42] and references therein for

the general classification). There exist no local conformal invariants in two dimensions and

so, in that case, the Q-curvature is proportional to the Euler density, namely

L̃(2) = −π`
κ2
E2, (2.65)
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where E2n is the Pfaffian of the Riemann curvature of the induced metric hij as normalized

in (3.8). In d = 4, the unique local conformal invariant is the square of the Weyl tensor

WijklW ijkl. From the expression for L̃(4) obtained above, one finds that it can be expressed

in the form (2.64) as

L̃(4) =
2`3

κ2

(
π2

2
E4 −

1

64

√
−hW ijklWijkl

)
. (2.66)

There are three independent local conformal invariants in six dimensions. A suitable

basis is [1, 20, 43, 44]5

I1 =
√
−hW ij

klWkl
pqWpq

ij ,

I2 =
√
−hW ij

klWkp
iqW lq

jp,

I3 =
√
−h
(
VijklmV ijklm − 16W ijklDiCjkl + 16W ijklPimWm

jkl + 16CijkCijk
)
, (2.67)

where

Vijklm = DmWijkl + himCjkl − hjmCikl + hkmClij − hlmCkij . (2.68)

One can check that, in this case, the Q-curvature can be written in the form

L̃(6) =
3`5

2κ2

(
−π

3

6
E6 +

1

2304
(7I1 + 4I2 − 3I3)

)
+ total derivative. (2.69)

We conclude this subsection with an observation that will be important for the compar-

ison with the Kounterterms later on. Notice that, for conformally flat boundary metrics,

hij , all local conformal invariants vanish identically and so the only non trivial contribution

to the Q-curvature in that case is from the Euler density.

2.4 Renormalization scheme dependence

The above analysis shows that all covariant counterterms that cancel divergences are both

unique and universal for a given bulk action. However, so far we have not discussed

possible finite counterterms. As we now briefly review, there is an ambiguity in the choice

of finite counterterms that corresponds to the renormalization scheme dependence of the

holographic dual field theory.

The punchline of the above analysis is that the boundary counterterms take the form

Sct[h; rc] =

∫
∂Mrc

ddx
(
Lct(0) + Lct(2) + · · ·+ L̃ct(d) log e−2rc/` + Lct(d)

)
, (2.70)

where

Lct(0) = −L(0), . . . , L̃ct(d) = −L̃(d), (2.71)

and L(0), L(2), . . . , L̃(d) are uniquely determined by the recursion relations (2.52). Crucially,

these recursion relations do not determine L(d), which is non local and corresponds to the

5As it was pointed out in [45, 46], the expression for I3 in [40, 47] that is often quoted in the physics

literature is incorrect and does not transform homogeneously under local Weyl transformations. We thank

Kostas Skenderis for communication on this point.
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renormalized on-shell action. The finite term Lct(d) in the counterterms (2.70) is not related

to L(d). Instead, Lct(d) may be set to zero, or it can be any local and covariant density

whose integral over the boundary is a conformal invariant. In other words, Lct(d) is in

general a global conformal invariant. Terms that do not preserve Weyl invariance or even

covariance with respect to boundary diffeomorphisms may also be added, but such terms

would introduce cohomologically trivial contributions to the conformal and gravitational

anomalies of the dual field theory and hence they should not be included in Lct(d).
For pure gravity, Lct(d) can be non-zero only for even boundary dimension d, since for

odd d there exist no local densities that satisfy the above criteria. The structure of Lct(d)
for even d is analogous to that of the Q-curvature (2.64), namely

Lct(d) = s0 Ed[h] +

Nd∑
I=1

sI II [h]. (2.72)

However, the constants s0, sI here can be chosen at will, while adding a total derivative

term does not have any consequence. The only ambiguity in the boundary counterterms is

the choice of these constants, which corresponds to the renormalization scheme dependence

of the dual field theory.

3 Kounterterms in AdS gravity

The algorithm described in the previous section recursively determines the boundary coun-

terterms in any dimension. However, the complexity of the counterterms for generic AlAdS

manifolds increases rapidly with the dimension and there exists no closed form expression

valid for arbitrary dimension. The boundary Kounterterms are an attempt to remedy

this. First proposed for even bulk dimensions (d odd) in [17, 48] and later generalized to

odd bulk dimensions in [18], the Kounterterms constitute a closed form expression for a

boundary term applicable to any dimension. As we will review in this section, they are

intimately related to topological aspects of conformally compact Einstein manifolds, which

were independently studied in the mathematics literature at around the same time [4–6].

The Kounterterms correspond to adding to the action (2.15) a boundary term of

the form

SK =

∫
∂Mε

ddxLK = cd

∫
∂Mε

ddxBd[h,K,R]− SGH , (3.1)

where cd is a dimension dependent constant and Bd[h,K,R] is a density polynomial in

the extrinsic and intrinsic curvatures of the regularized boundary ∂Mε that takes different

form for even and odd dimensions. As we will see, the reason why cd is kept explicit is so

that the normalization of Bd matches certain bulk topological invariants. Notice that the

negative of the Gibbons-Hawking term in the boundary term (3.1) is designed to cancel

the Gibbons-Hawking term in (2.15).

Contrary to the counterterms (2.70), the Kounterterms depend explicitly on both

the induced metric, hij , and the extrinsic curvature, Kij , or equivalently the canonical

momentum, πij . However, we saw in section 2 that the variational problem on AlAdS

spaces must be formulated within the space of asymptotic solutions of the equations of
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motion, and so Kij and hij are asymptotically related. By inserting the asymptotic relation

Kij [h] (obtained by solving the bulk equations of motion or the radial Hamilton-Jacobi

equation) in the Kounterterms (3.1), one obtains a boundary term that is a function of

the metric hij only and can be compared directly with the counterterms (2.70). Since the

Kounterterms are polynomial in the extrinsic and intrinsic curvatures, their divergent part

is guaranteed to be a local and covariant expression when the asymptotic relation Kij [h]

is incorporated. A priori, the finite part in the covariant expansion of the Kounterterms

could still be non-local, but we will show in this section that this is not the case.

3.1 Chern-Gauss-Bonnet theorem for manifolds with boundary

In order to appreciate the origin and nature of the boundary Kounterterms, it is useful to

briefly recall the generalized Chern-Gauss-Bonnet theorem for manifolds with boundary [7].

Given a d+ 1 dimensional manifold, Mε, we introduce the d-forms6

Φk = εa1a2···add+1R̂
a1a2 ∧ R̂a3a4 ∧· · ·∧ R̂a2k−1a2k ∧ ω̂a2k+1d+1∧ ω̂a2k+2d+1∧· · ·∧ ω̂add+1, (3.2)

where a1, a2, · · · are tangent space indices, εa1a2···adad+1
is the Levi-Civita tensor, R̂ab and

ω̂ab are respectively the curvature two-form and connection one-form, and the integer k

takes the values k = 0, 1, · · · ,
[
d+1
2

]
− 1, with [x] indicating the integer part of x.

Chern showed that the d-form

Π = − 1

2d+1π
d
2

[ d2 ]∑
k=0

1

k! Γ
(
d
2 + 1− k

)Φk, (3.3)

satisfies

− dΠ = Ω, (3.4)

where the (d+1)-form Ω is the Euler-Poincaré density when d+1 is even and zero otherwise:

Ω =

{
Pf(R̂), if d+ 1 = 2n is even,

0, if d+ 1 is odd,
(3.5)

with the Pfaffian of the curvature two-form Pf(R̂) given by7

Pf(R̂) ≡ 1

(4π)nn!
εa1a2···ad+1

R̂a1a2 ∧ R̂a3a4 ∧ · · · ∧ R̂adad+1 , d+ 1 = 2n. (3.6)

The Chern-Gauss-Bonnet theorem states that the Euler-Poincaré characteristic for a man-

ifold Mε with boundary ∂Mε is given by

χ(Mε) =

∫
Mε

Ω +

∫
∂Mε

Π. (3.7)

6The forms Φk here differ from those defined in [7] by a factor of (−1)d+k, due to a different sign in the

definition of the connection one-form and curvature two-form.
7As for Φk defined above, this agrees with [7] once the different sign in the definition of the curvature

two-form is taken into account.
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We note for later reference that the integral of the Pfaffian over an even dimensional

manifold Mε can be written in coordinate basis as∫
Mε

Pf(R̂) =
1

2n(4π)nn!

∫
Mε

d2nx δν1···ν2nµ1···µ2n
√
−g Rµ1µ2ν1ν1 · · ·Rµ2n−1µ2n

ν2n−1ν2n , (3.8)

where

δν1···ν2nµ1···µ2n ≡ (2n)! δ[ν1µ1 · · · δ
ν2n]
µ2n =

∑
P∈S2n

sgn(P )δν1P (µ1)
· · · δν2nP (µ2n)

, (3.9)

is the totally antisymmetrized product of Kronecker deltas. Moreover, choosing the orien-

tation of ∂Mε in Mε so that εi1···id ≡ εri1···id , the pullback of the d-forms (3.2) on ∂Mε is

given by

Φk|∂Mε
= (−1)d

√
−h δj1···jdi1···id

(
1

2
Ri1i2j1j2 −K

i1
j1
Ki2
j2

)
×

· · · ×
(

1

2
Ri2k−1i2k

j2k−1j2k −K
i2k−1

j2k−1
Ki2k
j2k

)
×Ki2k+1

j2k+1
· · ·Kid

jd
. (3.10)

It follows that the pullback of Π on ∂Mε takes the form

Π|∂Mε
=

(−1)d+1

2d+1π
d
2

√
−h δj1···jdi1···id

[ d2 ]∑
k=0

1

k! Γ
(
d
2 + 1− k

) (1

2
Ri1i2j1j2 −K

i1
j1
Ki2
j2

)
×

· · · ×
(

1

2
Ri2k−1i2k

j2k−1j2k −K
i2k−1

j2k−1
Ki2k
j2k

)
×Ki2k+1

j2k+1
· · ·Kid

jd
. (3.11)

As we review in the next subsection, the Kounterterms for even dimensional AlAdS mani-

folds are directly related to this expression.

3.2 Kounterterms and their topological origin

We are now ready to discuss the boundary Kounterterms and their relation with the Chern

form (3.3). Since their defining expressions are different for even and odd dimensions, we

consider these two cases separately. We will see in section 4, however, that for conformally

flat manifolds, the Kounterterms for even and odd dimensions coincide, up to finite local

terms.

Even dimensions. For even dimensional AlAdS manifolds (d odd), the density B2n−1
defining the Kounterterms (3.1) is given by [17]

B2n−1[h,K,R] = 2n
√
−h
∫ 1

0
dt δ

i1...i2n−1

j1...j2n−1
Kj1
i1

(
1

2
Rj2j3 i2i3 − t2K

j2
i2
Kj3
i3

)
×

· · · ×
(

1

2
Rj2n−2j2n−1

i2n−2i2n−1 − t2K
j2n−2

i2n−2
K
j2n−1

i2n−1

)
, (3.12)

while the value of the proportionality constant c2n−1 is

c2n−1 =
(−`2)n−1

2κ2n(2n− 2)!
. (3.13)
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The expression (3.12) contains a parametric integral which comes from the use of the

Cartan homotopy operator in order to find the boundary term which is locally equivalent

to the Euler term in the bulk. Thus, B2n−1 is a Chern-Simons-like density associated to the

Lorentz group, which naturally incorporates a second spin connection in order to restore

covariance at the boundary [49].

The origin of the density (3.12) becomes more transparent by the observation that it

is proportional to the pullback of the Chern form Π on ∂Mε given in (3.11), namely

B2n−1 = (4π)nn! Π|∂Mε
. (3.14)

Hence, in even dimensions, the Chern-Gauss-Bonnet theorem (3.7) takes the form

χ(Mε) =

∫
Mε

Pf(R̂) +
1

(4π)nn!

∫
∂Mε

d2n−1xB2n−1. (3.15)

The identity (3.14) can be easily proven by rearranging the expressions (3.11) and (3.12).

Using the binomial expansion and performing the integral over the parameter t in (3.12)

leads to

B2n−1 =
√
−h δi1...i2n−1

j1...j2n−1

n−1∑
k=0

(−1)kn!

2n−k−2(2k + 1)k!(n− k − 1)!
Kj1
i1
Kj2
i2
Kj3
i3
· · ·Kj2k

i2k
K
j2k+1

i2k+1

×Rj2k+2j2k+3
i2k+2i2k+3

· · ·Rj2n−2j2n−1
i2n−2i2n−1 . (3.16)

Similarly, applying the binomial expansion and specializing (3.11) to d = 2n−1, we obtain

Π|∂Mε
=

(−1)d+1

2d+1π
d
2

√
−h δj1···jdi1···id

[ d2 ]∑
m=0

[ d2 ]∑
k=m

(−1)k−m

2m(k−m)!m! Γ
(
d
2+1−k

)Ri1i2
j1j2 · · ·Ri2m−1i2m

j2m−1j2m×

×Ki2m+1

j2m+1
K

i2m+2

j2m+2
· · ·Kid

jd

=
1

(4π)n

√
−h δj1···j2n−1

i1···i2n−1

n−1∑
m=0

(−1)n−1−m

2m−1(2n−1−2m)(n−1−m)!m!
Ri1i2

j1j2 · · ·Ri2m−1i2m
j2m−1j2m×

×Ki2m+1

j2m+1
K

i2m+2

j2m+2
· · ·Ki2n−1

j2n−1

=
1

(4π)n

√
−h δj1···j2n−1

i1···i2n−1

n−1∑
k=0

(−1)k

2n−k−2(2k+1)(n−1−k)!k!
Kj1

i1
Kj2

i2
Kj3

i3
· · ·Kj2k

i2k
K

j2k+1

i2k+1

×Rj2k+2j2k+3
i2k+2i2k+3

· · ·Rj2n−2j2n−1
i2n−2i2n−1 . (3.17)

Comparing this expression with (3.16) results in (3.14).

Odd dimensions. The Chern form (3.3) is defined for both even and odd dimensions.

As in even dimensions, therefore, a natural candidate for the Kounterterms in odd bulk

dimensions is the pullback (3.11) of Π on ∂Mε. However, specializing (3.11) to d = 2n
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gives

Π|∂Mε
=− 1

22n+1πn

√
−h δj1···j2ni1···i2n

n∑
m=0

n−m∑
k=0

(−1)k

2mm!k!(n−m−k)!
Ri1i2j1j2 · · ·Ri2m−1i2m

j2m−1j2m×

×Ki2m+1

j2m+1
K
i2m+2

j2m+2
· · ·Ki2n

j2n

=−1

2

1

2n(4π)nn!

√
−h δj1···j2ni1···i2nR

i1i2
j1j2 · · ·Ri2n−1i2n

j2n−1j2n=−1

2
E(R), (3.18)

where E(R) is the Euler density of ∂Mε, which is independent of the regulator ε and

hence finite. In particular, the Chern-Gauss-Bonnet theorem (3.7) stipulates that the

Euler characteristic of an odd dimensional manifold with boundary is given by the Euler

characteristic of the boundary. It follows that Π cannot provide a suitable boundary term

for odd bulk dimensions.

The Kounterterms for odd bulk dimensions proposed in [18] instead take the form

B2n[h,K,R] = 2n
√
−h
∫ 1

0
dt

∫ t

0
ds δi1...i2nj1...j2n

Kj1
i1
δj2i2

(
1

2
Rj3j4 i3i4 − t2K

j3
i3
Kj4
i4

+
s2

`2
δj3i3 δ

j4
i4

)
×

· · · ×
(

1

2
Rj2n−1j2n

i2n−1i2n − t2K
j2n−1

i2n−1
Kj2n
i2n

+
s2

`2
δ
j2n−1

i2n−1
δj2ni2n

)
, (3.19)

with proportionality constant

c2n =
(−`2)n−1

22n−1κ2n(n− 1)!2
. (3.20)

A key difference between (3.12) and (3.19) is that the former does not explicitly depend on

the AdS radius `, which is a direct consequence of its topological origin. In contrast, (3.19)

is not related to a topological quantity and differs from the pullback (3.11) of the Chern

form on ∂Mε. Using the binomial expansion and integrating over the parameters s and t

in (3.19), we obtain

B2n =
√
−h δi1...i2nj1...j2n

Kj1
i1
δj2i2

n−1∑
m=0

m∑
k=0

n!(−1)m−k`−2n+2+2m

2k(n−k)(2n−1−2m)k!(m−k)!(n−1−m)!
× (3.21)

Rj3j4
i3i4 · · ·Rj2k+1j2k+2

i2k+1i2k+2
K

j2k+3

i2k+3
K

j2k+4

i2k+4
· · ·Kj2m+1

i2m+1
K

j2m+2

i2m+2
δ
j2m+3

i2m+3
δ
j2m+4

i2m+4
· · · δj2n−1

i2n−1
δj2ni2n

.

Clearly, this expression is different from the pullback of Π on ∂Mε in (3.18).

3.3 Kounterterms in terms of intrinsic boundary curvature

Since the Kounterterms depend explicitly on the extrinsic curvature, Ki
j , they cannot

be compared directly with the boundary counterterms (2.70), which only depend on the

intrinsic curvature of the induced metric hij . However, in section 2 we argued that the

variational problem on AlAdS spaces must be formulated within the space of asymptotic

solutions of the equations of motion, which implies that Kij and hij are asymptotically

related. Using this relation, the Kounterterms (3.1) become a function of the metric hij
only and can be compared with the counterterms (2.70).
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The asymptotic on-shell relation Kij [h] between the extrinsic curvature and the in-

duced metric follows from the asymptotic solution of the Hamilton-Jacobi equation that

determines the boundary counterterms. In particular, the definition of the canonical mo-

mentum πij in (2.17) and its covariant expansion (2.43) imply that the extrinsic curvature

too can be expanded in eigenfunctions of the dilatation operator as [11]

Ki
j = K(0)

i
j +K(2)

i
j + · · ·+ K̃(d)

i
j log e−2rc/` +K(d)

i
j + · · · , (3.22)

where each term is related with the corresponding one in (2.43) through the identities

Kij
(2n) = − 2κ2√

−h

(
πij(2n)−

1

d−1
hijπ(2n)

)
, n ≤ d, K̃ij

(d) = − 2κ2√
−h

(
π̃ij(d)−

1

d−1
hij π̃(d)

)
.

(3.23)

Inserting the first few orders of the canonical momentum coefficients given in (2.62), one

obtains the covariant expansion of the extrinsic curvature in (A.17).

The Kounterterms (3.1) can be expressed in terms of the density

LK = cdBd[h,K,R]− 1

κ2

√
−hK , (3.24)

where Bd and cd are given in (3.12) and (3.13) for even boundary dimension d and in (3.19)

and (3.20) for odd d. Integrating over the auxiliary parameters t and s in the definition of

Bd (or equivalently using (3.16) and (3.21)), we determine that, up to dimension six, Bd
takes the form

B2 =
√
−h δi1i2j1j2

Kj1
i1
δj2i2 ,

B3 =
√
−h δi1...i3j1...j3

Kj1
i1

(
2Rj2j3 i2i3 −

4

3
Kj2
i2
Kj3
i3

)
,

B4 =
√
−h δi1...i4j1...j4

Kj1
i1
δj2i2

(
Rj3j4 i3i4 −K

j3
i3
Kj4
i4

+
1

3`2
δj3i3 δ

j4
i4

)
,

B5 =
√
−h δi1...i5j1...j5

Kj1
i1

(
3

2
Rj2j3 i2i3Rj4j5 i4i5 − 2Rj2j3 i2i3K

j4
i4
Kj5
i5

+
6

5
Kj2
i2
Kj3
i3
Kj4
i4
Kj5
i5

)
,

B6 =
√
−h δi1...i6j1...j6

Kj1
i1
δj2i2

(
3

4
Rj3j4 i3i4Rj5j6 i5i6 −

3

2
Rj3j4 i3i4K

j5
i5
Kj6
i6

+
1

2`2
Rj3j4 i3i4δ

j5
i5
δj6i6

+Kj3
i3
Kj4
i4
Kj5
i5
Kj6
i6
− 2

3`2
Kj3
i3
Kj4
i4
δj5i5 δ

j6
i6

+
1

5`4
δj3i3 δ

j4
i4
δj5i5 δ

j6
i6

)
. (3.25)

These can be written in more explicit form by carrying out the contractions of the

generalized Kronecker delta with all tensor structures. This leads to the Kounterterm

densities

Ld=2
K = − 1

2κ2

√
−hK,

Ld=3
K =

`2

2κ2

√
−h
(
KR−2Ki

jR
j
i−

1

3
K3+KKi

jK
j
i−

2

3
Ki

jK
j
kK

k
i

)
− 1

κ2

√
−hK,
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Ld=4
K = − 3`2

16κ2

√
−h
(

2

3
KR−4

3
Ki

jR
j
i−

1

3
K3+KKi

jK
j
i−

2

3
Ki

jK
j
kK

k
i

)
− 9

8κ2

√
−hK,

Ld=5
K =

`4

6κ2

√
−h
(

1

4
KRij

klRkl
ij−KKk

i K
l
jRij

kl−KijRikpqRj
kpq+2Ki

kK
kjKpqRipjq

+2KijRklRikjl+
1

4
KR2−KijRijR−

1

6
K3R+

1

2
KKi

jK
j
iR−

1

3
Ki

jK
j
kK

k
i R

−KRi
jR

j
i+K

2Ki
jR

j
i−K

i
jK

j
iK

k
l Rl

k+2Ki
jRk

iR
j
k−2KKi

jK
j
kR

k
i +2Ki

jK
j
kK

k
l Rl

i

+
1

20
K5−1

2
K3Ki

jK
j
i +

3

4
K(Ki

jK
j
i )2+K2Ki

jK
j
kK

k
i −Ki

jK
j
iK

l
pK

p
qK

q
l

−3

2
KKi

jK
j
kK

k
l K

l
i+

6

5
Ki

jK
j
kK

k
l K

l
pK

p
i

)
− 1

κ2

√
−hK,

Ld=6
K =

5`4

12×8κ2

√
−h
(

3

20
KRij

klRkl
ij−

9

10
KKk

i K
l
jRij

kl−
3

5
KijRikpqRj

kpq+
9

5
Ki

kK
kjKpqRipjq

+
6

5
KijRklRikjl+

3

20
KR2−3

5
KijRijR−

3

20
K3R+

9

20
KKi

jK
j
iR−

3

10
Ki

jK
j
kK

k
i R

−3

5
KRi

jR
j
i+

9

10
K2Ki

jR
j
i−

9

10
Ki

jK
j
iK

k
l Rl

k+
6

5
Ki

jRk
iR

j
k−

9

5
KKi

jK
j
kR

k
i +

9

5
Ki

jK
j
kK

k
l Rl

i

+
1

20
K5−1

2
K3Ki

jK
j
i +

3

4
K(Ki

jK
j
i )2+K2Ki

jK
j
kK

k
i −Ki

jK
j
iK

l
pK

p
qK

q
l −

3

2
KKi

jK
j
kK

k
l K

l
i

+
6

5
Ki

jK
j
kK

k
l K

l
pK

p
i −

2

5`2
Ki

jK
j
kK

k
i +

3

5`2
KKi

jK
j
i−

1

5`2
K3− 3

5`2
Ki

jR
j
i+

3

10`2
KR

)

− 15

16κ2

√
−hK. (3.26)

The last and most tedious step is to insert the covariant expansion of the extrinsic

curvature (A.17) in (3.26) and keep terms of dilatation weight up to (and including) zero,

i.e. up to asymptotically finite terms. Up to d = 6 the result is

Ld=2
K = − 1

κ2`

√
−h
(

1+
`2

4
R+· · ·

)
,

Ld=3
K = − 1

κ2`

√
−h
(

2+
`2

2
R+· · ·

)
,

Ld=4
K = − 1

κ2`

√
−h
(

3+
`2

4
R−`

4

8

(
PijPij−P2

)
+· · ·

)
,

Ld=5
K = − 1

κ2`

√
−h
(

4+
`2

6
R+

`4

2

(
PijPij−P2− 1

12
WijklWijkl

)
+· · ·

)
,

Ld=6
K = − 1

κ2`

√
−h
(

5+
`2

8
R+

`4

4

(
PijPij−P2− 1

16
WijklWijkl

)
(3.27)

− `
6

32

(
5

3

(
2Pi

jP
j
kP

k
i −3PPi

jP
j
i +P3

)
+PijPklWikjl−

(
Pij−1

4
Phij

)
WikpqWj

kpq

)
+· · ·

)
,

where the ellipses stand for covariant terms of negative dilatation weight, i.e. terms that

asymptotically vanish. As advertised, the expressions (3.27) for the Kounterterms involve
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only the intrinsic curvature of the induced metric and can therefore be compared directly

with the boundary counterterms (2.70), whose explicit form up to d = 6 is

Ld=2
ct = − 1

κ2`

√
−h
(

1−`
2

4
log(e−2rc/`)R+s0R

)
,

Ld=3
ct = − 1

κ2`

√
−h
(

2+
`2

2
R
)
,

Ld=4
ct = − 1

κ2`

√
−h
(

3+
`2

4
R−`

4

4
log(e−2rc/`)

(
P ijPij−P2

))
+s0E4+s1WijklW ijkl,

Ld=5
ct = − 1

κ2`

√
−h
(

4+
`2

6
R+

`4

2

(
P ijPij−P2

))
,

Ld=6
ct = − 1

κ2`

√
−h
(

5+
`2

8
R+

`4

4

(
P ijPij−P2

)
(3.28)

− `
6

32
log
(
e−2rc/`

)(
PijBij+2P ijP

j
kP

k
i −3PP ijP

j
i +P3

))
+s0E6+s1I1+s2I2+s3I3.

As discussed in section 2.4, the arbitrary constants s0, s1, . . . parameterize the general form

of the finite local counterterms that correspond to the renormalization scheme dependence

of the dual field theory in even dimensions.

Comparing the expressions (3.27) and (3.28) immediately leads to a few general con-

clusions. Firstly, it is clear that the only dimension for which the Kounterterms agree fully

with the boundary counterterms, and hence regularize the variational problem for general

AlAdS manifolds, is d = 3 (i.e. AdS4). For no other dimension do the Kounterterms pro-

vide the required boundary term for general AlAdS manifolds. A universal divergence that

is not canceled by the Kounterterms is the logarithmic divergence in even dimensions d

(odd bulk). Moreover, for both even and odd d ≥ 5, power law divergences in the Koun-

terterms also differ from those in the counterterms by terms involving the Weyl tensor of

the induced metric. Finally, the Kounterterms give rise to specific local and covariant finite

terms for even d, corresponding to a specific choice of renormalization scheme. However,

starting with d = 6, these finite terms are in general not a sum of global and local conformal

invariants, as is the case for the boundary counterterms.

Although the Kounterterms provide the required boundary term for general AlAdS

manifolds only in bulk dimension four, it is possible that in other dimensions they agree

with the boundary counterterms on a restricted class of AlAdS manifolds. From the above

comparison follows that a necessary condition for such an agreement is that the Weyl tensor

of the boundary metric vanishes. In the case of odd dimensions, an additional requirement

is that the Q-curvature, i.e. the conformal anomaly, is also zero. Since for conformally flat

manifolds all local Weyl invariants are zero, the additional condition for odd dimensional

AlAdS manifolds is equivalent to the vanishing of the Euler-Poincaré density. In the next

section we will show that these conditions are also sufficient.

It must be stressed, however, that agreement between the Kounterterms and coun-

terterms on a restricted class of AlAdS backgrounds does not automatically ensure that

quantities such as conserved charges, or higher-point holographic correlation functions, are
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renormalized by the Kounterterms. This is because successive derivatives of the Kountert-

erms with respect to the induced metric need not agree with the corresponding quantity

obtained from the boundary counterterms. In the next section we will demonstrate that for

AlAdS manifolds with a conformally flat boundary, the agreement persists at least for the

canonical momenta, i.e. for holographic one-point functions. Agreement for higher-point

functions is guaranteed only when the Kounterterms coincide with the counterterms for

arbitrary AlAdS manifolds, i.e. only in four dimensions.

4 AlAdS manifolds with conformally flat boundary

In the previous section we saw that, except in four dimensions (d = 3), the Kounterterms

regularize the variational problem of AdS gravity only within a subclass of AlAdS manifolds

that have a vanishing boundary Weyl tensor and (in the case of odd bulk dimension) all

logarithmic divergences are numerically zero. For d > 3, an AlAdSd+1 manifold with

a vanishing boundary Weyl tensor is necessarily asymptotically conformally flat, i.e. the

bulk Weyl tensor is zero, up to possible contributions from the normalizable mode only.

This can be shown using the leading asymptotic form of the components of the bulk Weyl

tensor in (A.18) as follows.

Firstly, it is manifest from the relations (A.18) that a vanishing bulk Weyl tensor

implies that the boundary Weyl, Cotton and Bach tensors vanish, and so the boundary

is conformally flat. The converse is not necessarily true [10, 50], but it does hold, up to

contributions due to the normalizable mode. In particular, suppose that the boundary

Weyl tensor vanishes. For d > 3, this implies that the Cotton and Bach tensors of the

boundary metric also vanish, and hence the leading asymptotic form of the bulk Weyl

tensor is zero due to the relations (A.18). However, two AlAdS manifolds with the same

boundary metric can only differ in the normalizable mode of the bulk metric and, therefore,

the bulk Weyl tensor must vanish, up to possible normalizable contributions.

The Kounterterms, therefore, may potentially regularize the variational problem for

AdSd+1 gravity when d > 3 only within the subclass of asymptotically conformally flat

AlAdS manifolds, i.e. those with vanishing bulk Weyl tensor, up to possible normalizable

contributions. However, generic odd dimensional asymptotically conformally flat AlAdS

manifolds still have a logarithmic divergence and so additional conditions on the boundary

metric must be imposed in that case. The relevant condition is that Branson’s Q-curvature

is also zero, up to a trivial total derivative. From the decomposition (2.64) of the Q-

curvature, it follows that, for conformally flat manifolds, the Q-curvature coincides (up to

a globally defined total divergence) with the Euler-Poincaré density since, all local con-

formal invariants vanish. The additional condition for odd dimensional AlAdS manifolds,

therefore, amounts to demanding that the Euler characteristic of the boundary is zero.

In this section, we show that these conditions, summarized in table 1 in the introduc-

tion, are not only necessary for the Kounterterms to regularize the AdS variational problem,

but also sufficient. To this end, we first determine the form of the boundary counterterms

for asymptotically conformally flat AlAdS manifolds of arbitrary dimension. We then com-
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pare these with the Kounterterms for AlAdS manifolds subject to the conditions given in

table 1.

4.1 Counterterms for asymptotically conformally flat AlAdS manifolds

We refer to AlAdS manifolds with a conformally flat boundary as asymptotically confor-

mally flat. For AlAdSd+1 manifolds with boundary dimension d > 2, asymptotic conformal

flatness is equivalent to the vanishing of the boundary Weyl, Cotton and Bach tensors.8

This in turn implies that the bulk Weyl tensor is asymptotically zero, except for possible

contributions from the normalizable mode of the bulk metric. Notice that any AlAdS3

(d = 2) manifold is asymptotically conformally flat since any two dimensional boundary is

conformally flat. This is reflected in the fact that the bulk Weyl tensor vanishes identically,

while the Cotton tensor is zero due to the Einstein condition.

Since the normalizable mode of the bulk metric does not contribute to the long dis-

tance divergences of the on-shell action, the boundary counterterms for asymptotically

conformally flat AlAdS manifolds are identical to those for conformally flat ones, for which

the bulk Weyl tensor is identically zero. For the purpose of determining the boundary

counterterms for asymptotically conformally flat AlAdS manifolds therefore, it suffices to

consider strictly conformally flat ones.

Setting the bulk Weyl tensor to zero and using Einstein’s equations leads to the three

conditions (see eq. (A.11) in appendix A)

K̇i
j +Ki

kK
k
j −

1

`2
δij = 0,

DkK
i
j −DjK

i
k = 0,

Rikjl −Ki
jK

k
l +Ki

lK
k
j −

1

`2
δilδ

k
j +

1

`2
δijδ

k
l = 0. (4.1)

An immediate geometric implication of these equations is that the Cotton and Weyl tensors

of the induced metric hij vanish, namely

Cijk = DkPij −DjPik = 0,

Wikjl = Rikjl + hilPkj + hkjPil − hijPkl − hklPij = 0. (4.2)

These equations correspond to the leading order terms of respectively the second and third

equations in (4.1), when expanded covariantly in eigenfunctions of the dilatation operator

(see (A.18)).

Combining the third equation in (4.1) and second one in (4.2) results in yet another

identity relating the extrinsic curvature and the Schouten tensor algebraically, namely

Ki
jK

k
l −Ki

lK
k
j = δijPkl + δkl P ij − δilPkj − δkjP il +

1

`2
δijδ

k
l −

1

`2
δilδ

k
j . (4.3)

8For d = 3, the vanishing of the boundary Weyl tensor holds for any metric, but the vanishing of the

Cotton and Bach tensors is still non trivial.
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Using its traces, this equation can be recast as an algebraic condition on Ki
j only,

Ki
jK

k
l −Ki

lK
k
j =

1

d− 2

[
δij

(
Kk
l K −Kk

pK
p
l

)
+ δkl

(
Ki
jK −Ki

pK
p
j

)
− δil

(
Kk
jK −Kk

pK
p
j

)
−δkj

(
Ki
lK −Ki

pK
p
l

)
− 1

d− 1
(K2 −Kp

qK
q
p)
(
δijδ

k
l − δilδkj

)]
. (4.4)

A more useful form of this equation is

Y
i1i2|i3i4
j1j2|j3j4K

j3
i3
Kj4
i4

= 0, (4.5)

where

Y
i1i2|i3i4
j1j2|j3j4 ≡

1

4

(
δi1i2i3i4j1j2j3j4

−d−3

d−2

(
δi1j1δ

i2i3i4
j2j3j4

+δi2j2δ
i1i3i4
j1j3j4

−δi1j2δ
i2i3i4
j1j3j4

−δi2j1δ
i1i3i4
j2j3j4

)
+
d−3

d−1
δi1i2j1j2

δi3i4j3j4

)
,

(4.6)

is a projection operator that projects onto the traceless part of rank 4 tensors with the

symmetries of the Riemann tensor. Namely, it annihilates any tensor of the form δ
[i
jM

k]
l +

M[i
j δ
k]
l . For example, it projects the Riemann tensor to its Weyl part:

Y
i1i2|i3i4
j1j2|j3j4R

j3j4
i3i4 =W i1i2

j1j2 . (4.7)

Inserting the expansion of the extrinsic curvature in eigenfunctions of the dilation

operator in (4.5) results in an identical equation for the Schouten tensor of the induced

metric, i.e.

Y
i1i2|i3i4
j1j2|j3j4P

j3
i3
Pj4i4 = 0. (4.8)

Hence, both the extrinsic curvature and the Schouten tensor obey the same algebraic

constraints, which play an important role in the subsequent analysis.

Fefferman-Graham expansion. The first equation in (4.1) can be integrated to obtain

the exact form of the bulk metric. Writing the induced metric and extrinsic curvature in

matrix notation as (h)ij = hij , (K)ij = Ki
j and inserting the defining relation

K =
1

2
∂r log h, (4.9)

in (4.1), one finds that the Fefferman-Graham expansion for conformally flat AlAdS man-

ifolds terminates. The exact form of the induced metric is [10, 50]

hij = e2r/`
(
g(0)ij(x) + e−2r/`g(2)ij(x) + e−4r/`g(4)ij(x)

)
, (4.10)

where g(0)ij is a conformally flat boundary metric, g(2)ij = −`2Pij [g(0)] for d > 2, and

g(4)ij = (g(2)g
−1
(0)g(2))ij/4. In the case of two dimensional boundary, g(2)ij determines the

boundary stress tensor and is arbitrary, except for a divergence and a trace constraint.
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On-shell action in terms of the extrinsic curvature. A remarkable consequence

of equations (4.1) for conformally flat AlAdS manifolds is that they allow us to obtain

an exact expression for the on-shell action in the case of odd d in terms of the extrinsic

curvature. Evaluating the bulk radial Lagrangian (2.20) on-shell gives

L = L̇ =
1

κ2

√
−h
(
K2 −Ki

jK
j
i

)
, (4.11)

where recall that L is the Hamilton-Jacobi density defined in (2.37). This identity holds

for any solution of the bulk field equations, but we will now show that, for conformally flat

manifolds, the first equation in (4.1) allows us to integrate (4.11) and determine L exactly.

To this end, it is necessary to introduce the symmetric polynomials of the matrix

(K)ij = Ki
j

σk(K) ≡ 1

(d− k)!k!
δj1j2···jdi1i2···id K

i1
j1
Ki2
j2
· · ·Kik

jk
δ
ik+1

jk+1
· · · δidjd =

1

k!
δj1j2···jki1i2···ik K

i1
j1
Ki2
j2
· · ·Kik

jk
, (4.12)

where the generalized Kronecker delta was defined in (3.9) and σk(P) = 0 for k > d. A brief

review of symmetric polynomials in the context of conformal geometry can be found in [51]

and in appendix B we summarize the properties most relevant to our analysis. Notice that

equation (4.11) for the Hamilton-Jacobi density can be expressed as

L̇ =
2

κ2

√
−hσ2(K). (4.13)

Using the first equation in (4.1), one can show that the symmetric polynomials of the

extrinsic curvature satisfy the recursion relation

∂r
(√
−hσk(K)

)
=
√
−h
(
(d− k + 1)`−2σk−1(K) + (k + 1)σk+1(K)

)
. (4.14)

Notice that the r.h.s. of this relation involves symmetric polynomials of either even or odd

order. Given the form (4.13) of the equation for L, this motivates us to look for a solution

of the form

L =

√
−h
κ2`

[
d−1
2

]∑
k=0

αk σ2k+1(`K), (4.15)

where αk are coefficients to be determined. However, the relevant solution for L must have

the correct asymptotic behavior, which amounts to the condition (see (2.51))[
d−1
2

]∑
k=0

αk σ2k+1(1) =

[
d−1
2

]∑
k=0

(
d

2k + 1

)
αk = d− 1. (4.16)

It is straightforward to check that a solution of the form (4.15) satisfying the condi-

tion (4.16) exists only for odd d (even bulk) and takes the form

L = −
√
−h

κ2`Γ
(
d
2

) [ d−1
2 ]∑

k=1

(−1)kΓ(k + 1)Γ

(
d

2
− k
)
σ2k+1(`K), d = 2n− 1, n ≥ 2. (4.17)

– 29 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
1

This is an exact solution of the radial Hamilton-Jacobi equation for even dimensional

conformally flat AlAdS manifolds. The corresponding solution for odd dimensional confor-

mally flat AlAdS manifolds cannot be expressed as a polynomial in the extrinsic curvature.

However, we will see that the asymptotic form of the on-shell action for both even and odd

dimensions, up to the relevant order in the dilatation operator expansion, can be deduced

directly from the exact solution (4.17), once the extrinsic curvature is expressed in terms

of the Schouten tensor of the induced metric.

From the exact solution (4.17) of the Hamilton-Jacobi equation, we conclude that

the boundary counterterms for even dimensional asymptotically conformally flat AlAdS

manifolds take the form9

Lct =

√
−h

κ2`Γ
(
d
2

) [ d−1
2 ]∑

k=1

(−1)kΓ(k + 1)Γ

(
d

2
− k
)
σ2k+1(`K), d = 2n− 1. (4.18)

In the next subsection, we will show that this expression coincides with the boundary

Kounterterms for even dimensional asymptotically conformally flat AlAdS manifolds.

Extrinsic curvature in terms of the Schouten tensor. We have found an exact

solution of the Hamilton-Jacobi equation for even dimensional conformally flat AlAdS

manifolds in terms of the extrinsic curvature Ki
j . However, in order to determine the

explicit form of the boundary counterterms (and verify that they are local) it is necessary

to also evaluate the extrinsic curvature as a function of the induced metric. As we will

show, when expressed in terms of the induced metric and generic boundary dimension

d, the counterterms take identical form for even and odd asymptotically conformally flat

AlAdS manifolds.

A significant simplification in the case of conformally flat AlAdS manifolds is that

eq. (4.3) determines the extrinsic curvature algebraically in terms of the Schouten tensor,

P ij , of the induced metric. However, the relation between the on-shell action (Hamilton-

Jacobi functional) and the extrinsic curvature (equivalently the canonical momentum) is

less clear once we restrict to conformally flat metrics, since generically we should expect that

πij
∣∣
Conf. Flat =

[
δ

δhij

∫
∂Mrc

ddxL

]
Conf. Flat

6= δ

δhij

∫
∂Mrc

ddx L|Conf. Flat ≡ Πij . (4.19)

In particular, the recursive algorithm for determining πij and L in tandem discussed in

section 2 does not necessarily apply once we restrict to conformally flat manifolds. This

is not to say that the algorithm definitely does not apply, but merely that we should not

assume that it does. It may or may not apply, and we need to address this question by

evaluating both the on-shell action and the canonical momentum in an independent way.

Conformal flatness implies that the Hamilton-Jacobi density can be parameterized as

L|Conf. Flat =
√
−hF(P), (4.20)

9Notice that this expression is not manifestly local in boundary derivatives — as the counterterms must

be — since it depends on the extrinsic curvature. However, it does turn out to be local, once the explicit

form of extrinsic curvature as a function of the induced metric is taken into account, as we will verify below.
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where F(P) is a yet unspecified scalar function that admits a Taylor expansion in the

Schouten tensor of the induced metric. Πij on the r.h.s. of (4.19) can be evaluated in

terms of the tensor

T ij ≡
∂F
∂Pji

. (4.21)

A small calculation shows that

Πij =
√
−h
{

1

2
hijF − 1

2(d− 2)

[
(d− 4)T (i

k P
kj) + PT ij + T kl P lkhij +

1

d− 1
T (P ij − Phij)

−D(iDkT j)k + hijDkDlT lk +Dk

(
D[kKi]j +D[kKj]i

)]}
, (4.22)

where

Kij ≡ T ij − 1

d− 1
T hij . (4.23)

Diffeomorphism invariance along the radial slice implies the two conservation equations

DiΠ
i
j = 0, Dk(T kl P li − Pkl T li ) + (DiP lk)T kl −DiF = 0, (4.24)

which hold independently of the specific form of F .

From (4.22), it follows that a sufficient condition for Πij to be algebraic in terms of

the Schouten tensor (and hence potentially agree with πij) is that T ij satisfies

D[iT kj] −
1

d− 1
D[iT δkj] = 0⇔ D[iKkj] = 0, (4.25)

which also implies that

DiT ij = 0. (4.26)

This ensures that all derivative terms in (4.22) vanish and Πij is algebraic in terms of P ij .
Moreover, since the expansion of F(P) in eigenfunctions of the dilatation operator involves

a sum of homogeneous polynomials in P ij that satisfy the identity

T(2n)ijP
j
i = nF(2n), n ≥ 1, (4.27)

the constraint (4.25) implies that the trace of (4.22) takes the form

Π(2n) =

(
d− 2n

2

)√
−hF(2n), (4.28)

which is the same as the identity (2.49) that πij satisfies for generic AlAdS manifolds. This

provides further evidence that the constraint (4.25) is the key to answering the question

whether Πij agrees with πij in the case of conformally flat AlAdS manifolds.

As we reviewed in section 2, the Q-curvature for odd dimensional AlAdS manifolds

can be decomposed into a sum of the Euler-Poincaré density of the induced metric and

a local conformal invariant, which vanishes for conformally flat manifolds. Moreover, it

is straightforward to show that the (generalized — i.e. 2n ≤ d) Euler-Poincaré density,

E2n, of a conformally flat metric reduces to a symmetric polynomial of its Schouten tensor,
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namely E2n ∝ σn(P) (see proposition 2.2 in [51]). Since the boundary counterterms can be

thought of as the sum of Q-curvatures in all even boundary dimensions, one may expect

that the function F that parameterizes the Hamilton-Jacobi functional for conformally flat

manifolds is a sum of symmetric polynomials of the Schouten tensor, i.e. F(2n) ∝ σn(P).

We will now evaluate F(2n) for any n and confirm that this is indeed the case.

The key to determining the polynomials F(2n) is equation (4.8), which implies a number

of algebraic relations among symmetric polynomials of the Schouten tensor of conformally

flat manifolds. Recall that the k-th symmetric polynomial of the Schouten tensor is given

by (see appendix B)

σk(P) =
1

k!
δj1j2···jki1i2···ik P

i1
j1
P i2j2 · · · P

ik
jk
. (4.29)

In the case of the Schouten tensor, σk(P) is known as the k-th order Meissner-Olechowski

density [52]. The k-th Newton transformation of the Schouten tensor is defined as

(Tk(P))ij ≡
∂

∂Pji
σk+1(P) =

1

k!
δ
ii2···ik+1

jj2···jk+1
Pj2i2 · · · P

jk+1

ik+1
. (4.30)

The symmetric polynomials and the associated Newton transform can be defined for any

d× d matrix, but for the Schouten tensor of conformally flat manifolds these objects have

a much richer structure. For example, the vanishing of the Cotton tensor of the induced

metric, hij , (see (4.2)) implies that Tk(P) are covariantly conserved for all k (see e.g.

proposition 2.3 in [51])

Di(Tk(P))ij =
1

(k − 1)!
δ
ii2···ik+1

jj2···jk+1
(D[iP

j2
i2]

)Pj3i3 · · · P
jk+1

ik+1
= 0. (4.31)

A number of less obvious properties of the symmetric polynomials and the associated

Newton transform of the Schouten tensor of conformally flat manifolds follow from the

algebraic constraint (4.8). As for the extrinsic curvature in (4.4), this constraint implies

that the antisymmetrized tensor product of two Schouten tensors is determined by its

traces, namely

P i[jP
k
l] =

1

d− 2

(
δi[j

(
Pkl]σ1 − P

k
pP

p
l]

)
+ δk[l

(
P ij]σ1 − P

i
pP

p
j]

)
− 2

d− 1
σ2δ

i
[jδ

k
l]

)
. (4.32)

Inserting this relation in the definition of the Newton transform of the Schouten tensor

results in a number of algebraic identities, which we now derive.

Replacing a pair of Schouten tensors in (4.30) using (4.32), gives

(Tk)
i
j =

1

k!
δ
ii2···ik+1

jj2···jk+1
Pj2i2 · · · P

jk+1

ik+1

=
2

(d−2)

1

k!
δ
ii2···ik+1

jj2···jk+1
Pj2i2 · · · P

jk−1

ik−1

(
δjkik

(
Pjk+1

ik+1
σ1−P

jk+1
p Ppik+1

)
− 1

d−1
σ2δ

jk
ik
δ
jk+1

ik+1

)
(4.33)

=
2(d−k)

k(d−2)

(
σ1(Tk−1)

i
j−

(d−k+1)

(k−1)(d−1)
σ2(Tk−2)

i
j−

1

(k−1)!
δii2···ikjj2···jkP

j2
i2
· · · Pjk−1

ik−1
Pjkp P

p
jk

)
,
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where we have used the identity

δi1i2···ikj1j2···jkδ
jk
ik

= (d− k + 1)δ
i1i2···ik−1

j1j2···jk−1
. (4.34)

Here and in the following we drop the arguments of Tk and σk to simplify the notation,

unless they are necessary for clarity. In order to evaluate the last term, we observe that

(k−1)δii2···ikjj2···jkP
j2
i2
· · · Pjk−1

ik−1
Pjkp P

p
jk

= (k−1)!

(
∂

∂Pji
tr (Tk−1P

2)−(Tk−1P+PTk−1)
i
j

)

= (k−1)!

(
∂

∂Pji
tr (σ1σk−(k+1)σk+1)+2(Tk−σk1)ij

)
= (k−1)! (−σk1−(k−1)Tk+σ1Tk−1)

i
j . (4.35)

Hence, the symmetric polynomials of the Schouten tensor of a conformally flat manifold

satisfy

Tk =
2(d− k)

d(k − 1)(k − 2)

(
(k − 2)σ1Tk−1 −

d− k + 1

d− 1
σ2Tk−2 + σk1

)
, k > 2. (4.36)

The trace of this identity results in a recursion relation involving symmetric polynomi-

als only

σk =
2(d− k + 1)

dk(k − 3)

(
(k − 2)σ1σk−1 −

d− k + 2

d− 1
σ2σk−2

)
, k > 3. (4.37)

These relations determine all Tk with k > 2 in terms of T2, T1 and T0 = 1, as well as all

σk with k > 3 in terms of σ3, σ2 and σ1.

However, T2 and σ3 are also not independent. Combining (4.36) with the general

identity (B.12) leads to the two additional conditions(
d

d− 2
τ3 − σ1τ2

)2

+
1

d− 1
τ32 = 0, (4.38)

and

τ2

(
T2 −

d− 2

d
σ21

)
− τ3

(
T1 −

d− 1

d
σ11

)
= 0, (4.39)

where

τk ≡ dkσk − (d− k + 1)σ1σk−1. (4.40)

It follows that Tk can be expressed as a linear combination of T1 and T0 = 1 for any k ≥ 2.

From the recursion relations (4.36) and (4.37), we determine that

τ2Tk = τk+1T1 −
(k − 1)(d− 1)

d− k − 1
τk+21, k ≥ 2, (4.41)

while τk satisfy

τk =
d− k + 1

d(d− 1)(k − 3)

(
(d− 1)σ1τk−1 − (d− k + 2)σk−2τ2

)
. (4.42)
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The identities derived above allow us to obtain a number of further results required

for solving the conformal flatness equations (4.1) and determining Ki
j [h]. The first is the

recursion relation

σlTk−l −
d− k + l

d− 1
σk−lTl +

l−1∑
m=0

(σmTk−m − σk−mTm) =

(k − 1)!(d− k − 1)!(d− 2)!

l!(k − l)!(d− k + l − 1)!(d− l − 1)!

(
(d(k − l)− k)Tk − (d− k)(k − l)σk1

)
, 0 ≤ l ≤ k,

(4.43)

which can be proved using (4.41). The second result is a generalization of (4.32) and

follows directly from (4.32) and the general form of Tk in (4.41):

(
(Tn)i[j −

d− n
d− 1

σnδ
i
[j

)
Pkl] +

(
(Tn)k[l −

d− n
d− 1

σnδ
k
[l

)
P ij] =

n+ 1

d− n− 1

(
δi[j(Tn+1)

k
l] + δk[l(Tn+1)

i
j]

)
− 2(n+ 1)

(d− 1)
σn+1δ

i
[jδ

k
l]. (4.44)

Finally, we can obtain a stronger version of the conservation equation (4.31), namely

D[i(Tn)kj] −
d− n
d− 1

D[iσnδ
k
j] = 0, n < d, d > 3, (4.45)

which can be proved by induction as follows. Firstly, (4.45) holds for n = 1 by virtue of

the first equation in (4.2). We now show that if it holds for n − 1, then it also holds for

n. Adding zero to the identity (B.12) in the form β[P,Tn−1] for some arbitrary constant

β, we have

2D[i(Tn)kj] = 2D[iσnδ
k
j]−2D[i(βPTn−1+(1−β)Tn−1P)kj]

= 2D[iσnδ
k
j]−2β(D[iPk

l )(Tn−1)lj]−2βPk
l D[i(Tn−1)lj]−2(1−β)P l

[jDi](Tn−1)kl

= 2D[iσnδ
k
j]−

2(d−n+1)

d−1
D[iσn−1Pk

j]+
2(1−β)(d−n+1)

d−1
Dlσn−1δ

k
[iP

l
j]

−2βDl

(
Pk
[i(Tn−1)lj]

)
−2(1−β)P l

[jDl(Tn−1)ki]

= 2D[iσnδ
k
j]−

2(d−n+1)

d−1

(
D[iσn−1Pk

j]+(1−β)σn−1δ
k
[iDj]σ1

)
−2(1−β)(D[iσ1)(Tn−1)kj]

−2Dl

(
βPk

[i(Tn−1)lj]+(1−β)P l
[j(Tn−1)ki]−

(1−β)(d−n+1)

d−1
σn−1δ

k
[iP

l
j]

)
= 2D[i

(
σnδ

k
j]+

(d−n+1)

d−1
σn−1((T1)kj]−βσ1δ

k
j])−(1−β)σ1(Tn−1)kj]

)
−2Dl

(
βPk

[i(Tn−1)lj]+(1−β)P l
[j(Tn−1)ki]−

(1−β)(d−n+1)

d−1
σn−1δ

k
[iP

l
j]

)
. (4.46)
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Setting β = 1/2, we can evaluate the last line using (4.44):

D[i(Tn)kj] = D[i

(
σnδ

k
j]+

(d−n+1)

d−1
σn−1

(
(T1)

k
j]−

1

2
σ1δ

k
j]

)
−1

2
σ1(Tn−1)

k
j]

)

+Dl

(
n

d−n
δl[i(Tn)kj]−

2n

(d−1)
σnδ

k
[jδ

l
i]+

(d−n+1)

d−1
σn−1δ

l
[iP

k
j]

)
n 6=d
= D[i

(
σnδ

k
j]−

d(n−2)

2(d−n)

(
(Tn)kj]−

d−n
d

σkδ
k
j]

)
+

n

2(d−n)
(Tn)kj]−

n

d−1
σnδ

k
[j

)
,

(4.47)

where in the second equality we have used (4.43) with l = 1. Finally, collecting terms, we

obtain
n(d− 3)

2(d− n)

(
D[i(Tn)kj] −

d− n
d− 1

D[iσnδ
k
j]

)
= 0, (4.48)

which completes the proof. We remark that all identities for the symmetric polynomials

and Newton transform of the Schouten tensor derived in this section hold also for the

extrinsic curvature, since they are a direct consequence of (4.8), which applies to the

extrinsic curvature as well.

We now have the necessary tools to evaluate the extrinsic curvature as a function of the

Schouten tensor for conformally flat AlAdS manifolds. This is determined by the algebraic

matrix equation

(tr K)K− K2 = (tr P)1 + (d− 2)P +
d− 1

`2
1, (4.49)

obtained from a single index contraction of (4.3). Inserting a formal expansion of the

extrinsic curvature in eigenfunctions of the dilation operator in this equation leads to the

recursion relations

K(0) = `−11, K(2) = `P,

(d− 2)K(2k) + tr K(2k)1 = `

k−1∑
l=1

(
K(2l) − tr K(2l)1

)
K(2k−2l), k > 1. (4.50)

The unique solution of these recursion relations is

K(2k) − tr K(2k)1 = akTk(P), ak =
(−1)k`2k−1(2k − 2)!(d− k − 1)!

2k−1(k − 1)!(d− 2)!
, k ≥ 1, (4.51)

as can be readily checked using (4.43). In particular, the r.h.s. of (4.50) can be evaluated

as follows:

`

k−1∑
l=1

(
K(2l) − tr K(2l)1

)
K(2k−2l) = `

k−1∑
l=1

alak−lTl

(
Tk−l −

d− k + l

d− 1
σk−l1

)

= `

k−1∑
l=1

alak−l

(
l−1∑
m=0

(σmTk−m − σk−mTm) + σlTk−l −
d− k + l

d− 1
σk−lTl

)
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(4.43), (4.51)
=

(−1)k`2k−1(k − 1)!(d− k − 1)!

2k−2(d− 2)!
×

k−1∑
l=1

(2l − 2)!(2k − 2l − 2)!

l!(l − 1)!(k − l)!(k − l − 1)!
((d(k − l)− k)Tk − (d− k)(k − l)σk1)

= ak ((d− 2)Tk − (d− k)σk1) = (d− 2)K(2k) + tr K(2k)1, (4.52)

as required. Moreover, the identity (4.45) for Tk implies that the solution (4.51) satisfies

the second equation in (4.1) as well, and hence it is an exact solution of all equations (4.1).

On-shell action in terms of the Schouten tensor. The main result in this section

so far is the general solution (4.51) of the conformal flatness equations (4.1). Through the

definition of the canonical momentum (2.17), this determines

π(0)
ij =

(d− 1)

2κ2`

√
−h hij , πij(2k) = − 1

2κ2
ak
√
−h (Tk)

ij , k ≥ 1. (4.53)

Our next goal is to integrate these expressions to obtain the corresponding Hamilton-Jacobi

functional in terms of the induced metric and its curvatures.

We saw earlier in this section that the Hamilton-Jacobi functional for conformally flat

AlAdS manifolds can be parameterized in terms of a scalar function F(P) of the Schouten

tensor as in (4.20). Hence, we may ask what function F(P) the canonical momentum (4.53)

corresponds to. However, once we restrict to conformally flat metrics and parameterize the

Hamilton-Jacobi functional in terms of the function F(P), its derivative with respect to

the induced metric need not coincide with the canonical momentum πij in general, and so

this question is a priori ill defined.

A necessary condition for the derivative Πij given in (4.22) to agree with the canonical

momentum is that the tensor T ij , obtained by differentiating F(P) with respect to P ij , sat-

isfies the constraint (4.25). Remarkably, identity (4.45) implies that the Newton transform

Tk satisfies this constraint. This suggests that a suitable function F(P) corresponding to

the canonical momentum (4.53) does exist and can be expanded in eigenfunctions of the

dilatation operator of the form

F(2k)(P) = bkσk(P), (4.54)

where bk are constants. It follows that, for k ≥ 1,

T i(2k)j = bk(Tk−1)
i
j , (4.55)

and so the derivative (4.22) becomes

Πij
(2k) = − bk

√
−h

2(d− 2)

(
−(d− 4)(Tk)

ij + σ1(Tk−1)
ij + (k − 2)σkh

ij − d− k + 1

d− 1
σk−1(T1)

ij

)
.

(4.56)

Using the identity (4.43) for the case l = 1, this reduces to

Πij
(2k) = bk

√
−h(d− 2k)

2(d− k)
(Tk)

ij , (4.57)
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which coincides with the canonical momentum (4.53), provided

bk = − (d− k)

(d− 2k)κ2
ak. (4.58)

This shows that the Hamilton-Jacobi density corresponding to the canonical momen-

tum (4.53) is

L(0) =

√
−h
κ2

(d− 1)

`
, L(2k) =

√
−h
κ2

(−1)k+1`2k−1(2k − 2)!(d− k)!

2k−1(k − 1)!(d− 2)!(d− 2k)
σk(P), k ≥ 1.

(4.59)

For odd d (even bulk), (4.59) is an exact solution of the Hamilton-Jacobi equation for

conformally flat manifolds and is equivalent to the exact expression given in (4.17) in terms

of the extrinsic curvature. Nevertheless, the form (4.59) has two important advantages.

Firstly, it confirms that for odd d the exact solution of the Hamilton-Jacobi equation is

a polynomial in the Schouten tensor, and hence a local functional of the induced metric.

Secondly, it provides an asymptotic solution of the Hamilton-Jacobi equation for even d as

well. In particular, when d is even, (4.59) solves the recursion relations for the Hamilton-

Jacobi functional for all k < d/2, but it has a pole at k = d/2, signifying the presence

of a non-analytic (logarithmic) term in the solution. However, the divergent part of the

full non-analytic solution is captured by the expansion in eigenfunctions of the dilatation

operator, provided the pole at k = d/2 is regularized with the radial cutoff according to

the dimensional regularization prescription [11, 31]

1

d− 2k
→ rc

`
= −1

2
log e−2rc/`. (4.60)

This prescription is equivalent to introducing a logarithmic term in the formal expansion of

the Hamilton-Jacobi density from the start, as we did for generic AlAdS manifolds in (2.38).

For both even and odd dimensions, therefore, the general form of the boundary coun-

terterms for asymptotically locally conformally flat AlAdS manifolds of arbitrary dimen-

sion is

Lct = −
[ d2 ]∑
k=0

L(2k) =

√
−h
κ2

−d− 1

`
+

[ d2 ]∑
k=1

(−1)k`2k−1(2k − 2)!(d− k)!

2k−1(k − 1)!(d− 2)!(d− 2k)
σk(P)

 , (4.61)

with the regularization prescription (4.60) understood in the case of even d. Curiously,

these counterterms take the form of a Meissner-Olechowski theory of gravity [52], which is

equivalent to Lovelock gravity for conformally flat metrics.

4.2 Kounterterms for asymptotically conformally flat AlAdS manifolds

The form of the boundary Kounterterms (3.24) for conformally flat manifolds can be de-

duced from their defining relations, given respectively in (3.12) and (3.13) for even boundary

dimension d and in (3.19) and (3.20) for odd d, by replacing the Riemann tensor of the

induced metric with its conformally flat value. As we have seen in the previous subsection,

there are two possible expressions for Rijkl[h], following from either the third equation
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in (4.1), or the second equation in (4.2). These result in two different formulas for the

Kounterterms on asymptotically conformally flat manifolds, both of which are useful for

different purposes.

Even dimensions. In section 3, we showed that the density B2n−1 coincides with the

pullback of the Chern form (3.3) on the boundary of even dimensional AlAdS manifolds

(see (3.14)). Inserting the expression for the Riemann tensor following from the third

equation in (4.1) in the pullback of the Chern form in (3.11), we obtain

c2n−1B2n−1 =

√
−h
κ2

√
π(n− 1)!

2(2n− 2)!

n−1∑
k=0

(−`2)n−1−k(2k)!(2n− 2k − 1)!

k! Γ
(
n− k + 1

2

) σ2n−2k−1(K)

=

√
−h
κ2

(n− 1)!

(2n− 2)!

n−1∑
k=0

(−4`2)n−k−1(2k)!(n− k − 1)!

k!
σ2n−2k−1(K)

=

√
−h
κ2

(n− 1)!

(2n− 2)!

n−1∑
k=0

(−`2)k 22kk!(2n− 2k − 2)!

(n− k − 1)!
σ2k+1(K), (4.62)

where the symmetric polynomials of the extrinsic curvature σk(K) were defined in (4.12).

Noticing that the k = 0 term cancels the Gibbons-Hawking term in (3.24), we conclude that,

for even dimensional asymptotically conformally flat AlAdS manifolds, the Kounterterms

take the form

LK =

√
−h
κ2

(n− 1)!

(2n− 2)!

n−1∑
k=1

(−`2)k 22kk!(2n− 2k − 2)!

(n− k − 1)!
σ2k+1(K), d = 2n− 1. (4.63)

Remarkably, this expression coincides with the boundary counterterms for such manifolds

given in (4.18), which correspond to an exact solution of the Hamilton-Jacobi equation.

The fact that the Kounterterms exactly coincide with the boundary counterterms for

even dimensional asymptotically conformally flat AlAdS manifolds is intimately related

with well known results in the mathematics literature [53]. As we reviewed above, the

boundary integral of the density B2n−1 can be expressed as a bulk integral over the Pfaf-

fian of the bulk Riemann tensor, i.e. the bulk Euler density. For a conformally flat manifold

M2n, the Euler density is proportional to the symmetric polynomial σn(P ) of the corre-

sponding (bulk) Schouten tensor (see e.g. proposition 2.2 in [51]). If M2n is also Einstein

as in this case, the Schouten tensor is proportional to the metric (see (A.9)) and the Euler

density reduces to a multiple of the bulk volume form. This is the content of theorem 1.2

(see also lemma 4.4) in [5] and theorem 3.6 in [6], which generalize the result of Anderson

for four dimensions [4]. However, the volume ofM2n is proportional to the on-shell action,

which in turn coincides — by construction — with the boundary counterterms.

In order to express the Kounterterms in terms of the Schouten tensor rather than

the extrinsic curvature, one may insert in (4.63) the expression for Ki
j in terms of P ij we

determined in (4.51). However, it is much simpler to start from an alternative expression

for the Kounterterms for even dimensional conformally flat manifolds that is linear in the
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extrinsic curvature. Replacing the Riemann tensor of the induced metric in (3.12) using

the second equation in (4.2) leads to

c2n−1B2n−1 =

√
−h
κ2

(−`2)n−1

(2n−2)!

∫ 1

0
dt δ

i1...i2n−1

j1...j2n−1
Kj1
i1

(
(1−t2)Kj2

i2
Kj3
i3
− 1

`2
δj2i2 δ

j3
i3

)
×

· · ·×
(

(1−t2)Kj2n−2

i2n−2
K
j2n−1

i2n−1
− 1

`2
δ
j2n−2

i2n−2
δ
j2n−1

i2n−1

)
=

√
−h
κ2

(−`2)n−1

(2n−2)!

∫ 1

0
dt δ

i1...i2n−1

j1...j2n−1
Kj1
i1

(
2(1−t2)δj2i2P

j3
i3
− t

2

`2
δj2i2 δ

j3
i3

)
×

· · ·×
(

2(1−t2)δj2n−2

i2n−2
Pj2n−1

i2n−1
− t

2

`2
δ
j2n−2

i2n−2
δ
j2n−1

i2n−1

)

=

√
−h
κ2

[
Γ
(
d+1
2

)]2
Γ(d+1)Γ(d)

n−1∑
k=0

(−`2)k23kΓ(d−2k)Γ(d−k)[
Γ
(
d+1
2 −k

)]2 δ
i1...ik+1

j1...jk+1
Kj1
i1
P i2j2 · · · P

ik+1

jk+1
,

(4.64)

where we have used the beta function integral∫ 1

0
dt (1− t2)kt2n−2k−2 =

22k+1k!n!(2n− 2k − 2)!

(2n)!(n− k − 1)!
. (4.65)

While the form (4.63) of the Kounterterms facilitates a direct comparison with the

boundary counterterms, the expression (4.64) will prove instrumental for comparing the

Kounterterms for even and bulk dimensions. Moreover, it is particularly useful for deter-

mining the covariant asymptotic expansion of the Kounterterms in eigenfunctions of the

dilatation operator, since successive powers of the Schouten tensor are increasingly sublead-

ing asymptotically. This should be contrasted with the powers of the extrinsic curvature

in (4.63), all of which are O(1) asymptotically.

Inserting the expansion (3.22) of the extrinsic curvature in (4.64), up to terms of

negative dilatation weight (i.e. asymptotically vanishing), we get

c2n−1B2n−1 =

√
−h
κ2

[
Γ
(
d+1
2

)]2
Γ(d+1)Γ(d)

n−1∑
k=0

(−`2)k23kΓ(d−2k)Γ(d−k)k![
Γ
(
d+1
2 −k

)]2 n−1∑
m=0

tr
(
K(2m)Tk(P)

)
(4.66)

=

√
−h
κ2

[
Γ
(
d+1
2

)]2
Γ(d+1)Γ(d)

(
n−1∑
m=0

m∑
k=0

(−`2)k23kΓ(d−2k)Γ(d−k)k![
Γ
(
d+1
2 −k

)]2 tr
(
K(2m−2k)Tk(P)

))
,

where Tk(P) was defined in eq. (4.30). Inserting the solution (4.51) for the extrinsic cur-

vature in this expression, the sum over k can be evaluated using the following two results:

tr

[(
Tm−k −

d−m+ k

d− 1
σm−k1

)
Tk

]
(B.13)

=

m−k−1∑
l=0

tr (σlTm−l − σm−lTl) +

(
1− d−m+ k

d− 1

)
σm−ktr Tk
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=
m−k−1∑
l=0

tr (σlTm−l − σm−lTl) + tr

(
σm−kTk −

d− k
d− 1

σkTm−k

)
(4.43)

= − m!(d−m)!(d− 2)!

(m− k)!k!(d− k − 1)!(d−m+ k − 1)!
σm, k < m, (4.67)

and [
Γ
(
d+1
2

)]2
Γ(d+ 1)Γ(d)

(
m−1∑
k=0

24kΓ(d− 2k)[
Γ
(
d+1
2 − k

)]2 (2m− 2k − 2)!

(m− k)!(m− k − 1)!
− 24m−1Γ(d− 2m)[

Γ
(
d+1
2 −m

)]2
)

=
(2m− 2)!

m!(m− 1)!(d− 1)!

(
1− d− 1

d− 2m

)
. (4.68)

Putting everything together, we conclude that, in terms of the Schouten tensor of the

induced metric, the Kounterterm density (3.24) in even bulk dimensions is given by

LK =

√
−h
κ2

−d− 1

`
+

[ d2 ]∑
k=1

(−1)k`2k−1(2k − 2)!(d− k)!

2k−1(k − 1)!(d− 2)!(d− 2k)
σk(P)

 , d = 2n− 1, (4.69)

in exact agreement with the boundary counterterms in (4.61). Of course, this result was

expected since we have already shown above that the Kounterterms for even bulk dimen-

sions coincide with the counterterms, but it verifies the equivalence of the two expressions

for the Kounterterms.

Odd dimensions. Analogous expressions for the Kounterterms can be derived for odd

dimensional conformally flat AlAdS manifolds, but there are some key differences. Firstly,

as for even dimensions, we can express the Kounterterms in terms of the extrinsic curvature

of the induced metric by utilizing the third equation in (4.1). Inserting this in (3.19) gives

c2nB2n =

√
−h
κ2

(−`2)n−1

22n−2(n−1)!2

∫ 1

0

dt

∫ t

0

ds δi1...i2nj1...j2n
Kj1

i1
δj2i2

(
(1−t2)Kj3

i3
Kj4

i4
−(1−s2)

1

`2
δj3i3 δ

j4
i4

)
×

· · ·×
(

(1−t2)K
j2n−1

i2n−1
Kj2n

i2n
−(1−s2)

1

`2
δ
j2n−1

i2n−1
δj2ni2n

)
(4.70)

=

√
−h
κ2

n−1∑
k=0

∫ 1

0

dt (1−t2)k
∫ t

0

ds (1−s2)n−k−1
(−`2)k(2n−2k−1)!(2k+1)!

22n−2(n−1)!k!(n−k−1)!
σ2k+1(K)

=

√
−h
κ2

n−1∑
k=0

(−`2)k(2n−2k−1)!(2k+1)!

22n−1(n−1)!(k+1)!(n−k−1)!
3F2

(
1

2
, 1, 1+k−n;

3

2
, k+2; 1

)
σ2k+1(K),

where we have used the integral representation of the generalized hypergeometric function∫ 1

0
dt (1− t2)k

∫ t

0
ds (1− s2)n−k−1 =

1

2(k + 1)
3F2

(
1

2
, 1, 1 + k − n;

3

2
, k + 2; 1

)
. (4.71)

It can be easily verified that this expression (after subtracting the Gibbons-Hawking

term) does not satisfy the Hamilton-Jacobi equation (4.13). In fact, this is guaranteed
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by our observation earlier that, for odd bulk dimensions, any solution of the Hamilton-

Jacobi equation that satisfies the condition (4.16) cannot be polynomial in the extrinsic

curvature. An immediate consequence is that, for odd dimensions, the Kounterterms do not

generically agree with the boundary counterterms, even in the special case of conformally

flat manifolds. This confirms our earlier conclusion, drawn by comparing the general

expansions (3.27) and (3.28). Nevertheless, the identity we derive next shows that, for

odd dimensional conformally flat AlAdS manifolds, the Kounterterms deviate from the

boundary counterterms in a very specific way that can be quantified.

Using the second equation in (4.2) to replace the Riemann tensor in (3.12) gives in-

stead

c2nB2n =

√
−h
κ2

(−`2)n−1

22n−2(n−1)!2

∫ 1

0

dt

∫ t

0

ds δi1...i2nj1...j2n
Kj1

i1
δj2i2

(
2(1−t2)δj3i3P

j4
i4

+(s2−t2)
1

`2
δj3i3 δ

j4
i4

)
×

· · ·×
(

2(1−t2)δ
j2n−1

i2n−1
Pj2n
i2n

+(s2−t2)
1

`2
δ
j2n−1

i2n−1
δj2ni2n

)

=

√
−h
κ2

n−1∑
k=0

(−`2)k2−kΓ(d−k)Γ
(
d
2−k+1

)
Γ
(
d
2−k

)
Γ
(
d
2+1

)
Γ
(
d
2

)
(d−2k)!

δ
i1...ik+1

j1...jk+1
Kj1

i1
Pj2
i2
· · · Pjk+1

ik+1
, (4.72)

where we have used the identity∫ 1

0
dt

∫ t

0
ds (1− t2)k(t2 − s2)n−k−1 =

22n−2k−2k!(n− k)![(n− k − 1)!]2

n!(2n− 2k)!
. (4.73)

Remarkably, (4.72) coincides with (4.64) when both are expressed in terms of the boundary

dimension d (which is of course different in the two cases), except for the upper limit in

the summation over k. This provides a proof that the Kounterterms for even and odd

dimensions are identical as functions of the boundary dimension d, except for the finite

terms arising for odd bulk dimensions.

Finally, the result (4.72) allows us to pinpoint the difference between the Kounterterms

and the boundary counterterms for odd dimensional asymptotically conformally flat AlAdS

manifolds. We have already shown that the boundary counterterms coincide with the

Kounterterms in even dimensions and that the Kounterterms for even and odd dimensions

coincide when expressed in terms of the boundary dimension d, except for finite terms. It

follows that the Kounterterms for odd dimensional conformally flat AlAdS manifolds differ

from the boundary counterterms only by logarithmic and local finite terms.

To quantify this difference, we insert the covariant expansion of the extrinsic curvature

in (4.72) and drop all terms of negative dilatation weight:

c2nB2n =

√
−h
κ2

[
Γ
(
d+1
2

)]2
Γ(d+ 1)Γ(d)

n−1∑
k=0

(−`2)k23kΓ(d− 2k)Γ(d− k)k![
Γ
(
d+1
2 − k

)]2 n∑
m=0

tr
(
K(2m)Tk(P)

)
=

√
−h
κ2

[
Γ
(
d+1
2

)]2
Γ(d+ 1)Γ(d)

(
n−1∑
m=0

m∑
k=0

(−`2)k23kΓ(d− 2k)Γ(d− k)k![
Γ
(
d+1
2 − k

)]2 tr
(
K(2m−2k)Tk(P)

)
+
n−1∑
k=0

(−`2)k23kΓ(d− 2k)Γ(d− k)k![
Γ
(
d+1
2 − k

)]2 tr
(
K(2n−2k)Tk(P)

))
. (4.74)
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We have deliberately expressed all coefficients in terms of the boundary dimension and

have used the parameterization arising naturally in even bulk dimensions (see (4.64)).

This renders cdBd for even and odd bulk dimensions manifestly identical, except for the

sum in the last line of (4.74).

Evaluating the sums in (4.74) using identities (4.67) and (4.68), we find that the

Kounterterm density (3.24) for odd dimensional asymptotically conformally flat AlAdS

manifolds takes the form

LK =

√
−h
κ2

−d−1

`
+

[ d2 ]−1∑
k=1

(−1)k`2k−1(2k−2)!(d−k)!

2k−1(k−1)!(d−2)!(d−2k)
σk(P) (4.75)

+
(−1)n`2n−1(d−n)!

2n−1

(
(2n−2)!

(n−1)!(d−2)!(d−2n)
−

24n−1
[
Γ
(
d+1
2

)]2
Γ(d−2n)n!

Γ(d+1)Γ(d)
[
Γ
(
d+1
2 −n

)]2
)
σn(P)

 .

Notice that both terms in the last line of this expression have simple poles at n = d/2.

However, in contrast to the boundary counterterms (4.61) that solve the Hamilton-Jacobi

equation, the poles in the Kounterterms cancel to produce a finite result, namely

LK =

√
−h
κ2

−d− 1

`
+

[ d2 ]−1∑
k=1

(−1)k`2k−1(2k − 2)!(d− k)!

2k−1(k − 1)!(d− 2)!(d− 2k)
σk(P)

+
(−1)

d
2 `d−1

2
d
2

(
1 +

2d

d− 1
− 2d log 2− dψ

(
d+ 1

2

)
+ dψ(d− 1)

)
σ d

2
(P)

 , d = 2n,

(4.76)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function. It can be easily checked that the last

line in this expression reproduces all finite terms in (3.27) upon setting the Weyl tensor

there to zero. This result pinpoints the reason why the Kounterterms fail to capture the

logarithmic divergence of odd dimensional asymptotically conformally flat AlAdS manifolds

and provides a general expression for the local finite term that the Kounterterms produce

instead.

5 Discussion

We have identified necessary and sufficient conditions for the Kounterterms to regularize

the AdS variational problem in arbitrary dimension. A well posed variational problem

for AlAdS manifolds exists only within the space of asymptotically Einstein manifolds.

Within this space, the extrinsic curvature and the induced metric of the boundary are

asymptotically related, permitting a direct comparison between the Kounterterms and

the boundary counterterms obtained via holographic renormalization. Comparison for

dimensions three to seven shows that, except in four dimensions, a necessary condition for

agreement is the vanishing of the boundary Weyl tensor.
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By determining the general form of the boundary counterterms for AlAdS manifolds of

arbitrary dimension with zero boundary Weyl tensor, we showed that in even bulk dimen-

sions the vanishing of the boundary Weyl tensor is also a sufficient condition for agreement

between the Kounterterms and the boundary counterterms. However, this is not a suffi-

cient condition in odd bulk dimensions. The disagreement in that case arises solely from

the logarithmic divergence related to the holographic conformal anomaly. In particular,

the boundary counterterms contain a logarithmically divergent term proportional to the

holographic conformal anomaly, or Branson’s Q-curvature, as it is known in the mathemat-

ics literature. For AlAdS manifolds with vanishing boundary Weyl tensor, this quantity is

proportional to the determinant of the boundary Schouten tensor, det P, which in this case

coincides with the Euler-Poincaré density of the boundary. In contrast, the logarithmically

divergent term is absent in the Kounterterms, but a finite term proportional to det P arises

instead. It follows that necessary and sufficient conditions for the Kounterterms to regu-

larize the AdS variational problem in odd dimensions are (a) zero boundary Weyl tensor

and (b) zero boundary Euler characteristic. These conditions are summarized in table 1.

Although the Kounterterms agree with the boundary counterterms at the level of

the action once the above conditions are met, it is not guaranteed that their respective

contributions to the quasilocal stress tensor, or to higher order moments (i.e. holographic

correlation functions), also agree. In section 4 we showed that agreement at the level

of the action implies agreement of the corresponding radial canonical momenta, i.e. of

the corresponding quasilocal stress tensors. This ensures that the Kounterterms correctly

renormalize the conserved charges of AlAdS black holes with a conformally flat boundary.

In fact, the vanishing of the boundary Weyl tensor suffices for the renormalization of

the conserved charges for both even and odd dimensions, since the Euler density does not

contribute to the radial canonical momentum. In particular, for odd dimensional geometries

with a vanishing boundary Weyl tensor but nontrivial Euler number, such as in the case of

a spherical boundary, the Kounterterms correctly renormalize the conserved charges and

the variational problem, but they fail to render the action finite.

There are several possible extensions of the present work. An obvious question that

remains open is whether boundary Weyl flatness suffices for the Kounterterms to correctly

renormalize higher order holographic correlation functions. It would also be interesting

to generalize our analysis to other theories of gravity that admit AdS solutions for which

a version of Kounterterms exists, such as higher derivative theories [54] and holographic

entanglement entropy [55, 56]. As for pure Einstein-Hilbert gravity, we anticipate that, in

general, the Kounterterms cancel the long distance divergences and regularize the varia-

tional problem only for solutions with a conformally flat boundary.
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A Radial foliation of AlAdS manifolds

As was reviewed in section 2, using a suitable Gaussian normal coordinate, r, in an open

neighborhood of the conformal boundary, ∂M, of a d+1 dimensional AlAdS manifold,M,

the metric g on M can be written in the Fefferman-Graham form (see eq. (2.12))

g = dr2 + hij(r, x)dxidxj , i, j = 1, . . . d, (A.1)

where hij is the induced metric on a radial slice Σr
∼= ∂M, and the asymptotic boundary is

located at r →∞. In this appendix, we compile several identities that express the intrinsic

curvature of M in terms of the intrinsic and extrinsic curvatures of the radial slices Σr.

Our notation throughout this article is as follows. A dot˙stands for the radial derivative

∂r, Di denotes the covariant derivative with respect to the induced metric hij , while Kij =
1
2 ḣij is the extrinsic curvature of Σr inM. Moreover, we use the convention that the radial

derivative is applied after any indices are raised or lowered with hij and its inverse. For

example, K̇i
j = ∂rK

i
j 6= hikK̇kj . Finally, script symbols such as Rij or Pij denote curvature

tensors of the induced metric hij .

A.1 Off-shell identities

We begin with the identities that follow solely from the decomposition (A.1) of the bulk

metric g, without imposing Einstein’s equations (2.6).

Christoffel symbols. The only non vanishing components of the Christoffel symbols of

g are

Γrij [g] = −Kij , Γirj [g] = Ki
j , Γijk[g] = Γijk[h]. (A.2)

Riemann tensor. The Riemann tensor of g decomposes as

Rirjr = −K̇i
j −Ki

kK
k
j ,

Rikjr = DiKkj −DkK
i
j ,

Rikjl = Rikjl −Ki
jK

k
l +Ki

lK
k
j . (A.3)

Ricci tensor. From (A.3) it follows that the components of the Ricci tensor take the form

Rrr = −K̇ −Kk
l K

l
k,

Rri = DjK
j
i −DiK,

Rij = Rij −KKi
j − K̇i

j . (A.4)

Ricci scalar. These in turn determine the Ricci scalar, which is given by

R = R−K2 − 2K̇ −Kk
l K

l
k. (A.5)

10http://www.xact.es/.
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Weyl tensor. The definition (2.3) of the bulk Weyl tensor implies that

Xi
j ≡W i

rjr = Rirjr − δijPrr − P ij ,
Y i

kj ≡W i
kjr = Rikjr + hkjP

i
r − δijPrk,

Zikjl ≡W ik
jl = Rikjl + δilP

k
j + δkj P

i
l − δijP kl − δkl P ij , (A.6)

where we have introduced the symbols Xi
j , Y

i
kj and Zikjl for the components of the Weyl

tensor for later convenience. Notice that Xi
j corresponds to the ‘electric part’ of the Weyl

tensor and is related to the components Zikjl through the trace identity Wµ
ρµσ = 0, which

reads

Zikjk +Xi
j = 0. (A.7)

This relation can be checked using (A.6). Explicit expressions for the Weyl tensor com-

ponents in terms of the intrinsic and extrinsic curvatures of hij can be easily obtained

using (A.6) and the above decomposition of the Riemann and Ricci curvatures.

A.2 On-shell identities

Next, we collect a number of identities following not only from the radial foliation (A.1),

but also from imposing Einstein’s equations (2.6). These imply that the bulk Ricci scalar

is constant on-shell

R = −d(d+ 1)

`2
, (A.8)

while the Schouten tensor takes the form

Pµν = − 1

2`2
gµν . (A.9)

Gauss-Codazzi equations. Einstein’s equations decompose into the three equations

K2 −Ki
jK

j
i = R+

d(d− 1)

`2
,

DjK
j
i −DiK = 0,

Rij −KKi
j − K̇i

j +
d

`2
δij = 0. (A.10)

Weyl tensor. On-shell, the components of the Weyl tensor defined in (A.6) become

Xi
j = − K̇i

j −Ki
kK

k
j +

1

`2
δij = −Rij +KKi

j −Ki
kK

k
j −

d− 1

`2
δij ,

Y i
kj = DiKkj −DkK

i
j ,

Zikjl = Rikjl −Ki
jK

k
l +Ki

lK
k
j −

1

`2
δilδ

k
j +

1

`2
δijδ

k
l . (A.11)

Besides the trace identity (A.7) that holds off-shell, the Gauss-Codazzi equations (A.10)

imply that

Zij ij = −Xi
i = 0, Y i

ji = 0. (A.12)

– 45 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
1

Flow equations for the Weyl tensor. The definition (2.3), together with the on-shell

expression for the Schouten tensor (A.9), imply that, on-shell, the Weyl tensor satisfies the

Bianchi identity

∇λWµ
νρσ +∇ρWµ

νσλ +∇σWµ
νλρ = 0. (A.13)

Decomposing this into radial and transverse components leads to the three equations

Ẏij
k=−DiX

k
j +DjX

k
i −2Kl

[iYl
k
j]−Kk

l Yij
l,

Żik
jl=K

i
pZ

kp
jl−Kk

pZ
ip

jl+DjY
ki

l−DlY
ki

j+K
i
jX

k
l −Ki

lX
k
j +Xi

jK
k
l −Xi

lK
k
j ,

DpZ
ik

jl+DjZ
ik

lp+DlZ
ik

pj=K
i
jYlp

k+Ki
lYpj

k+Ki
pYjl

k−Kk
j Ylp

i−Kk
l Ypj

i−Kk
pYjl

i. (A.14)

The first two equations in (A.14) correspond to geometric flow equations for the com-

ponents Yij
k and Zikjl of the bulk Weyl tensor. Recall that the components Xi

j are not

independent due to the trace identity (A.7). Together with the trace of the flow equation

for Zikjl, (A.7) leads to the flow equation for the electric part of the Weyl tensor

Ẋi
j +KXi

j −Kk
jX

i
k = DkY

ki
j +Kk

l Z
il
jk, (A.15)

or equivalently

Ẋi
j +KXi

j = DkY
ki
j +

(
Kk
l −

1

`
δkl

)
Ziljk +

(
Kk
j −

1

`
δkj

)
Xi
k. (A.16)

A.3 Asymptotic expansions

Using the first few orders in the covariant expansion of the canonical momentum πij given

in (2.62), one finds that the covariant asymptotic expansion of the extrinsic curvature (3.22)

takes the form

Ki
j =

1

`
δij+`P ij+

`3

(d−4)(d−2)

[
Bij+(d−4)

(
P ikPkj−PP ij−

1

2(d−1)

(
PklPkl−P2

)
δij

)]
+· · · ,

(A.17)

where the Bach tensor, Bij , is defined in (2.63). Inserting this covariant expansion in

the expressions for the components of the bulk Weyl tensor in (A.11), we find that their

leading asymptotic form coincides respectively with the Bach, Cotton and Weyl tensors of

the induced metric hij , namely

Xi
j =

`2

d− 4
Bij + · · · , Y i

kj = ` Cjki + · · · , Zikjl =W ik
jl + · · · , (A.18)

where the ellipses denote terms with higher dilatation weight.

B Symmetric polynomials

In this appendix we collect a few elementary properties of symmetric polynomials that we

use in the main text. A discussion of symmetric polynomials in the context of conformal

geometry can be found in [51] and references therein.
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Given a d × d matrix M with components (M)ij = M i
j , we define its k-th symmetric

polynomial

σk(M) ≡ 1

(d− k)!k!
δj1j2···jdi1i2···id M

i1
j1
M i2
j2
· · ·M ik

jk
δ
ik+1

jk+1
· · · δidjd =

1

k!
δj1j2···jki1i2···ik M

i1
j1
M i2
j2
· · ·M ik

jk
, (B.1)

where the generalized Kronecker delta was defined in (3.9). Notice that σk(M) = 0 for

k > d. The generating function of these polynomials is the determinant

f(t) ≡ det(1 + tM) = exp
(
tr log(1 + tM)

)
=

d∑
k=0

tkσk(M). (B.2)

This is a special case of the more general identity

σk(1 + tM) =

k∑
m=0

(d−m)!

(d− k)!(k −m)!
tmσm(M). (B.3)

In particular,

σk(1) =

(
d

k

)
=

d!

k!(d− k)!
. (B.4)

The generating function (B.2) leads to an alternative representation of the symmetric

polynomials in terms of traces of powers of the matrix M. Namely,

σ0(M) = 1,

σ1(M) = tr M,

σ2(M) =
1

2

(
(tr M)2 − tr (M2)

)
,

σ3(M) =
1

6

(
(tr M)3 − 3tr M tr (M2) + 2tr (M3)

)
,

σ4(M) =
1

24

(
(tr M)4 − 6(tr M)2tr (M2) + 3(tr (M2))2 + 8tr M tr (M3)− 6tr (M4)

)
,

...

σd(M) = det M. (B.5)

A related object that plays an important role in our analysis is the k-th Newton

transform of the matrix M, which is defined as

(Tk(M))ij ≡
∂

∂M j
i

σk+1(M) =
1

k!
δ
ii2···ik+1

jj2···jk+1
M j2
i2
· · ·M jk+1

ik+1
=

k∑
m=0

(−1)mσk−m(M)(Mm)ij . (B.6)

The trace of the k-th Newton transform is proportional to σk, namely

tr Tk(M) = (d− k)σk(M). (B.7)
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The generating function of these matrix-valued polynomials follows directly from (B.2):

∂

∂M j
i

det(1+tM) = det(1+tM)
∂

∂M j
i

tr log(1+tM) = t det(1+tM)

(
1

1+tM

)i
j

=
d∑

k=1

tk(Tk−1)
i
j ,

(B.8)

and hence

F(t) ≡ det(1 + tM)(1 + tM)−1 =

d−1∑
k=0

tkTk(M). (B.9)

Notice that

Td(M) = 0, (B.10)

by virtue of the Cayley-Hamilton theorem.

The n-th derivative of the generating function F(t) with respect to the parameter t is

given by

F(n)(t) =
(
f (n)(t)1− nMF(n−1)(t)

)
(1 + tM)−1, (B.11)

where f (n)(t) is the n-th derivative of the determinant (B.2). Evaluating this identity at

t = 0 leads to the recursion relation

Tk(M) = σk(M)1− MTk−1(M), T0(M) = 1. (B.12)

Finally, the following product rule can be easily proved by induction

Tm(M)Tn(M) =

m∑
k=0

σk(M)Tm+n−k(M)−
m−1∑
k=0

σm+n−k(M)Tk(M). (B.13)
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221 (2009) 140 [math.DG/0504161] [INSPIRE].

[6] A. Chang, J. Qing and P. Yang, On the renormalized volumes for conformally compact

Einstein manifolds, math.DG/0512376 [INSPIRE].

[7] S.-s. Chern, On the Curvatura Integra in a Riemannian manifold, Ann. Math. 46 (1945) 674.

– 48 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/math.DG/0109089
https://doi.org/10.4310/MRL.2002.v9.n2.a2
https://doi.org/10.4310/MRL.2002.v9.n2.a2
https://arxiv.org/abs/math.DG/0110271
https://doi.org/10.4310/MRL.2001.v8.n2.a6
https://arxiv.org/abs/math.DG/0011051
https://doi.org/10.1016/j.aim.2008.12.002
https://doi.org/10.1016/j.aim.2008.12.002
https://arxiv.org/abs/math.DG/0504161
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0504161
https://arxiv.org/abs/math.DG/0512376
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0512376
https://doi.org/10.2307/1969203


J
H
E
P
0
8
(
2
0
2
0
)
0
6
1

[8] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math.Phys. 2 (1998) 231] [hep-th/9711200]

[INSPIRE].

[9] M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087] [INSPIRE].

[10] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[11] I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, in proceedings

of the 73rd Meeting between Theoretical Physicists and Mathematicians: (A)ds-CFT

Correspondence, Strasbourg, France, 11–13 September 2003, IRMA Lect. Math. Theor. Phys.

8 (2005) 73 [hep-th/0404176] [INSPIRE].

[12] I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS

spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].

[13] I. Papadimitriou, Holographic renormalization as a canonical transformation, JHEP 11

(2010) 014 [arXiv:1007.4592] [INSPIRE].

[14] E. Witten, A Note On Boundary Conditions In Euclidean Gravity, arXiv:1805.11559

[INSPIRE].

[15] D. Bak, M. Gutperle and S. Hirano, A Dilatonic deformation of AdS5 and its field theory

dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].

[16] I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10

(2004) 075 [hep-th/0407071] [INSPIRE].

[17] R. Olea, Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black

holes, JHEP 06 (2005) 023 [hep-th/0504233] [INSPIRE].

[18] R. Olea, Regularization of odd-dimensional AdS gravity: Kounterterms, JHEP 04 (2007) 073

[hep-th/0610230] [INSPIRE].

[19] R. Penrose and W. Rindler, Spinors and Space-Time. Volume 2. Spinor and Twistor

Methods in Space-Time Geometry, Cambridge University Press (1988).

[20] C.R. Graham, Volume and area renormalizations for conformally compact Einstein metrics,

in proceedings of the 19th Winter School on Geometry and Physics, Srni, Czechia, 9–16

January 1999, Rend. Circ. Mat. Palermo 63 (2000) 31 [math.DG/9909042] [INSPIRE].

[21] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002)

5849 [hep-th/0209067] [INSPIRE].

[22] M.T. Anderson, Geometric aspects of the AdS/CFT correspondence, in proceedings of the

73rd Meeting between Theoretical Physicists and Mathematicians: (A)ds-CFT

Correspondence, Strasbourg, France, 11–13 September 2003, in IRMA Lectures in

Mathematics and Theoretical Physics 8, European Mathematical Society (2005)

[hep-th/0403087] [INSPIRE].

[23] C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and

holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].

[24] G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum

Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

– 49 –

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711200
https://doi.org/10.1088/1126-6708/1998/07/023
https://arxiv.org/abs/hep-th/9806087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9806087
https://doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0002230
https://doi.org/10.4171/013-1/4
https://doi.org/10.4171/013-1/4
https://arxiv.org/abs/hep-th/0404176
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0404176
https://doi.org/10.1088/1126-6708/2005/08/004
https://arxiv.org/abs/hep-th/0505190
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0505190
https://doi.org/10.1007/JHEP11(2010)014
https://doi.org/10.1007/JHEP11(2010)014
https://arxiv.org/abs/1007.4592
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.4592
https://arxiv.org/abs/1805.11559
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.11559
https://doi.org/10.1088/1126-6708/2003/05/072
https://arxiv.org/abs/hep-th/0304129
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0304129
https://doi.org/10.1088/1126-6708/2004/10/075
https://doi.org/10.1088/1126-6708/2004/10/075
https://arxiv.org/abs/hep-th/0407071
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0407071
https://doi.org/10.1088/1126-6708/2005/06/023
https://arxiv.org/abs/hep-th/0504233
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0504233
https://doi.org/10.1088/1126-6708/2007/04/073
https://arxiv.org/abs/hep-th/0610230
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0610230
https://arxiv.org/abs/math.DG/9909042
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F9909042
https://doi.org/10.1088/0264-9381/19/22/306
https://doi.org/10.1088/0264-9381/19/22/306
https://arxiv.org/abs/hep-th/0209067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0209067
https://doi.org/10.4171/013-1/1
https://doi.org/10.4171/013-1/1
https://arxiv.org/abs/hep-th/0403087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0403087
https://doi.org/10.1088/0264-9381/17/5/322
https://arxiv.org/abs/hep-th/9910267
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9910267
https://doi.org/10.1103/PhysRevD.15.2752
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD15%2C2752%22


J
H
E
P
0
8
(
2
0
2
0
)
0
6
1

[25] R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys.

Rev. 117 (1960) 1595 [INSPIRE].

[26] J.D Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the

gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].

[27] J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group,

JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

[28] D. Martelli and W. Mueck, Holographic renormalization and Ward identities with the

Hamilton-Jacobi method, Nucl. Phys. B 654 (2003) 248 [hep-th/0205061] [INSPIRE].

[29] H. Elvang and M. Hadjiantonis, A Practical Approach to the Hamilton-Jacobi Formulation of

Holographic Renormalization, JHEP 06 (2016) 046 [arXiv:1603.04485] [INSPIRE].

[30] I. Papadimitriou, Lectures on Holographic Renormalization, Springer Proc. Phys. 176 (2016)

131 [INSPIRE].

[31] I. Papadimitriou, Holographic Renormalization of general dilaton-axion gravity, JHEP 08

(2011) 119 [arXiv:1106.4826] [INSPIRE].

[32] S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28

(2011) 215019 [arXiv:1107.4451] [INSPIRE].

[33] W. Chemissany and I. Papadimitriou, Generalized dilatation operator method for

non-relativistic holography, Phys. Lett. B 737 (2014) 272 [arXiv:1405.3965] [INSPIRE].

[34] P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat

space-times, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [INSPIRE].

[35] S. Chang, M. Eastwood, B. Orsted and P.C. Yang, What is Q-Curvature?, Acta Appl. Math.

102 (2008) 119.

[36] R. Bach, Zur Weylschen Relativitätstheorie und der Weylsehen Erweiterung des
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