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Summary

The use of renewable waste feedstocks is an environ-
ment-friendly choice contributing to the reduction of
waste treatment costs and increasing the economic
value of industrial by-products. Glycerol (1,2,3-propa-
netriol), a simple polyol compound widely distributed
in biological systems, constitutes a prime example of
a relatively cheap and readily available substrate to
be used in bioprocesses. Extensively exploited as an
ingredient in the food and pharmaceutical industries,
glycerol is also the main by-product of biodiesel pro-
duction, which has resulted in a progressive drop in
substrate price over the years. Consequently, glycerol
has become an attractive substrate in biotechnology,
and several chemical commodities currently pro-
duced from petroleum have been shown to be
obtained from this polyol using whole-cell biocata-
lysts with both wild-type and engineered bacterial
strains. Pseudomonas species, endowed with a ver-
satile and rich metabolism, have been adopted for the

conversion of glycerol into value-added products
(ranging from simple molecules to structurally com-
plex biopolymers, e.g. polyhydroxyalkanoates), and a
number of metabolic engineering strategies have
been deployed to increase the number of applications
of glycerol as a cost-effective substrate. The unique
genetic and metabolic features of glycerol-grown
Pseudomonas are presented in this review, along with
relevant examples of bioprocesses based on this sub-
strate – and the synthetic biology and metabolic engi-
neering strategies implemented in bacteria of this
genus aimed at glycerol valorization.

Introduction

Contemporary synthetic biology and metabolic engineer-
ing offer the possibility of expanding the substrate range
of microbial cell factories beyond the sugars typically used
as carbon sources (Calero and Nikel, 2019; Prather,
2019). Examples of this sort of metabolic manipulation for
broadening substrate ‘palatability’ of bacteria include sev-
eral chemical species, ranging from simple C1 com-
pounds such as CO2 or HCOOH (Antonovsky et al., 2016;
Yishai et al., 2018) to structurally complex substrates
such as lignocellulosic materials derived from biomass
(Beckham et al., 2016; Barton et al., 2018; Kim and Woo,
2018). Alcohols conform a special category of alternative
substrates for biotechnology, and they are currently being
discussed as promising renewables for sustainable bio-
production (Stowell et al., 1987; Smith, 2004; Dahod
et al., 2010; Hoffmann et al., 2018). Glycerol (1,2,3-propa-
netriol, C3H8O3), for instance, is a widely available, versa-
tile and structurally simple compound that can be used as
a carbon source or as a precursor in a variety of chemical
and biological conversions. This polyol has been tradition-
ally used in multiple industrially relevant areas, e.g. as an
ingredient in foods and beverages (by exploiting its sweet-
ening properties; in fact, the name glycerol is derived from
the Greek ckυjeqός, ‘sweet’), as well as pharmaceuticals
and cosmetic products, both as solvent and humectant
(Pagliaro and Rossi et al., 2008b).
Biodiesel is a fuel comprised of monoalkyl (methyl,

ethyl or propyl) esters of long-chain fatty acids derived

Received 8 January, 2019; revised 17 February, 2019; accepted 23
February, 2019.
*For correspondence. E-mail pabnik@biosustain.dtu.dk; Tel. (+45
93) 51 19 18; Fax. (+45 45) 25 80 00.
Microb Biotechnol (2020) 13(1), 32–53
doi:10.1111/1751-7915.13400
Funding Information
This study was supported by The Novo Nordisk Foundation (Grant
NNF10CC1016517) and the Danish Council for Independent
Research (SWEET, DFF-Research Project 8021-00039B) to P.I.N.
This work was also supported by CONICYT through the project
Fondecyt Inicio 11150174.

ª 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

bs_bs_banner

https://orcid.org/0000-0002-9313-7481
https://orcid.org/0000-0002-9313-7481
https://orcid.org/0000-0002-9313-7481
mailto:
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1751-7915.13400&domain=pdf&date_stamp=2019-03-18


from vegetable oils or animal fats (Hollinshead et al.,
2014). Its value as a fuel has been recognized as early
as the 19th century: the transesterification of a veg-
etable oil catalysed by a base was conducted four dec-
ades before the first diesel engine became functional
(Henriques, 1898). Biodiesel has promising lubricating
properties and cetane ratings compared to low sulfur
diesel fuels, with a calorific value of about 37 MJ kg�1.
The current transesterification process used for biodie-
sel production involves the treatment of yellow grease
(recycled vegetable oil), virgin vegetable oil or tallow
with a mixture of NaOH or KOH and CH3OH (van Ger-
pen and Knothe, 2010). The main by-product of this
production process is glycerol: ca. 10 kg of crude glyc-
erol is generated for every 100 kg of biodiesel pro-
duced. The fast development of the biofuel industry in
several countries over the last three decades (with a
global production volume of 3.8 million tons in 2005)
has generated a considerable amount of crude glycerol
(Suppes, 2010). Approximately 85% of all the biodiesel
production over the last decade came from the Euro-
pean Union (Ntziachristos et al., 2014). In addition, the
bioethanol process (using Saccharomyces cerevisiae as
biocatalyst) generates glycerol up to 10% of the total
sugar (usually sucrose) consumed in the fermentation
(Hasunuma and Kondo, 2012; Mohd Azhar et al.,
2017). As a consequence of this global situation, the
last 10 years have witnessed the rise of glycerol as a
very attractive substrate for bacterial fermentations
(Mota et al., 2017). The excess of crude glycerol pro-
duced in the biofuel industry led to a decrease in glyc-
erol price, and some years ago, it was even considered
a waste (with an associated disposal cost) by many
biodiesel-production plants. Converting crude glycerol
into value-added products thus became a relevant need
to improve the viability of the biofuel economy (Pagliaro
and Rossi et al., 2008a), and both chemical and biolog-
ical approaches have been explored to convert glycerol
into more valuable products. Considering that crude
glycerol is a non-edible renewable, its use has also
advantages in terms of sustainability as it does not
compete with other substrates that could be otherwise
used in the food industry (Stichnothe, 2019). Compared
to chemical routes for transformation of the polyol, bio-
logical transformation offers several advantages, rang-
ing from less energy use (thus making the process
more environment-friendly) to higher specificity, and
increased tolerance to impurities such as salts and
CH3OH, both of which occur at high levels in crude
glycerol (Katryniok et al., 2009). Over the last few
years, however, global markets have changed and oil
prices have stabilized – which has directly impacted
biodiesel production (Pagliaro, 2017). Nevertheless,
glycerol continues to attract attention as a substrate for

biotechnology as it can be used by a myriad of
microorganisms for the synthesis of a wide range of
bioproducts (da Silva et al., 2009; Dobson et al., 2012;
Pettinari et al., 2012; Mattam et al., 2013; Mitrea et al.,
2017). Moreover, current trends indicate that biodiesel
will become the clean liquid fuel of choice in many
countries, especially in those that have legal require-
ments to use alternatives to petrochemical fuels (Guo
and Song, 2019). The United States Environmental Pro-
tection Agency, for instance, established a fuel standard
volume requirement for biodiesel of 8 millon litres for
2019 (Weaver, 2018) – requirements that will inevitably
result in an increasing availability of raw glycerol.
Interestingly, the biotechnological value of glycerol as

a substrate has been recognized since the early times of
industrial microbiology (Johnson, 1947; Gunsalus et al.,
1955). In fact, some of the oldest examples of technical-
scale bioreactor fermentations include the transformation
of glycerol into biomass and reduced biochemical prod-
ucts. Nakas et al. (1983), for instance, described the fer-
mentation of glycerol by Clostridium pasteurianum in an
attempt to obtain a marketable product [a mixture of n-
butanol, 1,3-propanediol (1,3-PDO) and ethanol] from
glycerol photosynthetically formed by halophilic Duna-
liella algae. Due to the more reduced nature of the car-
bon atoms in glycerol as compared to sugars (e.g.
glucose and xylose, customary substrates in biopro-
cesses), the polyol is mostly processed via oxidative
metabolism in aerobic processes. There are, however,
several bacteria that can ferment this substrate anoxi-
cally, e.g. some clostridia and a few enterobacteria
(Hatti-Kaul and Mattiasson, 2016) – a circumstance that
has been also exploited for the design of industrial bio-
processes. Until the last decade, for instance, it was
widely accepted that Escherichia coli was unable to use
glycerol as a substrate in the absence of external elec-
tron acceptors (Booth, 2005). Since then, several studies
describing the fermentation of glycerol by different wild-
type or mutant E. coli strains have paved the way for the
efficient use of this low-cost, readily available substrate
to synthesize a variety of biotechnologically relevant
products under different oxygen availability conditions
(Yazdani and Gonz�alez, 2007; Murarka et al., 2008;
Nikel et al., 2006, 2008a, 2010a) – thus increasing the
sustainability of fermentation processes using this polyol
as the substrate. The higher degree of reduction of glyc-
erol (c = 4.7) over glucose (c = 4) facilitates the synthe-
sis of reduced bioproducts as demonstrated in E. coli
strains (Nikel et al., 2008a,b, 2010b). Since less carbon
has to be oxidized into CO2 to generate reducing power,
the use of glycerol potentially offers higher yields on
substrate than when using sugars. Yet, what are the
biotechnological uses of glycerol beyond the so-called
model bacterial species?
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The last decade has witnessed an exponential
increase in the number of studies exploiting Pseu-
domonas species as biocatalysts. In particular, P. putida
KT2440, a non-pathogenic soil bacterium that has been
adapted to laboratory conditions (Nelson et al., 2002;
Belda et al., 2016), has emerged as the chassis of
choice for engineering biochemical pathways while
exploiting its intrinsically high tolerance to different types
of physicochemical stresses (Poblete-Castro et al.,
2012a, 2017; Nikel et al., 2014a,b; Nikel and de Lor-
enzo, 2018a,b; Abram and Udaondo, 2019). Several
studies have described the use of glycerol by Pseu-
domonas species, and biochemical and genetic studies
have disclosed a rather different metabolic operation,
genetic regulation and physiological responses as com-
pared to other bacteria. Against this background, in this
article, we review our current knowledge on the use of
glycerol by Pseudomonas species either via natural or
engineered pathways – with an emphasis on the physiol-
ogy and metabolism of P. putida and the many opportu-
nities that this substrate brings forth for biotechnological
applications.

Biochemistry and genetics of glycerol utilization by
Pseudomonas

General aspects of glycerol assimilation in bacteria

In a comprehensive review of glycerol metabolism, Lin
(1976) had described assimilation pathways present in
several bacterial species, with a special focus on E. coli
and related Enterobacteriaceae. Although glycerol pro-
cessing in bacteria can essentially follow only two possi-
ble biochemical routes, the reduced nature of its carbon
atoms renders catabolism of this substrate difficult in the
absence of external electron acceptors (NO�

3 or fuma-
rate). Irrespective of the pathway followed, phosphoryla-
tion and dehydrogenation steps ultimately convert
glycerol into dihydroxyacetone-P (DHAP), either aerobi-
cally or anaerobically (Fig. 1). DHAP is incorporated into
the central carbon metabolism as a key precursor that is
further processed by the same glycolytic routes deployed
when bacteria grow on sugars. Apart from the direct
incorporation of glycerol-derived metabolites into bio-
mass, this compound can be also converted into a ser-
ies of reduced by-products to meet the redox and
carbon balance. Bouvet et al. (1995) described bacterial
species, belonging to the genera Citrobacter, Enterobac-
ter and Klebsiella, capable of fermenting glycerol. In
these species, there is a reductive pathway for glycerol
utilization, in which the substrate is firstly dehydrated by
a vitamin B12-dependent enzyme to form 3-hydroxypro-
pionaldehyde that is further reduced to 1,3-PDO by an
NADH-linked oxidoreductase (1,3-PDO dehydrogenase),
thereby regenerating NAD+. The fermentation of glycerol

with the concomitant formation of 1,3-PDO [and, in some
cases, 1,2-propanediol (1,2-PDO)] was also described in
Lactobacillus and Clostridium species (Biebl et al.,
1999).
Apart from passive diffusion, glycerol uptake in bacteria

is mediated by glycerol diffusion facilitators, integral mem-
brane proteins catalysing the rapid equilibration of glyc-
erol concentration gradients across the cytoplasmic
membrane (Stroud et al., 2003). These facilitators are a-
type channels that enable the diffusion of small polyols
and related molecules into the cell, and these channels
are known because of their exquisite substrate selectivity.
They do not permit the passage of charged compounds
through them, a feature essential for the maintenance of
the electrochemical gradient across the membrane. Once
transported, intracellular glycerol is converted to sn-gly-
cerol-3-P by glycerol kinase (GlpK) using ATP as the

Fig. 1. Conserved pathways for glycerol metabolism in bacteria. In
most Gram-negative bacteria, such as E. coli, alternative catabolic
pathways ultimately lead to the generation of dihydroxyacetone-P
(DHAP), which is later channelled into key glycolytic intermediates
via downstream metabolism. Apart from the direct, ATP-dependent
phosphorylation of intracellular glycerol (glycerolin) indicated to the
left, the polyol can be oxidized into dihydroxyacetone (DHA), and
then phosphorylated using phosphoenolpyruvate (PEP) as the phos-
phoryl donor (as shown to the right), thereby generating pyruvate
(Pyr). The enzymes involved in glycerol metabolism are GlpF, glyc-
erol facilitator (transporter); GlpK, glycerol kinase; GlpABC, (anaero-
bic) sn-glycerol-3-P dehydrogenase; GlpD, (aerobic) sn-glycerol-3-P
dehydrogenase; GldA, glycerol dehydrogenase; and DhaKLM, DHA
kinase. QH2 denotes a reduced quinone (e.g. ubiquinone or mena-
quinone), which serves a cofactor for a flavin-containing enzyme.
Enzymatic steps indicated in red are independent of the presence
of oxygen, whereas the two possible sn-glycerol-3-P dehydrogena-
tion reactions are identified with different colours depending on the
availability of (alternative) electron acceptors.
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phosphoryl donor. The glycerol diffusion facilitator does
not recognize sn-glycerol-3-P as a substrate and this
intermediate remains inside the cell, where it is further
metabolized. The driving force for the uptake of glycerol
is thus generated by substrate phosphorylation by GlpK
(Voegele et al., 1993). While sn-glycerol-3-P cannot
leave the cytoplasm, it can be imported into the cell by
the GlpT transporter, a member of the major facilitator
superfamily that couples the import of sn-glycerol-3-P into
the cytoplasm to the export of inorganic phosphates from
the cytoplasm to the periplasm (Lemieux et al., 2004). In
E. coli, sn-glycerol-3-P can be further metabolized to
DHAP by either of two membrane-bound enzymes,
depending on the growth conditions (Fig. 1). Under aero-
bic conditions, a homodimeric aerobic sn-glycerol-3-P
dehydrogenase (encoded by glpD) is produced, which
can accept either oxygen or NO�

3 as the electron acceptor
(Schryvers et al., 1978; Yeh et al., 2008). Under anaero-
bic conditions, a different sn-glycerol-3-P dehydrogenase
is preferentially expressed – this tri-heteromeric protein
complex, which is encoded by the glpABC operon, chan-
nels the electrons from sn-glycerol-3-P to either NO�

3 or
fumarate (via the quinone pool) since oxygen can no
longer be used as an electron acceptor (Cole et al.,
1988). Apart from the obvious role in substrate catabo-
lism, the presumed significance of this process is the sal-
vage of glycerol and glycerol phosphates generated by
the breakdown of phospholipids and triacylglycerol (Blom
et al., 2011).
Apart from these main biochemical reactions, the first to

be discovered and collectively known as the glycerol and
glycerophospholipid degradation pathway, E. coli K-12
possesses an NAD+-linked dehydrogenase, termed GldA,
which is able to support glycerol fermentation (Fig. 1).
Gonzalez et al. (2008) demonstrated that GldA, annotated
as a dual L-1,2-PDO dehydrogenase/glycerol dehydroge-
nase, is involved in glycerol fermentation both as a glyc-
erol dehydrogenase (i.e. generating dihydroxyacetone),
and as a 1,2-PDO dehydrogenase, in this case regenerat-
ing NAD+ by producing 1,2-PDO from hydroxyacetone.
GldA is also involved in methylglyoxal detoxification (Ko
et al., 2005). In this branch of glycerol metabolism, dihy-
droxyacetone is phosphorylated into DHAP by DhaKLM,
which uses phosphoenolpyruvate (instead of ATP) as the
phosphoryl donor (Jin and Lin, 1984).

Metabolism of glycerol in Pseudomonas species:
substrate transport, trunk and auxiliary metabolic
pathways

Although the glycerol metabolism indicated in the previ-
ous section prevails in most Gram-negative species
(especially in Enterobacteria), members of the Pseu-
domonas genus display relevant differences both in

terms of the biochemical and genetic architecture of
glycerol utilization. Pseudomonas species possess over
300 known and putative nutrient uptake systems, which
enable them to metabolize a large number of organic
compounds and inhabit many diverse ecological niches
(Silby et al., 2011). The outer membrane of these bacte-
ria acts as a semi-permeable barrier – excluding many
classes of potentially toxic molecules from the cell. Nutri-
ents use specialized water-filled channels called porins
to traverse this physical barrier (Chevalier et al., 2017);
the actual entry into the Pseudomonas cell is mediated
by one of four classes of cytoplasmic membrane trans-
porters as follows: glycerol/water facilitators, phospho-
transferase systems, primary active transporters and
secondary active transporters (Tamber and Hancock,
2003). The first GlpF transporter to be identified in a
Pseudomonas species was described in P. aeruginosa
PAO1 by Schweizer et al. (1997). The authors also
described a second gene within the same cluster, glpK,
encoding glycerol kinase – and functionally linking sub-
strate transport with metabolism with the genomic archi-
tecture of the cluster. While the GlpT protein of E. coli is
a sn-glycerol-3-P/inorganic phosphate antiporter
(Lemieux et al., 2005), the GlpT transporter present in
some Pseudomonas species (such as P. aeruginosa
PAO1 and P. fluorescens SBW25) seems to act as a
dual sn-glycerol-3-P/fosfomycin symporter (Hirakawa
et al., 2018). Such a mechanism has not been identified
in P. putida KT2440.
By gathering genetic information, the pathway for glyc-

erol metabolism was reconstructed for both P. aeruginosa
and P. putida, and it was found to be similar to the set of
aerobic biochemical reactions for glycerol processing in
E. coli (shown in Fig. 2A for P. putida KT2440). The
sequence of reactions catalysed by the ATP-dependent
GlpK kinase and the ubiquinol-dependent GlpD dehydro-
genase generates DHAP, serving both as the point of
entry of glycerol into central carbon metabolism and the
driving force for substrate transport and consumption.
DHAP, in turn, is split essentially into gluconeogenesis
(via fructose-1,6-P2) and downward catabolism (via glyc-
eraldehyde-3-P, GA3P; see also Fig. 2A). No enzymes
similar to either GlpABC or GldA of E. coli (see Fig. 1)
have been identified thus far in Pseudomonas species,
indicating that oxygen-dependent pathways for glycerol
utilization is the preferred route in this genus [character-
ized by the abundance of strictly-aerobic species (Silby
et al., 2011; Nikel et al., 2014a, b)].
The relatively simple biochemistry underlying glycerol

utilization is reflected in a rather conserved genetic archi-
tecture of the glp genes across species, with P. putida
KT2440 as an archetypal example (Fig. 2B). In strain
KT2440, the genes deemed essential for glycerol metabo-
lism are arranged in a genomic cluster that includes glpF
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(PP_1076, aquaglyceroporin), glpK (PP_1075, glycerol
kinase), glpR (PP_1074, a transcriptional regulator
belonging to the DeoR family) and glpD (PP_1073, the
main sn-glycerol-3-P dehydrogenase). Other genes with
plausible roles in glycerol processing and metabolism and
annotated as such in the Pseudomonas database are
gpsA [PP_4169, encoding a soluble, NAD(P)+-dependent
sn-glycerol-3-P dehydrogenase, poorly studied in microor-
ganisms but likely involved in glycerophospholipid break-
down as a glyceroneogenic enzyme (Reshef et al., 2003)]
and several glycerol/sn-glycerol-3-P acyl transferases
(Winsor et al., 2016). The structural organization of the
glp gene cluster is highly conserved in both P. putida
KT2440 and P. aeruginosa PAO1 – although the relative
orientation of the genes is inverted. Furthermore, the glp
gene cluster of strain KT2440 (i.e. PP_1076 to PP_1073)
exhibits a high degree of sequence identity with glpF
(83%), glpK (82%), glpR (80%) and glpD (72%) of
P. aeruginosa PAO1 (PA_3581 to PA_3584). As indicated
in the next sections, there is an intimate relationship
between the genetic organization of the glp genes, the
transcriptional regulation exerted by the GlpR protein, and

the biochemical network deployed by Pseudomonas when
cells are growing on glycerol.

Growth on glycerol promotes a mixed gluconeogenic
and glycolytic regime in the metabolism of
Pseudomonas

With the onset of considering glycerol as a relevant sub-
strate for biotechnological processes, several studies
have examined how Pseudomonas species react to this
compound at different levels. Nikel et al. (2014a) anal-
ysed the similarities and divergences in the use of glyc-
erol by P. putida with respect to other bacteria by
adopting a transcriptomic approach based on deep
sequencing of mRNA transcripts complemented by tradi-
tional biochemical assays. The main conclusion of that
study is that growth on glycerol imposes a particular
metabolic response in P. putida characterized by the
activation of both glycolytic and gluconeogenic routes
(Fig. 3). The most salient features of the genome-wide
response to the substrate include (i) the transcriptional
upregulation of glycerol transport and catabolic genes

Fig. 2. Biochemical pathways and genetic organization of genes involved in glycerol metabolism in Pseudomonas putida KT2440.
A. Main biochemical reactions relevant for glycerol transport, phosphorylation and oxidation of metabolic intermediates thereof. The incorpora-
tion of fructose-1,6-P2 and glyceraldehyde-3-P (GA3P) into central carbon metabolism via gluconeogenesis and downward catabolism, respec-
tively, is indicated by a wide shaded arrow. The question mark (?) denotes a potential sn-glycerol-3-P transporter, yet to be identified in strain
KT2440. DHAP, dihydroxyacetone-P; UQ8 and UQ8H, oxidized and reduced forms (respectively) of ubiquinone 8; and Pi, inorganic phosphate.
B. Genetic organization of the glp locus in P. putida KT2440. The genomic region encompasses glpF [PP_1076, major intrinsic protein (MIP)
family channel protein, aquaglyceroporin], glpK (PP_1075, glycerol kinase), glpR (PP_1074, DeoR family transcriptional regulator) and glpD
(PP_1073, aerobic sn-glycerol-3-P dehydrogenase). The glp cluster is flanked upstream by PP_1072, which encodes an uncharacterized leu-
cine-rich repeat-containing protein, and downstream by PP_1077, encoding an YbaK/EbsC-type protein [prolyl-tRNA editing protein, probably a
Cys-tRNA(Pro) deacylase] (Nelson et al., 2002; Belda et al., 2016). The elements in this outline are not drawn to scale.
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(i.e. the glp gene cluster), (ii) the downregulation of alter-
native routes for carbon processing, (iii) the activation of
a general gluconeogenic response and (iv) the concomi-
tant slow-down of activities through the tricarboxylic acid
(TCA) cycle and the gluconate/2-ketogluconate loop for
oxidative processing of hexoses. The glycerol-consum-
ing status seems therefore to favour biomass build-up
while preventing loss of carbon as CO2 or during the for-
mation of oxidized by-products [e.g. some organic acids
typically produced when Pseudomonas cells are grown
on sugars (Fuhrer et al., 2005)]. Apart from these gen-
eral physiological features, several regulatory nodes can
be identified in the biochemical network that enable effi-
cient and tightly-controlled substrate utilization.

The Mg2+- and ATP-dependent phosphorylation of
glycerol to sn-glycerol-3-P catalysed by GlpK is the key
regulatory and rate-limiting step in glycerol utilization in
E. coli (Zwaig et al., 1970). In this species, GlpK activity
is modulated by multiple factors, e.g. ATP concentration,
allosteric inhibition mediated by fructose-1,6-P2, and
direct inhibition by the IIAGlc cytosolic component of the
sugar phosphotransferase system (Applebee et al.,
2011). It is plausible that some of these regulatory fea-
tures are kept in Pseudomonas species – with the likely
exception of the interplay with the sugar phosphotrans-
ferase system, since glucose transport in Pseudomonas
proceeds through a different mechanism (del Castillo
et al., 2007; Daddaoua et al., 2009; Pfl€uger-Grau and de

Fig. 3. The metabolism of glycerol in Pseudomonas putida KT2440 involves a combination of special processing pathways coupled to both
glycolytic and gluconeogenic routes. Reactions within the upstream central carbon metabolism in strain KT2440 affected by growth on glycerol
as indicated by transcriptome and metabolic flux analyses are shown in this scheme. The biochemical network sketches the main pathways
involved in carbon processing along with the enzymes catalysing the corresponding conversions. In some cases, reactions have been lumped
to simplify the diagram (e.g. within the non-oxidative pentose phosphate pathway), and only some isoforms of the corresponding enzymes are
shown. Further metabolism of acetyl-coenzyme A (acetyl-CoA) is indicated by a wide shaded arrow. Glyceraldehyde-3-P (GA3P) is highlighted
as a key node connecting the main metabolic blocks (indicated in the diagram as ‘initial processing steps’, ‘gluconeogenesis and anabolism’

and ‘catabolism’) active in glycerol-grown cells. DHAP, dihydroxyacetone-P; PEP, phosphoenolpyruvate. The transcriptomic and fluxomic data
used in this diagram have been gathered from Nikel et al. (2014a), Nikel et al. (2015b) and Beckers et al. (2016).

ª 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology., Microbial
Biotechnology, 13, 32–53

Glycerol as a substrate for Pseudomonas 37



Lorenzo, 2014). In addition to the enzymatic regulation
of the components of glycerol catabolism themselves,
more general regulatory patterns are at play in central
carbon metabolism.
As indicated in the previous section, DHAP is a key

metabolite connecting glycerol with the core metabolism.
Downstream catabolism proceeds through the process-
ing of GA3P via the activity of GA3P dehydrogenase.
The genome of P. putida KT2440 encodes two bona fide
GA3P dehydrogenase isozymes, i.e. GapA (PP_1009)
and GapB (PP_2149), which are easily identified given
their similarity to the same enzyme counterparts in
related microorganisms. Because of the reversibility of
the oxidation step of GA3P into glycerate-1,3-P2, GA3P
dehydrogenase plays a pivotal role acting either on its
downward mode [i.e. glycolysis, funnelling GA3P into
the Embden-Meyerhof-Parnas (EMP) pathway] and in
gluconeogenesis (Lessie and Phibbs, 1984). This bio-
chemical step lies at the very core of both glycolytic and
gluconeogenic metabolic pathways in most microorgan-
isms, deciding the direction in which the carbon flow
proceeds. Apart from GapA and GapB, strain KT2440
possesses two other GA3P dehydrogenase isozymes
(encoded by PP_0665 and PP_3443). RNA sequencing
indicated that gapB, PP_0665 and PP_3443 are tran-
scriptionally affected by the presence of glycerol. While
PP_0665 does not seem to contribute to the total GA3P
dehydrogenase activity in glycerol-grown P. putida,
in vitro biochemical analyses with a DPP_3443 deriva-
tive of strain KT2440 accredits a role for PP_3443 as
the source of a GA3P dehydrogenase activity relevant
for glycerol metabolism, and its cofactor dependence
(NADP+) points to a likely gluconeogenic role (Nikel
et al., 2014a).
Glycerol metabolism relies on functional and active

sugar catabolic pathways in P. aeruginosa PAO1 (Ble-
vins et al., 1975; Heath and Gaudy, 1978). One of the
key nodes for metabolic regulation of glycerol utilization
is the activity of GA3P dehydrogenase, which appears to
require an active hexoses-P metabolism. Accordingly,
genes encoding enzymes within the gluconeogenic
branch of the EDEMP cycle and the pentose phosphate
(PP) pathway in P. putida KT2440 were found to be
transcriptionally stimulated by growth on glycerol (Fig. 3).
Furthermore, since HexR (PP_1021) is a transcriptional
repressor controlling genes encoding key steps of these
routes, including gapA (Udaondo et al., 2018), there is a
close connection between the use of sugars and glycerol
as carbon sources. The metabolite 2-keto-3-deoxy-6-
phosphogluconate, an intermediate of the Entner-Dou-
doroff (ED) pathway (Nikel et al., 2015a), acts as an
specific effector of the HexR protein (del Castillo et al.,
2008) – which further supports the role of an active
EDEMP cycle in enabling glycerol utilization.

The characteristic growth phenotype of Pseudomonas
putida in glycerol cultures

When P. putida KT2440 is grown in a minimal medium
containing glycerol, the specific growth rate attained by
the cultures is ca. 30% lower than that of glucose-grown
cultures; conversely, the yield of biomass on substrate
increases by ca. 24% (Nikel et al., 2014a). Hintermayer
and Weuster-Botz (2017) simulated growth parameters
of strain KT2440 in silico considering 57 individual car-
bon sources, and experimentally validated their predic-
tion on six of them (acetate, glycerol, citrate, succinate,
malate and CH3OH). Glycerol was found to promote the
highest biomass yield on substrate (0.61 C-mol C-mol�1).
This feature indicates that this substrate can promote high
yields not only of cell components, but also metabolites
and products derived from actively growing cells (i.e. pri-
mary metabolites).
A phenomenon consistently observed in glycerol cul-

tures is a considerable lag phase (Escapa et al., 2012a;
Nikel et al., 2014a), which has been interpreted as the
macroscopic consequence of a substantial re-arrange-
ment of the whole metabolic network prior to reaching
an optimum for growth on this substrate. Closer exami-
nation of the phenomenon revealed a stochastic tran-
scriptional response of the glp genes as explained later
in this article. In any case, RNA sequencing in cells har-
vested from these cultures indicated a general decrease
in the transcription of genes encoding stress response
components, further accompanied by the differential
expression of elements of the respiratory chain. This
raises interesting questions on the relationship between
growth rate, stress and the general fitness in Gram-
negative bacteria. It has been suggested that microor-
ganisms are subjected to the general biological principle
of caloric restriction, i.e. highly energetic carbon sub-
strates lead to transient fast growth – but also to physio-
logical stress and a relative loss of individual
reproductive capacity (Skinner and Lin, 2010). The over-
all physiology of glycerol-grown P. putida is consistent
with such a perspective: by avoiding to overrun the reac-
tions within the TCA cycle and peripheral (oxidative)
metabolic loops, and by recycling carbon equivalents to
biomass building blocks, cells may grow slower in glyc-
erol and be less energized. Yet, under these circum-
stances, the impact of metabolism would not be highly
stressful – and the population as a whole should be
eventually more successful in terms of final numbers.
The fact that glycerol itself acts as an osmoprotectant
(Sleator and Hill, 2002) indicates that growth on the
polyol determines a less stressful cell physiology as
compared to the use of sugars as a carbon source.
Accordingly, the maintenance coefficient of P. putida
KT2440 growing on glycerol has been determined to be
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0.039 mmolsubstrate gcell dry weight
�1 h�1 (Beckers et al.,

2016), ca. 35% lower than that observed in cells grown
on glucose (Ebert et al., 2011). In all, such physiological
situation is reflected in a decreased swimming motility, a
coarse descriptor of the energy load of the cells, when
P. putida KT2440 is grown on glycerol as compared to
sugars or TCA cycle intermediates (Nikel et al., 2014a).
Scoffield and Silo-Suh (2016) recently reported that glyc-
erol metabolism promotes biofilm formation by both a
chronic cystic fibrosis isolate and a wound isolate of
P. aeruginosa, linking caloric restriction to pathogenesis
(La Rosa et al., 2018). Moreover, loss of the GlpR regu-
lator, enhanced biofilm formation through the upregula-
tion of genes encoding enzymes needed to synthesize
the Pel polysaccharide – with a concomitant decrease of
energy-expensive motility. Similarly, when P. fluorescens
was subjected to an oxidative challenge with hydrogen
peroxide in a mineral medium containing glycerol as the
sole carbon source, the bacterium reconfigured its meta-
bolism to generate ATP primarily via substrate level
phosphorylation, with the concomitant synthesis of large
amounts of phosphoenolpyruvate and pyruvate (Alha-
sawi et al., 2016). The overall phenomenon of metabolic
reconfiguration, which deserves further investigation
across different bacterial species, seems to constitute an
evolutionary trait that enables Pseudomonas species to
tune the balance prevalence-versus-niche exploration
depending on the available carbon sources. Both the
specific and general physiological and metabolic
responses to glycerol have been explored in P. putida
also under different growth schemes, including chemo-
stat cultures, as disclosed in the next section.

Glycerol utilization analysed from a systems biology
perspective

Environmental bacteria have developed remarkable reg-
ulatory systems, which allow them to thrive and cope
with various environmental conditions such as extreme
temperatures, exposure to metals and nutrient availabil-
ity, to name but a few of them (Dom�ınguez-Cuevas
et al., 2006; Daniels et al., 2010; Krell et al., 2012; Tri-
belli et al., 2013; de Lorenzo et al., 2015; Belda et al.,
2016; Chavarr�ıa et al., 2016). Bacteria display an exqui-
sitely fine-tuned modulation of gene expression with the
aim to maintain cellular functions, with this regulation
occurring both at the transcriptional and the post-tran-
scriptional level (Arce-Rodr�ıguez et al., 2016). These
regulatory programs control hundreds of enzymatic reac-
tions, fuelling metabolism and sustaining bacterial growth
on a variety of nutritional situations (Schuetz et al.,
2012). How nutrient availability drives global gene
expression in bacterial species has been an important
area of study in the last decade (Chubukov et al., 2013;

Kohlstedt et al., 2014; Vital et al., 2015). As indicated
above, Pseudomonas species have received special
attention when grown on glycerol as the sole carbon
source under different fermentation modes (Wang and
Nomura, 2010; Kim et al., 2013; Licciardello et al.,
2017). It is important to highlight that the physiology of
cells growing in batch cultures (i.e. in the presence of
excess substrate) highly differs from that in continuous
cultivation setups in terms of gene expression (transcrip-
tome), protein abundance (proteome) and conversion
rates in biochemical reactions (fluxome) – which ulti-
mately define growth patterns and macroscopic pheno-
types. Chemostats are an excellent tool to evaluate
physiological parameters since constant growth rates
can by externally adjusted by the operator through the
dilution rate (D) while maintaining other relevant parame-
ters strictly controlled (e.g. pH, oxygen levels and nutri-
ents concentration).
Against this background, Beckers et al. (2016) recently

elucidated gene expression and metabolic flux patterns in
P. putida KT2440 grown on glycerol under different
growth regimes and nutrient-limiting conditions. Genes
belonging to the oxidative PP pathway (zwfA), ED path-
way (eda) and the pyruvate node (acoABC, encoding the
components of a dual dehydrogenase) showed higher
expression levels by changing the imposed specific
growth rate (from 0.044 to 0.12 h�1) under carbon limita-
tion conditions – echoing the results previously observed
in batch cultures with glycerol (Nikel et al., 2014a).
Remarkably, this was not the case for the same genes of
the PP and ED pathways when their expression was
examined under nitrogen limitation: when shifting from
carbon to nitrogen limitation, the mRNA levels of genes
of the PP and ED pathways showed no changes, and
gene encoding elements of both the pyruvate node and
isocitrate dehydrogenase (encoded by icd, PP_4012)
were downregulated (Beckers et al., 2016); see also
Fig. 3. Analysis of the metabolic flux via the PP and ED
pathways corroborated the findings from the transcrip-
tome analysis, with a strong dependence on the activity
of the EDEMP cycle when cells were grown under nitro-
gen limitation at D = 0.12 h�1.
The scenario described above is somewhat different

to the one observed in P. putida LS46 grown in glycerol-
containing batch cultures (Fu et al., 2015). By comparing
nitrogen versus carbon limitation, the authors have found
that the transcription of genes encoding pyruvate dehy-
drogenase and isocitrate dehydrogenase was upregu-
lated, and proteomic analysis supported this observation
at the enzyme abundance level. In addition, carbon
fluxes through the glyoxylate shunt (usually inactive in
the presence of glucose) were found to be extremely
high under nitrogen limitation, giving rise to two industri-
ally important by-products, succinate and malate. These
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observations indicate that the pattern of metabolic regu-
lation differs among strains, and furthermore highlight
the relevance of glycerol as a substrate for the synthesis
of reduced bioproducts. The next relevant question is
how the overall cell physiology in glycerol-grown
P. putida is tied to the unique transcriptional signature
imposed by the GlpR regulator – an issue examined in
the following section.

The transcriptional activation of the glp gene cluster
follows a bimodal regime and defines the glycerol-
dependent growth pattern of P. putida: a unique case of
metabolic persistence

The emergence of methodologies designed to study bac-
teria at the single cell level revealed a complete reper-
toire of responses of individual microorganisms to
specific environmental cues (Ackermann, 2015; Rober-
froid et al., 2016; Osella et al., 2017). These observa-
tions challenge the customary view of prokaryotic growth
and metabolism as a homogeneous, co-occurring pro-
cess in space and time. The phenomenon broadly
known as persistence, i.e. the occurrence of a live but
non-growing fraction of cells within a bacterial population
(van den Bergh et al., 2017), is a prime example in this
respect. While the lack of microbial growth may appear
negative at a first glance, persistence ensures the sur-
vival of cells exposed to agents hitting developing bacte-
ria, e.g. antibiotics. Once the selective pressure ceases,
persistent bacteria can resume growth and fully restore
the original population (Balaban et al., 2004). Regardless
of the mechanisms behind this phenomenon, the stand-
ing question is whether persistence is to be considered
as an adaptive trait or a casual occurrence. What we
qualify as persistence may just be a particular case of a
more common situation in which a starting population
stochastically splits between growing and non-growing
cell types when facing a new set of environmental or
physicochemical conditions (Cabral et al., 2018). Envi-
ronmental bacteria are also subjected to clonal and phe-
notypic variability (van den Broek et al., 2005; Volke and
Nikel, 2018; Schiessl et al., 2019), especially when
growing on alternative substrates such as aromatic com-
pounds (Nikel et al., 2014c) – but our studies on glycerol
utilization by P. putida revealed that simpler carbon sub-
strates can likewise elicit a similar stochastic response.
A noteworthy feature consistently detected in glycerol

cultures is an anomalously long lag phase (typically
lasting > 10 h) before any noticeable growth is evident
(Escapa et al., 2012a; Nikel et al., 2014a) – an occur-
rence not observed when the cells are cultured on glu-
cose or succinate under the same conditions. Exposure
of strain KT2440 to glycerol leads to the appearance of
two sub-populations that differ in their level of metabolic

activity towards the carbon substrate, and the relative
proportion of these bacterial sub-populations (i.e. active
and inactive) changes over time (Nikel et al., 2015b).
The phenomenon has been studied by defining the so-
called time of metabolic response, which identifies the
stretch needed for single-cell cultures to reach an opti-
cal density at 600 nm (OD600) of 0.3 units, i.e. corre-
sponding to mid-exponential growth (Nikel and de
Lorenzo, 2018a). By systematically recording OD600 val-
ues in 1000 independent, single-cell microtitre-plate cul-
tures of P. putida KT2440 grown on either glucose or
glycerol, the distribution of times of metabolic response
was plotted as a function of the time elapsed since
inoculation (Fig. 4A) – clearly identifying the existence
of more than one bacterial sub-population in glycerol
cultures. Flow cytometry-assisted analysis of the overall
level of metabolic activity in these cultures supported
this notion: glycerol cultures were characterized by the
presence of a dormant fraction of bacterial cells coexist-
ing with a metabolically active sub-population, whereas
a single, uniform and metabolically active P. putida pop-
ulation was observed when cells were grown in the
presence of glucose. This phenomenon seems to repre-
sent the mirror counterpart of persistence, i.e. the
stochastic rise of individual cells able to metabolize the
substrate amidst a majority of glycerol-unresponsive
bacteria, followed by the eventual take-over of the entire
P. putida population.
Elucidation of the functional interactions between glyc-

erol-derived metabolites and the transcriptional architec-
ture of the glp gene cluster in strain KT2440 provided an
explanation for the macroscopic phenotype of cells
grown on glycerol cultures (Fig. 4B). While virtually all
prokaryotic promoters are subject to a degree of noise
(Elowitz et al., 2002), certain regulatory devices translate
such noise into bi/multi-modal or bi-stable manifestation
of the corresponding phenotypes in single cells. Cells
will start growing only if the low-probability effector-inde-
pendent stochastic lifting of the GlpR-mediated repres-
sion allows for the expression of glpF and glpK (the
latter gene encoding the kinase responsible of sn-gly-
cerol-3-P formation). Once this repression is stochasti-
cally defeated, the full expression of the glp genes can
proceed – finally returning to an OFF state when the
substrate is completely depleted. Different levels of
metabolic activity are observed in the cells, reflecting
their ability to catabolize glycerol, while the transcrip-
tional derepression process is undergoing. This situation,
in turn, explains the very long lag phase in P. putida cul-
tures on glycerol. Further confirmation of this hypothesis
comes from (i) deletion of glpR and (ii) controlled overex-
pression of glpFK – both manipulations resulting in the
disappearance of the protracted lag phase on glycerol,
and in the uniform distribution of growth phenotypes
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(Nikel et al., 2015b). The prolonged unresponsiveness of
cells exposed to glycerol could enable carbon source-
dependent metabolic bet-hedging to explore new chemi-
cal and nutritional landscapes; a concept reminiscent of
foraging in animal ecology, in which some members of
the population (but not the entire population) take risks
to broaden the search for alternative food sources.
Under this scheme, the cost of randomly expressing
metabolic genes in P. putida is outweighed by the poten-
tial benefit of locating (and being prepared to utilize)
alternative carbon sources such as glycerol, which is not
usually present at high concentration in environmental

niches colonized by Pseudomonas. After discussing the
intricate combination of biochemical and genetic mecha-
nisms of regulation in glycerol-grown Pseudomonas, we
now move onto another relevant aspect of this com-
pound, i.e. its value as a carbon substrate in biotechno-
logical processes.

Biotechnology of glycerol valorization by
Pseudomonas species

Microbial fermentations using glycerol as the main car-
bon source have been exploited for the production of a

Fig. 4. The genetic wiring of genes involved in glycerol utilization in Pseudomonas putida KT2440 sets a bimodal metabolic regime in the bac-
terial population.
A. A protracted lag phase is observed when cells are grown on glycerol (which is not detected on glucose). The time of metabolic response is
defined as the period needed to reach an optical density at 600 nm (OD600) = 0.3 (i.e. mid-exponential growth), and its frequency distribution is
shown here for 1,000 independent single-cell batch cultures run in microtitre plates with either glycerol or glucose as the carbon source. Note
the bimodal nature of the distribution of times of metabolic response in glycerol cultures. As indicated in the inset plots, the BacLightTM

RedoxSensorTM Green (RSG) reagent in combination with flow cytometry enables the identification of different bacterial populations by their level
of metabolic activity (Corona et al., 2018). The grey rectangle in each histogram plot identifies the region considered negative for the RSG fluo-
rescence signal. Data taken from Nikel et al. (2015b) and Nikel and de Lorenzo (2018a).
B. The lag phase observed in glycerol cultures can be traced to the regulatory architecture of the glp gene cluster, as the product of the first
reaction [sn-glycerol-3-P (G3P)] is needed to release the repression exerted by GlpR. As the expression of glpF and glpK is also repressed by
the regulator, the only way to form G3P is through the low-probability effector-independent stochastic lifting of the GlpR-mediated repression.
This particular transcriptional wiring thus translates into different levels of metabolic activity. DHAP, dihydroxyacetone-P.
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wide variety of value-added compounds, ranging from
simple molecules to structurally complex polymers
(Fig. 5A). In some practical cases, glycerol has been
used to promote Pseudomonas-based biotransformation
processes (Fig. 5B), in which the biocatalyst executes a
given biochemical reaction fuelled by the addition of a
carbon source besides the substrate being transformed.
While all the examples available in the literature describe
aerobic processes for glycerol valorization, the possibility
of engineering a micro- or anaerobic metabolism in
P. putida remains a fascinating – and challenging (Nikel
and de Lorenzo, 2013) – possibility that could open new
avenues for biotechnological production (Fig. 5B). In
the sections below and Table 1, we present some of the
most relevant examples on the use of glycerol as
the main substrate for the production of value-added
molecules by Pseudomonas species.

Polyhydroxyalkanoates – industrial biopolymers

There is little doubt that one of the biggest challenges that
modern society is facing is the use of non-renewable
materials for the production of fine and bulk chemicals at
the industrial scale (Becker and Wittmann, 2018; de Lor-
enzo et al., 2018; Dupont-Inglis and Borg, 2018). When
glycerol emerged as a promising feedstock for bacterial
fermentation in the last decade, the bioconversion of this
substrate into polyhydroxyalkanoates (PHAs), a family of
biopolymers with similar mechanical and physical proper-
ties to that of synthetic thermoplastics, became an imme-
diate goal. Many bacterial species synthesize PHAs as
carbon and energy storage compounds under growth con-
ditions characterized by an abundance of carbon sources
with respect to other nutrients, such as nitrogen or phos-
phorus (Anderson and Dawes, 1990; Gomez et al., 2012;
L�opez et al., 2015). The physicochemical properties of
these polymers (e.g. thermoplastic properties, and hence,
industrial applicability) largely depend on the size (i.e.
chain length) of the monomer (Meng and Chen, 2018).
The most common and widespread PHA is poly(3-hydro-
xybutyrate), but several bacteria are known to accumulate
PHAs with monomers of lengths between 3 and 20 carbon
atoms when fed with specific substrates (Leong et al.,
2014). Polymers composed by C3-C5 monomers are
called short-chain-length PHAs (scl-PHAs), whereas med-
ium-chain-length PHAs (mcl-PHAs) contain C6-C14
monomers. Long-chain-length PHAs have monomers
longer than C14. These polymers continue to attract
increasing industrial interest as renewable, biodegradable,
biocompatible, and extremely versatile thermoplastic and
elastomeric materials (Suriyamongkol et al., 2007; Koller
et al., 2017). The biochemistry and molecular biology of
PHA synthesis and degradation in several bacterial spe-
cies has been elucidated (Kessler and Witholt, 2001).
PHAs are deposited intracellularly as complex inclusion
bodies or granules (Grage et al., 2009). Polymer granules
include, among other proteins, PHA synthase, depolymer-
izing enzymes, regulatory proteins, and structural proteins
termed phasins (Mezzina and Pettinari, 2016).
Pseudomonas species are natural producers of mcl-

PHAs (Prieto et al., 2016; Poblete-Castro et al., 2017),
and these polyesters can be accumulated under nutri-
ent imbalance conditions using a broad array of car-
bon sources, e.g. fatty acids, sugars, waste materials
and glycerol (Poblete-Castro et al., 2014). When Pseu-
domonas is used as a cell factory for PHA production,
the monomer composition can be tuned depending on
the carbon source and the fermentation mode chosen
for biopolymer synthesis (Meng et al., 2014; Chen and
Jiang, 2017; Meng and Chen, 2018), since the class II
PhaC polymerase enzyme of Pseudomonas accepts a
broad range of substrates (Prieto et al., 2016). Once

Fig. 5. Glycerol as a substrate for biotechnology using Pseu-
domonas.
A. Several Pseudomonas species have been adapted as the biocat-
alyst for the bioproduction of a number of products derived from
glycerol, using either wild-type strains or engineered variants
thereof. Several products that could be obtained from this substrate
are listed, and those already synthesized from glycerol in Pseu-
domonas species are highlighted in green (see also Table 1 and its
description in the text for further details). Note the (relatively
untapped) potential of micro- and anaerobic metabolism for biopro-
duction of value-added compounds from glycerol – some of which
are likewise produced in aerobic bioprocesses.
B. Apart from its prominent role as a carbon source, glycerol can
also be used to fuel energy metabolism in resting cells to mediate
specific biotransformations. In this case, glycerol-grown, wild-type or
engineered Pseudomonas cells execute a biotransformation (e.g. a
stereoselective reduction) on an externally added substrate.
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glycerol is converted into acetyl-coenzyme A (CoA) in
several steps (Fig. 3), this intermediate is redirected to
the de novo synthesis of fatty acids, resulting in vari-
ous precursors for the PHA biosynthesis route (Beck-
ers et al., 2016). One of the key enzymes of this
process is PhaG (a transacylase), which converts (R)-
3-hydroxyacyl-acyl carrier protein (ACP) thioesters into
(R)-3-hydroxyacyl-CoA, the substrate of PHA poly-
merase – thus linking the de novo synthesis of fatty
acids with the PHA cycle (Rehm et al., 1998; Escapa
et al., 2012b). The biopolymer obtained thereby con-
sists of a mixture of various monomers, but it was
found to be particularly enriched in the 3-hydroxyde-
canoate (C10) fraction.
Pseudomonas strains can accumulate > 30% of its

cell dry weight as PHA when grown on glycerol
(Escapa et al., 2012a), yet PHA productivities and
yields are rather low as compared to those observed
when fatty acids are used as substrates (Fu et al.,
2014). Most studies of mcl-PHAs synthesis from glyc-
erol have focused on the use of raw glycerol (i.e. the
by-product of the biodiesel industry) as the carbon sub-
strate. Given its high capacity to cope with toxic com-
pounds, e.g. CH3OH, present in raw glycerol at
relatively high concentrations, Pseudomonas cells exhi-
bit essentially the same growth pattern as compared to
cultures containing pure glycerol. Fed-batch culture pro-
duction of mcl-PHA in P. putida GO16 on raw glycerol
resulted in a PHA titre of 6.8 g l�1 after 48 h of

cultivation (Kenny et al., 2012). Various P. putida
strains have been evaluated for their capacity of pro-
ducing mcl-PHA on raw glycerol, and P. putida KT2440
was found to be the best performer. Interestingly,
citrate was observed to accumulate as a by-product in
the culture broth during the fermentation period, reach-
ing a titre of > 20 g l�1 in bioreactor cultivations
(Poblete-Castro et al., 2014). By-product formation is
certainly an undesired feature for the efficient produc-
tion of biopolymers, but citrate seems to be regularly
present in glycerol fermentations due to the high amount
of carbon used during the process. In an attempt to
increase the amount of carbon available for PHA synthe-
sis, metabolic engineering strategies have been applied
in P. putida with the aim of reducing by-product formation,
e.g. by model-driven engineering of strain KT2440, which
yielded as much as twice mcl-PHA content as compared
to the parental strain (Sohn et al., 2010; Poblete-Castro
et al., 2012b). In a separate study, knocking out glpR was
shown to result in a ca. twofold increment in the mcl-PHA
content produced by strain KT2440 in shaken-flask culti-
vations with glycerol as the carbon source (Escapa et al.,
2012a). Moreover, deletion of phaZ, encoding a PHA
depolymerase, resulted in ca. 1.4-fold higher levels of
mcl-PHA content than the wild-type strain when using raw
glycerol as the only carbon substrate (Poblete-Castro
et al., 2014). Based on elementary mode analysis, sev-
eral genetic targets have recently been proposed attempt-
ing to enhance PHA accumulation in Pseudomonas

Table 1. Selected examples of bioprocesses for the production of value-added biochemicals using Pseudomonas strains and glycerol as the
main carbon substrate.

Strain Product
Titre
(g l�1)

Yield
(g g�1)

Productivity
(gproduct l

�1 h�1)
Fermentation
mode References

P. putida GO16 mcl-PHAa 6.3 0.16 0.13 Fed-batch Kenny et al. (2012)
P. putida KT2440 mcl-PHA 1.5 0.05 0.02 Batch Poblete-Castro et al. (2014)
P. putida KT2440 DphaZ mcl-PHA 2.0 0.07 0.03 Batch Poblete-Castro et al. (2014)
P. putida LS46 mcl-PHA 0.6 0.02 0.01 Batch Fu et al. (2014)
P. mosselii TO7 mcl-PHA 1.3 N.A. 0.03 Batch Liu et al. (2018)
P. aeruginosa Rhamnolipids 8.9 0.08 0.04 Batch Sodagari et al. (2018)
Engineered P. putida KT2440 Rhamnolipids 1.1 N.A. 0.05 Batch Tiso et al. (2017)
Engineered P. putida KT2440 2-Oxocarboxylatesb 8.2 N.A. 1.4 Batch Wang et al. (2015)
Engineered P. putida S12 p-Hydroxybenzoate 1.8 0.39 0.03 Fed-batch Verhoef et al. (2007)
Engineered P. taiwanensis Phenol 0.4 0.09 0.005 Batch Wynands et al. (2018)
Engineered P. chlororaphis cis,cis-muconate 3.4 0.19 0.03 Fed-batch Wang et al. (2018)
Engineered P. chlororaphis Phenazine-1-carboxamide 9.2 N.A. 0.19 Batch Peng et al. (2018)
Engineered P. chlororaphis Phenazine-1-carboxamide 4.1 0.23 0.12 Batch Yao et al. (2018)
Engineered P. denitrificans 3-Hydroxypropionate 5.0 0.67 0.12 Batch Zhou et al. (2013)
Engineered P. putida S12 Butanol 0.2 0.04 0.01 Batch Nielsen et al. (2009)
Engineered P. putida KT2440 N-Methylglutamate 17.9 0.11 0.13 Fed-batch Mindt et al. (2018)
P. fluorescens DmucA Alginate 7.9 N.A. 0.11 Batch Maleki et al. (2017)
P. putida PCL1445 Lipopeptide N.A. N.A. N.A. Batch Dubern and Bloemberg (2006)

Putisolvin
P. fluorescens BD5 Pseudofactin 1.2 N.A. 0.01 Batch Biniarz et al. (2018)

N.A., not available.
a. In this context, mcl-PHA indicates any type of medium-chain-length polyhydroxyalkanoate, although the exact composition of the polymers
differs in different studies according to culture conditions.
b. Biotransformation.
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putida in the presence of glycerol (Beckers et al., 2016).
A novel programmable genetic circuit for cell autolysis
was developed and tested in glycerol-grown in P. putida
KT2440 cells when accumulating mcl-PHAs at high
levels (Borrero de Acu~na et al., 2017). This efficient cell
lytic system was based on the heterologous expression
of a peptidoglycan-disrupting enzyme lysozyme, which
was further translocated to the periplasm using a signal
peptide of P. stutzeri. Upon induction under nitrogen-lim-
iting conditions, > 95% of the cell population showed
membrane disruption and ca. 75% of the PHA could be
recovered at the end of the fermentation period. The
application of synthetic biology and systems metabolic
engineering approaches in Pseudomonas strains, cou-
pled to in-depth analysis of the phenotypic outcome of
these manipulations, is expected to further boost
biopolymer production from glycerol towards economic
feasibility.

Rhamnolipids and other biosurfactants

Some Pseudomonas strains can thrive on water-immisci-
ble substrates, such as alkanes and lipids, by secreting
specific amphiphilic compounds called biosurfactants,
which reduce the tension and interfacial surface between
the immiscible substance and water (di Martino et al.,
2014; Patel et al., 2019). The best-studied biosurfactants
are rhamnolipids, i.e. a glycolipid in which one or two
molecules of rhamnose are linked to one or two b-hydro-
xydecanoate moieties (Desai and Banat, 1997; Wittgens
and Rosenau, 2018). Pseudomonas aeruginosa and
P. fluorescens have both been reported to produce
rhamnolipids at high titres (up to 100 g l�1) using various
carbon substrates (Schmidberger et al., 2013). Glycerol
has been proposed as an efficient feedstock for rhamno-
lipid production in P. aeruginosa (Sodagari et al., 2018;
Zhao et al., 2018). Despite these advances, there is still
a major drawback in employing P. aeruginosa as a rham-
nolipid-producing platform because of its human-patho-
gen nature. To circumvent this problem, a metabolically
engineered P. putida strain, carrying the rhamnolipid
biosynthesis pathway from P. aeruginosa, has been
developed and achieved a rhamnolipid yield of
0.15 g g�1 on glucose (Wittgens et al., 2011). The same
study also indicated that the maximum theoretical rham-
nolipid yield that could be achieved when cells are grown
on glycerol is similar to the one attained using glucose,
which highlights the use of this carbon source for biosur-
factant production.
Bacteria of the genus Pseudomonas also produce

several lipopeptide biosurfactants that display antimicro-
bial and emulsifying properties. This structurally complex
group of lipopeptides is composed of viscosin, amphisin,
surfactin, putisolvin and massetolide A, to name but a

few of them, and they vary in the number of amino acid
residues present in the chemical structure (de Bruijn and
Raaijmakers, 2009). Pseudomonas fluorescens and
P. putida strains have been described as producers of
lipopeptides, and their biosynthesis is governed by multi-
modular, non-ribosomal peptide synthetases, enzymes
that catalyse synthesis of important peptide products
from a variety of standard and non-proteinogenic amino
acid substrates (de Bruijn et al., 2008). P. putida
PCL1445, for instance, has been shown to synthesize
high levels of putisolvin on various carbon sources at
low temperature (11°C), and glycerol promoted the high-
est titres among all substrates tested (Dubern and
Bloemberg, 2006).

Production of aromatic compounds

Like many other value-added products, aromatic com-
pounds are mainly produced from fossil and other non-
renewable resources using processes that involve toxic
precursors (e.g. benzene or toluene), high temperatures
and complex reaction sequences (Gosset, 2009; Lee
and Wendisch, 2017). Pseudomonas species have been
proposed as biocatalysts for the production of aromatic
compounds (Kuepper et al., 2015; Molina-Santiago
et al., 2016), partially in view of the fact that members of
this bacterial genus are known to be outstanding degra-
ders of the same chemical species (Dvo�r�ak et al., 2017).
Several examples from the literature indicate that
P. putida has been engineered for the production of aro-
matic compounds that are often extremely toxic to be
handled by other microbial hosts, e.g. cinnamate, p-cou-
marate, p-hydroxybenzoate and phenol (Calero et al.,
2018). One of the pioneering works in engineering
P. putida for the biosynthesis of aromatic chemicals was
the construction of heterologous pathways leading to L-
tyrosine and p-hydroxybenzoate using the solvent-toler-
ant P. putida S12 as the biocatalyst (Verhoef et al.,
2007). When cells were grown on glycerol, p-hydroxy-
benzoate titres of 0.24 and 1.78 g l�1 were attained in
batch and fed-batch processes, respectively. More
recently, P. taiwanensis VLB120 was engineered by
knocking in and out genes of the L-tyrosine pathway and
other routes of aromatic degradation (Jim�enez et al.,
2002), and a phenol-producing strain was obtained via
the heterologous expression of an efficient tyrosine phe-
nol-lyase in a plasmid-free strain that bears 22 genetic
modifications in total (Wynands et al., 2018). Inactivation
of pykA (encoding pyruvate kinase) in the engineered
P. taiwanensis strain further increased the yield of
phenol on glycerol up to an unprecedented 18.5% C-
mol C-mol�1. The potential of Pseudomonas species as
platforms for aromatic compound production from glyc-
erol is expected to be further explored in the future, as
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the wealth of catabolic pathways for these chemical
structures in the Pseudomonas genus offers unique
opportunities for engineering novel biosynthesis routes.

Biosynthesis of other value-added chemicals

The production of cis,cis-muconic acid [(2E,4E)-2,4-hex-
anedioic acid] has been the subject of intense research,
as this dicarboxylic acid is a relevant platform chemical
and precursor to terephthalic acid, 3- and 2-hexenedioic
acid, 1,6-hexanediol, e-caprolactam and e-caprolactone –

all of which are building blocks of commercial plastics,
resins and polymers (e.g. Nylon-6,6 via adipic acid). The
synthesis of cis,cis-muconic acid from glycerol has been
explored using P. chlororaphis, a plant growth promoting
species, as the platform strain (Wang et al., 2018).
The engineering strategy consisted of blocking cis,cis-
muconic acid conversion into end products that could be
further metabolized, and augmenting the supply of meta-
bolic precursors by overexpressing catA, the gene
encoding the rate-limiting step of the pathway (catechol
1,2-dioxygenase). The resulting plasmid-free P. chloro-
raphis strain was able to synthesize cis,cis-muconic acid
to a maximal titre of 3.4 g l�1 in a fed-batch process,
accompanied with a product yield on glycerol of
0.19 g g�1. Although this performance is far below the
cis,cis-muconic acid titre of 65 g l�1 achieved in
metabolically engineered P. putida from aromatics and a
co-feed of glucose (Kohlstedt et al., 2018), synthesis
from glycerol remains an interesting possibility for the
future if further improvements in product yield and titre
are achieved.
Metabolic engineering strategies have also been

applied in P. putida for the glycerol-dependent produc-
tion of biofuels. For instance, an engineered variant of
the solvent-tolerant P. putida S12 strain capable of pro-
ducing butanol from glycerol was developed by Nielsen
et al. (2009). This strain synthesized 220 mg l�1 of buta-
nol in batch cultures. Although still far from the high titre
reached by natural butanol-producing strains, e.g. from
the genus Clostridium, the potential of these engineered
Pseudomonas strains is very high due to their production
performance in bioreactors and high tolerance to the tox-
icity exerted by biofuels to the cells (R€uhl et al., 2009;
Vallon et al., 2015; Cuenca et al., 2016).
Another industrially relevant chemical recently

obtained from engineered P. fluorescens is alginate,
which is widely used in both the food and pharmaceuti-
cal industry. This agent is added to food products as an
emulsifier, stabilizer and texture-improver (Bonnichsen
et al., 2015). In the pharmaceutical manufacturing sec-
tor, alginate is compounded into tablets to speed up their
disintegration with the aim to release the medically
active components in a more controllable fashion as well

as to help protecting the stomach mucosa. The non-
pathogenic P. fluorescens SBW25 DmucA has been
reported to produce alginate from a wide variety of car-
bon sources such as glucose, fructose and glycerol. Dis-
ruption of this anti-r factor regulator (encoded by
PFLU_1468) enables the transcription of algU, essential
for alginate biosynthesis. This co-polymer of (1?4)-
linked b-D-mannuronate and its C5-epimer a-L-guluronate
has been obtained at high titres in both batch and che-
mostat cultures of P. fluorescens SBW25 DmucA, reach-
ing up to 8 g l�1 of polysaccharide (Maleki et al., 2017).
3-Hydroxypropionate is another important platform

chemical that has received increasing attention in the last
few years, given its use for the production of acrylic acid
and acrylamides. Production of this compound from glyc-
erol was obtained by overexpressing a glycerol dehy-
dratase of K. pneumoniae into P. denitrificans, a natural
producer of vitamin B12 (Lago and Demain, 1969) – which
is needed for the biosynthesis of 3-hydroxypropionate
from glycerol (Zhou et al., 2013). Yet, there is still a major
drawback in using P. denitrificans as a host for engineer-
ing biosynthetic pathways for 3-hydroxypropionate since
this species can consume the product (a common meta-
bolic signature of many Pseudomonas species). Inactiva-
tion of the uptake system for 3-hydroxypropionate in
P. denitrificans appears to be a straightforward strategy
to advancing the production of this valuable chemical in
Pseudomonas – an approach that has been also adopted
for the production of butanol in P. putida (Cuenca et al.,
2016).

Conclusions and outlook

Over the last few years, glycerol has become an appeal-
ing choice for bioproduction, especially in processes
designed for the synthesis of reduced chemicals. Pseu-
domonas species display a unique combination of
genetic and metabolic architectures when growing on
glycerol as the main carbon substrate, in particular,
P. putida and P. aeruginosa, where the issue has been
examined to some extent. As indicated in the first part of
this article, multi-omic strategies have strongly helped to
elucidate the regulatory networks that rule glycerol uti-
lization in P. putida KT2440 (including stochastic activa-
tion of genes encoding key enzymes needed for glycerol
processing). In silico-guided metabolic engineering
strategies have also been implemented to increase the
production of PHAs from this substrate. Admittedly, the
full potential of glycerol as a biotechnological substrate
for Pseudomonas has not been fully realized yet, but
promising avenues can be envisioned in the near future
– including novel strategies merging synthetic biology
designs and laboratory evolution of engineered strains
(Nørholm, 2019). First, once regulatory constraints for
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expression are overcome (e.g. by eliminating the GlpR
repressor, as discussed above), core metabolic reac-
tions linked to glycerol can be manipulated to foster syn-
thesis of value-added C3 compounds. For example, the
connection of glycerol to biomass formation could be
severed, and enzymatic sub-networks could be set up
for generating molecules of biotechnological interest,
e.g. DHAP and derivatives thereof in resting cells [or, in
any case, uncoupled from growth (Durante-Rodr�ıguez
et al., 2018; Volke et al., 2019)]. Along the same lines,
glycerol metabolism could be refactored to reduce car-
bon loss as CO2, while either concomitantly or sepa-
rately, adjusting the redox balance to provide a better
intracellular environment for hosting transformations of
interest on other substrates. Furthermore, several meta-
bolic routes could be rewired for fuelling the EDEMP
cycle bottom-up by means of a synthetic C3 neogenesis,
empowering NADPH overproduction from glycerol pro-
cessing, particularly useful for biosynthesis of reduced
bioproducts. To this end, genetic editing of the Pseu-
domonas metabolism will benefit from systems biology
approaches for simulating and predicting the effects of
given mutations on specific carbon fluxes and pathways
(Cho and Palsson, 2009; Gray et al., 2015; Galardini
et al., 2017).
A second, considerable challenge is the further adap-

tation to meet the composition of industrial-grade crude
glycerol from biodiesel production. Typically, the glycerol
stream has a polyol content in the range of 30-65% (wt/
vol), with the rest of the stream being CH3OH, fatty acid
methyl esters, free fatty acids and glycerides together
with ashes (Hu et al., 2012). The waste also has a high
pH due to the residual KOH or NaOH carried on from
upstream transesterification of oils and fats that generate
biodiesel. Industrial-grade glycerol, often available as a
non-homogeneous oily mixture, is obviously quite differ-
ent to what one can have in the controlled and pure-sub-
strate conditions of a shaken-flask cultivation in the
laboratory. While pre-treatment (i.e. purification) may
help improving the physical characteristics of this carbon
source, bacteria have to ultimately face a mixture of
compounds – some of them toxic and others not easily
metabolizable. This offers again an opportunity to geneti-
cally knock in heterologous traits for the whole-cell cata-
lyst to endure the stressful conditions imposed by the
use of crude glycerol. The issue here includes both
endurance to the toxic effect of the non-glycerol com-
pounds of the mixture and the introduction of additional
pathways for degrading or even growing on the addi-
tional carbon sources present in the medium. Some par-
tial successes using industrial glycerol waste in
bioproduction have been reported (see Table 1), yet the
room for improvement in this field is still considerable.

Glycerol-based bioprocesses have to be run in biore-
actors, with a very large liquid-to-biomass ratio and ster-
ile culture media that, after the operation takes place,
need to be processed for purification of the molecules of
interest. This scenario makes the production of such
compounds costly and only appealing when the price
tag of the thereby-generated chemical is sufficiently high.
The third avenue for improving glycerol valorization is
therefore (re)designing the industrial engineering part of
the bioprocesses better, and easing the downstream
operations for reducing fermentation costs. This chal-
lenge not only applied to fermentations using this partic-
ular substrate, but to Microbial Biotechnology as a whole
(de Lorenzo and Couto, 2019). Yet, even marginal
improvement in bioprocess performance can make a
considerable difference in the choice of substrates for
feeding industrial-scale production. In each of these
fronts, synthetic biology and metabolic engineering are
bound to contribute to the overarching goals of sustain-
able production from renewable resources, zero waste,
and circular management of feedstocks and products, in
the frame of the so-called 4th Industrial Revolution (Sch-
wab, 2017).
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