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Abstract: The aim of this note is to unveil a striking equivalence between the one-loop

divergences in 7D Einstein and 6D Conformal Gravities.

The particular combination of 6D pointwise Weyl invariants of the 6D Conformal Grav-

ity corresponds to that of Branson’s Q-curvature and can be written solely in terms of the

Ricci tensor and its covariant derivatives. The quadratic metric fluctuations of this action,

6D Weyl graviton, are endowed with a sixth-order kinetic operator that happens to fac-

torize on a 6D Einstein background into product of three shifted Lichnerowicz Laplacians.

We exploit this feature to use standard heat kernel techniques and work out in one go the

UV logarithmic divergences of the theory that contains in this case the four Weyl anomaly

coefficients.

In a seemingly unrelated computation, we determine the one-loop IR logarithmic di-

vergences of 7D Einstein Gravity in a particular 7D Poincaré-Einstein background that is

asymptotically hyperbolic and has the above 6D Einstein manifold at its conformal infinity

or boundary.

We show the full equivalence of both computations, as an outgrowth of the IR/UV

connection in AdS/CFT correspondence, and in this way the time-honoured one-loop cal-

culations in Einstein and higher-derivative gravities take an interesting new turn.
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1 Introduction

Higher-curvature gravities naturally turned up in response to the nonrenormalizable UV

divergences of Einstein gravity [1–3]. In four dimensions, attention was paid to quadratic

gravities once their perturbative renormalizability was established [4]. Nowadays, quadratic

and higher-curvature gravities can be embedded into a fundamental theory like string- or M-

theory and the notorious lack of unitarity can be attributed to an artifact of the truncation

of the otherwise ghost-free UV completion (see e.g. [5]).

Prompted as well by developments in string theory, the study of higher-derivative

gravities in dimensions larger that four also gained a renewed interest. Take, for example,

six dimensions where things are somewhat different. There is only one Gauss-Bonnet

term that cannot absorb the dependence on the Riemann or Weyl tensor of the one-loop

divergences, so that pure Einstein gravity turns out to be nonrenormalizable already at

one-loop [6, 7]. The analogous role of 4D quadratic gravities is played now by six-derivative

gravities containing cubic powers of Ricci and Riemann tensors. In particular, 6D Weyl

or Conformal Gravities built up out of the three 6D pointwise Weyl invariants are indeed

one-loop renormalizable by power-counting arguments.

The focus of our present work is a particular 6D Conformal Gravity, the study of the

precise structure of its one-loop UV-log divergences -initiated in [8] and complemented

in [9]- and, eventually, the way they fit into the AdS/CFT correspondence. There are at

least two features, as explained in [9], that single out this 6D Conformal Gravity: (i) it van-

ishes on a Ricci flat background, and (ii) it admits a (2,0) supersymmetric extension. The

first one is best known to conformal geometers for this is a crucial property of Branson’s
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Q-curvature, the quantity that arises within AdS/CFT as the volume anomaly of (asymp-

totically AdS) Poincaré-Einstein metrics [10]. The second property is related to the fact

that the very same combination of pointwise Weyl invariants appears in the accumulated

b6 heat coefficient for the free (2,0) tensor multiplet [11].

The precise combination of pointwise Weyl invariants that makes up the 6D Conformal

Gravity under consideration is the following

SCG =

∫
d6x
√
g

[
Ric∇2Ric− 3

10
R∇2R+ 2RiemRic2 −RRic2 +

3

25
R3

]
(1.1)

The one-loop partition function for the corresponding 6D Weyl graviton can be obtained

by integrating out the quadratic metric fluctuations after fixing the Feynman-de Donder

gauge and taking into account the ghost contribution. The major technical difficulty in

doing so is posed by the six-order kinetic operator acting on the transverse-traceless met-

ric fluctuations. However, restricting to an Einstein background, the computations are

greatly simplified, and we end up with the following quotient of functional determinants of

(minimal) second-order differential operators, simple-shifted Lichnerowicz Laplacians,

Z
1−loop

Weyl =

 det
{

∆
(1,⊥)
L − 1

3R
}
· det

{
∆

(0)
L −

1
5R
}

det
{

∆
(2,⊥>)
L − 1

3R
}
· det

{
∆

(2,⊥>)
L − 1

5R
}
· det

{
∆

(2,⊥>)
L − 2

15R
}
1/2

(1.2)

This factorized form first appeared in the physics literature in [8], but it was incorrectly

claimed to hold up only on symmetric Einstein manifolds. An extension of the factorization

to Ricci flat manifolds was exploited later on by [9]. In greater generality, the factorization

of the second metric variation of the (critical) Q-curvature on a generic Einstein manifold

was established by [12] using the Fefferman-Graham ambient metric construction. For the

sake of completeness, we give a detailed proof of the factorization for the current 6D case

in appendix A.

The structure of the UV-log divergences of any 6D Weyl invariant action is dictated

by the trace (or Weyl or conformal) anomaly (see e.g. [11]):

A = −aE6 + c1 I1 + c2 I2 + c3 I3 (1.3)

The restriction to symmetric Einstein spaces, such as S6, S2 × S4, S3 × S3, S2 × S2 × S2

where the Weyl tensor is covariantly constant, grants access to the coefficient of the Pfaffian

E6 but forces a linear relation between the pointwise Weyl invariants 5I3 = 32I1− 8I2. As

a consequence, there is not enough information to disentangle the four anomaly coefficients

from only three independent terms

A = −aE6 + (c1 + 4c2) I1 +

(
c3 −

5

8
c2

)
I3 (1.4)

This restricted approach to the determination of the UV-log divergences of the one-loop

effective action for the 6D Weyl graviton was carried out in [8] by explicit computation of

the eigenvalues and degeneracies of the second-order differential operators that enter the
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functional determinants. The partial information obtained by this procedure was then the

following

a =
601

2016
, c1 + 4c2 =

5633

105
, c3 −

5

8
c2 = −35543

5040
. (1.5)

More recently, the authors of [9] considered restriction to a Ricci-flat, but not confor-

mally flat, background. Ricci flatness forces two linear relations between the four terms of

the anomaly basis, namely, E6 = 64I1 + 32I2 and I3 = 4I1 − I2, so that there are only two

independent terms in the anomaly, say

A = −
[
a− 1

192
(c1 + 4c2)

]
E6 +

[
c3 +

1

6
(c1 − 2c2)

]
I3 (1.6)

The coefficients of these two independent combinations were obtained by explicit evalua-

tion of the accumulated b6 heat kernel coefficients of all the second-order kinetic operators

involved. When combined with the previous partial results from symmetric Einstein man-

ifolds, the first term brings in no new information but the second one allows the complete

determination of c3 and, in consequence, of c1 and c2. As a result, both computations

nicely complement each other to produce the full set of central charges

a =
601

2016
, c1 =

1507

45
, c2 =

635

126
, c3 = −1639

420
. (1.7)

Let us now turn to the central question of interest in this paper, namely, deciphering

a hologram: somewhat unexpectedly, this 6D Conformal Gravity computation has a 7D

bulk counterpart within AdS/CFT correspondence. There is a kinematic relation between

the one-loop partition functions of the bulk Einstein graviton and the boundary Weyl

graviton [14]

Z
1−loop,−
Einstein

Z
1−loop,+

Einstein

= Z
1−loop

Weyl (1.8)

The bulk side contemplates the ratio of the functional determinants of the kinetic

operator of the bulk field computed with standard and alternate boundary conditions,

whereas the boundary side involves the functional determinant of the kinetic operator of

the induced field. This kind of holographic formula was obtained via a rather circuitous

route within AdS/CFT correspondence, in connection with a class of RG flows triggered

by double-trace deformations of the CFT [15–17]. Full match for a massive scalar in

Euclidean AdS bulk was first shown in [18], and by now there are plenty of extensions: an

incomplete list includes fields with nonzero spin (Dirac, MHS, etc.) and quotients of AdS

space (thermal AdS, BTZ, singular AdS, etc.) [19]–[36].

Let us stress that although the 1-loop holographic relation between fluctuation deter-

minants is valid for generic spacetime dimensions, there is an essential difference at tree

level. The boundary Weyl graviton action, induced by the bulk Einstein graviton, around

flat space takes the following form in terms of the flat-space Laplacian ∂2 = � and the

linearized Weyl tensor w

SWeyl =

∫
ddxw�

d
2
−2w . (1.9)
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This clearly corresponds to the linearization of the full non-linear Lagrangian given by the

Weyl tensor squared W 2 in 4D and of the I3 ∼W�W Weyl invariant in 6D. By contrast, in

odd dimensions the induced action corresponds to a non-local kernel given by a half-integer

power of the Laplacian. In particular, the induced Weyl or conformal invariant action in

3D is not of local Chern-Simons type but has a parity-even non-local action and no effective

degrees of freedom (see, e.g., [37]). There are no log-divergences or Weyl anomaly on closed

manifolds in this case, but still the holographic formula can be studied on thermal quotients

of AdS and in connection with holographic entanglement entropy. In the present work, we

restrict to even dimensions and focus on the matching of log-divergences.

The precise correspondence between one-loop partition functions for the 5D Einstein

graviton and 4D Weyl graviton has already been established: although the one-loop diver-

gences of 4D Weyl gravity have long been known [38, 39], the bulk counterpart has recently

been given a successful treatment [35]. In turn, the 7D holographic counterpart, to date,

only accounts for the type-A anomaly coefficient by explicit evaluation of the corresponding

functional determinants on hyperbolic space [14].

Our present contribution is twofold. First, we obtain, in one go, all anomaly coefficients

by extending the boundary computation to a generic Einstein background, exploiting the

factorization into shifted Lichnerowicz operators [12] and making use of the correspond-

ing explicit form of b6 heat coefficient for the symmetric transverse-traceless two-tensor

field [13]. Second, we extend the bulk computation to an asymptotically AdS Poincaré-

Einstein metric, with the above Einstein manifolds on its conformal boundary, in order

to compute the log-IR divergence of the 7D Einstein graviton. We do verify the complete

agreement with the previous boundary computation of the log-UV divergence of the 6D

Weyl graviton, in accordance with expectations from the AdS/CFT dictionary at one loop

and as an outgrowth of the IR-UV connection [42].

2 6D conformal gravity: UV divergence

As already stated, the one-loop partition function of the 6D Conformal Gravity of interest

is given by the following quotient of functional determinants of fluctuation operators when

restricted to an Einstein background

Z
1−loop

Weyl =

 det
{

∆
(1,⊥)
L − 1

3R
}
· det

{
∆

(0)
L −

1
5R
}

det
{

∆
(2,⊥>)
L − 1

3R
}
· det

{
∆

(2,⊥>)
L − 1

5R
}
· det

{
∆

(2,⊥>)
L − 2

15R
}
1/2

(2.1)

In six dimensions, the UV logarithmic divergence is given by the “accumulated” b6
heat coefficient. The scalar and vector inputs have been known for quite a while, whereas

the coefficient for the rank 2 symmetric traceless unconstrained tensor has only recently

been reported [13]. We write down the latter in the full A-basis of curvature invariants1

1We refer to [11] for notational conventions.
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for future reference

7! · b6{∆(2,>)
L } = − 312A1 − 584A2 − 4552A3 + 368A4 + 544A5 − 1064A6 (2.2)

+ 9920A7 − 416A8 + 1416A9 −
560

9
A10 +

7952

3
A11 +

2968

3
A12

− 117056

9
A13 −

16528

3
A14 −

29216

3
A15 −

1388

9
A16 +

49984

9
A17

We can now apply our shortcut route by restricting to an Einstein metric without spoil-

ing the independence of the four Weyl-invariant terms in the 6D Weyl anomaly basis.2 It

is enough then to keep track on the numerical coefficients in front of {A5, A9, A10, A11, A12,

A13, A14, A15, A16, A17}.3 In addition, due to the constant shifts in the Lichnerowicz Lapla-

cians, we need convolution with exponentials of the constant Ricci scalar. Finally, we need

to subtract longitudinal and trace components of the tensor and vector operators, which

turns out to be an easy task when written in terms of Lichnerowicz Laplacians (see e.g. [43],

eqs. (5.117) and (5.123)).

In all, we obtain the following4

7! · b6{∆(0)
L −R/5} = 9A5 + 12A9 +

9107

225
A10 −

14

3
A11 +

154

15
A12 (2.3)

− 208

9
A13 +

64

3
A14 −

16

3
A15 +

44

9
A16 +

80

9
A17

7! · b6{∆(1,⊥)
L −R/3} = − 67A5 − 108A9 +

245

9
A10 +

1274

3
A11 − 168A12 (2.4)

− 7592

9
A13 −

16

3
A14 +

1348

3
A15 −

536

9
A16 −

1112

9
A17

7! · b6{∆(2,⊥>)
L −R/3} = 602A5 + 1512A9 −

1456

9
A10 +

6692

3
A11 + 2730A12 (2.5)

− 109256

9
A13 −

16576

3
A14 −

30548

3
A15

− 896

9
A16 +

51016

9
A17

7! · b6{∆(2,⊥>)
L −R/5} = 602A5 + 1512A9 +

9688

225
A10 +

6692

3
A11 +

30926

15
A12 (2.6)

− 109256

9
A13 −

16576

3
A14 −

30548

3
A15

− 896

9
A16 +

51016

9
A17

7! · b6{∆(2,⊥>)
L − 2R/15} = 602A5 + 1512A9 +

20972

225
A10 +

6692

3
A11 +

8638

5
A12 (2.7)

− 109256

9
A13 −

16576

3
A14 −

30548

3
A15

− 896

9
A16 +

51016

9
A17

2This shortcut route to the Weyl anomaly has already been noticed in [40] and successfully put into use

by [35, 36, 41].
3A9 is equivalent to −A5, up to a trivial total derivative.
4We notice a misprint in the coefficient of A13 for the scalar in [13], but fortunately it does not alter the

subsequent results therein.
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Curvature invariant Q6 = R3/225 I1 I2 I3

A10 R 3 225 − − −
A11 RRic 2 75/2 − − −
A12 RRiem 2 15 20 −5 −5

A13 Ric 3 25/4 − − −
A14 RiemRic 2 25/4 − − −
A15 RicRiem 2 5/2 10/3 −5/6 −5/6

A16 Riem 3 1 4 0 −1

A17 −Riem′ 3 1 −2 1/4 1/4

A5 |∇Riem|2 − −32/3 8/3 5/3

Table 1. Ricci and Weyl content of 6D curvature invariants.

The “accumulated” heat coefficient in the reduced A-basis then reads

1864A5 + 4632A9 −
20972

225
A10 + 6272A11 +

100156

15
A12 (2.8)

− 35552A13 − 16576A14 − 244A16 + 17120A17

To read off the 6D Weyl anomaly A, that is, the coefficient of the UV-log divergence, it

is convenient to go to the basis where one trades the Euler density by the Q-curvature, which

reduces to a multiple of the Ricci scalar cubed in the present case of an Einstein metric

A = −aE6 + c1 I1 + c2 I2 + c3 I3 (2.9)

= −48 aQ6 + (c1 − 96a)I1 + (c2 − 24a)I2 + (c3 + 8a)I3 (2.10)

= −16 aR3/75 + (c1 − 96a)I1 + (c2 − 24a)I2 + (c3 + 8a)I3 (2.11)

The dictionary in table 1 allows us to collect all independent contributions

7! · A = −72120Q6 + 24544 I1 − 10660 I2 − 7648 I3 (2.12)

We finally find out the central charges in full agreement with [8, 9]

a =
601

2016
, c1 =

1507

45
, c2 =

635

126
, c3 = −1639

420
. (2.13)

3 7D Einstein gravity: IR divergence

As anticipated by the AdS/CFT dictionary [14], we now consider the one-loop partition

function of the 7D Einstein graviton, that is, the functional determinant of the quadratic

metric fluctuations of the Einstein-Hilbert action

SEH = − 1

2κ2

∫
d7x
√
ĝPE

[
R̂− 2Λ̂

]
(3.1)
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This is a much more familiar computation that proceeds along standard lines, see e.g. [43]

and references therein, with the only unusual feature possibly being the dimensionality of

spacetime we are considering, namely, seven. The Feynman-de Donder gauge choice cancels

out nonminimal terms in the Hessian and in the gauge-fixing term, which leads to significant

simplification of the kinetic operators involved in the one-loop computation. The restriction

to an Einstein bulk background further reduces the calculation to the following quotient

of functional determinants of second-order operators, shifted Lichnerowicz Laplacians,

Z
1−loop

Einstein =

 det
{

∆̂
(1,⊥)
L − 2

7R̂
}

det
{

∆̂
(2,⊥>)
L − 2

7R̂
}
1/2

(3.2)

We need to study the IR-log divergence of this partition function stemming from the

infinite volume of the bulk background. Heat kernel techniques will prove a convenient

computational tool to account for the standard (Dirichlet) boundary conditions in Z
1−loop,+

Einstein ,

whereas the alternate (Neumann) boundary conditions in Z
1−loop,−
Einstein are reached by analytic

continuation in the spectral parameter, that is, in the scaling dimension of the induced

boundary fields.5

3.1 Conformally flat case: hyperbolic space

The heat kernels for the transverse vector and for the transverse-traceless symmetric rank-

two tensor in hyperbolic space has long been known [44–46]. A remarkable feature, referred

to as WKB exactness, is that after factorization of the exponential of a multiple of the Ricci

scalar,6 the trace only has finite many terms so that the combined contribution of tensor

and vector is given by the following proper-time integral (in the standard route to the

‘log-dets’)∫ ∞
0

dt

t

{
tr e−(∆̂

(2,⊥>)
L +12) t − tr e−(∆̂

(1,⊥)
L +12) t

}
(3.3)

∼
∫ ∞

0

dt

t9/2

{
e−9t

[
20 + 136 t+

256

3
t2
]
− e−16t

[
6 + 24 t+

72

5
t2
]}

After evaluation of the proper-time integral in terms of gamma functions, we obtain the

numerical factor corresponding to the one-loop effective Lagrangian on hyperbolic space

that accompanies the volume, following the prescription of [47]. The volume anomaly

is given by the Q-curvature so that we can directly read off the type-A Weyl anomaly

coefficient, it coincides with the result obtained from the boundary computation on the

round six-sphere

a =
3005

2× 7!
=

601

2016
(3.4)

This holographic result in the conformally flat situation was first derived in [14] and, in

fact, established for the whole family of bulk gauge fields of higher spins dual to boundary

conformal higher spins.

5For the type-A anomaly coefficient a, this has previously been exploited in [14]. We will confirm the

validity of the analytic continuation for both type-A and type-B anomaly coefficients.
6We set the radius of the hyperbolic space to 1, so that the bulk Ricci scalar is simply R̂ = −42.
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Curvature invariant Ŵ ′ 3 Ŵ 3 Φ̂7

Â12 R̂R̂iem 2 −42 21/2 −21/2

Â15 R̂ic R̂iem 2 −6 3/2 −3/2

Â16 R̂iem 3 −6 5/2 −3/2

Â17 −R̂iem′ 3 1/2 −3/8 3/8

Â5 |∇̂R̂iem|2 8 −2 3

Table 2. Weyl content of 7D curvature invariants.

3.2 Non-conformally flat case: Poincaré-Einstein metric

Now we need to deviate from conformal flatness by considering a more general Poincaré-

Einstein metric, and we choose the particular one that has an Einstein metric on the

conformal class of boundary metrics [48, 49]. This bulk metric has a finite Fefferman-

Graham expansion and is given by7

ĝPE/E =
dx2 + (1− λx2)2gE

x2
(3.5)

As the information on the conformally flat case has already been extracted, we only

need to focus on the Weyl-tensor content of the heat coefficients when evaluated on this

particular bulk background metric.

Table 2 contains the only contributions from the general A-basis of curvature invariants.

We choose the 7D Fefferman-Graham invariant Φ̂7 because it “descends” directly to the

corresponding 6D Φ6 when reading off the holographic Weyl anomaly (or, equivalently, the

logarithmic IR divergence) according to the simple prescription of [40]. Evaluated on an

Einstein metric, the Fefferman-Graham invariant [49] can be readily written in terms of

the Weyl and the Schouten tensors Φ = |∇W |2 + 16PW 2, in the 6D Einstein boundary

we then have Φ6 = |∇W |2 + 4
15RW

2 and in the 7D Poincaré-Einstein bulk (with unit

AdS radius), Φ̂7 = |∇̂Ŵ |2− 8Ŵ 2. Furthermore, in our particular Poincaré-Einstein metric

(eq. (3.5)), Φ̂7 becomes proportional to the boundary Φ6 in exactly the same manner that

the cubic bulk contractions Ŵ
′3 and Ŵ 3 are related to their boundary counterparts. This

is essentially the key observation of [40]: being all on equal footing, their contributions

to the 6D holographic Weyl anomaly are obtained by simply replacing the bulk invariants

with the corresponding boundary ones.

The Weyl tensor comes into play starting with the ˆ̄b4 heat coefficient. Upon convolution

with the constant shift proportional to the Ricci scalar, it will also contribute to the ˆ̄b6
coefficient. On top of that, we will need as well to factor out the exponentials in the Ricci

scalar as demanded by the WKB exactness of the heat kernel.

7Here λ = R/4d(d− 1) is a multiple of the (necessarily constant) Ricci scalar R of the (d-dimensional)

boundary Einstein metric.
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For the transverse vector, the relevant heat coefficients can be worked out in 7D starting

with the generic expressions reported in [11] for the unconstrained vector8 and subtracting

the scalar longitudinal component. In terms of unconstrained vector and scalar heat kernels

we have

tr e−(∆̂
(1,⊥)
L + 12) t = e−16t

{
e4t tr e−∆̂

(1)
L t − e4t tr e−∆̂

(0)
L t
}

(3.6)

The Weyl content is contained, after convolution with the exponentials, in the following

combination of heat coefficients for the Lichnerowicz Laplacians

tr e−(∆̂
(1,⊥)
L +12) t ∼ e−16t

{
b̂4{∆̂(1)

L } · t
2 +

[
4 b̂4{∆̂(1)

L }+ b̂6{∆̂(1)
L }
]
· t3 (3.7)

−b̂4{∆̂(0)
L } · t

2 −
[
4 b̂4{∆̂(0)

L }+ b̂6{∆̂(0)
L }
]
· t3
}

Below we collect the relevant terms of the corresponding heat coefficients

b̂4{∆̂(0)
L } ∼

1

180
Ŵ 2 (3.8)

b̂4{∆̂(1)
L } ∼ −

2

45
Ŵ 2 (3.9)

7! · b̂6{∆̂(0)
L } ∼ −3Â5 +

14

3
Â12 −

16

3
Â15 +

44

9
Â16 +

80

9
Â17 (3.10)

7! · b̂6{∆̂(1)
L } ∼ 35Â5 −

196

3
Â12 +

1316

3
Â15 −

448

9
Â16 −

952

9
Â17 (3.11)

It is convenient to keep the Ŵ 2 accompanying t2 and to translate the contribution to

the t3 coefficient into the basis of cubic Weyl invariants by means of the identity Ŵ 2 =

Ŵ ′ 3 − 1
4Ŵ

3 + 1
4 Φ̂7, which is valid for the 7D Poincaré-Einstein metric with unit AdS

radius.9 The Weyl content of the vector contribution is then given by∫ ∞
0

dt

t

{
tr e−(∆̂

(1,⊥)
L +12) t

}
(3.12)

∼
∫ ∞

0

dt

t9/2

e−16t

7!

{
−252 Ŵ 2 · t2 −

[
472

3
Ŵ ′ 3 − 40

3
Ŵ 3 + 30 Φ̂7

]
· t3 + . . .

}
=

Γ(−1
2)

7!

{
30368

3
Ŵ ′ 3 − 7904

3
Ŵ 3 + 2568 Φ̂7 + . . .

}
The ellipsis stands for an infinite number of pointwise Weyl invariants of higher order,

starting with quartic contractions of the bulk Weyl tensor Ŵ 4, that do not contribute to the

holographic Weyl anomaly. This is the essential feature of the alleged WKB exactness: after

factorization of e−16t the Ŵ 2 only appears accompanying t2, and the three Ŵ ′ 3, Ŵ 3 and

Φ̂7 only appear accompanying t3; these are the only bulk Weyl invariants that contribute

8There is a misprint in the b6 in arbitrary dimension d reported in [11], appendix C: the coefficient of

the A16 should read ( 44d
9

− 84) instead of ( 46d
9

− 84). In particular, at d = 6 it must agree with the − 164
3

of eq. (2.21) therein.
9This identity holds modulo a total derivative. More precisely, it follows from the total derivative Ĉ7

(cf. [11]) when evaluated in the 7D PE/E metric. By contrast, in 5D the coefficient of the Ŵ 2 term vanishes

and one obtains an identity between the three Weyl invariants Ŵ ′ 3 − 1
4
Ŵ 3 + 1

4
Φ̂5 = 0.
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to the holographic Weyl anomaly, i.e., to the IR logarithmic divergence or the pole in

dimensional regularization.

The case of the transverse-traceless symmetric rank-two tensor requires more effort,

but we have not succeeded in finding any explicit computation in generic dimension d nor

in 7D. We have to subtract the longitudinal vector and the trace scalar (cf. appendix B).

To simplify the computation of the ˆ̄b6 coefficient we perform a constant shift and leave only

the Weyl tensor in the endomorphism −∇̂2
2 − 2Ŵ .

tr e−(∆̂
(2,⊥>)
L + 12) t = e−9t

{
e11t tr e(∇̂2

2+2Ŵ ) t − e−3t tr e−∆̂
(1)
L t − e11t tr e−∆̂

(0)
L t
}

(3.13)

This time the Weyl content is contained, after convolution with the exponentials, in

the following combination of heat coefficients

tr e−(∆̂
(2,⊥>)
L +12) t

∼ e−9t
{
b̂4{−∇̂2

2 − 2Ŵ} · t2 +
[
11 b̂4{−∇̂2

2 − 2Ŵ}+ b̂6{−∇̂2
2 − 2Ŵ}

]
· t3

− b̂4{∆̂(1)
L } · t

2 −
[
−3 b̂4{∆̂(1)

L }+ b̂6{∆̂(1)
L }
]
· t3

−b̂4{∆̂(0)
L } · t

2 −
[
11 b̂4{∆̂(0)

L }+ b̂6{∆̂(0)
L }
]
· t3 + . . .

}
(3.14)

We only need to work out the Weyl content of b̂6{−∇̂2
2−2Ŵ}. The general expression

for this heat coefficient can be found in appendix B, there are contributions coming from

the endomorphism and from the curvature of the connection. When restricted to the PE/E

background metric only the traces collected in table 3 need to be taken into account.

Most of the traces are easily related to the quadratic ones already computed in [35].

As for the challenging ones, those of V̂4, V̂11 and V̂12, we used the CADABRA code [50, 51]

to implement and compute them. This leads to

b̂4{−∇̂2
2 − 2Ŵ} ∼ 163

180
Ŵ 2 (3.15)

7! · b̂6{−∇̂2
2 − 2Ŵ} ∼ trV

{
− 3Â5 +

14

3
Â12 −

16

3
Â15 +

44

9
Â16 +

80

9
Â17 (3.16)

+ 14
(

8V̂1 + 12V̂3 − 12V̂4 + 6V̂5 − 4V̂6 + 5V̂7

+ 60V̂9 + 30V̂10 + 60V̂11 + 30V̂12 + 30V̂16

)}
= − 445256

9
Ŵ ′ 3 +

97244

9
Ŵ 3 − 11844 Φ̂7

The rest is just a matter of bookkeeping. The Weyl content of the tensor contribution

is then given by∫ ∞
0

dt

t

{
tr e−(∆̂

(2,⊥>)
L +12) t

}
(3.17)

∼
∫ ∞

0

dt

t9/2

e−9t

7!

{
4760 Ŵ 2 · t2 −

[
6064

9
Ŵ ′ 3 +

12368

9
Ŵ 3 − 348 Φ̂7

]
· t3 + . . .

}
=

Γ(−1
2)

7!

{
−263104

3
Ŵ ′ 3 +

51892

3
Ŵ 3 − 20376 Φ̂7 + . . .

}

– 10 –
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Curvature invariant Ŵ ′ 3 Ŵ 3 Φ̂7

trV V̂1 trV |∇̂F̂ |2 −72 18 −27

trV V̂3 trV F̂ ∇̂2F̂ 72 −18 27

trV V̂4 trV F̂
3 9

2 −27
8

27
8

trV V̂5 trV R̂iemF̂
2 54 −45

2
27
2

trV V̂6 trV R̂icF̂
2 54 −27

2
27
2

trV V̂7 trV R̂F̂
2 378 −189

2
189
2

trV V̂9 trV Ê∇̂2Ê −24 6 −9

trV V̂10 trV |∇̂Ê|2 24 −6 9

trV V̂11 trV Ê
3 −8 −1 −

trV V̂12 trV ÊF̂
2 −12 6 −3

trV V̂16 trV R̂Ê
2 −126 63

2 −63
2

Table 3. Weyl content of curvature and endomorphism contributions to heat coefficient b̂6{−∇̂2−
2Ŵ} for traceful unconstrained symmetric rank-two tensor.

We collect now all contributions that remain after the proper-time integrals. To make

the matching of divergences more transparent, we include all numerical coefficients in the

evaluation of logZ
1−loop,+

Einstein and look after the holographic Weyl anomaly (IR logarithmic

divergence or pole in dimensional regularization) that we denote by A+. For the sake of

completeness, we include as well the constant term proportional to the volume, that we

denote by 1̂, stemming from pure-Ricci bulk invariants that were already taken into account

in the conformally flat case,

logZ
1−loop,+

Einstein

=
1

2

∫ ∞
0

dt

t

{
tr e−(∆̂

(2,⊥>)
L +12) t − tr e−(∆̂

(1,⊥)
L +12) t

}
(3.18)

=
−1

2 (4π)3 7!

∫
d6x
√
gE

{
27694080 1̂ − 97824 Ŵ ′ 3 + 19932 Ŵ 3 − 22944 Φ̂7 + . . .

}
As before, the ellipsis stands for an infinite number of pointwise Weyl invariants of

higher order that do not contribute to the holographic Weyl anomaly.

The final step to be done is to invoke our simple prescription [40] and read off the

holographic Weyl anomaly A+. In conformity with our holographic recipe, we simply retain

the numerical coefficients in front of each of the 7D bulk curvature invariants Ŵ ′ 3, Ŵ 3 and

Φ̂7 that descend to the corresponding 6D Weyl invariants I1, I2 and Φ6, respectively, while

in place of the volume 1̂ we write down the 6D Q-curvature, more accurately − 1
384Q6, which

is the celebrated volume anomaly. The overall outcome of this holographic computation is

– 11 –
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the following

A+ = −1

2
A (3.19)

The direct comparison is possible by making use of the equality I3 = 16 I1−4 I2+3 Φ6,

valid on Einstein backgrounds modulo trivial total derivatives. This allows us to display

the way in which the usual Weyl anomaly coefficients a, c1, c2 and c3 are encoded in our

alternative basis

A = −2A+ (3.20)

= −48aQ6 + (c1 + 16c3 + 32a)I1 + (c2 − 4c3 − 56a)I2 + (3c3 + 24a)Φ6

= −48
601

2016
Q6 −

2038

105
I1 +

1661

420
I2 −

478

105
Φ6

In conformity with the AdS/CFT dictionary at one-loop quantum level, we obtain

complete agreement between the one-loop boundary UV- and the bulk IR-log divergences

of the corresponding dual gravitational theories.

Let us be more explicit: according to the holographic formula (eq. (1.8)), bulk and

boundary divergences are related by

A− − A+ = A . (3.21)

Our result −2A+ = A confirms that the bulk divergence with alternate boundary

condition A− is simply equal to −A+ and the matching is verified. The latter minus sign

can be traced back to the dependence on the scaling dimension (∆+ − d/2) that changes

sign upon continuation to (∆− − d/2) (see e.g. [14, 31]) and, in the present case, appears

squared in the exponent of the proper time integral: a 9 for the rank-two tensor (eq. (3.17))

and a 16 for the vector ghost (eq. (3.12)).

3.3 Miscellany: boundary factorization vs. bulk WKB exactness

Before closing, it may be of interest to establish a connection with the holographic expec-

tations based on the functional Schrödinger approach [52, 53] (see also [13]), namely, that

the holographic Weyl anomaly from the one-loop bulk effective action be

A+ = −1

2
(∆+ − 3) b6 , (3.22)

in terms of the heat coefficient b6 for the corresponding bulk field when restricted to the

6D boundary. This is indeed a consequence of our more general relation A+ = −1
2A,

restricted to the particular case of a Ricci-flat 6D boundary where the accumulated heat

coefficient for the Weyl graviton (∆+ = 6) is simply 3 times that of the Lichnerowicz

operator and the accumulated heat coefficient for the ghost vector (∆+ = 7) is 4 times , as

follows from the factorized form of the one-loop partition function [41] when restricted to a

Ricci-flat background conveniently rewritten in terms of unconstrained vector and traceless

rank-two tensor

Z
1−loop

Weyl =


(

det ∆
(1)
L

) 4

(
det ∆

(2,>)
L

) 3


1/2

. (3.23)

– 12 –
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However, we must reiterate that the validity of this prescription breaks down as soon as

the background is no longer Ricci-flat.

Turning to our holographic computation, we first realize that the holographic Weyl

anomaly from the bulk Ŵ 2 is precisely the combination W ′ 3 − 1
4W

3 + 1
4 Φ̂6 which happens

to vanish on Ricci-flat manifolds. In consequence, the holographic anomaly comes entirely

from the b̂6 accompanying t3. Upon proper-time integration, under the assumption of

WKB exactness, this produces the linear term in (∆+ − 3) and the divergence matching

boils down to the following “accidental” equalities between numerical factors of the heat

coefficients in 7D (hatted ones) and in 6D (unhatted ones) that can be readily verified:10

• Spin 2:

7! · b̂6{∆(2,⊥>)
L } = −9236

9
Â16 +

18592

9
Â17 (3.24)

7! · b6{∆(2,>)
L } = −9236

9
A16 +

18592

9
A17 (3.25)

• Spin 1:

7! · b̂6{∆(1,⊥)
L } = −50

3
Â16 +

112

3
Â17 (3.26)

7! · b6{∆(1)
L } = −50

3
A16 +

112

2
A17 (3.27)

These equalities, that lend support to the holographic prescription based on the

Schrödinger approach, are again restricted to boundary Ricci-flatness and provide only

partial information on the holographic Weyl anomaly of the one-loop bulk effective ac-

tion. In any case, an interesting interplay between boundary factorization of the higher

derivative kinetic operator and bulk WKB exactness emerges.

4 Conclusion

Overall, we have unveiled the way in which the UV divergences of the one-loop effective

action for the 6D Weyl graviton are encoded in the large-volume asymptotics of the one-

loop effective action for the 7D Einstein graviton in an asymptotically AdS background.

This matching certainly constitutes a nontrivial and robust test of the AdS/CFT dual-

ity at the one-loop quantum level. We recall again the two key features that enabled

the unconventional bulk computation: the implied WKB exactness of the heat kernel in

the bulk Poincaré-Einstein metric, together with the simple recipe of [40] to read off the

holographic anomaly.

In addition, it seems worth further studying the curious interplay between the renor-

malizability, but nonunitarity, of the induced conformal gravity as opposed to the unitarity,

but non-renormalizability, of the bulk Einstein gravity.

10These “accidental” equalities have previously been noticed for the case of higher spin fields in 5D/4D

(cf. [35], footnote 8 therein).
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It is also interesting to note that the one-loop computation we have performed here

with the aid of background and heat-kernel techniques must certainly have a diagrammatic

counterpart. It would be quite desirable to contrast the numerical values of the type-A

anomaly coefficient a and the type-B anomaly coefficient c3 ∝ CT with those obtained by

the explicit computation of the one-loop Witten diagrams, tadpole and bubble graphs, that

produce the CFT one- and two-point correlation function for the stress tensor, a program

already initiated by [54].

To close, let us mention two further directions in which we envisage extensions of our

present calculations to higher-derivative operators: one is related to the family of GJMS-

like two-tensor operators of [12]; and the second also starts with the 6D Weyl graviton, but

this time it goes higher in spin, i.e., the extension to 6D Conformal Higher Spins [27, 35].
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A Second metric variation of the Q-curvature at 6D Einstein background

It is not hard to realize that the action for the 6D conformal gravity under consideration

is nothing but the integral of the critical Q-curvature in 6D, the Lagrangian differs only

by trivial total derivatives and an unimportant overall numerical factor. The critical 6D

Q-curvature is given by [55]

Q6 = − 8 |∇P |2 − 16P∇2P + 32P 3 − 16PPW (A.1)

+ 16 JP 2 − 8 J3 + 8 J∇2J − ∇2∇2J

We spare the detailed index contractions for clarity, their explicit form can be found

e.g. in [40]. Our conventions are as follows

Schouten tensor (n− 2)Pij =Rij −
1

2(n− 1)
Rgij (A.2)

Schouten scalar J = P k
k =

1

2(n− 1)
R (A.3)

Cotton tensor Cijk =∇kPij − ∇jPik (A.4)

Bach tensor Bij =∇kCijk + PklW
k l
i j (A.5)

=∇2Pij − ∇k∇jPik + PklW
k l
i j
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One can trade away the Weyl tensor contracted with the Schouten tensor to show that the

Bach tensor as well as the Q-curvature are both “pure-Ricci” by means of the identity

PklW
k l
i j = −∇k∇iPjk + ∇i∂jJ + nPikP

k
j − P 2gij (A.6)

In general, the metric variation of the Q-curvature results in the Fefferman-Graham

obstruction tensor Oij in any even dimension [56]. The explicit form of the obstruction

tensor can be worked out by hand in lower dimensions, in 4D it is given by the Bach tensor;

whereas in 6D it can be conveniently written in terms of the Bach tensor as follows [49,

56, 57] (indices in parenthesis are symmetrized)

Oij =∇2Bij + 2W k l
i j Bkl − 4 JBij + 8P kl∇lC(ij)k + 4PkmP

m
lW

k l
i j (A.7)

− 4Ck l
i Cljk + 2C kl

i Cjkl + 4C l
(ij)∇lJ

The second metric variation of the Q-curvature, i.e. the first metric variation of the

obstruction tensor, when evaluated on a 6D Einstein manifold is greatly simplified by the

vanishing of the Bach Bij and Cotton tensor Cijk and the gradients of the Schouten tensor

Pij = J
6 gij and scalar J = R

10 , so that the only contributions are the following

δOij =∇2δBij + 2W k l
i j δBkl − 4 JδBij + 8P kl∇lδC(ij)k + 4δ{PkmP

m
lW

k l
i j } (A.8)

= −∆LδBij +
4

3
Jδ{Bij − PklW

k l
i j } + 4δ{PkmP

m
lW

k l
i j }

= − {∆L −
4

3
J} δBij

Let us now show that the metric variation of the Bach tensor produces a quartic

differential operator that when evaluated on an Einstein manifold factorizes into product

of two shifted Lichnerowicz operators in any dimension. For this purpose, it is convenient

to rewrite the Bach tensor as follows

Bij = ∇2Pij −∇j∂iJ + 2W k l
i j Pkl + P 2gij − nP k

i Pjk (A.9)

At an Einstein metric we have Pij = 1
nJgij and vanishing ∇J,∇P,C and B. It is then

enough to consider only the following variations under the transverse-traceless fluctuation

of the gravitational field

δJ = 0 , δPij =
1

2(n− 2)
{∆L − 2J}δgij (A.10)

δgij = − gikgjlδgkl , gklδW
k l
i j =−W k l

i j δgkl (A.11)

δΓ k
i j =

1

2
gkl{∇iδglj + ∇jδgil − ∇lδgij} (A.12)

We obtain the only non vanishing contributions upon restriction to an Einstein mani-

fold. Omitting obvious indices, the terms into square brackets correspond to the variation
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of the first, third and last two in the previous expression for the Bach tensor

δB =

[
∇2δP − J

n
∇2δg

]
+

[
2WδP − 2W

J

n
δg

]
+

[
J2

n
δg − 2JδP +

J2

n
δg

]
(A.13)

= {∇2 + 2W − 2J}
{
δP − J

n
δg

}
= {−∆L + 2J}

{
δP − J

n
δg

}
We end up then with a general property of the Bach tensor, namely, the factoriza-

tion of its metric variation on a generic Einstein background into product of two shifted

Lichnerowicz Laplacians

δBij = − 1

2(n− 2)
{∆L − 2 J}

{
∆L − 4

n− 1

n
J

}
δgij (A.14)

Returning to the 6D Q-curvature and obstruction tensor, we finally obtain the factor-

ized form for the transverse-traceless metric fluctuations11 of the 6D Q-curvature about a

6D Einstein background

δOij =
1

8

{
∆L −

2

15
R

}{
∆L −

1

5
R

}{
∆L −

1

3
R

}
δgij (A.15)

B Heat kernel coefficient b6 for −∇2 − E

In this appendix we first write down the general form of the b6 heat coefficient for −∇2 −
E when acting on unconstrained tensor fields for general reference and then obtain the

corresponding heat coefficient for the transverse-traceless components.

We have, according to [11, 58],

b6{−∇2 − E} =
1

(4π)37!
trV

{
18A1 + 17A2 − 2A3 − 4A4 + 9A5 (B.1)

+ 28A6 − 8A7 + 24A8 + 12A9 +
35

9
A10 −

14

3
A11 +

14

3
A12

− 208

9
A13 +

64

3
A14 −

16

3
A15 +

44

9
A16 +

80

9
A17

+ 14
(

8V1 + 2V2 + 12V3 − 12V4 + 6V5 − 4V6 + 5V7 + 6V8

+ 60V9 + 30V10 + 60V11 + 30V12 + 10V13 + 4V14

+ 12V15 + 30V16 + 12V17 + 5V18 − 2V19 + 2V20

)}
When restricted to an Einstein metric, one is free to factorize exponentials of the cur-

vature in the heat kernel. That is exactly what we did in order to have the endomorphism

given exclusively by the Weyl tensor and to simplify the computation of the traces involved.

11The longitudinal and trace parts of the metric fluctuations are absent (gauged away) by virtue of the

diffeomorphism and Weyl symmetries of the integrated Q-curvature.
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For the rank-two symmetric tensor, the endomorphism is then 2W k l
i j and the connection

curvature, (Fij)
rs
kl = 2R

(r
ij (k δ

s)
l) . The relevant traces that remain were listed in section 3.2.

In order to consider transverse-traceless metric fluctuations h
⊥>
ij we perform the York

decomposition (see e.g. [43] for details)

hij = h
⊥>
ij + ∇i ξj + ∇j ξi +∇i∇jσ −

1

n
gij∇2σ +

1

n
gijh (B.2)

Let us first show how to work out the heat kernel from that of the unconstrained field

for the (Bochner) Laplacian. It is enough to consider the following commutations

∇2
2{∇i ξj + ∇j ξi} =∇i

{
∇2

1 +
n+ 1

n(n− 1)
R

}
ξj + ∇j

{
∇2

1 +
n+ 1

n(n− 1)
R

}
ξi (B.3)

∇2
2

{
∇i∇j −

1

n
gij∇2

0

}
σ =

{
∇i∇j −

1

n
gij∇2

0

}{
∇2

0 +
2

n− 1
R

}
σ

∇2
2

{
1

n
gij

}
h =

{
1

n
gij

}
{∇2

0}h

Now, since the Weyl tensor is traceless and in an Einstein background it is also diver-

gence free, it commutes with the longitudinal and trace components of the metric fluctua-

tion and we finally get

tr e(∇̂2
2+2Ŵ ) t = tr⊥> e

(∇̂2
2+2Ŵ ) t + tr⊥ e

(∇̂2
1+ n+1

n(n−1)
R) t

+ tr e(∇̂2
0+ 2

n−1
R) t + tr e∇̂

2
0 t (B.4)

This is slightly different from Lichnerowicz Laplacians that on Einstein spaces inter-

twine covariant derivatives. To finally connect with eq. (3.13) we only need to notice that

the Lichnerowicz Laplacians on an Einstein space acting on scalar, vector and traceless

rank-two symmetric tensor take the following simple form

∆
(0)
L = −∇2

0 (B.5)

∆
(1)
L = −∇2

1 +
1

n
R (B.6)

∆
(2,>)
L = −∇2

2 − 2W +
2

n− 1
R (B.7)
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