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1. Introduction

The presence of a negative cosmological constant allows the existence of black holes with

topologically non-trivial transverse sections [1, 2, 3]. The features of these geometries have

been extensively studied, see e.g. [4]–[9]. The simplest solution of the Einstein equations

with negative cosmological constant of this kind in d ≥ 4 dimensions, is described by the

line element1

ds2 = −
(

γ +
r2

l2
− µ

rd−3

)

dt2 +
dr2

(

γ + r2

l2
− µ

rd−3

) + r2dσ2γ , (1.1)

where the constant µ is proportional to the mass. Here dσ2γ = ĝij(y)dy
idyj is the line

element of the (d − 2)-dimensional transverse section Σγ , which is a Einstein manifold of

euclidean signature,

R̂ij = γ(d− 3)ĝij . (1.2)

The constant γ has been normalized to ±1, 0 by a suitable coordinate rescaling.

The electrically and magnetically charged extensions of (1.1) are also known [3]. The

existence of an event horizon is ensured if Σγ is a compact and orientable surface. The

Schwarzschild-AdS geometry is recovered when the transverse section is the unit sphere

(γ = 1).

Note that the configurations (1.1) are asymptotically locally AdS spacetimes only if

the transverse section Σγ has constant curvature, namely, the curvature two-form2 satisfies

R̂mn = γêm ∧ ên. In particular, this means that Σγ is locally isomorphic to the sphere Sn,
1The cosmological constant is given by Λ = −l−2(d − 1)(d − 2)/2.
2This condition is automatically satisfied in four and five dimensions.
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the hyperbolic manifold Hn, or the euclidean space Rn. Furthermore, the Killing-Hopf the-

orem states that any n-dimensional complete connected Riemannian manifold of euclidean

signature and constant curvature γ (for n ≥ 2), has one of the following forms (see e.g. [10])

Sn

Γ
, with Γ ⊂ O(n+ 1) , if γ > 0 ,

Hn

Γ
, with Γ ⊂ O(n, 1) , if γ < 0 ,

Rn

Γ
, with Γ ⊂ ISO(n) , if γ = 0 ,

where Γ is a freely acting discrete subgroup (i.e. without fixed points).

Asymptotically locally anti de Sitter black holes are non-trivial examples for testing the

AdS/CFT correspondence [11]. Their asymptotic regions provide inequivalent background

spacetimes where the corresponding dual thermal CFT is realized [4, 7, 12]. Thus, CFT’s

defined on S1 × (Rd−2/Γ), S1 × (Sd−2/Γ) or S1 × (Hd−2/Γ) are connected with black

holes in the bulk for γ = 0, 1, or −1, respectively. Black holes with topologically non-

trivial transverse sections exist also for gravitation theories containing higher powers of the

curvature. Their relationship with thermal CFT has also been explored [9].

Since we assume a non-vanishing cosmological constant, and the geometry of Σγ is

not necessarily spherical, these solutions do not satisfy the hypotheses of the standard

positivity energy theorems for gravity and supergravity [13, 14, 15]. As a step towards

a proof of an energy bound, we analyze the existence of supersymmetric ground states.

This requirement not only ensures the stability of the ground state, but also impose severe

restrictions on the geometry of Σγ , allowing a classification of the ground states.

The classification of euclidean manifolds admitting Killing spinors is obtained from

their transformation properties under parallel transport along a closed loop, that is, from

the holonomy group of the manifold. The possible holonomy groups, in turn, were classified

by Berger [16].

In the following, the conditions for the family of spacetimes of the form (1.1) to admit

Killing spinors is addressed. In section 2, the Killing spinors of spacetime are explicitly

obtained, and they are completely determined by the Killing spinors of the transverse

section. This occurs for µ = 0 only.

In section 3, the supersymmetric ground states are analyzed for the different values

of γ. Since a manifold of positive scalar curvature (γ = 1) is necessarily compact, the

asymptotic region of non-rotating localized distributions of matter with a supersymmetric

ground state are classified.

For γ = −1 supersymmetry requires the transverse section to be non compact. All su-

persymmetric geometries of the form (1.1) with non-compact transverse section of negative

scalar curvature are classified. The transverse sections of these geometries contain a Ricci

flat submanifold which determines the number of supersymmetries of spacetime. Warped

black brane solutions are found whose supersymmetric ground state resembles a wormhole.

For γ = 0, the study is restricted to a particular class of Ricci flat transverse sections

allowing the existence of proper black objects, which are classified demanding the existence

a supersymmetric ground state.

– 2 –
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In section 4 it is shown that this classification of supersymmetric ground states in

standard supergravity also applies to eleven-dimensional AdS Supergravity [17, 18].

2. Killing spinors and the transverse section

The spacetimes (1.1) can be viewed as solutions of standard supergravity theories with

negative cosmological constant (see e.g. [19]). These configurations are left invariant under

supersymmetry transformations, δψ = ∇ε, provided ε is a global solution of the Killing

spinor equation

∇ε := (d+A)ε = 0 , (2.1)

where

A =
1

4
ωabΓab +

1

2l
eaΓa , (2.2)

and l is the AdS radius. The one-form A can be regarded as a connection for the AdS group

SO(d− 1, 2), whose generators are expressed in terms of Dirac matrices as Jab =
1
2Γab and

Ja = 1
2Γa, and whose curvature F = dA+A ∧A is 3

F =
1

2

(

Rab +
1

l2
ea ∧ eb

)

Jab +
1

l
T aJa . (2.3)

The integrability condition for eq. (2.1) reads

∇∇ε = Fε = 0 . (2.4)

As the torsion vanishes, the curvature for the metric (1.1) is

Rab +
1

l2
ea ∧ eb =



























µ (d−2)(d−3)
2rd−1

e0 ∧ e1 ,
−µ (d−3)

2rd−1
e0 ∧ em ,

−µ (d−3)
2rd−1

e1 ∧ em ,
R̂mn − γêm ∧ ên + µ 1

rd−1
em ∧ en .

The integrability condition (2.4) is satisfied only if µ = 0 and

(R̂mn − γêm ∧ ên)Γmnε = 0 .

Thus, the existence of Killing spinors shall be investigated for massless geometries

whose line element is of the form

ds2 = −(γ + r2/l2)dt2 +
dr2

(γ + r2/l2)
+ r2dσ2γ . (2.5)

Choosing the frame as

e0 = f(r)dt , e1 = f(r)−1dr , em = rêm ,

where f(r) =
√

r2/l2 + γ, and êm(y) is the vielbein of the transverse section Σγ , the

3Here ωab is the Lorentz connection one-form, ea is the vielbein, Rab = dωab+ωa
c ∧ωcb is the curvature

two-form and T a = dea + ωa
b ∧ eb is the torsion.
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connection one-form A reads

A =

(

1

2l
f(r)− r

2l2
Γ1

)

Γ0dt+
dr

2lf(r)
Γ1 +

1

4
ω̂mnΓmn +

(r

l
− f(r)Γ1

) 1

2
êmΓm ,

where ω̂mn(y) is the spin connection of the transverse section. In this frame, the solution

of the Killing spinor equation (2.1) reads

ε = e
−
Γ1
2
ln
(

r/l+
√
γ+r2/l2

)

e−
t
l
P0η , (2.6)

where η(y) satisfies
(

d+ Âγ

)

η = 0 , (2.7)

and

Âγ =
1

2
ω̂mnJmn + êmPm . (2.8)

Here

Pm =
1

2
(P− − γP+)Γm ,

P0 =
1

2
(P− + γP+) Γ0 , (2.9)

with P± := 1
2 (1± Γ1).

Note that since [Pm, Pn] = −γJmn, the set {Pn, Jmn} forms a reducible representation

for SO(d−1), SO(d−2, 1), or ISO(d−2) depending on whether γ = 1,−1, or 0, respectively.
It is simple to express η in terms of irreducible (d − 2)-dimensional spinors for each case

(see below).

In this way, the problem of finding a Killing spinor ε for the spacetime eq. (2.5), has

been reduced to that of finding a globally defined spinor η on the transverse section. Thus,

one can formulate the following lemma

Lemma 1. Killing spinors for the geometries (1.1) exist only for µ = 0, and are completely

determined by the Killing spinors of the transverse section.

This situation is analogous to the case of conifold geometries, where the Killing spinors

of an Einstein manifold X of positive scalar curvature are related to the Killing spinors of

the cone over X, which is a Ricci flat manifold (see [20]). Here, the Killing spinors of the

transverse section Σγ , which is an Einstein manifold of scalar curvature R̂ = γ(d−2)(d−3),

determine the Killing spinors of the spacetime (2.5), which is an Einstein manifold of

negative scalar curvature.

Since complete, connected, irreducible Riemannian manifolds of euclidean signature

admitting Killing spinors, have been classified [21, 22, 23] the above lemma allows the clas-

sification of the black objects (1.1) with a supersymmetric ground state. This is discussed

in the following section.

– 4 –
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3. Classification of ground states

Since spinors may transform nontrivially under parallel transport along a closed loop, the

maximal number of supersymmetries of a euclidean manifold is determined by its holonomy

group [21], which are classified by Berger’s theorem.

Killing spinors of a simply connected, complete and irreducible Einstein manifold X of

positive scalar curvature were classified in [22] by using the conifold mapping between X

and the cone over X which is Ricci flat. Analogously, there is a one-to-one correspondence

between Killing spinors of an Einstein manifold of negative scalar curvature, Σ−1, with the

supersymmetries of Ricci flat manifold one dimension below [23].

Smooth manifolds can be obtained by making quotients of a symmetric space by dis-

crete subgroups without fixed points. These quotients, in general, make the geometry

non-simply connected and can introduce non-contractible loops which might further re-

duce the number of supersymmetries.

If the transverse section is a Ricci flat reducible space, then eq. (2.7) decomposes into

the Killing spinor equation for each of its irreducible factors. Hence, Σ0 admits global.

In what follows, the three cases γ = ±1, 0, are analyzed separately.

3.1 Positive curvature transverse section

In order to express η in terms of its irreducible parts, it is useful to introduce the projectors

Q± = (1/2 ± iP0) which commute with the one-form Â defined by eq. (2.8). This allows

splitting eq. (2.7) as

dη± + Â±η± = 0 , (3.1)

where Â± = Q±Â are irreducible representations of Â, acting on η± = Q±η, which are

genuine spinors of the transverse section. When the dimension of Σ1 is odd, then both

representations are inequivalent, unlike the even-dimensional case.4 Choosing the follow-

ing representation for the Dirac matrices:5 Γ0 = iσz ⊗ I, Γ1 = σx ⊗ I, Γm = σy ⊗ γm,

eq. (3.1) reads

dη± +

(

± i
2
γmê

m +
1

4
ω̂mnγmn

)

η± = 0 , (3.2)

which means that η± must be a globally defined Killing spinor on Σ1. Let N± be the

maximum possible number of solutions of type η±. Then, using the classification of positive

scalar curvature euclidean manifolds admitting Killing spinors in [22], one can formulate

the following theorem:

Theorem 1. Let M be a d-dimensional manifold of the form (1.1) with γ = 1, whose

transverse section Σ1 is a simply connected, complete and irreducible Riemannian manifold

of positive scalar curvature. If M possesses a supersymmetric ground state, then M can

be either

4When Σ1 is 2n-dimensional, then −γi = γ2n+1γ
iγ2n+1, with γ2n+1 = (i)nγ1γ2 · · · γ2n.

5Here and henceforth, σi are the Pauli matrices and γm satisfy (d − 2)-dimensional Clifford algebra,

{γm, γn} = 2δmn, with m = 2, . . . , d − 1.

– 5 –
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(i) a d-dimensional Schwarzschild-AdS spacetime, whose ground state is AdS, admitting

the maximum number of supersymmetries, namely 2[d/2],

(ii) an eight-dimensional black hole whose transverse section is a nearly Kähler manifold,

and its ground state admits one Killing spinor of each type (N+ = N− = 1), or

(iii) an odd-dimensional black hole with d ≥ 7, whose transverse section geometry and the

corresponding maximum number of Killing spinors of its ground state are given by

the following table,

d Σ1 (N+, N−)

7 Sasaki-Einstein (1, 1)

3-Sasaki (3, 0)

9 Sasaki-Einstein (2, 0)

Nearly parallel G2 (1, 0)

11 Sasaki-Einstein (1, 1)

Table 1.

Since, under the assumptions of the above theorem, the transverse section Σ1 is nec-

essarily a compact manifold, this theorem classifies the asymptotic region of localized non-

rotating distributions of matter with a supersymmetric ground state.

From a mathematical point of view, the Killing spinor equation can be solved regardless

the existence of a supergravity theory. Indeed, the transverse section for d = 4k − 1 > 11

dimensions, can be a Sasaki-Einstein manifold admitting (1, 1) Killing spinors; and for

d = 4k + 1 > 9 the surface Σ1 can be either a Sasaki-Einstein or a 3-Sasaki manifold

admitting (2, 0) and (k + 1, 0) Killing spinors, respectively.

As mentioned above, performing identifications on these transverse sections, break

some supersymmetries in general. For instance, consider the smooth quotients of the

sphere which have been fully classified (see e.g. [10]). In even dimensions, real projective

spaces — that is, the sphere with antipodal points identified, RP2n = S2n/Z2 — are the

only possible smooth quotients. However, these are not orientable manifolds and therefore

they cannot correspond to the event horizon of a black hole.

In odd dimensions, smooth quotients of the form Σ1 = S2n−1/Γ are always orientable,

and among them, there are some interesting cases with unbroken supersymmetries (see

e.g. ref. [24]). These correspond to the transverse section of topological black holes whose

ground states are locally AdS spaces with unbroken supersymmetries. For instance, the real

projective space RP2n−1 admits (2n−1, 0) Killing spinors, provided n is even [22]. Thus, in

nine dimensions, if Σ1 = RP7, the spacetime admits 8 Killing spinors which are eigenstates

of Q+ and zero eigenstates of Q− (or vice-versa).

3.2 Negative curvature transverse section

The line element (1.1) can be viewed as the exterior geometry of a localized non-rotating

distribution of matter, provided the transverse section Σγ is a compact euclidean Einstein

manifold (see eq. (1.2)). However, as can be easily seen, a compact transverse section

– 6 –
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Σγ admits no Killing spinors for γ = −1. Consider vector ξm which satisfies the Killing

equation on Σ−1. Then, the following identity holds
∫

Σ−1

∇mξn∇mξn
√

ĝdd−2x = γ(d− 3)

∫

Σ−1

ξmξ
m
√

ĝdd−2x . (3.3)

Since Σγ has euclidean signature, the left-hand side of eq. (3.3) is non negative, and there-

fore, for γ = −1, ξm necessarily vanishes. Furthermore, since for any Killing spinor η, the

vector field ξm := η̄γmη would be an isometry, one concludes that any compact euclidean

Einstein manifold with negative scalar curvature cannot have either Killing vectors, or

Killing spinors.

As a consequence of this, and by virtue of the lemma in section 2, black holes with com-

pact transverse sections cannot be BPS states regardless the value of the mass. In partic-

ular, in this case, the solution with µ = 0 describes a black hole with horizon radius r+ = l

and temperature β = 2πl. Now, since the specific heat is positive, this state could decay by

Hawking radiation into black holes with 0 > µ ≥ µc = − ld−3

G

√

(d− 3)d−3/(d− 1)d−1 [9].

Therefore, demanding that the metric (2.5) admit globally defined Killing spinors,

leads one to consider geometries with non-compact transverse sections Σ−1. Non-compact

Riemannian manifolds, which are complete, connected and irreducible, of euclidean sig-

nature and negative scalar curvature, admitting Killing spinors have been classified [23].

Since the line element is isometric to

dσ2−1 =
1

z2
(dz2 + hijdx

idxj) , (3.4)

where hij is the metric of a d − 3-dimensional complete connected Ricci-flat manifold ad-

mitting Killing spinors, the classification of these spaces is obtained from the classification

of Ricci flat manifolds in ref. [21].

In complete analogy with case γ = 1, the metrics of the form (2.5) with γ = −1 admit

Killing spinors given by eq. (2.6). The irreducible components of Â and η are also given

by Â± = Q±Â and η± = Q±η, respectively,6 where now Q± := (12 ± P0).
Using the representation for the Dirac matrices in which Γ0 = iσy ⊗ I, Γ1 = σx ⊗ I,

Γm = σz ⊗ γm for γ = −1, one finds that η± satisfy,

dη± +

(

±1

2
γmê

m +
1

4
ω̂mnγmn

)

η± = 0 . (3.5)

Let N± be the maximum possible number of solutions of type η±. Then, since negative

scalar curvature euclidean manifolds admitting Killing spinors are classified in [23], the

following theorem holds:

Theorem 2. Let M0 be a d-dimensional manifold of the form (2.5) with γ = −1, admit-

ting Killing spinors, whose transverse section Σ−1 is a non-compact, connected, complete

and irreducible manifold of negative scalar curvature. Let Ξ be the complete, connected

Ricci-flat submanifold described by hij in eq. (3.4). If M0 possesses a supersymmetric

ground state, then M0 can be either

6When the dimension of Σ−1 is even both representations are equivalent, unlike the odd case.

– 7 –
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(i) a d-dimensional portion of AdS whose transverse section is H d−2, which admits

2[(d−2)/2] Killing spinors,

(ii) a ten-dimensional manifold where Ξ is a seven-dimensional space with G2 holonomy

admitting only one Killing spinor, or

(iii) an odd-dimensional manifold with d ≥ 7, where the geometry, holonomy and corre-

sponding maximal number of Killing spinors of Ξ is given by the following table,

d Ξ Hol(Ξ) (N+, N−)

7
hyperkähler Sp(2) (2, 0)

Calabi-Yau SU(2) (2, 0)

9 Calabi-Yau SU(3) (1, 1)

hyperkähler Sp(4) (3, 0)

11 Calabi-Yau SU(4) (2, 0)

Parallel Spin7 Spin(7) (1, 0)

Table 2.

As in the previous case, independently from the existence of supergravity, for d =

4k + 1 > 9, the surface Ξ can be a Calabi-Yau manifold with SU(2k − 1) holonomy which

admits (1, 1) Killing spinors, while for d = 4k − 1 > 11, Ξ can be either a Calabi-Yau

manifold with SU(2k − 2) holonomy admitting (2, 0) Killing spinors, or hyperkähler with

Sp(2k − 2) holonomy which admits (k, 0) Killing spinors.

3.2.1 Supersymmetry and extended objects

Remarkably, for γ = −1, the requirement of supersymmetry implies non compactness of

the transverse section Σ−1. This in turn means that only extended objects can have a

supersymmetric ground state.

Let us consider for example, the four-dimensional case, whose transverse section Σ−1
is a two-dimensional surface of negative constant curvature. If Σ−1 = H2, the metric (2.5)

describes a portion of AdS4 instead of a topological black hole [2, 3]. However, if one

considers a quotient of the form Σ−1 = H2/Γ, which is topologically a cylinder (R ×
S1), then the metric (1.1) with γ = −1 describes a warped black string which may, or

may not, possess a supersymmetric ground state, depending on Γ, as it is seen in the

following examples

◦ Non-supersymmetric “ground state”

Consider Σ−1 described by the metric,

dσ2−1 = dζ2 + cosh2 ζdϕ2 , (3.6)

with −∞ < ζ < ∞ and 0 < ϕ ≤ α, obtained by an identification on H2 along the boost

Γ = α∂φ. The solution of the Killing spinor equation (3.5) is given by

η = exp

(

−ζ
2
σ2

)

exp
(

−ϕ
2
σ3

)

η0 . (3.7)

– 8 –
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However, η is not globally defined because η(ζ, α) 6= ±η(ζ, 0), and therefore this space

admits no Killing spinors. For µ = 0 the spacetime is locally AdS and has an event horizon

at r+ = l. This solution is not supersymmetric and could decay by Hawking radiation to

a state with µ < 0. Cosmic censorship requires the ground state to be the solution with

µc = −l/3
√
3G, which is not supersymmetric either.

◦ Supersymmetric ground state

Consider Σ−1 to be the Poincaré upper half cylinder

dσ2−1 =
1

z2
(

dz2 + dϕ2
)

, (3.8)

with 0 < z < ∞ and 0 < ϕ ≤ α, which is obtained by wrapping H2 along the isometry

Γ = α∂ϕ. Then the solution of the Killing equation is

η(z, ϕ) = exp

(

− ln(z)

2
σ2

)

(

I − ϕ

2
σ3(I + σ2)

)

η0 . (3.9)

This is a globally defined spinor provided (I + σ2)η0 = 0. Thus, in four dimensions, the

line element

ds2 = −
(

r2/l2 − µ

r
− 1
)

dt2 +
dr2

(

r2/l2 − µ
r − 1

) +
r2

z2
(dz2 + dϕ2) , (3.10)

describes a warped black string of mass M = V2
µ
8π , where V2 is the area of the trans-

verse section.

For µ = 0 the metric (3.10) has an event horizon at r+ = l with temperature β = 2πl.

This suggests that it could evaporate decaying by Hawking radiation into states with

negative mass. The possibility of decay, however, would be in conflict with the fact that

the massless state is supersymmetric.

A supersymmetric ground state with metric (3.10) is given by

ds2 = − sinh2
(w

l

)

dt2 + dw2 + l2 cosh2
(w

l

) dz2 + dϕ2

z2
, (3.11)

with −∞ < w < ∞. This manifold M has negative constant curvature and is smooth

everywhere. It possesses a horizon at w = 0, where an Einstein-Rosen bridge is centered,

and its boundary is formed by two connected components, defined by w = ±∞, so that ∂M
is a manifold of negative scalar curvature. This does not contradict the no-go theorem for

wormholes in AdS of ref. [25], which states that a boundary with positive scalar curvature

must be connected.

In this scenario an observer sees a warped black string with µ > 0 decaying towards a

supersymmetric final state (3.11) preserving half of the supersymmetries of AdS4, generated

by the Killing spinors

ε = exp
(

−w
2l
Γ1

)

exp

(

t

2l
Γ1Γ0

)

η , (3.12)

with

η =

(

exp
(

− ln(z)2 σ2

)

ξ+

exp
(

ln(z)
2 σ2

)

ξ−

)

,
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where the constant two-dimensional spinors ξ± satisfy σ2ξ± = ±ξ±. This ground state can

be obtained from the exterior metric of (3.10) with µ = 0, r = l cosh(w/l), and thereafter

continuing w to negative values.

Warped black branes of higher dimensions, analogous to (3.10), can be readily found,

ds2 = −
(

r2/l2 − µ

rd−3
− 1
)

dt2 +
dr2

(

r2/l2 − µ
rd−3

− 1
) + r2dσ−1 , (3.13)

where the d− 2-dimensional transverse sections Σ−1 have metric

dσ2−1 =
1

z2
(dz2 + δijdx

idxj) , (3.14)

with 0 < z < ∞ and at least one of the xi’s is compact. The mass is given by M =

Vd−2
µ

2Ωd−2
where Ωd−2 is the volume of d − 2 sphere. The ground state is given by the

higher-dimensional version of metric (3.11) with transverse section (3.14). In this case, the

ground state preserves one half of the supersymmetries of AdSd, and the Killing spinors of

Σ−1 are

η± = exp

(

∓ ln(z)

2
γ2

)

ξ± , (3.15)

where (I ± γ2)ξ± = 0. This last condition comes from the periodicity in one of the xi’s.

Note that these Killing spinors depend only on z, and therefore the coordinates xi can be

further wrapped without breaking additional supersymmetries.7

3.3 Ricci flat transverse section

For γ = 0, the solution of the Killing spinor equation (2.6) reads

ε = exp

(

−Γ1
2

ln
(r

l

)

)(

1− t

l
P0

)

η , (3.16)

where η satisfies (d+ Â)η = 0. Here Â = 1
2 ω̂

mnJmn + êmPm, where Jmn and Pm generate

ISO(d − 2), and P0, Pm can be read from eq. (2.9). Due to the presence of the local

translation generators Pm, the spinor η does not necessarily satisfy the standard Killing

spinor equation,

dη +
1

4
ω̂mnγmnη = 0 . (3.17)

The consistency conditions, however, still require the transverse section Σ0 to be Ricci flat.

Moreover, the integration constant µ could be rescaled away in the metric (1.1) with γ = 0,

unless one of the coordinates of the transverse section y i is compact. In order to avoid this

7The Killing spinors of Hd−2, written in terms of Poincaré coordinates, are

η =

(

e−
1
2
ln(z)γ2

d−1
∏

i=3

(

1 −
1

2
xiγi(I + γ2)

)

)

η0.

For the transverse section (3.14) the compactness of a single xi implies the projection condition (I+γ2)η0 =

0, and additional wrappings along the other directions do not impose further constraints.
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ambiguity, transverse geometries with one wrapped direction, of the form Σ0 = S1 × Ξ,

shall be considered. The line element of Σ0 reads,

dσ20 = dφ2 + hij(x)dx
idxj , (3.18)

where hij is the metric of the (d − 3)-dimensional Ricci flat euclidean space Ξ, and φ

parametrizes S1. In this case, the solution of the Killing equation is given by

η =

(

1− 1

2
φΓ2P+

)

η̃(x) ,

where η̃(x) satisfies the standard Killing equation on Ξ. The periodicity condition implies

that P+η̃ = 0, which projects out half of the components of η, and thus, the spinor

η− = P−η satisfies

dη− +
1

4
ω̂mnγmnη− = 0 , (3.19)

where the representation Γ0 = iσy⊗I, Γ1 = σz⊗I, Γm = σx⊗γm has been used. In this way,

Killing spinors for the spacetime (2.5) with γ = 0 possess only one chirality. Now, since η =

η− solves eq. (3.19), the supersymmetric Ricci flat surfaces Ξ are classified [21], therefore,

black objects given by (1.1) with γ = 0, whose transverse sections have metric (3.18), pos-

sessing a supersymmetric ground state, can be classified according to the following theorem:

Theorem 3. Let M be a d-dimensional manifold of the form (1.1) with γ = 0, with

transverse section of the form Σ0 = S1 × Ξ, where Ξ is a simply connected, complete and

irreducible Ricci flat manifold. If M possesses a globally supersymmetric ground state,

then it can be either

(i) a d-dimensional black brane with Σ0 = S1 × Rd−3, whose ground state (µ = 0), is a

locally AdS spacetime admitting 2[(d−3)/2] Killing spinors,

(ii) a ten-dimensional black object, where Ξ is a seven-dimensional space with G2 holon-

omy admitting only one Killing spinor, or

(iii) an odd-dimensional black object with d ≥ 7, where the geometry, holonomy and cor-

responding maximal number of Killing spinors of Ξ are the same as those listed in

table 2.

In higher dimensions, the number of Killing spinors, as well as the geometry of Ξ can

be readily obtained from those in the previous section. Note that if Ξ is assumed to be

non-simply connected, then in the maximally supersymmetric case, where Σ0 = S1×R2n−3,
the remaining coordinates can be further wrapped, so that Σ0 = (S1)p+1 × R2n−3−p with

0 ≤ p ≤ 2n− 3, without breaking additional supersymmetries.

4. AdS Supergravity in eleven dimensions

It has been shown that standard eleven-dimensional supergravity [26] cannot accommodate

a cosmological constant [27], so it would be interesting to examine whether the supersym-

metric solutions discussed here make sense in eleven dimensions. It turns out that these
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solutions are BPS states of eleven-dimensional AdS supergravity [17, 28]. The field con-

tent of the N = 1 theory is the graviton eaµ, a gravitino ψµ, the spin connection ωabµ ,

and a bosonic 1-form babcdeµ which is an antisymmetric fifth-rank Lorentz tensor in tan-

gent space. These fields form a connection for the super AdS11 group, OSp(32|1), whose
algebra is expected to be the underlying M-Theory symmetry. The action describes a

gauge theory with a fiber bundle structure, and the lagrangian is a Chern-Simons den-

sity. The purely gravitational sector of the lagrangian contains a negative cosmological

constant and the Einstein-Hilbert term, plus some additional terms with higher powers of

the Riemann curvature, combined in such a way as to yield second order field equations

for the metric.

This theory possesses solutions of the form [9]

ds2 = −(γ + r2/l2 − (2Gµ)1/5)dt2 +
dr2

(γ + r2/l2 − (2Gµ)1/5)
+ r2dσ2γ , (4.1)

where the integration constant µ i related to the mass through µ = Ω9
V9
M + 1

2Gδ1,γ . These

configurations are left invariant under the supersymmetry transformation δψ = ∇ε, pro-
vided ε solve the same the Killing spinor equation as eq. (2.1) and, as a consequence, re-

quiring supersymmetry restricts the transverse section to be an Einstein manifold of scalar

curvature R̂ = 72γ. With this last condition, the metric (4.1) solves the field equations,

even though they are not those of Einstein’s theory.

The supersymmetric ground states correspond to the metric (4.1) with µ = 0, which

for d = 11 is the same as eq. (2.5), and therefore, the classification in eleven dimensions can

be obtained from the theorems above. If γ = 1, the transverse section can be either S 9 or

a Sasaki-Einstein manifold. If γ = −1, the transverse section is a negative scalar curvature

manifold of the form (3.9) with a subsection Ξ which can be either R8, hyperkähler, Calabi-

Yau, or a Parallel Spin7 manifold. Finally, if γ = 0 and the transverse section is Σ0 = S1×Ξ,
then the surface Ξ coincides with the previous case.

5. Discussion

Black objects of the form (1.1) possessing a supersymmetric ground state have been clas-

sified. These geometries necessarily have a constant curvature transverse section Σ, if the

spacetime dimension is less than seven. For d ≥ 7, the transverse section Σ can be also

any of the euclidean Einstein manifolds listed in tables 1 and 2. Since the existence of

manifolds with exceptional holonomy, even-dimensional spacetimes with a non-constant

curvature transverse section exist only for d = 8, being Σ a surface of positive scalar

curvature, and for d = 10, with Σ a non-positive scalar curvature manifold.

In odd dimensions, this classification goes beyond standard supergravity, in particular,

the eleven-dimensional case was analyzed in section 4.

As it occurs for conifold geometries one would expect that besides the mapping of

Killing spinors between a supersymmetric ground state and its transverse section, further

structures can be connected. Following this scheme, one would expect that other BPS

states as branes or product spaces can be classified.
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The spacetimes discussed here are asymptotically locally AdS, only when the trans-

verse section has constant curvature, such as the massless configuration (2.5) is a constant

curvature manifold. In this case, the curvature F = dA + A ∧ A vanishes, so that the

AdS connection A in eq. (2.2) can be expressed in terms of an element of SO(d − 1, 2) as

A = g−1dg. Hence, the Killing spinor equation is solved by

ε = g−1ε0 , (5.1)

where ε0 is a constant spinor, and the group element reads

g(t, r, ym) = T (ym)e
t
l
P0e

Γ1
2
ln(r/l+

√
γ+r2/l2) , (5.2)

with T (ym) satisfying

dT (ym) = T (ym)Âγ . (5.3)

Here Â is a flat connection for the transverse section, which means that the Killing spinors

of Σ are given by η = T−1ε0. In the case γ = −1, the temperature, β = 2πl, can be found

either by demanding regularity of the euclidean solution at the horizon or by demanding

the holonomy of A to be trivial, that is g−1(β, r, y)g(0, r, y) = 1, where g(τ, r, y) is obtained

from eq. (5.2) by a Wick rotation. Killing spinors for other locally AdS spacetimes have

been discussed also [29]–[32].

For γ = −1 the requirement of global supersymmetry implies that only extended ob-

jects can have a supersymmetric ground state. An explicit example resembling a wormhole

was constructed (see eqs. (3.10), (3.11), and (3.13)), which is a supersymmetric state with

non-vanishing temperature as it occurs for some BPS branes in ref. [33].

If the transverse section were a Ricci flat manifold which differs from Σ0 = S1 × Ξ,

the classification deals with a different problem. In that case, for γ = 0, eq. (2.7) on the

transverse section does not reduce in general to the standard Killing spinor equation. In

fact, using the representation Γ0 = iσy⊗I, Γ1 = σz⊗I, Γm = σx⊗γm, the spinors η± = P±η

satisfy

dη+ +
1

4
ω̂mnγmnη+ = 0 , (5.4)

and

dη− +
1

4
ω̂mnγmnη− =

1

2
γmê

mη+ . (5.5)

The solutions for η− can be trivially written in terms of η+. Indeed, the consistency

condition for eq. (5.5) gives the same information as eq. (5.4), i.e. Σ0 must be Ricci flat.

However, equation (5.5) may be incompatible with some of the global properties of Σ0, and

hence it would in general restrict the possible spaces where eq. (5.4) has a global solution.
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