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ABSTRACT: The classical pure spinor version of the heterotic superstring in a supergravity
and super Yang-Mills background is considered. We obtain the BRST transformations
of the world-sheet fields. They are consistent with the constraints obtained from the
nilpotence of the BSRT charge and the holomorphicity of the BRST current.

KeEYwoORDS: [Conformal Field Models in String Theory, Superstrings and Heterotid
Stringd.

© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep072006019 /jhep072006019 .pdf


mailto:ochandia@unab.cl
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch

Contents

. Introduction

=

~

2. The pure spinor approach to the heterotic superstring

1\Wv]

B. BRST transformations of the world-sheet fields

B.] Nilpotency
B3 BRST transformation of the superspace translations generator

& =

@. BRST variation of the action-

1. Introduction

A covariant formalism of the superstring was formulated six years ago by Berkovits [].
Since then, this formalism has passed many tests which include the calculation of tree-
level [P and higher loops [J] scattering amplitudes. It was also proven that the formalism
describes correctly the superstring degrees of freedom, in fact the superstring spectrum
was determined in the light-cone gauge [[] and in [f] it was constructed the first massive
state in terms of a manifestly ten dimensional supercovariant language. Recently, Berkovits
realized that his formalism admits a more geometrical origin by discovering a topological
formulation [f].

The formalism can be adapted to describe strings in curved backgrounds including
those with Ramond-Ramond fluxes like anti de Sitter spaces [[f]. There, quantum conformal
invariance [f] and quantum BRST invariance [f]] have been verified.

Berkovits and Howe constructed the sigma model action suitable to describe ten di-
mensional supergravity backgrounds [[[(] (see also [[1]]). The sigma model action is the
most general classically conformal invariant compatible with the isometries of the back-
ground. The classical BRST invariance of the model implies that the background fields
are constrained to satisfy the ten dimensional supergravity equations of motion. In [[J] it
was shown that the conformal invariance is preserved in the quantum regime at the one-
loop level if the background is constrained by classical BRST invariance. The next logical
step is to preserve quantum BRST invariance to obtain o/-corrections in the supergravity
equations of motion. In this calculation it will be useful to determine how the world-sheet
fields transform under classical BRST transformations. The purpose of this paper is to
determine such transformations.

In the next section we review the sigma model action for the heterotic string in the
pure spinor formalism. In section ] we derive the classical BRST transformations of the



world-sheet fields.! In the final section we find consistency with the constraints of [[L{]
derived from the nilpotence of the BRST charge and the holomorphicity of the BRST
current.

2. The pure spinor approach to the heterotic superstring

Let us remind the sigma model action for the heterotic string in a background supporting
gauge and gravitational fields, it is given by

1

2ra

S =

1. 1 e _
/ 42z {inanbnab + §HAHBBBA LA Apa
o (T + T WE) + M ws (M Qe + T U) | + S5+ S + Ser, (2.1)

where T4 = 8ZMEMA,ﬁA = 0ZMEyA with Ey? being the supervielbein, ZM =
(™, 0"); m =0,...,9, u=1,...,16 the superspace coordinates, d, the world-sheet gen-
erator of superspace translations. S5 is the action for the gauge group variables, Sy ., is
the action for the pure spinor variables (\,w)? and Sgr is the Fradkin-Tseytlin which is
proportional to [ d?zr®, where r is the world-sheet curvature and the -independent term
of the superfield @ is the dilaton. This term is not necessary when we study the classical
dynamics of the system. However, it helps to restore the quantum conformal invariance
as it was shown in [[J]. The other background fields in (R.1]) are the 2-form superfield
B, the gauge field Ay, the superfields W7 (whose lowest component is the gaugino), U 10"
(whose lowest component is related to the gauge field strength) and Q4,° is the Lorentz
connection.

The action (2.])) has two local Lorentz transformations. One rotates the spinor indices
as oAY = )\5250‘ and the other rotates the vector indices as 6II* = II°A;®. At the end
of the day, both Lorentz transformations turn out to be identified, namely tr(y%) is
proportional to A®’. The action is also invariant under gauge transformations of the gauge
group SO(32) or Eg x Eg.

The quantization of the system given by (R.1]) is performed by studying the cohomology
of the BRST operator Qgrst = f JBRST = f \%,. As it was demonstrated in [[[(], the
constraints on the backgrounds fields of the ten dimensional SUGRA/SYM system are
implied by the nilpotence of the BRST charge and the holomorphicity of the BRST current.
Let us reobtain this result in slightly different manner. We first determine how the world-
sheet fields are transformed by the action of Qprst. In order to do this, we define the

canonical conjugate to ZM as

0S5
Py = 27d)———— 2.2
v = (2r0) g (22)
1 — 1 — —
= —Enda + 5 (s + L) Ey® — 5(I1 - T Ban + 7' Ay + A wsQra?,

!These transformations are also obtained in [E]

2Since the pure spinor A is constrained to satisfy Ay*A = 0, its canonical conjugate w is defined up
t0 dwa = (Y*A)alq for a parameter A. Then, A®wg can only be expressed in terms of the ghost number
current J = A*w, and the generator for pure spinors Lorentz rotations N = %()«y“bw).



where Jy is respect to the world-sheet time ¢°. In this way we can relate Py to the

world-sheet field d,. We also use the canonical commutation relations
—=I —=J =K
[PMaZN] :_5]J\V/[’ [)‘a’wﬁ]:(;%’ [J oo ] :fIJKJ s (23)
where f’s are structure constants of the gauge group. Note that these commutations
relations are done at equal world-sheet times and that there is a delta function 6(c! — o'!)
in the r.h.s. of each.
As it was shown in [I(]], the nilpotence of @prsT can be computed after writing d,, in
terms of the canonical variables and using the canonical commutations relations of (R.3).

The holomorphicity of jgrst is determined from the equations of motion derived from the
action (R.1)). In these ways, the background fields satisfy the nilpotence constraints

ANT, 54 = XN Hopa = AN Fros = AN ATR,5,° = 0, (2.4)
and the holomorphicity constraints
Totaty = Hoav = Taa” = XN Ruas” = Tupa — Hopa = Fraa — W} Taga = 0, (2.5)
Frap — %Haﬁywi = Vo WP + WITo? — U = NN (VoUrs" + Rsag?W}) =0,

where T, R, H and F' are the torsion, the Lorentz curvature, the gauge field strength and
the three-from curvature of the two-form B. In [[L(] it was proved that these constraints put
the background fields on-shell, that they satisfy the N=1 D=10 SUGRA/SYM equations
of motion.

3. BRST transformations of the world-sheet fields

We define the BRST transformation of a field ¥ as g0 = [§ eA*d,,, ¥], where € is a constant
Grassmann number and the Poisson bracket is calculated from the canonical commutation
relations of (R.3). To do this, we need to express the world-sheet field d,, in terms of the
Pyr and the other world-sheet fields. From the definition (2.3) one obtains

1 _ _
dy = —EMPy — 5(HA TN Baa + T Arg + M Qug”. (3.1)

Now it will be shown that g = 6, + 8, where 04 refers to the gauge transformation
with parameter —eA“Aj, and a Lorentz transformation with parameter —e\7(1,3%.
Consider first the pure spinor A*. We obtain

35X = § 4N (@) lda(0) (0] = f N (0002, (s, X (0)
= )\ﬁ(—e)\ﬂfﬁvga),

which corresponds to a Lorentz rotation of the pure spinor A* with parameter —e\7(1,3%.

Consider now the conjugate pure spinor w,. Its BRST variation becomes
Spa = 7{ do’ NP5 (0"), wa(0)] = 7{ do’ e\ (0")d3(0"), wa(0)] + €N (0"), wal)]ds(”)
= —(—eN’Qp Y )wy + €da,

where the first term is a Lorentz rotation.



Consider now the BRST variation of the gauge current T 1t is given by

opT = f do'eX* (o) [da(0"), T (0)] = 17 ke (—eX* Aga) T,

which is a gauge transformation in the adjoint representation with —eA*Aj;, as gauge
parameter.

Now we consider the BRST transformation of II*. To obtain them we note that
SZM = eN*E,M | then

5pI1* = 0p(0ZM Ep) = 0(6pZM Exi?) — 052 02Ny Enn®,
if we use the definition of the torsion, then we have
SpITA = A(eA¥64) + eXTTA0 44 — X TIP T, — eA TP Q54 (—1)5.
Therefore,
opII* = II"(—eA*Qep”) — eX®TIP T, ", 0pI* = TIP(—eX7Q5%) + V(eA®) — NTIP T4,
(3.2)

where the first term in each transformation corresponds to a Lorentz rotation and V(eA®) =
I(eNY) + eNPTIAQ 45, We obtain analogous transformations for o,

The BRST transformation of any background superfield is given by dp¥ = eA“0, V.
It can be shown that this expression can also be written as a gauge transformation for

plus a term which depends on the covariant derivative of the superfield. For example, for
the superfield W7 one obtains

SpW = WP (=N 5%) — fIR (=N As) W + NPV, (3.3)

where the first term is Lorentz rotation of W' and the second is a gauge transformation
of Wi
3.1 Nilpotency

Now it will be shown that 5]23 acting on the world-sheet fields leads to the nilpotence
constraints of (P-4). Consider ZM first

0572M = 5p(e N E,M) = 610N EM + el X0 B = e1eaX® N (= Qo B, M — 95 E,M),
by symmetrizing in («3) we form the torsion TaﬁAE 'AM . Therefore we obtain the constraint
)\O‘)\ﬁTaﬁA =0.

Similarly, we compute 5]23)\0‘

SENY = 65 (—a NNTQ5%) = —e1 2N NN (9505 — Q5,7 Vo™ — Q167 Qos®),

after symmetrizing in (5v6) we form the curvature components Rs,g%, then we obtain the
constraint \? AV)\‘SRMBO‘ = 0.



. =74
Now we consider the gauge current J

537 = p(—er fIT kA Agod ) = —e1ea N F1 1 T (054 10 — Qg Ayy)
terexX N 1 g (R A e Agd

if we symmetrize in (af) and use the fact that the structure constants are the group
generators in the adjoint representation, then we can form the field-strength Fp,g and we
obtain the constraint A*\°F 7op = 0. It remains to check the nilpotence constraint for the
superfield H. For this we need to transform d, under the pure spinor BRST charge.

3.2 BRST transformation of the superspace translations generator

Now we consider the world-sheet field d,. Its BRST variation is given by

0pda = f e(=\(0"), da(0)]ds(0") + X (0")[d(0"), da(0)])
= —eNQy,Pds + ]é do’eN? (o) [dg(0"), da(0)],

the first term here is not a Lorentz rotation as it was promised. The Lorentz rotation
term will appear after the computation of the second term. To do this, we remind the
relation between d, and the remaining world-sheet field (B.1]). The more difficult brackets
to compute are those coming from the first terms in (B.1)). It is due to the fact that there will
appear some part integrations to get the right result. After doing the other commutators
we obtain

f{ do’ e\ (o) [dg(0"), dn(0)] = X’ [—(EgM(?MEaN + E, M0y EgN) Py

+7I(8(GA15) + fJK[AJBAKa)
+N w500, + 5" — Qap5)]

+ 7{ do'eX? (o) ([EgMPM(J'), 02" Bya(0)]
+[EM Par(0), 012 Bya(o')]).
Let us consider the last integral. After doing the commutators we get it is equal to
% (—EﬁMalzNaMBNa(—UMN - EaMﬁlZN(?MBNg(—l)MN>
- 7{ X’ (o) (EgM(U')BMa(U)£6(J —d)+ EaM(O')BMﬁ(O'/)%(;(O' - O'/)> ,
after integration on ¢’ we obtain that this expression becomes

A (01 ZM EgM 0y Ban + 012Y EoM 0y Ba)
+e(—(alAﬁ)Bﬁa — N (OEGM)Bara + (0NP) Bag + NP ELM 8, BMB) _
= EAB((—l)M+1E5MEaP8[pEM]AalzNBNA + 31ZNHBQN),



where H stands for the components of the three-form field strength of the two-form super-
field B, that is, H = dB. Adding up all the contributions we obtain

j{da'e[)\ﬁdﬁ(a/),da(a)] = N | (~)MEZMEL 0 p By (BaN Py + 012" By a)

+0ZN Hgan + 71(3(az415) + f7R 1 AspAK)

+Xws (0201, + Qp’ Qo — 23" Q) |-
After using

OwArp) + [ 5 1A1sAKa = Frpa — ()M EME O pEry® Ara,
8(6QOM(S + Qﬁpégmp - Qﬁvaapé = Rﬁawé - (—1)M+1EBMEQP6[PEM}AQAW(S’

(with F' is the gauge field-strength , R is the Lorentz curvature) and reminding the defini-
tion (R.2) we arrive to the BRST transformation of the world-sheet field d,, to be

1 _
0pda = —eX'Q0Pdg + X (~ )M EM B, PO p Byt <§(Ha +11a)6% — 5de>
+eN? <31ZNHBaN + 7IFIﬁa + )\VWJRBM(S) J

we recall that the combination of supervielbein appearing in the second term above is
related to the torsion we finally obtain

0pde = —(—eN' Q0P ds + eXNVdgTh0” + NN wsRap, + eN T T p0a, (3.4)

where we recognize a Lorentz rotation in the first term. Here we need that Fr,g = Hngy =
H,pq — Thpa = 0 which are consistent with the constrains derived in ] In this way the
nilpotence constraint for H in (R.4) are satisfied.

In summary, we have proved that the BRST transformations contain a term which
corresponds to a gauge and/or Lorentz transformation with field dependent parameters.

4. BRST variation of the action-

As a check we will vary the action (B.I]) under the transformations we derived above to
derive the holomorphic constraints of (R.§). Before this, let us compute the transformation
of the gauge connection A; = T4 A; 4 and that of the Lorentz connection Q,° = 140 4,°
and after that we can deduce analogous transformations for A; = ﬁAAIA and Q,° =
ﬁAQ 4. These transformations are similar to those of HA, the difference is that the
result does not contain the torsion but the corresponding curvature. That is, for A; it will
appear the field strength F and for Q,° it will appear the curvature R. The result is

SpA; = —V(—=eAYA1a) — AT Fra, 0807 = —V(—eNQ,07) — NI R A,
(4.1)

where we recognize the gauge and Lorentz rotation parts in each transformation.



Since the action is invariant under gauge and Lorentz rotations, we do not need to
include that gauge and Lorentz parts in the BRST transformations of the fields appearing
in (R.1). Up to gauge and Lorentz transformations the different terms in (R.1]) transform
in the following way. The variation of the first term is proportional to

/dQZe)\O‘H(Aﬁa)TAaa.
The variation of the second term of the action is proportional to
/ 22 NTIATTY Hpag,

. . . = —A =
here we have performed integrations by parts and the identity VII4 —VII™ = 18 HCTC 54
The variation of the third term is proportional to

/ A2z — ATIT Flaq.

The variation of the fourth term of the action is proportional to

/ @ze [da VN = AT T + AN, T Ry + AT T + ATl T
The variation of the fifth term is

/ @26 [NdgT Tor "W} + AN, T' Ry " W7 + XTIT T5a W] = X VoW |
The variation of the sixth term plus the Sy, is

/ dze [da VA = XN, T Ragg? |
The variation of the seventh term is
/ dze |\dgT Uro® + XNw T VU]

And the variation of S5 is zero up to gauge transformation.
After summing up all the contributions, we note that the terms involving VA% and T
are zero. Finally the variation of the action becomes

1
2ma/

1 — 1 —a —=a
oS = / d?ze [§AO‘HGH”(Ta(ab) + Hyao) + §AQH5H (Hpaa — Thaa) + XN0daTT Toy”
NN, T Ry + ATIT ( & ;
_ Wy aaf + A1 §(Ha6a+Ta6a)W] — Froa | +
/1 _
AP T <§HQMW] - F[a5> + 25T (Ura® + T W] = Va7
o —I
AN T (Valig? + Rgaﬁ'vwf)]. (4.2)

Therefore, the condition §5S = 0 determines the classical constraints (R.5) on the back-
ground superfields.
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