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1. Introduction

A covariant formalism of the superstring was formulated six years ago by Berkovits [1].

Since then, this formalism has passed many tests which include the calculation of tree-

level [2] and higher loops [3] scattering amplitudes. It was also proven that the formalism

describes correctly the superstring degrees of freedom, in fact the superstring spectrum

was determined in the light-cone gauge [4] and in [5] it was constructed the first massive

state in terms of a manifestly ten dimensional supercovariant language. Recently, Berkovits

realized that his formalism admits a more geometrical origin by discovering a topological

formulation [6].

The formalism can be adapted to describe strings in curved backgrounds including

those with Ramond-Ramond fluxes like anti de Sitter spaces [7]. There, quantum conformal

invariance [8] and quantum BRST invariance [9] have been verified.

Berkovits and Howe constructed the sigma model action suitable to describe ten di-

mensional supergravity backgrounds [10] (see also [11]). The sigma model action is the

most general classically conformal invariant compatible with the isometries of the back-

ground. The classical BRST invariance of the model implies that the background fields

are constrained to satisfy the ten dimensional supergravity equations of motion. In [12] it

was shown that the conformal invariance is preserved in the quantum regime at the one-

loop level if the background is constrained by classical BRST invariance. The next logical

step is to preserve quantum BRST invariance to obtain α′-corrections in the supergravity

equations of motion. In this calculation it will be useful to determine how the world-sheet

fields transform under classical BRST transformations. The purpose of this paper is to

determine such transformations.

In the next section we review the sigma model action for the heterotic string in the

pure spinor formalism. In section 3 we derive the classical BRST transformations of the
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world-sheet fields.1 In the final section we find consistency with the constraints of [10]

derived from the nilpotence of the BRST charge and the holomorphicity of the BRST

current.

2. The pure spinor approach to the heterotic superstring

Let us remind the sigma model action for the heterotic string in a background supporting

gauge and gravitational fields, it is given by

S =
1

2πα′

∫

d2z

[

1

2
ΠaΠ

b
ηab +

1

2
ΠAΠ

B
BBA + ΠAJ

I
AIA

+dα(Π
α

+ J
I
W α

I ) + λαωβ(Π
A
ΩAα

β + J
I
UIα

β)

]

+ SJ + Sλ,ω + SFT , (2.1)

where ΠA = ∂ZMEM
A,Π

A
= ∂ZMEM

A with EM
A being the supervielbein, ZM =

(xm, θµ); m = 0, . . . , 9, µ = 1, . . . , 16 the superspace coordinates, dα the world-sheet gen-

erator of superspace translations. SJ is the action for the gauge group variables, Sλ,ω is

the action for the pure spinor variables (λ, ω)2 and SFT is the Fradkin-Tseytlin which is

proportional to
∫

d2zrΦ, where r is the world-sheet curvature and the θ-independent term

of the superfield Φ is the dilaton. This term is not necessary when we study the classical

dynamics of the system. However, it helps to restore the quantum conformal invariance

as it was shown in [12]. The other background fields in (2.1) are the 2-form superfield

B, the gauge field AI , the superfields W α
I (whose lowest component is the gaugino), UIα

β

(whose lowest component is related to the gauge field strength) and ΩAα
β is the Lorentz

connection.

The action (2.1) has two local Lorentz transformations. One rotates the spinor indices

as δλα = λβΣβ
α and the other rotates the vector indices as δΠa = ΠbΛb

a. At the end

of the day, both Lorentz transformations turn out to be identified, namely tr(γabΣ) is

proportional to Λab. The action is also invariant under gauge transformations of the gauge

group SO(32) or E8 × E8.

The quantization of the system given by (2.1) is performed by studying the cohomology

of the BRST operator QBRST =
∮

jBRST =
∮

λαdα. As it was demonstrated in [10], the

constraints on the backgrounds fields of the ten dimensional SUGRA/SYM system are

implied by the nilpotence of the BRST charge and the holomorphicity of the BRST current.

Let us reobtain this result in slightly different manner. We first determine how the world-

sheet fields are transformed by the action of QBRST. In order to do this, we define the

canonical conjugate to ZM as

PM = (2πα′)
δS

δ(∂0ZM )
(2.2)

= −EM
αdα +

1

2
(Πa + Πa)EM

a
−

1

2
(ΠA

− Π
A
)BAM + J

I
AIM + λαωβΩMα

β,

1These transformations are also obtained in [13].
2Since the pure spinor λ is constrained to satisfy λγaλ = 0, its canonical conjugate ω is defined up

to δωα = (γaλ)αΛa for a parameter Λ. Then, λαωβ can only be expressed in terms of the ghost number

current J = λαωα and the generator for pure spinors Lorentz rotations Nab = 1

2
(λγabω).

– 2 –
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where ∂0 is respect to the world-sheet time σ0. In this way we can relate PM to the

world-sheet field dα. We also use the canonical commutation relations

[PM , ZN ] = −δN
M , [λα, ωβ] = δα

β , [J
I
, J

J
] = f IJ

KJ
K

, (2.3)

where f ’s are structure constants of the gauge group. Note that these commutations

relations are done at equal world-sheet times and that there is a delta function δ(σ1
− σ′1)

in the r.h.s. of each.

As it was shown in [10], the nilpotence of QBRST can be computed after writing dα in

terms of the canonical variables and using the canonical commutations relations of (2.3).

The holomorphicity of jBRST is determined from the equations of motion derived from the

action (2.1). In these ways, the background fields satisfy the nilpotence constraints

λαλβTαβ
A = λαλβHαβA = λαλβFIαβ = λαλβλγRαβγ

δ = 0, (2.4)

and the holomorphicity constraints

Tα(ab) = Hαab = Taα
β = λαλβRaαβ

γ = Tαβa − Hαβa = FIaα − W
β
I Tαβa = 0, (2.5)

FIαβ −
1

2
HαβγW

γ
I = ∇αW

β
I + W

γ
I Tγα

β
− UIα

β = λαλβ(∇αUIβ
γ + Rδαβ

γW δ
I ) = 0,

where T,R,H and F are the torsion, the Lorentz curvature, the gauge field strength and

the three-from curvature of the two-form B. In [10] it was proved that these constraints put

the background fields on-shell, that they satisfy the N=1 D=10 SUGRA/SYM equations

of motion.

3. BRST transformations of the world-sheet fields

We define the BRST transformation of a field Ψ as δBΨ = [
∮

ελαdα,Ψ], where ε is a constant

Grassmann number and the Poisson bracket is calculated from the canonical commutation

relations of (2.3). To do this, we need to express the world-sheet field dα in terms of the

PM and the other world-sheet fields. From the definition (2.2) one obtains

dα = −Eα
MPM −

1

2
(ΠA

− Π
A
)BAα + J

I
AIα + λβωγΩαβ

γ . (3.1)

Now it will be shown that δB = δg + δ̃, where δg refers to the gauge transformation

with parameter −ελαAIα and a Lorentz transformation with parameter −ελγΩγβ
α.

Consider first the pure spinor λα. We obtain

δBλα =

∮

dσ′ελβ(σ′)[dβ(σ′), λα(σ)] =

∮

dσ′ελβ(σ′)λγ(σ′)Ωβγ
δ(σ′)[ωδ(σ

′), λα(σ)]

= λβ(−ελγΩγβ
α),

which corresponds to a Lorentz rotation of the pure spinor λα with parameter −ελγΩγβ
α.

Consider now the conjugate pure spinor ωα. Its BRST variation becomes

δBωα =

∮

dσ′ε[λβdβ(σ′), ωα(σ)] =

∮

dσ′ελβ(σ′)[dβ(σ′), ωα(σ)] + ε[λβ(σ′), ωα(σ)]dβ(σ′)

= −(−ελβΩβα
γ)ωγ + εdα,

where the first term is a Lorentz rotation.

– 3 –
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Consider now the BRST variation of the gauge current J
I
. It is given by

δBJ
I

=

∮

dσ′ελα(σ′)[dα(σ′), J
I
(σ)] = f IJ

K(−ελαAJα)J
K

,

which is a gauge transformation in the adjoint representation with −ελαAJα as gauge

parameter.

Now we consider the BRST transformation of ΠA. To obtain them we note that

δBZM = ελαEα
M , then

δBΠA = δB(∂ZMEM
A) = ∂(δBZMEM

A) − δBZM∂ZN∂[NEM ]
A,

if we use the definition of the torsion, then we have

δBΠA = ∂(ελαδA
α ) + ελαΠAΩAα

A
− ελαΠBTBα

A
− ελαΠBΩαB

A(−1)B .

Therefore,

δBΠa = Πb(−ελαΩαb
a)− ελαΠBTBα

a, δBΠα = Πβ(−ελγΩγβ
α)+∇(ελα)−λβΠBTBβ

α,

(3.2)

where the first term in each transformation corresponds to a Lorentz rotation and ∇(ελα) =

∂(ελα) + ελβΠAΩAβ
α. We obtain analogous transformations for Π

A
.

The BRST transformation of any background superfield is given by δBΨ = ελα∂αΨ.

It can be shown that this expression can also be written as a gauge transformation for ψ

plus a term which depends on the covariant derivative of the superfield. For example, for

the superfield W α
I one obtains

δBW α
I = W

β
I (−ελγΩγβ

α) − fJK
I(−ελβAJα)W α

K + ελβ
∇βW α

I , (3.3)

where the first term is Lorentz rotation of W α
I and the second is a gauge transformation

of W α
I .

3.1 Nilpotency

Now it will be shown that δ2
B acting on the world-sheet fields leads to the nilpotence

constraints of (2.4). Consider ZM first

δ2
BZM = δB(ε1λ

αEα
M ) = ε1(δBλα)Ea

M + ε1λ
αδBEα

M = ε1ε2λ
αλb(−Ωαβ

γEγ
M

− ∂βEα
M ),

by symmetrizing in (αβ) we form the torsion Tαβ
AEA

M . Therefore we obtain the constraint

λαλβTαβ
A = 0.

Similarly, we compute δ2
Bλα

δ2
Bλα = δB(−ε1λ

βλγΩγβ
α) = −ε1ε2λ

βλγλδ(∂δΩγβ
α
− Ωβγ

σΩδσ
α
− Ωγδ

σΩσβ
α),

after symmetrizing in (βγδ) we form the curvature components Rδγβ
α, then we obtain the

constraint λβλγλδRδγβ
α = 0.

– 4 –
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Now we consider the gauge current J
I

δ2
BJ

I
= δB(−ε1f

IJ
KλαAJαJ

K
) = −ε1ε2λ

αλβf IJ
KJ

K
(∂βAJα − Ωαβ

γAJγ)

+ε1ε2λ
αλβf IJ

KfKL
MAJαALβJ

M
,

if we symmetrize in (αβ) and use the fact that the structure constants are the group

generators in the adjoint representation, then we can form the field-strength FIαβ and we

obtain the constraint λαλβFIαβ = 0. It remains to check the nilpotence constraint for the

superfield H. For this we need to transform dα under the pure spinor BRST charge.

3.2 BRST transformation of the superspace translations generator

Now we consider the world-sheet field dα. Its BRST variation is given by

δBdα =

∮

ε(−[λβ(σ′), dα(σ)]dβ(σ′) + λβ(σ′)[dβ(σ′), dα(σ)])

= −ελγΩαγ
βdβ +

∮

dσ′ελβ(σ′)[dβ(σ′), dα(σ)],

the first term here is not a Lorentz rotation as it was promised. The Lorentz rotation

term will appear after the computation of the second term. To do this, we remind the

relation between dα and the remaining world-sheet field (3.1). The more difficult brackets

to compute are those coming from the first terms in (3.1). It is due to the fact that there will

appear some part integrations to get the right result. After doing the other commutators

we obtain
∮

dσ′ελβ(σ′)[dβ(σ′), dα(σ)] = ελβ
[

−(Eβ
M∂MEα

N + Eα
M∂MEβ

N )PN

+J
I
(∂(αAIβ) + fJK

IAJβAKα)

+λγωδ(∂(αΩβ)γ
δ + Ωβρ

δΩαγ
ρ
− Ωβγ

ρΩαρ
δ)

]

+

∮

dσ′ελβ(σ′)
(

[Eβ
MPM (σ′), ∂1Z

NBNα(σ)]

+[Eα
MPM (σ), ∂1Z

NBNβ(σ′)]
)

.

Let us consider the last integral. After doing the commutators we get it is equal to

ελβ
(

−Eβ
M∂1Z

N∂MBNα(−1)MN
− Eα

M∂1Z
N∂MBNβ(−1)MN

)

−

∮

ελβ(σ′)

(

Eβ
M (σ′)BMα(σ)

∂

∂σ
δ(σ − σ′) + Eα

M(σ)BMβ(σ′)
∂

∂σ′
δ(σ − σ′)

)

,

after integration on σ′ we obtain that this expression becomes

ελα(∂1Z
MEβ

M∂MBαN + ∂1Z
MEα

M∂MBβN )

+ε
(

−(∂1λ
β)Bβα − λβ(∂1Eβ

M )BMα + (∂1λ
β)Bαβ + λβEα

M∂1BMβ

)

=

= ελβ((−1)M+1Eβ
MEα

P ∂[P EM ]
A∂1Z

NBNA + ∂1Z
NHβαN ),

– 5 –
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where H stands for the components of the three-form field strength of the two-form super-

field B, that is, H = dB. Adding up all the contributions we obtain

∮

dσ′ε[λβdβ(σ′), dα(σ)] = ελβ
[

(−1)M+1Eβ
MEα

P ∂[P EM ]
A(EA

NPN + ∂1Z
NBNA)

+∂1Z
NHβαN + J

I
(∂(αAIβ) + fJK

IAJβAKα)

+λγωδ(∂(βΩα)γ
δ + Ωβρ

δΩαγ
ρ
− Ωβγ

ρΩαρ
δ)

]

.

After using

∂(αAIβ) + fJK
IAJβAKα = FIβα − (−1)M+1Eβ

MEα
P ∂[P EM ]

AAIA,

∂(βΩα)γ
δ + Ωβρ

δΩαγ
ρ
− Ωβγ

ρΩαρ
δ = Rβαγ

δ
− (−1)M+1Eβ

MEα
P ∂[P EM ]

AΩAγ
δ,

(with F is the gauge field-strength , R is the Lorentz curvature) and reminding the defini-

tion (2.2) we arrive to the BRST transformation of the world-sheet field dα to be

δBdα = −ελγΩαγ
βdβ + ελβ(−1)M+1Eβ

MEα
P ∂[P EM ]

A

(

1

2
(Πa + Πa)δ

a
A − δ

γ
Adγ

)

+ελβ
(

∂1Z
NHβαN + J

I
FIβα + λγωδRβαγ

δ
)

,

we recall that the combination of supervielbein appearing in the second term above is

related to the torsion we finally obtain

δBdα = −(−ελγΩγα
β)dβ + ελγdβTγα

β + ελβλγωδRαβγ
δ + ελβΠaTβαa, (3.4)

where we recognize a Lorentz rotation in the first term. Here we need that FIαβ = Hαβγ =

Hαβa − Tαβa = 0 which are consistent with the constrains derived in [10]. In this way the

nilpotence constraint for H in (2.4) are satisfied.

In summary, we have proved that the BRST transformations contain a term which

corresponds to a gauge and/or Lorentz transformation with field dependent parameters.

4. BRST variation of the action-

As a check we will vary the action (2.1) under the transformations we derived above to

derive the holomorphic constraints of (2.5). Before this, let us compute the transformation

of the gauge connection AI = ΠAAIA and that of the Lorentz connection Ωα
β = ΠAΩAα

β

and after that we can deduce analogous transformations for AI = Π
A
AIA and Ωα

β =

Π
A
ΩAα

β. These transformations are similar to those of ΠA, the difference is that the

result does not contain the torsion but the corresponding curvature. That is, for AI it will

appear the field strength F and for Ωα
β it will appear the curvature R. The result is

δBAI = −∇(−ελαAIα) − ελαΠAFIAα, δBΩα
β = −∇(−ελγΩγα

β) − ελγΠARAγα
β,

(4.1)

where we recognize the gauge and Lorentz rotation parts in each transformation.

– 6 –
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Since the action is invariant under gauge and Lorentz rotations, we do not need to

include that gauge and Lorentz parts in the BRST transformations of the fields appearing

in (2.1). Up to gauge and Lorentz transformations the different terms in (2.1) transform

in the following way. The variation of the first term is proportional to
∫

d2zελαΠ(AΠ
a)

TAαa.

The variation of the second term of the action is proportional to
∫

d2zελαΠAΠ
B

HBAα,

here we have performed integrations by parts and the identity ∇ΠA
−∇Π

A
= ΠBΠ

C
TCB

A.

The variation of the third term is proportional to
∫

d2z − ελαΠAJ
I
FIAα.

The variation of the fourth term of the action is proportional to
∫

d2zε
[

−dα∇λα
− λαdβΠ

γ
Tαγ

β + λαλβωγΠ
δ
Rαδβ

γ + λαΠaΠ
β
Tαβa + λαdβΠ

A
TAα

β
]

.

The variation of the fifth term is
∫

d2zε
[

λαdβJ
I
Tαγ

βW
γ
I + λαλβωγJ

I
Rδαβ

γW δ
I + λαΠaJ

I
TαβaW

β
I − λαdβJ

I
∇αW

β
I

]

.

The variation of the sixth term plus the Sλ,ω is
∫

d2zε
[

dα∇λa
− λαλβωγΠ

A
RAαβ

γ
]

.

The variation of the seventh term is
∫

d2zε
[

λαdβJ
I
UIα

β + λαλβωγJ
I
∇αUIβ

γ
]

.

And the variation of SJ is zero up to gauge transformation.

After summing up all the contributions, we note that the terms involving ∇λα and Π
α

are zero. Finally the variation of the action becomes

δBS =
1

2πα′

∫

d2zε

[

1

2
λαΠaΠ

b
(Tα(ab) + Hbaα) +

1

2
λαΠβΠ

a
(Hβαa − Tβαa) + λαdβΠ

a
Taα

β

−λαλβωγΠ
a
Raαβ

γ + λαΠaJ
I
(

1

2
(Hαβa + Tαβa)W

β
I − FIaα

)

+

λαΠβJ
I
(

1

2
HαβγW

γ
I − FIαβ

)

+ λαdβJ
I
(

UIα
β + Tαγ

βW
γ
I −∇αW

β
I

)

+λαλβωγJ
I
(

∇αUIβ
γ + Rδαβ

γW δ
I

)

]

. (4.2)

Therefore, the condition δBS = 0 determines the classical constraints (2.5) on the back-

ground superfields.
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