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Abstract

Knowledge of the mechanism of neutrino mass generation would help understand a lot more about Lep-
ton Number Violation (LNV), the cosmological evolution of the Universe, or the evolution of astronomical 
objects. Here we propose a verifiable and viable extension of the Standard model for neutrino mass gen-
eration, with a low-scale seesaw mechanism via LNV condensation in the sector of sterile neutrinos. To 
prove the concept, we analyze a simplified model of just a single family of elementary particles and check 
it against a set of phenomenological constraints coming from electroweak symmetry breaking, neutrino 
masses, leptogenesis and dark matter. The model predicts (i) TeV scale quasi-degenerate heavy sterile neu-
trinos, suitable for leptogenesis with resonant enhancement of the CP asymmetry, (ii) a set of additional 
heavy Higgs bosons whose existence can be challenged at the LHC, (iii) an additional light and sterile 
Higgs scalar which is a candidate for decaying warm dark matter, and (iv) a majoron. Since the model is 
based on simple and robust principles of dynamical mass generation, its parameters are very restricted, but 
remarkably it is still within current phenomenological limits.
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1. Introduction

The Lagrangian of the Standard model (SM) of elementary particles has an accidental U(1)L
symmetry of conservation of lepton number L. Nowadays there are at least three reasons why 
a sizable, beyond the SM, lepton number violation (LNV) should be considered. First, having a 
number of drawbacks such as the vacuum stability problem, lack of naturalness, or several hier-
archy problems, the SM is increasingly understood as a low-energy effective model. As such, its 
renormalizable operators are just the leading-order terms in an infinite expansion of the effective 
Lagrangian, while the rest of the expansion consists of non-renormalizable operators of dimen-
sion larger than 4, which are suppressed by inverse powers of the scale of new physics. The least 
suppressed non-renormalizable operator, respecting all the SM local symmetries, is the dimen-
sion five Weinberg operator, which violates lepton number conservation by two units. Second, 
in order to explain naturally the smallness of neutrino masses, various seesaw mechanisms have 
been proposed, which rely on a LNV mixing of neutrino fields, giving rise to Majorana neutrino 
mass eigenstates. Third, LNV is a necessary condition for successful leptogenesis, which in turn 
could explain the baryon abundance of the Universe.

Usually these three aspects of LNV are jointly realized within extensions of the SM by seesaw 
mechanisms of various types, which provide neutrino masses naturally small compared to the 
charged fermion masses by means of a suppression coming from an inverse power of a large 
seesaw mass scale. The various types of seesaw mechanisms differ by the assumed origin of the 
seesaw mass scale as the mass of some new heavy fields, such as right-handed neutrinos, triplet 
scalar bosons, etc. Moreover, the size of the seesaw scale is not fixed purely by the size of the 
active neutrino masses, because other parameters may enter the neutrino mass formula. As such, 
the seesaw scale can have any value between the electroweak and Planck scales. Apart from 
theoretical restrictions in the form of postulating some symmetry or requiring some degree of 
naturalness, leptogenesis is what brings the most serious hints about the size of the seesaw scale, 
interpreted as a mass of heavy sterile Majorana neutrinos. This allows us to distinguish between 
high-scale and low-scale seesaw mechanisms. In fact, for successful leptogenesis, masses of 
the sterile neutrinos should be either very large, 108 GeV or more [1], or if smaller, then they 
should be quasi-degenerate in order to resonantly enhance the CP asymmetry [2], so defining 
the low-scale seesaw mechanism.

The low-scale seesaw mechanisms are attractive for their ability to offer an interesting 
phenomenology in the ballpark of current accelerator facilities. The extreme case, with quasi-
degenerate sterile neutrinos of masses ∼ O(10 GeV), is the phenomenologically successful 
νMSM model, based on a type-I seesaw mechanism [3], which however requires tuning of a 
quite large number of free parameters, without any leading principle apart from phenomenolog-
ical constraints. The linear and inverse seesaw mechanisms, on the other hand, contain heavy 
sterile Majorana neutrinos with quasi-degenerate masses in a more natural way, for the price of 
doubling the number of right-handed neutrino fields compared to the type-I seesaw mechanism. 
They also allow for setting up the seesaw scale to be lepton number conserving, which opens up 
the possibility of studying spontaneous LNV as a low-energy phenomenon. Motivated by these 
attractive features we elaborate our model on the basis of a combined inverse and linear low-
scale seesaw mechanisms, where leptogenesis will provide the key ingredients to fix the model 
parameters.

The combined case of linear and inverse seesaw mechanisms is a natural consequence of the 
presence of two types of right-handed neutrinos [4]. Various models, implementing this scenario, 
have been proposed in the literature (for a recent review, see, for instance, Ref. [5]). Typically in 
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these models the seesaw values of relevant parameters are set by hand, either directly as new mass 
parameters or indirectly as free parameters of corresponding Yukawa couplings. In the present 
paper we propose a dynamical origin of the neutrino mass parameters rooted in neutrino conden-
sation. The idea is that due to some new attractive force felt by neutrinos, LNV vacuum neutrino 
condensates are formed, and meson-like new (pseudo-)scalar bosons emerge as composite states 
of the neutrino fields. The seesaw mass matrix elements are generated dynamically as the vac-
uum expectation values (VEVs) of the composite scalars. Neutrino mass models with neutrino 
condensation and explicit LNV, has already been studied in the literature [6–9] in the context 
of type-I seesaw mechanism. Here we apply a similar strategy, in the framework of the linear 
and inverse seesaw mechanisms, assigning lepton number to right-handed neutrinos and select-
ing their LNV condensation channels in such a way that the new composite scalars also carry 
lepton number. The model Lagrangian is manifestly lepton number invariant and provides only 
lepton-number-conserving elements in the neutrino mass matrix. The lepton-number-violating 
elements, which trigger the combined linear and inverse seesaw mechanism, are dynamically 
generated, being proportional to VEVs of the composite scalars. Lepton number gets sponta-
neously broken and a massless composite majoron appears in the spectrum of the observable 
particles, along with a handful of other additional Higgs bosons.

In order to prove the phenomenological feasibility of our LNV neutrino condensation setup 
we parametrize the new neutrino-attracting force by a simple-minded four-neutrino interaction. 
Such an approximation allows for an analysis of the low-energy particle spectrum to a sufficient 
detail by standard tools of renormalizable effective Lagrangians [10]. Even though there might 
be many non-perturbative aspects of the neutrino condensation inaccessible within this approach, 
we believe that the main qualitative features and quantitative estimates can be reliably obtained. 
In what follows, we will show that, although the model has a rather limited parameter space, 
there is a phenomenologically acceptable parameter setting.

2. Low-scale seesaw mechanisms and motivation of the model

In this section we want to introduce the low-scale seesaw mechanism and motivate our model, 
which will be presented in detail in the next section.

The conventional seesaw mechanism of type I contains a neutrino Dirac mass mD coming 
from a Yukawa interaction with the Higgs field along with the electroweak symmetry breaking. 
In that case the seesaw scale is given by a right-handed Majorana neutrino mass MR. Then 
the smallness of the neutrino mass relies on the suppression factor mD/MR . In contrast, the 
low-scale seesaw mechanism operates also with a small mass scale μ, allowing for an additional 
suppression factor μ/mD , which relaxes the requirement on the seesaw scale MR to be extremely 
large, so that it may be not far above the reach of current high energy experiments.

The low-scale seesaw mechanism used in this work, limited here to a single generation, is 
built by introducing two right-handed neutrino fields, νR, SR , which are sterile under the SM 
gauge group and by assuming a neutrino mass matrix of the form:

Mν =
⎛
⎜⎝

0 mD μlin

mD μ′
inv MR

μlin MR μinv

⎞
⎟⎠ (1)

written in the basis (νL, νc
R, Sc

R). The νL − νc
L element vanishes by the electroweak gauge 

symmetry. We shall set μ′ = 0 because, as it is argued in Appendix A, for our purposes it is 
inv
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not a phenomenologically significant parameter. By setting either μinv/lin = 0 the linear/inverse 
seesaw scenarios are obtained, respectively.

To obtain one light ν and two heavy N± seesaw neutrino mass eigenstates, the following 
hierarchy is usually assumed:

μlin,μinv � mD � MR . (2)

One of the conclusions of our analysis is that we should end up with a slightly different hierarchy, 
namely:

μlin � μinv ∼ mD � MR , (3)

which however still provides a low-scale seesaw mechanism. By diagonalization of the neutrino 
mass matrix (1) with μ′

inv = 0, the light and heavy neutrino masses are obtained1

mν � μinv
m2

D

M2
R

− 2μlin
mD

MR

, (4)

mN± � MR ± 1

2
μinv (5)

The lepton number assignment for the right-handed neutrino fields has a one-parameter free-
dom. There is a special assignment:

L(νr) = −L(SR) = 1 , (6)

in which the mass MR is lepton number invariant. The only LNV mass parameters in (1) are 
μlin and μinv (μ′

inv). If they are introduced via soft terms in the Lagrangian, then their values 
are protected by lepton number symmetry from acquiring large radiative corrections, i.e., their 
smallness is technically natural, and the necessary seesaw hierarchy (2) is preserved. Within our 
model, the LNV mass parameters appear dynamically, as they will be proportional to VEVs of 
composite scalar fields. Their smallness must result from the details of the underlying dynamics, 
which are, at this stage, not fully specified but just parametrized as four-fermion interactions.

3. Model setup

We propose an extension of the SM with two sterile fermions νR and SR , dubbed right-handed 
neutrinos, which form - with each other and with the SM leptons - composite scalar bosons 
via four-fermion interactions. In the present paper we limit ourselves to only one generation of 
fermions in order to develop the formalism and test the key phenomenological features of the 
model. The study of flavor physics in this framework is considered the next step, to be made 
elsewhere.

3.1. Effective theory description in terms of elementary fields

At the level of elementary fields, the Lagrangian in our model is given by

L = L′
SM + DμH †DμH − V(H †H) − (yH �LH̃νR + h.c.) (7)

+iνR/∂νR + iSR/∂SR − (Sc
RMRνR + h.c.)

−Glin(�LSR)(SR�L) − Ginv(S
c
RSR)(SRSc

R) − G′
inv(ν

c
RνR)(νRνc

R) .

1 More detailed expressions for mass eigenvalues of Mν are given in Eq. (A.3).
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Table 1
The SM gauge group and lepton number assignments for the fields rele-
vant for neutrino mass generation.

Group �L H νR SR � � �′

U(1)Y −1 +1 0 0 −1 0 0
U(1)L +1 0 +1 −1 +2 −2 +2

SU(2)L 2 2 1 1 2 1 1

Here L′
SM is the single-family SM Lagrangian, from which we have pulled out the gauge-kinetic 

term of the Higgs field and the standard Higgs potential V(H †H), characterized by its parameters 
μH and λH .

The Lagrangian (7) is SM gauge-invariant and has a global lepton number symmetry U(1)L, 
with the field assignment shown in Table 1.

The global symmetries encounter the same axial anomalies as in the SM, generated by non-
perturbative effects of the electroweak and QCD gauge dynamics. Therefore B − L remains an 
exact symmetry.

We consider our model, defined by the Lagrangian L in Eq. (7), as an effective description 
of some more fundamental underlying theory at higher energy scales. Moreover, we assume that 
the field content of such an underlying theory can be divided into a heavy and a light sector, and 
for the characteristic scale of the heavy sector, Mheavy, we assume Mheavy < �Planck, in order 
to not reach quantum gravity effects. The light sector consists of the fields participating in the 
Lagrangian (7), which are all massless except for the elementary Higgs field with a μH -mass 
parameter in the Higgs potential and the right-handed neutrino fields νR, SR with their mass pa-
rameter MR . The heavy sector of the underlying theory is integrated out and assumed to generate 
the four-neutrino interactions in Eq. (7), with the coupling constants of the order of

Glin,Ginv,G
′
inv ∝ M−2

heavy . (8)

Thus, Mheavy is a cut-off scale of the effective theory defined by the Lagrangian (7).

3.2. Condensation and energy scales

The key point of our model, based on Lagrangian (7), is the assumption that due to the attrac-
tiveness of the four-fermion interactions, the following scalar bound states of fermion pairs are 
formed:

� ∼ (SR�L) , (9a)

� ∼ (Sc
RSR) , (9b)

�′ ∼ (νc
RνR) , (9c)

at some scale � < Mheavy. At this same scale � or somewhere below the composite bound states 
develop non-trivial VEVs, corresponding to the fermion-pair condensates

〈�〉 ≡ 1√
2

(
v�

0

)
∼ 〈SR�L〉 , (10a)

〈�〉 ≡ v�√ ∼ 〈Sc
RSR〉 , (10b)
2



6 C. Dib et al. / Nuclear Physics B 952 (2020) 114910
〈�′〉 ≡ v�′√
2

∼ 〈νc
RνR〉 . (10c)

In what follows we shall call � the compositeness scale. The VEVs v�, v� and v′
� break U(1)L, 

generating the 	L = 2 entries of the mass matrix (1) of the neutrino sector, so that

μlin = y�v�√
2

, (11)

μinv = y�v�√
2

, (12)

μ′
inv = y�′v�′√

2
. (13)

The effective Yukawa couplings y�, y� and y�′ stem from the four-fermion couplings Glin, Ginv
and G′

inv in Eq. (7), and the corresponding relations between these Yukawas and four-fermion 
couplings will be discussed in the next sections.

The Dirac type entry is as usual

mD = yH vH√
2

, (14)

where vH is the VEV developed by the elementary electroweak doublet Higgs field

〈H 〉 = 1√
2

(
0

vH

)
, (15)

according to its potential, which at tree level is not affected by the right-handed neutrino conden-
sation and is governed mainly by the usual SM parameters μH and λH .

For our model it is crucial that the right-handed neutrinos are not too heavy to be integrated 
out before their condensation happens. Therefore we require the non-decoupling condition:

MR < �. (16)

For simplicity we will consider μ′
inv = 0 in the rest of this work, which can be interpreted as 

the fact that the corresponding four-fermion coupling constant G′
inv is sub-critical so that v′

� = 0. 
Moreover, we will take the even stronger assumption that G′

inv is so weak that not even the bound 
state �′ is formed.

4. Effective description of the neutrino condensation

Here we use the formalism developed in Refs. [10,11], which is suitable for the realization of 
the above-described scenario of neutrino condensation, starting from the attractive four-fermion 
interactions in the Lagrangian (7) of our model. Akin to the famous case of condensed matter 
physics, where the electron-pair condensation is preceded by Cooper-pairing, in our model the 
fermion-antifermion condensation inevitably involves formation of bound states, which in an 
effective theory are described by the corresponding effective bosonic fields, which in turn intro-
duce new phenomenology at low energies. We start with the definition of this effective bosonized 
theory.

4.1. Bosonization

As we already discussed, the key hypothesis of our model is that the attractive four-fermion 
interactions in Eq. (7) lead to the formation of bound states at the compositeness scale �, accord-
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ing to Eq. (9). This non-perturbative phenomenon can be suitably described by the bosonization 
prescription2 introducing the auxiliary fields �� and ��:

Llin;� = −(y�;��L��SR + h.c.) − μ2
�;��

†
��� , (17)

Linv;� = −(y�;�SR��Sc
R + h.c.) − μ2

�;��
†
��� . (18)

The auxiliary fields have no kinetic terms and as such can be eliminated from the Lagrangian by 
means of their non-dynamical equations of motion

�
†
� = y�;�

μ2
�;�

�LSR , (19)

�
†
� = y�;�

μ2
�;�

SRSc
R , (20)

and their respective hermitian conjugates for �� and ��. We thus recover the original four-
fermion interactions from Eq. (7) by identifying the coefficients:

Glin = y2
�;�

μ2
�;�

, (21a)

Ginv = y2
�;�

μ2
�;�

. (21b)

4.2. Effective low-energy Lagrangian

The bosonized model Lagrangian, which includes (17) and (18), evolves from the scale �
down to some low-energy scale m, in accordance with the corresponding Renormalization Group 
Equations (RGEs),

L� → Lm . (22)

As it is well known, the RGE evolution can be interpreted as integrating out the higher-energy 
field modes in the interval (m, �). This procedure leads to the appearance of effective opera-
tors generated by quantum corrections, such as the kinetic terms of the composite fields � and 
�, which are weighed by the wave function renormalization coefficients Z�,�;m, whose main 
radiative one-loop contribution comes from the Yukawa interaction

Z�,�;m = y2
�,�;�
(4π)2 ln

�

m
∼ O(1)

m→�−→ 0 . (23)

The coefficients Z�,�;m vanish in the limit m → �, since the kinetic operators are not present 
in the Lagrangians (17) and (18), relevant for the scale �. On the other hand, the mass term 
operators are present at the scale �, and for m < � their coefficients μ2

�,�;m only get radiative 
corrections from the Yukawa interaction according to

μ2
�,�;m = μ2

�,�;� − 2y2
�,�;�

(4π)2 (�2 − m2)
m→�−→ μ2

�,�;� . (24)

2 This is a particular case of the Hubbard–Stratonovich transformation. For a discussion see for, instance, Ref. [12].
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Actually, it is not necessary to perform the above-mentioned integrating-out of the high-energy 
modes explicitly: it is sufficient to realize that all the operators allowed by the symmetries of the 
initial Lagrangian (7) will be radiatively generated and contribute to the effective Lagrangian. 
Taking into account only the relevant operators, we end up after the necessary field normalization, 
with a renormalizable effective theory valid at scales lower than �, described by the effective 
Lagrangian

Leff = L′
SM + DμH †DμH + Dμ�†Dμ� + ∂μ�†∂μ� − Veff(H,�,�)

−(yH �LH̃νR + y��L�SR + y�SR�Sc
R + h.c.) (25)

+iνR/∂νR + iSR/∂SR − (Sc
RMRνR + h.c.) ,

where

Veff(H,�,�) = μ2
H H †H + μ2

��†� + μ2
��†� (26)

+1

2
λH (H †H)2 + 1

2
λ�(�†�)2 + 1

2
λ�(�†�)2

+λ�H (�†�)(H †H) + λ��(�†�)(�†�)

+λH�(H †H)(�†�) + λ′
H�(�†H̃ )(H̃ †�)

+
[
κ �†(H †�̃) + h.c.

]
,

is the effective potential for the scalar fields.
The parameters of the effective Lagrangian run according to their RGEs. We use one-loop 

RGEs given in Appendix C and proceed with the standard strategy given, e.g., in [7,11,12]. The 
parameters y�, y�, λ�, λ�, λH�, λ′

H�, λ�H , λ�� and κ are dynamically generated by their RGE 
running from specific boundary conditions, which follow from the matching of the Lagrangians 
Lm [Eq. (22)] and Leff [Eq. (25)] at the compositeness scale �, and from the renormalization of 
the Lm parameters Z�;m, Z�;m, y�;m, y�;m, λ�;m, λ�;m, λH�;m, λ′

H�;m, λ�H ;m, λ��;m and 
κm shown, e.g., in Eq. (23). From the relation between the Lagrangians Lm and Leff, which is 
given by the proper normalization of the kinetic terms of the composite scalar fields

Leff(�,�) = Lm(�m → �/
√

Z�;m , �m → �/
√

Z�;m), (27)

we obtain the relations

μ2
� = μ2

�;m
Z�;m

, μ2
� = μ2

�;m
Z�;m

, (28)

y� = y�;m√
Z�;m

, y� = y�;m√
Z�;m

,κ = κm√
Z�;mZ�;m

, (29)

λ� = λ�;m
Z2

�;m
, λ� = λ�;m

Z2
�;m

, λH� = λH�;m
Z�;m

, (30)

λ′
H� = λ′

H�;m
Z�;m

, λ�H = λ�H ;m
Z�;m

, λ�� = λ��;m
Z�;mZ�;m

. (31)

From these relations we get the boundary conditions at the matching scale �
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y� , y�
m→�−→ ∞ , (32)

λ�

y4
�

,
λ�

y4
�

,
λH�

y2
�

,
λ′

H�

y2
�

,
λ�H

y2
�

,
λ��

y2
�y2

�

m→�−→ 0 , (33)

κ

y�y�

m→�−→ 0 . (34)

Notice that the boundary conditions for the Yukawa parameters (32) exhibit an ill behavior. 
When approaching the matching scale � from below, these Yukawa parameters grow, indicat-
ing their non-perturbative origin. In fact, these couplings appear as a result of the formation of 
the bound states � and � at the scale �, which is essentially a non-perturbative phenomenon. 
Therefore, once y� , y� become larger than some value – typically 4π – the perturbative one-
loop RGEs cannot be trusted anymore. In practice this means that we have lost the relation 
between y� , y� of the effective theory (25) and the four-fermion couplings in Eqs. (21) of the 
underlying theory (7). Consequently, instead of using the ill defined matching condition we fol-
low the standard strategy described in e.g. [7,11,12], and for ease of numerical calculations we 
set

y�(�) = y�(�) = y0 , (35)

where y0 is some finite value, typically ∼ 4π . As will be shown below, such arbitrariness in 
the boundary condition is justified by the fact that the low-energy values are only very weakly 
sensitive to the high-energy values of y� , y�.

From (33), (34) and (35) we obtain the boundary conditions for the rest of the parameters:

λK(�) = 0 , K = �,�,H�,H�′,�H,��, (36)

κ(�) = 0 . (37)

The effective scalar potential Veff(H, �, �) in Eq. (26) has a non-trivial minimum, which 
defines the symmetry breaking pattern. As in the SM, we assume μ2

H < 0. In order that both 
LNV VEVs, v� and v�, have nonzero values, μ2

� and μ2
� must be negative.

Now, in order to set up a low-scale seesaw mechanism, both μlin and μinv have to be small 
compared to the other neutrino mass parameters. Since the Yukawa coupling parameters in (11)
and (12) do not help guaranteeing this smallness, because y�,� ∼ 1, the VEVs v� and v� must 
be small, which requires the smallness of |μ2

�| and |μ2
�| at low scales m → 0. Accordingly, 

Eqs. (21) and (24) provide a requirement on the underlying four-fermion interaction parameters 
Glin and Ginv, which have to be tuned to be just slightly super-critical:

to obtain |μ2
�,�| � �2 : 0 <

Glin,inv

Gcrit
lin,inv

− 1 � 1 (38)

where Gcrit
lin,inv ≡ 8π2/�2 is the critical value of the four-fermion coupling parameters. We do not 

try to explain this feature of the underlying new dynamics in this work, but keep it as one of the 
subjects for future work.

Interestingly, our model allows for a unique triple scalar coupling in Eq. (26) with the calcu-
lable constant κ . As will be shown in what follows, this triple coupling plays an essential role 
in order to meet all the phenomenological constraints. Although the coupling constant κ is in 
general complex, its phase can be absorbed into the redefinition of the field �. Therefore, all 
the coupling constants in the effective potential are real parameters. This phase absorption cor-
responds to the known fact that in the scalar sector of a model with two Higgs doublets and one 
complex Higgs singlet, there is no source of CP violation [13].
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4.3. Generalized Weinberg operators

The right-handed neutrino mass MR is the highest mass scale in our model, and below this 
scale the right-handed neutrinos decouple from the low-energy observables. As a consequence, 
below MR all three neutrino Yukawa interactions weighed by the Yukawa coupling parameters 
yH , y� and y�, are traded for the effective operators of higher dimensions that result from in-
tegrating out the right-handed neutrinos. The part of the Lagrangian containing these effective 
operators is

Lw = winv

2M2
R

(�LH̃ )�(H †�c
L) + wlin

MR

(�L�)(H †�c
L) + h.c. (39)

We will refer to these operators as generalized Weinberg operators, where winv and wlin are 
dimensionless Weinberg parameters. After the scalar fields develop their VEVs, these terms will 
directly provide the Majorana mass term for the active neutrino

Lmν = 1

2
mν(νLνc

L) + h.c. , (40)

where mν is obtained from Lw in Eq. (39) as:

mν = winv
v2
H v�

2
√

2M2
R

+ wlin
vH v�

2MR

. (41)

On the other hand, calculating the same mν from Leff in Eq. (25), we obtain an expression for 
the neutrino mass in terms of the Yukawa couplings:

mν = y2
H y�

v2
Hv�

2
√

2M2
R

− yH y�

vH v�

MR

. (42)

This leads to the matching condition at the scale MR

winv|m=MR
= y2

H y�

∣∣∣
m=MR

, (43)

wlin|m=MR
= −2yH y�|m=MR

. (44)

Introducing the generalized Weinberg operators has the advantage of allowing us to avoid the 
procedure of diagonalizing the neutrino mass matrix (1) in order to determine the light neutrino 
mass, which would require inserting the low-energy values of the Yukawa coupling parameters 
yH,�,�(mlow) into the entries of the neutrino mass matrix (1). In principle, the low-energy scale, 
at which the neutrino mass is determined, mlow, should be taken of the same order of magni-
tude as the neutrino mass itself mlow ∼ mν . This would, however, entale a trouble, because the 
one-loop RGEs drive the Yukawa couplings to large non-perturbative values at such small en-
ergy scale. This problem is eliminated by trading, at the MR-scale, the Yukawa couplings for the 
Weinberg parameters, whose RGE running is safe all the way down to arbitrarily low scales.

4.4. Minimization of the effective potential and symmetry breaking

The minimum of the effective potential Veff(H, �, �) in Eq. (26) determines the values of the 
VEVs (10) and (15) as a solution of the equations
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∂

∂vH

Veff(〈H 〉, 〈�〉, 〈�〉) = 0 , (45)

∂

∂v�

Veff(〈H 〉, 〈�〉, 〈�〉) = 0 , (46)

∂

∂v�

Veff(〈H 〉, 〈�〉, 〈�〉) = 0 . (47)

Explicitly we have

−μ2
H = 1

2vH

[
− √

2κv�v� + λH v3
H + (λH� + λ′

H�)vH v2
� + λ�H vH v2

�

]
,

−μ2
� = 1

2v�

[
− √

2κvH v� + λ�v3
� + (λH� + λ′

H�)v�v2
H + λ��v�v2

�

]
,

−μ2
� = 1

2v�

[
− √

2κvH v� + λ�v3
� + λ�H v2

H v� + λ��v2
�v�

]
(48)

in accordance with Ref. [14]. These equations can be used to trade the μH,�,� parameters for the 
VEVs v�, v� and vH in the potential Veff(H, �, �) of Eq. (26). From Eqs. (48) we can see that 
unless κ = 0, the solution with all three VEVs vH , v� and v� non-zero is the only one available.

The stability of the vacuum is guaranteed by the positive definiteness of the Hessian matrix

Hij ≡ ∂2

∂vi∂vj

Veff(〈H 〉, 〈�〉, 〈�〉) where i, j = H,�,�. (49)

It can be explicitly derived by using Eqs. (26), (48) and, by definition, is equivalent to the matrix 
of the scalar boson masses squared given in Eq. (B.8). Then the vacuum stability is guaranteed, 
if all the eigenvalues of this matrix are positive. We found that with the boundary conditions (36)
and (37) for the cubic and quartic couplings, λK = κK = 0 at the matching scale �, the RGE 
evolution leads to a positive squared masses of the scalar bosons, at least in the phenomeno-
logically relevant part of the parameter space of the model. A similar property was also found 
in other composite models, e.g., in [6–11,15], which suggests that this is a general property of 
the proposed model. However, we do not have yet a rigorous proof of its general validity and in 
our analysis we have just checked numerically the positiveness of the scalar boson mass squared 
values.

5. Properties of Higgs bosons

In order to derive the properties of the physical Higgs scalar excitations, we shift their fields 
by their VEVs:

H =
(

a+
H

(vH + hH + iaH )/
√

2

)
, (50a)

� =
(

(v� + h� + ia�)/
√

2

a−
�

)
, (50b)

� = (v� + h� + ia�)/
√

2 , (50c)

by which the effective potential (26) becomes a function of the fields corresponding to the true 
ground state:
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Veff(H,�,�) −→ Veff( �φ) , (51)

where

�φ ≡ (hH ,aH ,a−
H ,a+

H ,h�,a�,a−
�,a+

�,h�,a�) . (52)

The scalar field mass eigenstates are the eigenstates of the 10 × 10 matrix:[
M2

Higgs

]
ij

= ∂2

∂φi∂φj

Veff , (53)

where φi are the components of the field �φ. The matrix which diagonalizes the above mass-
squared matrix, determines the admixture of the fields φi in the corresponding mass eigenstates. 
Clearly, since the C and P symmetries are conserved within the Higgs boson sector, the mass 
matrix M2

Higgs splits into blocks of charged bosons (a−
H , a+

H , a−
�, a+

�), pseudo-scalar bosons 
(aH , a�, a�), and scalar bosons (hH , h�, h�). More details are given in the Appendix B.

5.1. Higgs bosons mass spectrum and mixing

Diagonalizing the mass matrices (B.2), (B.5) and (B.8), we obtain the Higgs boson mass 
eigenstates, their masses and mixing. Let us summarize their main features.

• Four charged Higgs scalars, denoted by π± and h±, with masses

m2
π± = 0 , (54)

m2
h± = v2

H + v2
�

2vH v�

(
√

2κv� − λ′
H�vH v�) (55)

The massless modes π± are the charged would-be Nambu–Goldstone bosons of the sponta-
neously broken electroweak symmetry, absorbed by the massive W± bosons as their longi-
tudinal components, while the mass eigenstates of the charged scalar fields π± and h± are 
linear combinations(

π+

h+

)
= Ucharged

(
a+
H

a+
�

)
, (56)

of the original fields a+
H and a+

� , where Ucharged is the mixing matrix of the charged Higgs 
bosons shown in Eq. (B.3).

• Three neutral pseudo-scalars, denoted by π0, η0 and a0, with masses:

m2
π0 = 0 , (57)

m2
η0 = 0 , (58)

m2
a0 = κ√

2

v2
H v2

� + v2
�v2

� + v2
�v2

H

vH v�v�

. (59)

The massless mode π0 is the neutral would-be Nambu–Goldstone boson of the sponta-
neously broken electroweak symmetry, absorbed by the massive Z0 boson as its longitudinal 
component. The massless mode η0 is the neutral Nambu–Goldstone boson of the sponta-
neously broken lepton number U(1)L symmetry, called Majoron. The mass eigenstates of 
the pseudo-scalar fields are the linear combinations of the original fields
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⎛
⎜⎝

π0

η0

a0

⎞
⎟⎠ = Upseudo

⎛
⎜⎝

a0
H

a0
�

a0
�

⎞
⎟⎠ , (60)

where Upseudo is the mixing matrix of the pseudo-scalar Higgs bosons, shown in Eq. (B.6).
• Three neutral scalar bosons, denoted by h0, H 0 and s0. In the rest of this paper we assume 

the hierarchy v�, v� � vH , κ , which we motivate in what follows. In this case their masses 
are approximately

m2
h0 ∼ λH v2

H , (61)

m2
H 0 ∼ κvH√

2

v2
� + v2

�

v�v�

, (62)

m2
s0 ∼O(v2

�,v�v�,v2
�) . (63)

The mass eigenstates are again linear combinations of the original fields:⎛
⎜⎝

h0

H 0

s0

⎞
⎟⎠ = UhHs

⎛
⎜⎝

h0
H

h0
�

h0
�

⎞
⎟⎠ , (64)

where UhHs is the mixing matrix of the scalar Higgs bosons, whose approximate form is 
given in Eq. (B.9).
In this spectrum we identify h0 with the SM Higgs boson. There are also a heavy Higgs 
boson, H 0, with a significant electroweak coupling, and a very light SM-sterile scalar s0. We 
will specify the scalar Higgs boson spectrum with more details in the subsequent sections.

5.2. The coupling constants of Higgs bosons

Once we know the linear combinations of the original fields forming the mass eigenstates 
of Higgs bosons and neutrinos, we can derive expressions for neutrino Yukawa, gauge and other 
coupling constants. The coupling constants can be read from the Lagrangian Leff in Eq. (25) after 
the Higgs fields are shifted by their VEVs, according to Eq. (50), and the Higgs and neutrino 
fields are replaced with the mass eigenstates, according to (56), (60), (64) and (A.6).

6. Low-energy solution estimates

Now we have all ingredients to check the phenomenological viability of the model. First we 
solve the RGEs and then, in terms of low-energy values of the model parameters, we determine 
the particle masses and interactions. At this first stage of the model development we perform 
just order-of-magnitude estimates. Surprisingly, we find that in our model there is small room to 
play with the parameters, in order to satisfy phenomenological and theoretical constraints. The 
low-energy values of the parameters are constrained by the existing experimental data on particle 
masses and coupling constants [16], while the high-energy values of the parameters are fixed by 
the boundary conditions (35)-(37) at the scale �, where the effective model must be matched 
with the underlying four-fermion interactions. Admittedly, it might easily happen that the model 
does not meet these constraints, in which case it would be ruled out.

In the following, we first discuss the general features of the RGE solution and list the typical 
order of magnitude low-energy values of the dynamically generated coupling parameters y�, y�, 
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Fig. 1. A typical solution of the RGEs for y0 = 3, � = e7MZ ≈ 100 TeV and MR = e3MZ ≈ 1.8 TeV.

λ�, λ�, λH�, λ′
H�, λ�H , λ�� and κ . Thus, these are not really free parameters of the model, 

since they have been fixed from the RGEs with the corresponding boundary condition (35)-(37). 
It is important to point out that their low-energy values depend only weakly on the actual value of 
the compositeness scale �, which we fix by the requirement of one-loop vacuum stability. Next 
we fix a set of the SM-sector parameters, vH , yt (mt ), and λH , from the experimental values of 
the masses of the electroweak gauge bosons, the SM Higgs and the top-quark. As a result we end 
up with only four seesaw-related free parameters

MR, v�, v�, yH (MR) . (65)

In what follows we will show how to limit them from the non-observation of extra Higgs bosons 
at the LHC and from Leptogenesis.3

6.1. General features of the RGE solution

As we already stated, the effective parameters y�, y�, λ�, λ�, λH�, λ′
H�, λ�H , λ�� and κ

are not free model parameters, since their low-energy values are determined by the solution of the 
corresponding RGEs shown in Appendix C, with the high-scale boundary conditions (35)-(37). 
A typical solution is plotted in the Fig. 1. The Yukawa parameters y� and y�, starting from their 
value y0 given by the boundary condition (35) at the compositeness scale �, do not run to small 
� 1 values. Typically, they are

y�(MR) � 1 , (66)

y�(MR) � 1 . (67)

Such estimate is in fact rather robust [10,12], since it is sensitive only very weakly to the high-
energy values of y� and y�, and exhibiting the typical behavior in the presence of an infrared 
fixed point, which is demonstrated in the Fig. 2. We can see that a rather wide range of high-

3 Within our simplified single-flavor model, CP violation is missing, and thus Leptogenesis does not work. Still we 
adopt constraints from the realistic three-flavor model on the Yukawa coupling strengths and on the heavy neutrino mass 
splitting, and apply them to our model.
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Fig. 2. A solution for y� and y� of the RGEs for the boundary conditions (35) given by three values y0 = 3, 4π, 30, and 
for � = e7MZ ≈ 100 TeV and MR = e3MZ ≈ 1.8 TeV.

energy Yukawa parameter values, y0 ∈ (3, 30), is squeezed by RGE evolution into a quite small 
range of low-energy values, y�(MR) ∈ (1.8, 2.6) and y�(MR) ∈ (1.1, 1.4).4

On the other hand, the neutrino Yukawa coupling yH is not generated dynamically, and there-
fore, it is not subject to any boundary condition at �. Thus, its value, yH(MR), is a free parameter 
to be fixed from phenomenology. In particular, we will fix it later by arguments of successful lep-
togenesis.

All the scalar quartic couplings λ’s, except for λH , are generated dynamically, and fixed by 
the high-energy boundary conditions (36). To determine the mass spectrum of the Higgs bosons 
we need to know the low-energy values of these quartic couplings, which are solutions of the 
corresponding RGEs given in Appendix C. Our analysis of their solutions in a wide range of 
the free model parameters shows that the quartic couplings typically demonstrate the following 
hierarchy

λ�,λ�(MZ) ∼ O(1) , (68)

λ��(MZ) ∼ O(10−1) , (69)

λH�,λ′
H�(MZ) ∼ −O(10−2) , (70)

λ�H (MZ) ∼ O(10−4) . (71)

The κ parameter is also generated dynamically. It is fixed by the high-energy boundary con-
dition (37), and its magnitude is driven mainly by the last term in Eq. (C.18), as can be seen 
from

Dκ = κf − 8yH y� y� MR , (72)

4 Notice that due to the MR threshold, the RGE evolution of the Yukawa parameters takes place only within the interval 
(MR, �), while below MR they freeze.
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where

f = 2λ�H + 2λ�� + 2λH� + 4λ′
H� − 3

2

(
3g2

2 + g2
1

) + y2
H + y2

� + 2y2
� + 3y2

t . (73)

Since the last term drops off below the heavy neutrino decoupling scale MR, the evolution of 
κ saturates at this point. Therefore, in order to estimate the magnitude of κ it is sufficient to 
calculate its value at MR . Neglecting the scale dependence of all the other parameters, we can 
write

κ(MR) ≈ 8yH y� y�

f

[
1 −

(
MR

�

)f/16π2]
MR ∼ yH MR . (74)

The last very rough estimate is obtained from our numerical analysis of the low-energy values 
of the model Yukawa, gauge and quartic coupling constants. It follows that typically f ∼O(10), 
so the exponent in the second term is < 1, but not � 1. Then taking into account (16) we neglect 
the second term in the square bracket. Since the ratio 8 y� y�/f is of order O(1), we come up 
with the above-mentioned rough estimate.

6.2. Fixing of parameters related to the SM

The Higgs-doublet VEVs must satisfy

v =
√

v2
H + v2

�

.= 246 GeV , (75)

in order to get the correct values for the masses of W and Z. To achieve the hierarchy, from 
Eq. (3) or (2) and taking into account the value of the Yukawa parameter y� in Eq. (66), the 
hierarchy of the VEVs v� � vH is required. From that we can set

vH � v
.= 246 GeV . (76)

Thus the field H couples to the W and Z bosons in a close-to-SM way, with the strength propor-
tional to � MW,Z/v. On the other hand, the coupling of the field � to W and Z is suppressed 
by the small factor v�/v. Therefore, the scalar boson h0, which is dominated by the H 0 field, as 
seen from (B.9), has the right to be identified with the experimentally observed Higgs boson.

Based on this, in order to reproduce the mass of the top quark as

mt = yt (mt ) vH /
√

2
.= 174 GeV, (77)

the fixing of the top-quark Yukawa parameter as

yt (mt ) ≈
√

2mt

vH

.= 1 , (78)

is required, just as in the SM. This is typical for the Yukawa couplings of every charged fermion 
with the field H , and their values differ from those of the SM just by a factor (1 − v�/2v) in 
order to reproduce their correct masses and mixing.

The quartic coupling parameter of the elementary Higgs boson, λH , is fixed by the phe-
nomenological requirement to reproduce the SM-like Higgs boson mass, mh0

.= 125 GeV. The 
mass of the SM-like Higgs boson in our model is approximately given by Eq. (61), which leads 
to

λH (mh0) � m2
h0

2
.= 0.26 . (79)
vH
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Therefore, we should set the initial value λH(�) in a way that λH (mh0) gets the value stated in 
Eq. (79). On the other hand λH (�) should not be negative, since otherwise the ground state of the 
model would be unstable. The one-loop RGEs show that the small value of λH(mh0) presented 
in (79), requires that the initial value λH(�) be negative, unless

� ≤ 100 TeV . (80)

This feature of our model is practically the same as in the SM, where the one-loop RGEs exhibit 
the same limit on the vacuum stability. Nevertheless, the three-loop level RGEs of the SM show 
[17] that the vacuum stability limit is, in fact, pushed to much higher scales. Although we expect 
the same behavior in our model, to be on the safe side we set the value of the compositeness scale 
to be

� = 100 TeV . (81)

Notice that the RGE solutions are weakly sensitive to the actual value of �.

6.3. Constraint from additional Higgs bosons

As we already saw that our model contains extra Higgses. In order to pass the existing ex-
perimental constraints [16] they must be either sufficiently heavy, i.e., with masses greater than 
500 GeV, or sufficiently weakly coupled to the known SM particles, i.e., the light states should 
be predominantly made of sterile � fields with only a small admixtures of electroweak doublets 
H and � fields. From these constraints, a large ratio

v�

v�

≡ r�� � 1 (82)

can be advocated as follows.
Assuming the hierarchy v�, v� � vH , κ and using the estimate (74) in Eq. (55), we get an 

expression for the charged Higgs boson mass5

m2
h± ≈ vH

2

(√
2 r�� MR yH − λ′

H� vH

)
. (83)

If the second term is larger in magnitude than the first one, we would have the problem of having 
a too light charged Higgs boson with mass ∼ 0.1v, according to the estimate in Eq. (70). The 
first term contains the product MR yH , which in our seesaw scenario easily turns out to be of 
the same order of magnitude as v or even smaller. Therefore, to make the first term dominant in 
Eq. (83), we need r�� to be large enough, as indicated in Eq. (82).

Among the pseudo-scalars there is the majoron η0, which is a massless Nambu–Goldstone 
boson of the spontaneously broken U(1)L. In order to make it phenomenologically harmless, we 
require that it should be dominated by the SM singlet a0

� state. From Eq. (60) and Eq. (B.6) we 
see that the majoron η0 does not contain a0

H component, and therefore, we only need to suppress 
the a0

� admixture, requiring again the condition given in Eq. (82).
However, the massive pseudo-scalar a0 cannot be made sterile, hence we must guarantee it 

to be sufficiently heavy in order to pass the experimental constraints from the neutral Higgs 

5 In the following, we do not indicate explicitly the RGE scale m dependence of the running coupling constants. It is 
implicit that the Yukawa coupling constants are evaluated at m = MR , while the others at the mass of the corresponding 
particle.
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non-observation [16]. The approximate value of its mass, under the assumption of the hierarchy 
v�, v� � vH , κ , is

m2
a0 ≈

(
r�� + 1

r��

)
yH√

2
vH MR . (84)

Therefore, to make a0 heavy we have now two possibilities for r��, either very large or very 
small, and then to be compatible with the previous requirements we are again led to Eq. (82).

A similar situation takes place in the sector of the H 0 and s0 Higgs bosons. From Eq. (62)
and Eq. (63), using Eq. (74) we have that their masses are

m2
H 0 ≈

(
r�� + 1

r��

)
yH√

2
vH MR , (85)

and

ms0 � mh0 . (86)

Analogously to Eq. (84), a large value of r�� allows making H 0 sufficiently heavy, in accordance 
with the current experimental constraints [16]. However, the scalar s0 is unavoidably light (86)
and, therefore, must be predominantly sterile. As follows from Eqs. (64) and (B.9), this condi-
tion is satisfied for large values of r�� (82), and then, under the hierarchy v� � v� � vH and 
r�� � 1 and λ�H � λH , the s0-boson mass can be approximated by

m2
s0 ≈ λ�v2

� . (87)

Let us summarize this section. In order to satisfy the phenomenological requirements it is 
necessary to consider large values of r�� (82). Then we can identify two groups of Higgs bosons:

• Light Higgs bosons: the SM-like Higgs boson h0, made mostly of the elementary elec-
troweak doublet H field; a very light scalar s0 and massless majoron η0, both made mostly 
of the singlet �. Their masses at the electroweak scale are

m2
h0 ≈ λH v2

H , (88)

m2
s0 ≈ λ�v2

� , (89)

m2
η0 = 0 . (90)

• Heavy Higgs bosons: X = h±, a0, H 0, which are all made mostly of the electroweak dou-
blet � and have almost degenerate masses above the electroweak scale:

m2
X ≈ r��mDMR . (91)

6.4. Constraints from leptogenesis

Leptogenesis renders stringent constraints on the free parameters (65) of our model. The 
Sakharov conditions for the case of leptogenesis are: 1) LNV processes are allowed, 2) they 
are CP asymmetric, 3) before they become cosmologically irrelevant during the evolution of 
the Universe they go out of thermal equilibrium. Obviously, the condition 1) is satisfied in our 
model. As to the condition 2), in the simplified version of our model with only one fermion 
generation, which we are studying here, CP is conserved. However, CP violation (CPV) can 
be easily accommodated in the realistic models of any seesaw scenario, since there are several 
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leptonic Yukawa coupling constants in the neutrino mass matrix which are complex, leading to 
the physical CPV phases. However, the resulting CPV effect may not be sufficiently strong for 
successful leptogenesis. In order to enhance the CPV one has to either push the masses of the 
heavy Majorana neutrinos (5) to very large values > 109 GeV [18], or introduce a pair of quasi-
degenerate heavy Majorana neutrinos, leading to resonant enhancement of the CPV in their LNV 
decays [2]. The first option is not pertinent for our model, due to Eqs. (16) and (80). Meanwhile, 
the second option is naturally realizable in our model, as in any other model with a low-scale 
seesaw. The resonant condition providing the maximal CPV effect

�N

2
� |mN+ − mN−| (92)

relates the mass splitting of the heavy Majorana neutrinos and their decay rate �N .
Condition 3) requires that the expansion rate of the Universe, quantified by the temperature-

dependent Hubble parameter H(T ), is larger than the decay rate of the heavy Majorana neutrinos,

H(T = mN+) � �N

2
. (93)

The Hubble parameter at a temperature T for a given extension of the SM with g∗ degrees of 
freedom is H(T ) ∼ 1.73

√
g∗T 2/�Planck.

Our model contains a set of extra Higgs bosons, providing heavy Majorana neutrinos with 
several decay modes into the light neutrino relevant for leptogenesis. The total decay rate of the 
heavy Majorana neutrinos is given by

�N ∼
∑

i

y2
N→i

8π
mN+ , (94)

where yN→i is a coupling constant responsible for the i-th decay channel. They can be sorted into 
groups according to the boson emitted in the decay. Here we present approximate expressions 
for these couplings, derived with the assumption of the hierarchy v� � v� � vH motivated in 
the previous sections.

• Light Higgs boson emission6

yN→νh ≈ −yH

2
, (95)

yN→νs ≈ 1

2r��

y� − mD

MR

y� , (96)

yN→νη ≈ 1

2r��

y� − mD

MR

y� , (97)

yN→eh ≈ y2
H

v�

2MR

. (98)

• Heavy Higgs boson X = a0, H 0 emission

yN→νX ≈ −y�

2
. (99)

6 Here we have again suppressed the scale dependence of the running coupling constants.



20 C. Dib et al. / Nuclear Physics B 952 (2020) 114910
• The SM Gauge boson emission

yN→νZ ≈ mD√
2MR

g

2 cos θW

, (100)

yN→eW ≈ mD√
2MR

g√
2

. (101)

In most of the model realizations of the leptogenesis with resonant CP asymmetry enhance-
ment, it is not necessary to tune the model parameters exactly to the resonance given by (92). 
It is enough to be in the vicinity of the resonance. According to the numerical analysis in [2]
performed for mN± = 10 TeV and |yN | ∼ 10−6, the mass splitting of the heavy neutrinos

|mN+ − mN−|
mN+

∼ 10−7 (102)

is sufficient. In a more recent analysis in [19], where a wash-out effect mediated by Z′ with 
mass ∼ MN is taken into account, a stronger CP asymmetry is needed requiring several orders 
of magnitude smaller mass splitting than in Eq. (102). In our scheme similar wash-out effects 
can be expected due to the interaction channels mediated by the heavy Higgs bosons with mass 
∼ MN . However to reliably address the wash-out effects requires a detailed analysis within a 
realistic version of our model, which we leave for future work. For now we take (102) as a 
numerical input to our analysis, keeping in mind that if needed the mass splitting can be made 
correspondingly smaller by pushing v� to lower values.

Estimating approximately the number of degrees of freedom in our model for the realistic 
3-generation case to be g∗ ≈ 100 we obtain an upper bound for the coupling constants

yN→i � 10−7
[mN+

TeV

]
. (103)

The right-handed neutrino mass parameter MR is among the free parameters, ranging in our 
model roughly from ∼ 1 TeV > v up to � 100 TeV = �. In order to be specific let us consider a 
benchmark scenario in our model with

MR = 10 TeV , (104)

which enables us to relate directly our analysis to the conclusions of Ref. [2].
Now, all the coupling constants (95)-(101) must satisfy the out-of-equilibrium condition 

(103). Therefore, the Yukawa parameter yH at the scale MR must be set at such a small value 
that the coupling constant (95) satisfies (103), so we choose

yH (MR) ≈ 10−7 , (105)

and with this value we calculate from (104) and (14) the ratio
mD

MR

≈ 10−9 . (106)

Next we observe that the Yukawa coupling constants to heavy neutrinos (99) are unavoidably 
large, a consequence of the dynamical origin of the Yukawa parameters y� and y�, which are 
of the order O(1) as a result of the RGE running from their large value at the compositeness 
scale �. Therefore, the only possibility to prevent the decay rate of the heavy neutrinos from 
being unbearably large is to forbid the decay channels to heavy Higgs bosons kinematically by 
the condition mX > mN . Using the expression for the masses of heavy Higgs bosons (91) and 
for heavy neutrinos mN ∼ MR , we obtain the condition
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r�� >
MR

mD

. (107)

Taking the ratio (106) into account, we estimate r�� conservatively as

r�� ≈ 109 . (108)

Now, in order to obtain the necessary CPV magnitude for successful leptogenesis, the mass 
splitting of the quasi-degenerate heavy neutrinos has to be at least of the order 10−7, see (102). 
From (5) we see that the mass splitting is dominated by the inverse-seesaw mass parameter μinv

|mN+ − mN−| ≈ μinv = y�v�√
2

. (109)

Provided that y� ∼ 1, the mass splitting constrains the VEV of the SM singlet scalar � to

v� ≤ 10−7MR . (110)

To be more safe with leptogenesis we may choose in Eq. (102) the mass splitting to be 10−8, 
which leads to

v� ≈ 100 keV . (111)

From (108) we obtain

v� ≈ 0.1 meV . (112)

Let us summarize our order-of-magnitude estimates of the couplings constants (95)-(101), 
motivated by successful leptogenesis:

yNνs ≈ 10−9 , (113)

yNνη ≈ 10−9 , (114)

yNνZ ≈ 10−9 g

2 cos θW

, (115)

yNeW ≈ 10−9 g√
2

, (116)

yNeh ≈ 10−31 . (117)

This completes the estimation of the free parameters of our model and in what follows we will 
discuss some of its predictions.

7. Prediction of the model

With the parameters of our model approximately evaluated in the previous sections, we can 
derive its key predictions and compare with the existing experimental data. As will be seen, there 
is a small room to play with the parameters within the ballpark of the approximations made in 
these evaluations. Therefore, the model is predictive and falsifiable.

7.1. Light neutrino mass

The tiny active neutrino mass is given by Eq. (41) in terms of the Weinberg parameters, 
winv, wlin, rather than the Yukawa couplings. Since the RGE running of these Weinberg parame-
ters is quite moderate, their order of magnitude stays the same over large interval of scales, from 
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MR down to mν . Therefore, in order to estimate the neutrino mass it is sufficient to consider 
just the initial values of the Weinberg parameters at the scale MR, given in Eqs. (43) and (44). 
Inserting these values into (41) and applying (14) we obtain

mν ≈ v�√
2

mD

MR

(
mD

MR

y� − 2

r��

y�

)
� 10−13 eV , (118)

where in the numerical estimation we used (106), (108) and (111). Thus, the model predicts an 
extremely light active neutrino. It is important to note that this prediction can hardly be avoided 
in the present single-generation version of the model. In the case of the realistic three-generation 
version of the model we expect (118) to be applicable to the lightest neutrino mass eigenstate, 
and then, if the model satisfies the neutrino oscillation data global fit [20], it predicts that the 
neutrinoless double beta decay parameter mββ lies in the range 1.2 meV � mββ � 3.5 meV for 
the normal neutrino mass ordering and 15 meV � mββ � 50 meV for the inverted one. This is a 
generic result for such a small values (118) of the lightest neutrino state.

7.2. Prediction for dark matter

There is only one Dark Matter (DM) particle candidate in our model: the scalar s0 specified 
in Eq. (64) as a mixture of the electroweak doublet and singlet fields. Using the parameter fixing 
from the last section 6 we estimate its mass from (89), (111) and (68)

ms ≈ 100 keV . (119)

This is a nearly sterile state having only a tiny admixture of the doublets H, � estimated as

|mix(H ∈ s0)| ≈ λ�H vH v� − √
2yH MRv�

λH v2
H

≈ 10−10 , (120)

|mix(� ∈ s0)| ≈ v�√
v2
� + v2

�

∼ 1

r��

≈ 10−9 . (121)

Therefore, we expect no substantial effect on, e.g., Big Bang Nucleosynthesis, from the existence 
of this new particle.

In order to be a viable DM candidate its lifetime τs must be greater than the age of the Universe 
τu. Thus, we impose on the s0 total decay rate �s the cosmological upper bound

1

τs

= �s � 1

τu

≈ 10−33 eV . (122)

According to the recent analysis of the decaying warm DM performed in Ref. [21], the DM decay 
rate should be smaller by other two or tree orders of magnitude over the result (122), for success-
fully reproducing the DM abundance of the Universe of today and not spoiling the Large Scale 
Structure formation. Here we rely on Ref. [21], where the authors argue that Cosmic Microwave 
Background (CMB) data places a limit on the DM decay rate in order to avoid producing too 
much fluctuation power on the largest CMB scales, caused by the decay of the sterile scalar to 
neutrinos and the subsequent modifications to the cosmological gravitational potentials.

For the mass value (68) the only kinematically allowed decay channel is

s0 −→ νν , (123)

with the decay rate
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Fig. 3. Feynman diagrams corresponding to the Z boson decay Z −→ s0f f̄ : a) exchange of virtual Z, b) exchange of 
virtual a and η and c) exchange of virtual fermion f ′ .

�s→νν = y2
sνν

8π
ms , (124)

and with the corresponding Yukawa coupling

ysνν = √
2y�

mD

MR

(
1

r��

− mD

MR

)
≈ 10−18 , (125)

which we evaluated, using (106) and (108), with the result

�s ≈ 10−32 eV , (126)

assuming no significant cancelation between two terms in (125).
In our model, we can make the s-boson more stable by assuming an even more profound hier-

archy than in (106), (107), or by fine-tuning the free parameters, e.g. yH , to cancel the dominant 
term in ysνν (125), or by making the mass of the s0 boson ms ∝ v� smaller. The later option re-
quires pushing v� down, which eventually increases CP assymmetry for the sake of leptogenesis 
as discussed above. We present such benchmark parameter setting in Table 2 denoted as CP10. 
The second option based on cancelation is demonstrated in Table 2 as a benchmark parameter 
setting DMtuned1. As one can see there, ysνν is two orders of magnitude lower and even with 
opposite sign than in the benchmark parameter setting BASIC1, even though both benchmark 
settings have the same hierarchies r�� and mD/MR .

7.3. Missing energy in Z-boson decay

Looking at the mass spectrum of the model, we can identify a potentially dangerous decay of 
the Z boson

Z −→ s0f f̄ , (127)

since s0 is not a pure electroweak singlet, but it has an admixture of the electroweak doublets 
(64). Such decay process, if strong enough, would be visible at accelerators as the production of 
a fermion-antifermion pair plus missing energy carried away by s0.

The process Z → s0f f̄ can be calculated from the tree-level amplitudes for which the ex-
change of virtual Z boson, pseudoscalar a, majoron η and fermion f ′ should be taken into 
account. We show the corresponding Feynman diagrams in the Fig. 3. For charged leptons in 
the final state, i.e., f = τ, μ, e, the amplitude of majoron exchange vanishes as their majoron 
Yukawa coupling constant is yηff = 0. The amplitude for the fermion exchange is completely 
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negligible as it is proportional to the Yukawa coupling parameter ysff ′ ∼ 10−18 being estimated 
to be approximately same as ysνν given in Eq. (125). The contribution from the amplitude of 
pseudoscalar exchange is not vanishing but negligibly small together with the corresponding 
Yukawa coupling constant

yaff = gmf√
2MW

v�v�√
v2
H v2

� + v2
�v2

� + v2
�v2

H

≈O(10−13) . (128)

Therefore the dominant contribution comes from the Z boson exchange, whose Yukawa Zff

coupling constant is roughly yZff ≈ O(1), which has the most important suppression of its am-
plitude coming from the H and � mixing factors of the s0 boson. Using the order-of-magnitude 
estimates from section 6, the admixture of the SM-like Higgs doublet H is at the level of 
O(λ�H v�

λH vH
) ∼ 10−10 (see (B.12), (71) and (111)), and the admixture of the doublet � is at the 

level of O(1/r��) ∼ 10−9 (108). Assuming the � admixture as the leading one, the partial de-
cay rate for the process Z → s0f f̄ can be estimated as

�Z→s0f f̄ ≈ 1

r2
��

10−3 GeV . (129)

This gives a negligible branching ratio

BZ→s0f f̄ ≡ �Z−→s0f f̄

�Z

≈ 10−21 , (130)

compatible with the experimental data [16]. Here �Z
.= 2.5 GeV is the total decay width of the 

Z boson.
For the same reason, namely because of smallness of the electroweak non-singlet component 

of the s0-boson, other invisible Z boson decay channels like, e.g., Z → s0s0f f̄ , are also totally 
negligible.

8. Conclusions

In this work, the possibility of dynamical LNV and neutrino mass generation, based on neu-
trino condensation, has been considered. In order to prove this concept, a simplified model setup 
with a single neutrino generation, without neutrino flavor mixing, has been constructed and 
studied. This test setup also lacks CP violation in the neutrino Yukawa sector, and then it in-
validates itself from being able to describe leptogenesis. Nevertheless, we believe that it shares 
important qualitative features and the order-of-magnitude quantitative estimates with a realistic 
three-generation version of the model, which is going to be developed in a successive work.

In order to check the viability of our neutrino condensation model, we have borrowed realistic 
leptogenesis constraints on the size of the mass of quasi-degenerate heavy Majorana neutrinos, 
their mass splitting and decay rates. We assumed a combined inverse plus linear seesaw mech-
anism for the explanation of the active neutrino mass and kept the seesaw scale rather low, i.e., 
MR ∼ 1 − 10 TeV, in order to stay in the ballpark of current and near-future collider experi-
ments. The neutrino condensation dynamically generates the LNV mass entries of the seesaw 
mass matrix, as VEVs of composite additional Higgs fields. Their coupling parameters are gen-
erated dynamically and fixed completely by the underlying new dynamics, which provides the 
necessary attraction within the LNV neutrino-neutrino channels.

The main message of this work, based on order-of-magnitude estimates, is that, in spite of 
such tightly constrained scheme with limited room to play with its parameters, the model has the 
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potential to predict viable values of active neutrino masses and the mass and decay rate of a dark 
matter particle candidate, while satisfying the parameter requirements of successful leptogenesis.

Declaration of competing interest

The authors wish to confirm that there are no known conflicts of interest associated with this 
publication and there has been no significant financial support for this work that could have 
influenced its outcome.

Acknowledgements

This work was supported by FONDECYT (Chile) under grants No. 1170171, No. 3150472, 
No. 1180232, No. 1190845 as well as CONICYT (Chile) Basal FB0821. The work was sup-
ported from Czech participation to European-level research infrastructure - OP VVV Project 
Underground laboratory LSM (No. CZ.02.1.01/0.0/0.0/16_013/0001733).

Appendix A. Neutrino mass matrix diagonalization

We present here the eigenvalues of the full neutrino mass matrix in Eq. (1), i.e., including 
the non-zero μ′

inv-entry, under the assumption of the hierarchy (3), which comes from our phe-
nomenological analysis done in Sect. 6. Here, we add the assumption

μ′
inv ∼ μinv . (A.1)

We perform an expansion of the mass eigenvalues in the following small parameters, dubbed 
as ε:

ε ∼
√

μlin

MR

∼ mD

MR

∼ μinv

MR

∼ μ′
inv

MR

, (A.2)

To leading order in all of these small parameters the eigenvalues are

mν

MR

�
(

mD

MR

− m3
D

M3
R

)(
μinv

MR

mD

MR

− 2
μlin

MR

)

+
(

μ2
lin

M2
R

− 2
μlin

MR

mD

MR

μinv

MR

+ m2
D

M2
R

μ2
inv

M2
R

)
μ′

inv

MR

+O(ε5) ,

mN±
MR

� ±1 + 1

2

(μinv + μ′
inv)

MR

± 4m2
D + (μinv − μ′

inv)
2

8M2
R

−1

2

mD

MR

(
μinv

MR

mD

MR

− 2
μlin

MR

)
+O(ε3) .

The light neutrino mass, to leading order O(ε3) and heavy neutrino masses to order O(ε1), are 
given as

mν

MR

� μinv

MR

m2
D

M2
R

− 2
μlin

MR

mD

MR

, (A.4)

mN± � ±1 + 1 μinv + μ′
inv . (A.5)
MR 2 MR
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The expression (A.4) for light neutrino mass coincides with Eq. (4) and it does not depend on 
μ′

inv, in accordance with [5,22,23]. That motivates our assumption of μ′
inv = 0, under which the 

expression (A.5) of heavy neutrino mass coincides with Eq. (4).
The neutrino mass eigenstates (ν, N−, N+) are linear combinations of the original fields⎛

⎜⎝
ν

N−
N+

⎞
⎟⎠ � Uν

⎛
⎜⎝

νL

νc
R

Sc
R

⎞
⎟⎠ , (A.6)

where Uν is the neutrino mixing matrix transforming the neutrino mass matrix (1) into its diago-
nal form UνMνUT

ν . To lowest order of the ε-parameters the neutrino mixing matrix is

Uν �

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 + m2
D

2M2
R

μlin
MR

− μinvmD

M2
R

mD

MR

mD√
2MR

− 1√
2

1√
2

(
1 − m2

D

2M2
R

)
mD√
2MR

1√
2

1√
2

(
1 − m2

D

2M2
R

)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A.7)

Appendix B. Higgs boson mass matrices

The mass matrices of the Higgs bosons are obtained by Eq. (53) from the effective potential 
(26).

• The (2 × 2) mass matrix of charged Higgs bosons is obtained from

[
M2

charged

]
ij

= ∂2

∂a−
i ∂a+

j

Veff(0,0, a−
H ,a+

H ,0,0, a−
�,a+

�,0,0)

∣∣∣∣∣
a±
H =0,a±

�=0

, (B.1)

for i, j = H,�.

The resulting mass matrix is

M2
charged = 1

2
(
√

2v�κ − λ′
H�vH v�)

(
v�

vH
1

1 vH

v�

)
, (B.2)

which is transformed into the diagonal form UchargedM
2
chargedUT

charged by means of the orthog-
onal matrix

Ucharged = 1

v

(
−vH v�

v� vH

)
. (B.3)

• The (3 × 3) mass matrix neutral pseudo-scalar Higgs bosons is obtained from

[
M2

pseudo

]
ij

= ∂2

∂a0
i ∂a0

j

Veff(0, a0
H ,0,0,0, a0

�,0,0,0, a0
�)

∣∣∣∣∣
a0
H =0,a0

�=0,a0
�=0

, (B.4)

for i, j = H,�,�.

The resulting mass matrix is then
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M2
pseudo = κ√

2

⎛
⎜⎝

v�v�

vH
v� v�

v�
vH v�

v�
vH

v� vH
vH v�

v�

⎞
⎟⎠ , (B.5)

which is transformed into the diagonal form UpseudoM
2
pseudoUT

pseudo by means of the orthog-
onal matrix

Upseudo =

⎛
⎜⎜⎜⎜⎝

vH

v
− v�

v
0

0 − v�√
v2
�+v2

�

v�√
v2
�+v2

�

v�v�√
v2
H v2

�+v2
�v2

�+v2
�v2

H

v�vH√
v2
H v2

�+v2
�v2

�+v2
�v2

H

vH v�√
v2
H v2

�+v2
�v2

�+v2
�v2

H

⎞
⎟⎟⎟⎟⎠ . (B.6)

• The (3 × 3) mass matrix neutral scalar Higgs bosons is obtained from

[
M2

hHs

]
ij

= ∂2

∂h0
i ∂h0

j

Veff(h
0
H ,0,0,0, h0

�,0,0,0, h0
�,0)

∣∣∣∣∣
h0

H =0,h0
�=0,h0

�=0

, (B.7)

for i, j = H,�,� .

The resulting mass matrix is then

M2
hHs = (B.8)⎛

⎜⎜⎝
v�v�κ√

2vH
+ v2

H λH − v�κ√
2

+ vH v�(λH� + λ′
H�) − v�κ√

2
+ vH v�λ�H

− v�κ√
2

+ vH v�(λH� + λ′
H�) vH v�κ√

2v�
+ v2

�λ� − vH κ√
2

+ v�v�λ��

− v�κ√
2

+ vH v�λ�H − vH κ√
2

+ v�v�λ��
vH v�κ√

2v�
+ v2

�λ�

⎞
⎟⎟⎠ ,

which is transformed into the diagonal form UhHsM
2
hHsUT

hHs by means of the orthogonal 
matrix which, under the hierarchy v� � v� � vH (r�� � 1) and λ�H � λH , is approxi-
mated as

UhHs =

⎛
⎜⎜⎜⎜⎝

1 − εH ε� ε�

ε� − v�√
v2
�+v2

�

v�√
v2
�+v2

�

−ε�
v�√

v2
�+v2

�

v�√
v2
�+v2

�

⎞
⎟⎟⎟⎟⎠ , (B.9)

where

εH = 1

2

((
λ�H vH v� − √

2κv�

)2

λ2
H v4

H

− v2
�

v2
H

)
, (B.10)

ε� = v�

vH

, (B.11)

ε� = λ�H vH v� − √
2κv�

λH v2
H

. (B.12)
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Appendix C. Renormalization group equations

We derived the Renormalization Group Equations (RGE), used in our analysis, with the help 
of the pyR@TE software [24,25].

The RGEs for the gauge coupling constants of hypercharge g1, of SU(2)L g2, and of color g3, 
are the same as for the two-Higgs-doublet models,

Dg1 = 7g3
1 , g2

1(MZ)
.= 0.127 , (C.1a)

Dg2 = −3g3
2 , g2

2(MZ)
.= 0.425 , (C.1b)

Dg3 = −7g3
3 , g2

3(MZ)
.= 1.440 , (C.1c)

where

D ≡ 16π2 d

dt
(C.2)

and t is

t = ln
m

MZ

. (C.3)

In the RGE evolution we neglect the effect of the Yukawa coupling constants other than the 
neutrino Yukawa couplings yH , y� and y� from Eq. (25) and the SM Yukawa coupling of the 
top quark, yt . The latter runs from the compositeness scale � all the way down to the electroweak 
scale, according to the following RGE:

Dyt = yt

[ 9
2y2

t + θ(t − tMR
)y2

H − 17
12g2

1 − 9
4g2

2 − 8g2
3

]
, (C.4)

where

tM = ln
M

MZ

. (C.5)

On the other hand, the neutrino Yukawa couplings run according to their RGEs

DyH = yH

[ 1
2

(
5y2

H + y2
�

) + 3y2
t − 3

4g2
1 − 9

4g2
2

]
, (C.6)

Dy� = y�

[ 1
2

(
5y2

� + y2
H + 4y2

�

) − 3
4g2

1 − 9
4g2

2

]
, (C.7)

Dy� = y�

(
6y2

� + 2y2
�

)
, (C.8)

only down to the right-handed neutrino mass scale MR, where the heavy neutrinos decouple. At 
that scale we trade the neutrino Yukawa coupling constants for the effective generalized non-
renormalizable Weinberg operators. Here we write the RGEs only for the two operators which 
are relevant and give a leading order contribution to the active neutrino masses. They are

DwH�H = wH�H

[
6 θ(t − tmt )y

2
t + λH + 2λH� − 3 θ(t − tMZ

)g2
2

]
, (C.9)

DwH� = wH�

[
3 θ(t − tmt )y

2
t + λH� + λ′

H� − 3 θ(t − tMZ
)g2

2

]
. (C.10)

Here we have introduced thresholds corresponding to mt and MZ , because in order to determine 
the neutrino masses, we need to run the Weinberg parameters many orders of magnitude below 
the electroweak scale. Keeping the coupling constants yt and g2 would affect the running of the 
Weinberg parameters significantly and unphysically.
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The RGEs for the dimensionless couplings λ’s of the effective potential in Eq. (26) are

DλH = 12λ2
H + 4λ2

H� + 4λH�λ′
H� + 2λ′

H�
2 + 2λ2

�H +
−3λH (3g2

2 + g2
1) + 3

2
g4

2 + 3

4
(g2

2 + g2
1)2 +

+4λH

[
θ(t − tMR

)y2
H + 3y2

t

] − 4 θ(t − tMR
)y4

H − 12y4
t , (C.11)

Dλ� = 12λ2
� + 4λ2

H� + 4λH�λ′
H� + 2λ′

H�
2 + 2λ2

�� +
−3λ�(3g2

2 + g2
1) + 3

2
g4

2 + 3

4
(g2

2 + g2
1)2 +

+4λ�θ(t − tMR
)y2

� − 4 θ(t − tMR
)y4

� , (C.12)

DλH� = 6λH λH� + 2λH λ′
H� + 6λH�λ� + 2λ�λ′

H� + 4λ2
H� + 2λ′

H�
2 + 2λ�H λ�� +

−3λH�(3g2
2 + g2

1) + 9

4
g4

2 + 3

4
g4

1 − 3

2
g2

2g2
1 +

+2λH�

[
θ(t − tMR

)
(
y2
H + y2

�

) + 3y2
t

]
, (C.13)

Dλ′
H� = 2λH λ′

H� + 2λ�λ′
H� + 8λH�λ′

H� + 4λ′
H�

2 +
−3λ′

H�(3g2
2 + g2

1) + 3g2
2g2

1 +
+2λ′

H�

[
θ(t − tMR

)
(
y2
� + y2

H ) + 3y2
t

] − 7
2 θ(t − tMR

)y2
H y2

� , (C.14)

Dλ� = 10λ2
� + 4λ2

�H + 4λ2
�� + 8 θ(t − tMR

)λ�y2
� − 32 θ(t − tMR

)y4
� , (C.15)

Dλ�H = 4λ2
�H + 6λH λ�H + 4λ�λ�H + 4λ��λH� + 2λ��λ′

H� +
−3

2
λ�H (3g2

2 + g2
1) + 2λ�H

[
θ(t − tMR

)
(
y2
H + 2y2

�

) + 3y2
t

]
, (C.16)

Dλ�� = 4λ2
�� + 6λ�λ�� + 4λ�λ�� + 4λ�H λH� + 2λ�H λ′

H� +
−3

2
λ��(3g2

2 + g2
1) + 2λ��θ(t − tMR

)
(
y2
� + 2y2

�

) − 16 θ(t − tMR
) y2

� y2
� .

(C.17)

Finally, the RGE for the dimensionfull coupling parameter κ of the effective potential (26) is

Dκ = κ
[
2λ�H + 2λ�� + 2λH� + 4λ′

H� − 3
2

(
3g2

2 + g2
1

)
(C.18)

+θ(t − tMR
)
(
y2
H + y2

� + 2y2
�

) + 3y2
t

] − 8 θ(t − tMR
) yH y� y� MR

In the RGEs for the couplings λ’s and κ we introduce just one threshold, corresponding to MR. 
The thresholds around the electroweak scale do not play a significant role in determining the 
mass spectrum for the Higgs bosons, the top-quark and the electroweak gauge bosons, as they all 
lie in the same ballpark.

Appendix D. Numerical solutions of the RGEs

We show here one of the viable examples of numerical solution of the model.

Input RGE boundary conditions:

� = 100 TeV (D.1)

y�,�(�) = 3 (D.2)

λ�,�,H�,H�′,�H,��(�) = 0 (D.3)

κ(�) = 0 (D.4)
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Table 2
Table of benchmark parameter settings.

Benchmark param. sets BASIC10 BASIC1 DMtuned1 CP10

MR[TeV] 10 1.11 1.11 10
v�[keV] 120 120 0.1 0.012
r�� || v�[meV] 1.2 × 109 || 0.1 1.2 × 108 || 1 108 || 0.001 1.2 × 109 || 0.00001
yH (MR) || mD[keV] 10−7 || 17.4 10−7 || 17.4 0.9 × 10−7 || 15.7 10−7 || 17.4

y�(MR) || μlin[meV] 2.12 || 0.15 1.78 || 1.26 1.78 || 0.0013 2.12 || 0.000015
y�(MR) || μinv[keV] 0.17 || 1404 1.26 || 107 1.26 || 0.09 1.65 || 0.014

m
(lin)
ν [ eV] 1.03 × 10−12 0.08 × 10−9 7.1 × 10−14 1.03 × 10−16

m
(inv)
ν [ eV] 0.74 × 10−12 0.05 × 10−9 3.3 × 10−14 0.74 × 10−16

mν [ eV] 0.29 × 10−12 0.03 × 10−9 3.9 × 10−14 0.29 × 10−16

κ(MZ)[MeV] 0.57 0.09 0.083 0.57

λH (�) 0.0068 0.0068 0.0068 0.0068
λ�(MZ) 1.151 1.356 1.356 1.151
λ�(MZ) 2.044 2.265 2.265 2.044
λ��(MZ) 0.152 0.171 0.171 0.152
λH�(MZ) −0.010 −0.009 −0.009 −0.010
λ′
H�

(MZ) −0.006 −0.006 −0.006 −0.006
λ�H (MZ) 0.0002 0.0002 0.0002 0.0002

m
H0,a0,h±[TeV] 10.87 1.37 1.198 10.87

(mh± − m
H0 )[MeV] 2.5 38.4 45.4 2.5

(mH − m
a0 )[ eV] 0.0 0.0 0.0002 0.0018

yNνh 5.0 × 10−8 5.0 × 10−8 4.5 × 10−8 5.0 × 10−8

yNνs 2.0 × 10−9 1.2 × 10−8 0.9 × 10−8 2.0 × 10−9

yNνη 2.0 × 10−9 1.2 × 10−8 0.9 × 10−8 2.0 × 10−9

m
s0 [keV] 103 105 0.075 0.0089

ysνν −2.74 × 10−18 −1.08 × 10−16 1.43 × 10−18 −2.74 × 10−18

�s [ eV] 3.06 × 10−32 4.86 × 10−29 6.12 × 10−36 2.56 × 10−36

Input SM parameters:

v = 246 GeV −→ vH
.= 246 GeV (D.5)

mh0 = 125 GeV −→ λH (mh) = 0.258 (D.6)

mt = 174 GeV −→ yt (mt )
.= 1.0003 (D.7)

In Table 2 we present four benchmark parameter settings. The benchmark parameter setting
BASIC10 corresponds to our order-of-magnitude estimate performed in the section Sec. 6. The
BASIC1 setting is included in order to show the impact of decreasing the value of MR. The
DMtuned1 setting is shown in order to demonstrate the cancelation in the DM decay Yukawa 
coupling constant ysνν from Eq. (125). The CP10 setting is included in order to show the impact 
of requirement to increase the CP assymmetry up to the level ∼ 0.01.
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